N

N
N

HAL

open science

Protocol-Based Interactive Debugging for
Domain-Specific Languages

Josselin Enet, Erwan Bousse, Massimo Tisi, Gerson Sunyé

» To cite this version:

Josselin Enet, Erwan Bousse, Massimo Tisi, Gerson Sunyé.
ging for Domain-Specific Languages. The Journal of Object Technology, 2023, 22 (2), pp.2:1-14.

10.5381/jot.2023.22.2.a6 . hal-04124727

HAL Id: hal-04124727
https://hal.science/hal-04124727

Submitted on 12 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Protocol-Based Interactive Debug-

https://hal.science/hal-04124727
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Journal of Object Technology | RESEARCH ARTICLE

I I JOURNAL OF
OBJECT TECHNOLOGY

Protocol-Based Interactive Debugging for
Domain-Specific Languages

Josselin Enet, Erwan Bousse, Massimo Tisi, and Gerson Sunyé
Nantes Université, Ecole Centrale Nantes, IMT Atlantique, CNRS, LS2N, UMR 6004, France

ABSTRACT

Interactive debuggers are established tools used by developers to understand programs and localize faults. They are equally
valuable in the context of model-driven development, when working on executable behavioral models. However, development
costs of interactive debuggers for Domain-Specific Languages (DSLs) can be significant. In order to mitigate these costs, several
reusable DSL-agnostic debugging solutions have been proposed. We argue that the applicability of these solutions is limited by
being tied to a fixed set of debugging services, a specific language engineering approach, or a particular user interface. In this
paper, we present a novel approach to provide interactive debugging services for executable DSLs through a reusable generic
architecture. We propose a protocol allowing a generic interactive debugger to communicate with heterogeneous DSL runtimes,
both for controlling the execution and for configuring the debugger with domain-specific breakpoints. The proposed debugger
can itself be controlled using a reinterpretation of the Debug Adapter Protocol (DAP), for an effortless integration in existing
Integrated Development Environments (IDEs) that support it. Using a prototype implementation based on JSON-RPC and two
heterogeneous DSL runtimes, we show that our approach provides an off-the-shelf reusable interactive debugger that supports
meaningful domain-specific breakpoints, and that can be used with minimal effort within an IDE such as Visual Studio Code.

KEYWORDS Domain-specific languages, Debugging, Language tooling.

teractive debuggers are very valuable tools when working on
1. Introduction behavioral models. Such models are typically written using
Domain-Specific Languages (DSLs), and express what the pos-
sible behaviors of the system under development are. Provided
an execution semantics and an interactive debugger, a behavioral
model can be executed and debugged, allowing the language
user to better understand its unfolding behaviors. Yet, as of
today, only few DSLs have their own full-fledged interactive
debuggers. One likely reason is the important effort required to
implement such a complex tool for a new DSL. Indeed, an inter-
active debugger must provide a wide range of services (stepping,
breakpoints, inspection, etc.) that must be integrated with both
the runtime of the considered DSL and a user interface (UI)
giving access to said services.
One desirable solution is the definition of a generic inter-

Interactive debugging is an essential technique to understand
how an executable program unfolds, whether to verify its cor-
rectness or to localize defects. It provides developers with
additional ways to interact with a running program, such as an
increased control over the execution, or the inspection of the
runtime state. A wide range of interactive debuggers already ex-
ists for most existing General-purpose Programming Languages
(GPLs), such as the GNU Debugger (Free Software Founda-
tion 2023) (GDB), a well-established interactive debugger that
supports a variety of GPLs, such as C, C++, Go, or Rust.

In the context of Model-Driven Development (MDD), in-

JOT reference format:

Josselin Enet, Erwan Bousse, Massimo Tisi, and Gerson Sunyé. active debugger that can be reused by new DSLs with little
Protocol-Based Interactive Debugging for Domain-Specific Languages. cost. Some approaches already follow this direction and offer
Journal of Object Technology. Vol. 22, No. 2, 20283. Licensed under -1 . . .

Attribution 4.0 International (GC BY 4.0) some level of reusability for debugging services (Bou:%e etal.
http://dx.doi.org/10.5381/j0t.2023.22.2.xx 2018; Wu et al. 2008; Lindeman et al. 2011; Pasquier et al.

An AITO publication

http://dx.doi.org/10.5381/jot.2023.22.2.xx

2022), including reusability for different DSLs. However, we
observe that some key limitations are yet to be addressed. First,
most approaches are language-parametric, i.e. , they consider
the DSL as a "white box" that they introspect in order to dy-
namically provide adapted services. While this is a powerful
way to generalize an approach, it requires strong assumptions
on how supported DSLs are implemented—such as the used
language engineering approach, with specific metalanguages
and frameworks—and thus hinders reusability. Second, most
approaches are tied to a specific UI and therefore cannot be
easily integrated in existing Integrated Development Environ-
ments (IDEs). Third, reusable interactive debuggers usually
aim at providing a fixed set of generic debugging services that
are suitable for any DSL. They are not easily able to provide
services that are specific to the domain of a particular DSL,
such as domain-specific breakpoints. A solution that addresses
one of these limitations may easily have a negative impact on
another. For instance, considering a DSL as a "black box" make
it difficult for the debugger to adapt to a domain, and providing
domain-specific debugging services may prevent from reusing
existing generic Uls. We therefore claim that these limitations
should be addressed all at once.

We present in this paper a novel approach to provide interac-
tive debugging services for executable DSLs through a reusable
generic architecture. The main contributions are as follows:

— We introduce the Language Runtime Protocol (LRP), a
protocol allowing a generic debugger to communicate with
a language runtime. LRP takes inspiration from recently
popular language protocols, such as LSP (Microsoft 2023b)
or GLSP (Eclipse Fundation 2023). By supporting LRP,
a generic debugger can be reused for DSLs that are im-
plemented in different language-engineering approaches,
metalanguages, and frameworks.

— We introduce the Configurable Debug Adapter Protocol
(cDAP), a protocol for integrating IDEs with interactive de-
buggers for DSLs. The protocol cDAP is compatible with
a subset of the Debug Adapter Protocol (DAP) (Microsoft
2023a), which is nowadays supported by most IDEs. We
argue that DAP is structurally not fully adapted to the
debugging of DSLs, hence cDAP redefines the seman-
tics of some DAP methods and provides a minimal set of
additional configuration services. By supporting cDAP, a
generic debugger for DSLs can be reused in different IDEs.

— We introduce the concept of breakpoint type, and include
it in both LRP and cDAP. Breakpoint types allow defining
and reasoning upon the different types of breakpoint a DSL
may require. A generic debugger may use the breakpoint
types defined for a given DSL to configure domain-specific
breakpoints accordingly. While in this paper we focus ex-
clusively on them, domain-specific breakpoints are only
one of the possible domain-specific debugging services
that a DSL debugger may need to provide. The example of
breakpoint types allows us to show how our architecture
enables the inclusion of domain-specific debugging ser-
vices in the generic debugger without breaking reusability.

We developed a prototype implementation of the proposed

2 Enet et al.

interactive debugger using TypeScript and JSON-RPC. We use
this prototype to evaluate our approach with two heterogeneous
DSL runtimes: State Machines—implemented using Python and
ANTLR (Parr & Quong 1995)—and MiniTL—a minimal model
transformation language running on a Java Virtual Machine, im-
plemented using EMF (Steinberg et al. 2008), Xtext (Eysholdt
& Behrens 2010) and Kermeta3'. For each considered hetero-
geneous DSL, results show that our approach can: (1) provide
an off-the-shelf reusable interactive debugger, (2) be used with
minimal effort within a standard IDE such as Visual Studio
Code, (3) be used to define meaningful breakpoints types.

To evaluate our approach, we propose to answer the follow-
ing research question:

— RQ1: Is the proposed interactive debugging approach DSL-
agnostic? In other words, can it provide an interactive
debugger for any executable DSL, regardless of both the
domain of the DSL and of how the DSL runtime is imple-
mented?

— RQ2: How much effort is required to adapt an existing
DSL runtime to make it compatible with the proposed
protocol?

— RQ3: Can the proposed interactive debugging approach be
used to define and use relevant domain-specific breakpoints
types for different sorts of DSLs?

— RQ4: Can the proposed interactive debugger be integrated
with limited effort in an existing IDE that supports DAP?

The rest of the paper is structured as follows. Section 2
presents the scope of DSLs considered in the paper, standard
interactive debugging services, and the concept of language pro-
tocol. Section 3 explains our contribution, which is a protocol-
based approach to provide generic interactive debugging for
executable DSLs. Section 4 presents the implementation of our
prototype. This implementation is then used for the evaluation
described in Section 5. Section 6 lists previous related work
related to our research matter. Finally, Section 7 summarizes the
contribution of this paper and highlights research perspectives.

2. Background

In this section, we present the scope of considered executable
DSLs, the main services usually found in interactive debugging
solutions, and finally, an overview of language tooling protocols.

2.1. Executable DSLs

A DSL is a usually small language specialized to a particular
technical or application domain. In the context of MDD, a DSL
can be used to create models that each define a particular facet
of a system. A DSL commonly comprises both a syntax defin-
ing what are models conforming to the DSL, and a semantics
defining the meaning of each conforming model.

Syntax The syntax of a DSL can be decomposed in an abstract
syntax, defining the concepts of the DSL and their relationships,
and a concrete syntax, defining how to graphically or textually
represent each concept. A model conforming to the DSL has

! http://diverse-project.github.io/k3/

http://diverse-project.github.io/k3/

a concrete representation—e.g. text or diagrams—conforming
to the concrete syntax, and this concrete representation can
be translated in an abstract representation conforming to the
abstract syntax. In this paper, we make no assumption on how
the syntax of a DSL is defined (e.g. using a metamodel-based
or a grammar-based approach), and we assume the abstract
representation of a model can always be mapped to an Abstract
Syntax Tree (AST) with cross-references (i.e. a node of the tree
may contain an explicit reference to another node).

Execution Semantics The semantics of a DSL define some
effect occurring when processing a conforming model, e.g. the
generation of an artifact (e.g. code, documentation), some exe-
cution yielding a result, or the generation of a program that is
executed on the fly. We call execution semantics a semantics
defining how a model is executed. An execution semantics de-
fines both what are the possible runtime states of a conforming
model being executed, and how the runtime state of a model
changes over time due to occurring execution steps. In this
paper, we focus only on DSLs with execution semantics, which
we call executable DSLs. While we make no assumptions on
how an execution semantics is defined (e.g. using a translational
or operational approach), we make the following assumptions:
(1) The execution of a model can always be represented as a se-
quence of execution steps, each yielding a set of changes on the
runtime state; (2) The runtime state can be mapped to a list of
named structured elements, which may include cross-references
to elements of the AST; (3) A list of input parameters can be
passed when executing a model, in order to set initial values in
the runtime state.

DSL Runtime We call DSL runtime the implementation of an
executable DSL as executable software in any arbitrary form
(e.g. a set of executable programs or a language server). A DSL
runtime should provide all required facilities to work with a
language, such as the ability to parse a model represented as
a file, to analyze a model, or to execute a model to yield re-
sults. A wide range of programming languages, metalanguages,
tools and frameworks—sometimes available combined in the
form of a language workbench—can be used to implement
a language runtime. Examples include the Eclipse Modeling
Framework (Steinberg et al. 2008), ANTLR (Parr & Quong
1995), Xtext (Eysholdt & Behrens 2010), Langium?, MPS?,
Spoofax (Kats & Visser 2010). We do not make assumptions
on how a DSL runtime is implemented, as long as it satisfies
our previous assumptions about the syntax and the semantics of
considered DSLs.

Running Example: State Machines DSL Figure 1 shows an
example of an executable DSL for State Machines, inspired
from UML state machines (Object Management Group 2023).
The abstract syntax of this DSL is defined as a metamodel,
i.e. an object-oriented model representing the concepts of the
language as classes. A state machine is composed of multiple
states, one of them being referenced as the initial state. States
are linked to each other or to a pseudo-state via transitions; a

2 https://langium.org/
3 https://www.jetbrains.com/mps/

transition has an input and output associated to it. There are
different kinds of states and pseudo-states:

— Final pseudo-states only have incoming transitions.

— Simple states have a name and can have incoming and
outgoing transitions.

— Composite states have the same properties as simple states,
and contain internal states, as would a state machine.

At the start of an execution, a sequence of input parameters
is used to initialize the runtime state. The values stored by the
runtime state are initialized as follows: inputs takes the value
of the inputs passed as arguments, nextConsumedInputlndex
takes the value 0, outputs is an empty array, and currentState
references the initial state of the state machine. The only kind of
execution step present in this language is to fire a transition. To
fire a transition, the language finds a transition going out of the
current state and with an input equals to the current input being
consumed; this input is stored in inputs at the index nextCon-
sumedInputindex. Firing a transition changes the runtime state
as such: nextConsumedInputlndex is incremented by 1, the out-
put value produced by the transition is appended to outputs,
and currentState references either the target of the transition
if it is a simple state, or the initial state contained in the target
composite state. The execution stops either when all inputs have
been consumed, when a final pseudo-state is reached, or when
no transition to be fired can be found.

Figure 2 presents a state machine model represented using
the same graphical concrete syntax as UML state machines.
The model is composed of four states A, B, C, and D. A is a
simple state as well as the initial state of the state machine. B
is a composite state, reachable through a transition from A and
with transitions going back to A or to a final pseudo-state. It
contains two simple states C and D, C being the initial one. A
transition goes from C to D, and conversely. This model also
contains instances of domain-specific breakpoints, which are
further described in Section 3.

An example of execution of this state machine model can be
achieved using the following input parameters: ["b", "d", "a",
"b", "final"]. The first two execution steps of this execution are
the firing of the transition AtoB, and the firing of the transition
CtoD. When both these steps are over, the runtime state will
comprise the following values:

inputs: ["d", "d", "a", "b", "final"]
outputs: ["AtoB", "CtoD"]
nextConsumedInputindex: 2
currentState: SimpleState D

Finally, we consider that this State Machines DSL is im-
plemented in the form of a DSL runtime running in a Python
Virtual Machine. More precisely, the abstract syntax is defined
using a set of manually written Python classes, the concrete
syntax is managed using both ANTLR4 and some boilerplate
code, and the operational semantics is written in pure Python in
the form of a simple loop that fires transitions as long as inputs
are available. A Python executable is able to start the execution
of a state machine model stored as a text file conforming to the
grammar of the DSL.

Protocol-Based Interactive Debugging for Domain-Specific Languages 3

https://langium.org/
https://www.jetbrains.com/mps/

Abstract Syntax definition

<<Interface>>

target [1..1]

Vertex

i

initial [1.1]
> <<Abstract>>
StateMachine State

»

FinalPseudoState

Transition
Runtime State definition

states [1..*] + name: String

+ input: String

inititalState [1..1]
3

>

outgoingTransitions [0..*]

»| + output: String

StateMachineRuntimeState

+ inputs: String [0..*] {ordered}

<
<

currentState [1..1]

states [1..*]

CompositeState

SimpleState

+ outputs: String [0..*] {ordered}
+ nextConsumedInputindex: Integer

Figure 1 Abstract syntax and runtime state definitions of the considered State Machines DSL

Inputs: ["b", "d", "a", "b", "final"]

[B \

b/

AtoB final /

. d/ BtoFinal
CtoD %
EAO MR
al
BtoA <
cl/
\ DtoC /

® Domain-specific breakpoint

Figure 2 Example state machine model, conforming to the
abstract syntax shown in Figure 1, depicted with a graphical
concrete syntax.

2.2. Interactive Debugging

This section presents some standard features found in most in-
teractive debuggers (Zeller 2023) and the scope of features we
consider in this paper. We also use as a reference the Debug
Adapter Protocol (DAP) (Microsoft 2023a), which is a standard-
ized definition of these features for typical imperative GPLs.

Breakpoints Interactive debugging allows users to pause the
execution of a running program using breakpoints. A breakpoint
defines a condition on the running program, which is then evalu-
ated at each execution step. When this condition is verified, the
execution is paused, allowing the developer to observe the run-
time state of the program and to use different debugging actions
to control the execution, such as stepping operators (presented
thereafter) or resuming the execution.

The most common and well-known type of breakpoints is
called source breakpoints. A source breakpoint can be set to

4 Enet et al.

a specific position in the program. Then, before a semantic
operation is executed on an AST element present at the given
position, the execution pauses. When the considered language
has a textual concrete syntax, source breakpoints are commonly
set on a specific line and possibly column of the source file, and
trigger a stop before the execution of statement or expression
found in this line. Other types of breakpoints exist: variable
breakpoints can be set on variables in runtime state, and are trig-
gered when the value stored in the variable changes; exception
breakpoints are triggered when a specific type of exception is
thrown; and others.

Stepping Operators Once the execution is paused, a second
way for a developer to control execution is through the use of
stepping operators. These operators can be used to perform
debugging steps, i.e. to execute only a specific portion of a
program based on the current runtime state without having to
manually set breakpoints. For example, a usual debugging step
is to execute only the line at which the execution is paused. The
most known common stepping operators are step over to skip
the inner execution steps of the next program element (e.g. to
hide the internal steps of a function call), step into to execute the
next enclosed element of the current program element (e.g. to
observe the internal steps of the body a function).

Variables View = When the execution is paused, the developer
can inspect the current runtime state of the program using the
variable view*. This view presents a structured representation
of the current runtime state, which the developer can browse
to inspect all runtime elements. The variable view is usually
structured in multiple scopes, such as the scope of the current
function, the global scope, etc. Each scope can be unfolded to
show the variables it contains. Similarly, variables with complex
values (such as objects or arrays) can be folded or unfolded.

4 We use the term view in a general abstract sense that includes both graphi-
cal (e.g. in an IDE) and textual (e.g. in a CLI debugger) representations of
variables.

Developer L Language Engineer
i Scope of the contributions
: Configuration Services :
é (< i
uses : Standard Debugging Services | © | : implements
v - (Subset of DAP) p v
(c s Control Services
Integrated & Configurable DSL
Development Interactive CC =
- Ve Runtime
Environment {o Debugger L
~ Domain-Specific | Inspection Services |
Breakpoints Services CC
L J L J
RS RS
cDAP LRP

Figure 3 Overview of the proposed interactive debugging architecture

Limitations of standard interactive debugging features for DSLs
We can observe that all the standard debugging features pre-
sented above are mostly all tailored for the typical features and
concepts available in a standard GPL (e.g. Java, TypeScript or
C#). They are however rarely adapted for DSLs that do not
include GPL-oriented concepts such as statements, variables,
functions or exceptions. We claim that a DSL requires domain-
specific interactive debugging services that are fitting for the
features and concepts it provides. In this paper, we propose a
first example of such services in the form of domain-specific
breakpoint types, which can be defined for any given DSL, and
used within a generic interactive debugger.

2.3. Language Protocols

When providing tools or user interfaces for software languages,
a difficulty lies in how the tool should communicate with the
runtime of the language it is made for. A current trend in
language engineering is to facilitate this communication using
well-defined language interfaces (Degueule et al. 2017) and in
particular language protocols (Jeanjean et al. 2021). The idea of
language protocols is to consider that a language runtime should
run in a server, which should provide services over a (usually
local) network. These services can then be used by an IDE to
automatically provide Uls and tools for the language, regardless
of how a language runtime is implemented.

Among the most popular and successful language protocols
are the Language Server Protocol (LSP) (Microsoft 2023b) and
the Debug Adapter Protocol (DAP) (Microsoft 2023a). LSP
is designed for the textual edition of programs, and allows a
generic editing Ul of an IDE (e.g. Visual Studio Code, Eclipse,
IntelliJ) to rely on textual editing services directly provided
by the language runtime. Similarly, DAP is designed for the
debugging of textual programs, and allows a generic debugging
UI of an IDE to communicate with debugging services provided
by the language runtime directly.

Note that in both examples presented above (i.e. LSP and
DAP), the protocol requires complex services to be defined
within the language runtime (e.g. editing or debugging services),
and their goal are only to reuse the UI related to these ser-

vices. In contrast, in this paper, we choose to define a reusable
generic interactive debugger that is defined outside the language
runtime, and that communicates with the latter using a first
dedicated protocol. We then use a second protocol — which
is an extension to DAP — to integrate this generic interactive
debugger within any DAP-compatible IDE.

3. Protocol-Based Interactive Debugging

This section presents our generic interactive debugging archi-
tecture for executable DSLs. We first give an overview of the
proposed solution, then we present the protocols we define for
the integration of heterogeneous DSL runtimes, and finally we
describe the proposed generic interactive debugger.

3.1. Overview

Figure 3 presents the general architecture of the framework pro-
posed in this paper. The generic debugger is contained in its
own independent component. It communicates with two other
components: a language runtime and a UL. Communication
with language runtimes is performed through a new protocol,
the Language Runtime Protocol (LRP), which can be imple-
mented by a variety of languages and allows for customization
of debugging features. In this paper, we focus on the defini-
tion of domain-specific breakpoints. Exchanges with Uls are
ensured by a marginally revised version of DAP, together with
some additional services for the management of domain-specific
breakpoints: the joint usage of these protocols is referred to as
the configurable Debug Adapter Protocol (cDAP).

In the following sections, we further describe the structure
and semantics of these protocols, as well as the responsibilities
of a generic debugger. We also illustrate the interaction of all
these components in an end-to-end use case.

3.2. Language Runtime Protocol

In order for debuggers to communicate in a unified fashion
with various language runtimes, we defined a new protocol: the
Language Runtime Protocol (LRP). Through this protocol, de-
buggers are able to start and control the execution of a program.

Protocol-Based Interactive Debugging for Domain-Specific Languages 5

+ parse(sourceFile: String): ModelElement

+ nextStep(sourceFile: String): Boolean

<<Interface>>
LanguageRuntime

+ initExecution(sourceFile: String, bindings: Binding [0..*]): Boolean
+ getBreakpointTypes(): BreakpointType [0..*]

+ getRuntimeState(sourceFile: String): ModelElement
+ checkBreakpoint(sourceFile: String, args: CheckBreakpointArguments): CheckBreakpointResponse

BreakpointType breakpointType [1..1]

+ name: String
+ description: String

< CheckBreakpointArguments

CheckBreakpointResponse

+ isActivated: Boolean

[+ message: String [0..1]

b i «
parameters [0..*] 4 bindings [0."]
- Y <<Abstract>> <<Enumeration>>
BreakpointParameter Binding PrimitiveType
+name: String bindings [0-7] |, 1ame: String Boolean
+ isMultivalued: Boolean >| + isArray: Boolean String
+ primitiveType: PrimitiveType [0..1] Number
+ objectType: String [0..1] ?
[]
) ReferenceBinding ContainmentBinding
<<Interface>> E)catlon [0..1]
Location D 1 s (0.
values [0..
4 Y
: <<Interface>>
i Value
TextualLocation referencedObjects|[0..*] x
+ line: Integer T ' ____________________ r ____________________
+ column: Integer NumberValue StringValue BooleanValue
+ endLine: Integer o] Object
+ endCcolumn: Integer + value: Real + value: String + value: Boolean
ModelElement

T+ type: String

Figure 4 Class diagram of the Language Runtime Protocol (LRP)

Moreover, language runtimes can configure a debugger with
language-specific breakpoints. Note that we do not make any
claim about the completeness of this protocol. Our goal is sim-
ply to propose a protocol to which a debugger can map cDAP
calls for the usual debugging features described in Section 2, so
that language runtimes do not have to completely reimplement
cDAP. Whether the services of LRP are sufficient to describe
any sort of breakpoint is not a concern addressed in this paper,
even though the protocol was designed with genericity in mind.

Figure 4 describes the structure of LRP. The LanguageRun-
time interface describes the services that a language runtime
must provide in the context of this protocol. As mentioned
in Figure 3, three groups of services can be identified in LRP,
which we define shortly after.

Figure 2 presents a state machine with domain-specific break-
points, represented by blue crossed circles attached to states or
transitions. On this particular instance, a breakpoint is attached
to the state D and another breakpoint to the transition from B to
A. We rely on this example to better describe each service.

6 Enet et al.

Configuration Services The parse service requests the lan-
guage runtime to parse a given source file. After calling this
service, the language runtime has access to the AST associated
with the source file. Calling this service also returns a model
to the debugger; this model represents the AST, but under a
form that is more intelligible by end-users of the debugger. This
means that the internal AST stored by the language runtime and
the AST received by the debugger (i.e. , the one manipulated by
end-users during debugging) can differ. For instance, a language
runtime for the State Machine DSL can internally manipulate an
AST in the form of a complex transition matrix. Directly giving
access to this representation to the end-user might render de-
bugging difficult. Instead, the language runtime can present the
AST under a much more readable form, such as a model with
concrete State and Transition objects. Each element of the AST
has a type; the debugger does not need to know the relationship
between the types of the language, therefore it is sufficient to
store this type as a string in each element. Finally, elements to
which a domain-specific breakpoint can be assigned come with

a location; it represents a range in the source file where putting
a source breakpoint will translate to assigning a domain-specific
breakpoint to the corresponding element. This means that while
the ASTs manipulated by the debugger and language runtime
can be structurally different, the breakpoint types defined by
the language runtime are constrained by the AST passed to the
debugger. This is because locations for domain-specific break-
points are attached to elements of the AST manipulated by the
debugger. Please also note that since we propose in this paper
to reuse DAP for the communication with Uls and since DAP is
tailored for textual languages, LRP only currently supports loca-
tions in textual source files. However, it is perfectly conceivable
to add support for other kinds of locations in LRP, such as ones
in graphical representations.

The initExecution service performs the initialization of the
runtime state of a program, based on the AST and possible
additional arguments passed in the service call. This results in
the language runtime storing a runtime state corresponding to
the state before the execution of any execution step. In addition,
this service returns a boolean, conveying whether an execution
step can be performed by the language runtime. On the running
example, calling this operation results in the language runtime
initializing its runtime state as follows:

inputs: ["d", "d", "a", "b", "final"]
outputs: []
nextConsumedInputindex: O
currentState: SimpleState A

The boolean true is returned since the transition from A to B
can be fired when consuming the first input.

The getBreakPointTypes service retrieves a list of all break-
point types made available by the language runtime. For con-
venience, each breakpoint type comes with a human-readable
name and description. A breakpoint type can have multiple
parameters; each parameter has a name and a type. This type is
either a primitive type (boolean, string or number) or an object
type, which is simply represented as a string. A parameter can
be single- or multivalued. For example, a breakpoint type that
breaks when a state is reached takes one parameter: a single
value of type State as defined by the language runtime.

Control Services The nextStep service asks the language run-
time to perform the next execution step for a given program, and
returns a boolean representing whether another execution step
can be performed (same as initExecution). Calling this service
on the running example will set the runtime state as follows:

— inputs: ["b", "d", "a", "b", "final"]
outputs: ["AtoB", "CtoD", "BtoA"]
nextConsumedInputindex: 3
currentState: SimpleState A

The boolean true is returned since the transition from A to B
can be fired when consuming the fourth input.

Inspection Services The gerRuntimeState service returns a
representation of the current runtime state stored by the language
runtime. As for the AST, the representation of the runtime state

<<dataType>> DAPLaunchRequestArguments

Any + noDebug: Boolean [0..1]

+ _ restart: Any [0..1]

I

cDAPLaunchRequestArguments

+ languageRuntimePort: Integer

+ sourceFile: String

+ pauseOnStart: Boolean [0..1]

+ enabledBreakpointTypelds: String [0..*]
+ additionalArgs: Any [0..1]

Figure 5 Class diagram of the altered arguments of the
launch DAP service

manipulated by the language runtime and the debugger can
differ. Elements of the runtime state have the same structure as
elements of the AST; however, elements of the runtime state can
not only reference other runtime state elements, but also AST
elements. The runtime state of the running example is already
presented in Section 2. Note that the currentState reference
points to a State contained in the AST.

The checkBreakpoint service passes a breakpoint type along
with additional arguments to the language runtime; these addi-
tional arguments can be model elements or any other arbitrary
value. The language runtime checks whether the predicate as-
sociated to the given breakpoint type is verified on the next
execution step when applied with the given arguments, and re-
turns a corresponding boolean together with a message destined
to the user if the breakpoint was activated. Let’s consider the
breakpoint type mentioned during the presentation of the get-
BreakpointTypes service. To check whether an instance of this
breakpoint is activated, this breakpoint type must be passed to
checkBreakpoint along with a State from the AST. In the situ-
ation depicted in Figure 2, this service will signal an activated
breakpoint just before the second input is consumed, since this
input triggers a transition targeting state D.

3.3. DAP for Domain-Specific Debugging

Trying to combine DAP, which is geared towards imperative
GPLs, with the use of domain-specific breakpoint types is a
conflicting endeavor. Still, we argue that interfacing with DAP
is important since it is a widely adopted protocol to integrate
debuggers with existing Uls”. The main difficulty in using this
protocol is that it defines data structures that are strongly cou-
pled to a subset of executable languages. For instance, different
types of breakpoints are already defined in the protocol: source
breakpoints, variable breakpoints, function breakpoints, instruc-
tions breakpoints, etc. This makes it complex to use domain-
specific breakpoint types in conjunction with this protocol. To
address this issue, we propose to slightly alter the semantics of
DAP while keeping the same service signature. We also add
new services for enabling domain-specific breakpoint types.

5 https://microsoft.github.io/debug-adapter-protocol/implementors/tools/

Protocol-Based Interactive Debugging for Domain-Specific Languages 7

https://microsoft.github.io/debug-adapter-protocol/implementors/tools/

DAP Services Original Semantics Altered Semantics
initialize Configures the debugger with the client’s capabilities, | Same as original.
and vice-versa.
disconnect Disconnects the program being debugged from the | Always terminates the program being debugged, but
debug adapter and shuts down the debug adapter. If the | keeps the debugger running.
debug session was started through the launch service,
the program being debugged must also be terminated.
launch Starts the execution of a given program, with or with- | Same as original, but contains additional arguments
out debugging. described in Section 3.3.
threads Retrieves a list of all threads. Retrieves a mock, unique thread.
stackTrace Retrieves the stack trace of the current execution state | Retrieves a stack trace containing a mock, unique stack
for a specified thread. A stack trace is composed of a | frame.
range of stack frames.
scopes Retrieves the scopes for a specified stack frame. A | Retrieves two mock scopes: one for the AST, and one
scope stores a reference that can be used to retrieve its | for the runtime state.
variables through the variables service.
variables Retrieves the child variables for a specified variable | Same as original.
reference.
next Performs a step in the current granularity for the speci- | Performs an execution step (no thread notion).
fied thread. Can prevent other threads from resuming
if the corresponding capability is supported by the de-
bug adapter.
stepIn Performs a step into (presented in Section 2) for the | Performs an execution step (no thread notion).
specified thread. Can prevent other threads from re-
suming if the corresponding capability is supported by
the debug adapter.
stepOut Performs a step out (presented in Section 2) for the | Performs an execution step (no thread notion).
specified thread. Can prevent other threads from re-
suming if the corresponding capability is supported by
the debug adapter.
continue Resumes the execution of all threads of a program. | Resumes the execution of the program (no thread no-
Can prevent other threads from resuming if the corre- | tion).
sponding capability is supported by the debug adapter.
setBreakpoints | For a given source file, sets multiple source break- | Same as original, except that the semantics of source
points and clears all previous source breakpoints. breakpoints are different; they change depending both
on the syntax element a source breakpoint is associated
to, and the enabled breakpoint types during runtime.

Table 1 List of reused DAP services in cDAP

Altered DAP Table | shows the list of services from DAP
reused in cDAP, along with their original and altered semantics.
This alteration introduces room for domain-specificness; first,
we can use the existing source breakpoints to implement domain-
specific breakpoints. Source breakpoints can be attached to a
precise location in a source file (i.e. a line and a column); as a
result, this location can be used to pinpoint a specific element of
the syntax. As mentioned in the presentation of LRP, language
runtimes expose a service to check whether a breakpoint is
verified. Since we can derive elements from a location in the
concrete syntax, a debugger can map source breakpoints set

8 Enet et al.

through DAP to calls to the checkBreakpoint service of LRP.
For instance, the State Machine DSL can expose a breakpoint
type that is triggered when a given state is about to be reached.
By putting a source breakpoint at the location corresponding
to a state, the debugger is able to infer the state targeted by the
domain-specific breakpoint. A limitation of relying on source
breakpoints is that resulting domain-specific breakpoints can
only be parameterized by exactly one element of the abstract
syntax. As an example, it is impossible to define a breakpoint
type that would break when a given state is reached for the n
time, where 7 is an additional parameter that can be set by the

<<Interface>>
ConfigurableDebugger

+ getBreakpointTypes(sourceFile: String): BreakpointType [0..*]
+ enableBreakpointTypes(sourceFile: String, breakpointTypes: BreakpointTypel[1)

BreakpointType

+ name: String

+ description: String

+ isEnabled: Boolean

+ targetModelElementType: String

Figure 6 Class diagram of the domain-specific breakpoints
services of cDAP

end-user. It is also impossible to define breakpoints over values
exclusively stored in the runtime state, such as outputs.

To start the execution of a program, the launch service of
DAP can be reused, but additional arguments must be introduced
to support domain-specific debugging. Figure 5 describes these
additional arguments. Arguments present in the original launch
service of DAP, represented in the class DAPLaunchRequestAr-
guments, are still usable in our altered version of the service.
The altered version is presented in the class cDAPLaunchRe-
questArguments. There are two mandatory arguments: the
integer languageRuntimePort stores the local port at which the
language runtime related to the program to launch is listening
to; the program to run is identified in the string sourceFile. The
boolean pauseOnStart specifies whether the debugger should
pause the execution after the initialization of the runtime state,
but before executing any step. The array of string enabledBreak-
pointTypelds contains the identifiers of all breakpoint types that
should be enabled at the start of the execution. Finally, ad-
ditionalArgs contains an arbitrary data structure that will be
forwarded to the language runtime to initialize the execution of
the program through the initExecution LRP service.

In the same spirit, we can reuse the services of DAP that
are used to fill the variables view: threads, stackTrace, scopes,
and variables. These services again make some assumptions
about features present in the language, such as the use of threads
or the presence of a stack trace. We attribute a mock value to
these specific features and only use the part that contributes to
showing the content of the runtime state in the variables view. A
drawback of this approach is that languages that do manipulate
these features, such as thread and stack trace, can not currently
profit from the specific support that DAP offers.

The stepping support of DAP remains unchanged in cDAP:
domain-specific stepping operators are out of the scope of this
paper. This means that any step performed by the end-user will
translate to an execution step in the language runtime.

Additional Services During debugging, end-users will want
to choose what breakpoint types they wish to use. We address
this case with new services in the debugger interface in addition
to usual DAP services.

Figure 6 show these additional services. getBreakpointTypes
asks the debugger to list all the domain-specific breakpoint
types available for a given source file. Each breakpoint type is
identified by a unique string, and targets exactly one type of

Algorithm 1 : continue service of the configurable debugger

Input:
file : the source file of the program
proxy the proxy of the language runtime
binst : the breakpoint instances on the running
program
baet : the breakpoint instances already acti-
vated since the last execution step
begin

isExecutionDone < false
while —isExecutionDone do
foreach b € b;,,; do
if b € b, then continue
target < getTargetModelElement(b)
foreach by, € getEnabledBreakpointTypes(target.type)
do
args < getCheckBreakpointArguments(b, btype)
response <— proxy.checkBreakpoint(file, args)
if response.isActivated then
bact <~ bact Uub
rs <— proxy.getRuntimeState(file)
updateRuntimeState(rs)
notifyPauseToUlI(response.message)
return

bact ~ {}
| isExecutionDone < proxy.nextStep(file)
| notifyTerminationToUI()

element present in the AST (also identified by a unique string).
For convenience, each breakpoint type also comes with a human-
readable name and description. A breakpoint type also carries a
boolean which determines whether it is currently enabled. The
State Machine DSL can for instance provide breakpoints that
are triggered when a state is reached, a transition is fired, an
input is consumed or an output is produced.
enableBreakpointTypes asks the debugger, for a given source
file, to enable all the breakpoint types passed as parameters.
All previsouly enabled breakpoint types that are not passed as
parameters are disabled. For instance, the State Machine DSL
can provide three breakpoint types: one triggered when a state
is reached, another when a state is exited and another when a
transition is fired. It is possible to enable any combination of
these breakpoint types, including no breakpoint types at all.

Debugger In the present approach, the debugger acts as the
bridge between the UI and the language runtime. This point
alone distinguishes our approach from DAP, where debugger
and language implementation are not necessarily separated. The
main responsibility of a debugger in our framework is then to
map cDAP calls coming from the Ul to internal operations in the
debugger. Some of these internal operations will in turn require
calls to LRP services provided by language runtimes. Algo-
rithm 1 depicts the pseudo-code describing how the debugger

Protocol-Based Interactive Debugging for Domain-Specific Languages 9

handles a cDAP call to the continue service.

While the execution is not done, the debugger will execute
two tasks in sequence: first, check if any breakpoint is activated
and second, request the language runtime to perform a step.
The debugger goes through all breakpoints stored in b;,,¢;; if an
instance was already activated during the current execution step,
it is ignored. Then, for each enabled breakpoint type associated
to the type of model element targeted by the instance, the de-
bugger uses proxy to call the checkBreakpoint LRP service. If
the response to this request is the activation of the breakpoint,
then the instance is added to the list of activated breakpoints
byt for the current execution step, the runtime state stored in the
debugger is updated, and a notification is sent to the UI. Once all
breakpoints have been checked for a given step, b, is cleared
and a request to the nextStep LRP service is sent through proxy.
If the response is that the execution is over, a notification is sent
to the UL Otherwise, the main loop is entered again.

Note that the debugger has the responsibility of tracking ele-
ments to which domain-specific breakpoints are associated; in
this regard, language runtimes only have to be able to check
whether a breakpoint is verified or not, on demand of the debug-
ger through the appropriate LRP service. However, preserving
breakpoints on a source file between executions is still the re-
sponsibility of the UI, as is normally the case with DAP.

3.4. End-to-End Use Case

Figure 7 depicts a scenario in which a user debugs the State
Machine previously presented in Figure 2.

The exchange begins with sequence of calls to initialize,
launch and setBreakpoints; this is standard DAP communication.
The inputs to be consumed by the state machine are passed in
the launch request, as well as the breakpoint types enabled at
the start of execution: we consider that a unique breakpoint
type is enabled, which breaks when a specific state is reached.
As a result of this request, the debugger initiates a sequence of
calls to the parse, initExecution and getBreakpointTypes LRP
services presented by the State Machines language runtime. At
the end of this sequence, the language runtime has initialized
a runtime state for the program and is ready to execute the
first. The debugger has access to a representation of the AST
of the program, knows which breakpoint types are provided by
the language runtime and can map source breakpoints to these
domain-specific breakpoints.

Since the UI was storing a previously assigned source break-
point, a setBreakpoints request is sent along the launch request.
Once the debugger is updated on which breakpoint types are
available, it is able to map the source breakpoint to a domain-
specific breakpoint and store it. Then, the Ul is notified about
the success of the setting of the breakpoint.

At this point, the main loop of the debugger—similar to the
one presented in Algorithm 1—can begin. The breakpoints are
successively checked before executing the first step by calling
the checkBreakpoint LRP service. Here, the breakpoint assigned
to the transition is not activated, since no breakpoint type that
takes a transition as argument is enabled. The breakpoint on
state D is not activated either since the target of the first tran-
sition is C. Consequently, the debugger requests the language

10 Enet et al.

Integrated Development Interactive Configurable State Machine

Environment Debugger Language Runtime
initialize(...) R
: initResponse
e n e o
launch(...)
setBreakpoints(...)

' launchResponse

:<

! parse(...) R
stateMachineAST
initExecution(...) = :

>
false
S nE EEE P LR R L
getBreakpointTypes(...) 1
>
stateMachinebreakpointTypes

setBreakpoints()

‘_l run()

checkBreakpoint(...)

setBreakpointResponse

checkBreakpointResponse

checkBreakpoint(...)

checkBreakpointResponse

getRuntimeState(...)

runtimeState
) [Cmmmmmmmmmmm e L]
Notify Pause H

7

Figure 7 Execution scenario with a configurable debugger
and a State Machines language runtime implementing LRP

runtime to execute the next step through the nextStep LRP ser-
vice; after this step, the execution is not yet over since more
inputs can be consumed. The debugger checks again all the
breakpoints; this time, the breakpoint on state D is activated be-
cause D is the target of the second transition, and this breakpoint
has not been already activated for this execution step. As a re-
sult, the debugger adds this breakpoint to the set of breakpoints
activated for this execution step. It also updates its representa-
tion of the runtime state by calling the gefRuntimeState LRP
service, so that it is able to appropriately respond to requests of
the UI to populate the variables view. Finally, it notifies the Ul
from the pause in the execution and suspends operations until
new requests are received from the UL

Configurable Debugger g]

Breakpoint E
Manager
L . N Language E [
o—t Debug Session —@— Debug Runtime —(o— Runtime Proxy 4(
cDAP LRe

Figure 8 Architecture of the prototype debugger

4. Implementation

This section presents the implementation of two components
that follow our proposed approach: a configurable debugger and
a Visual Studio Code extension adding support for cDAP.

4.1. Configurable Debugger

Our prototype of a configurable debugger® is implemented in
TypeScript. Its overall architecture is presented in Figure 8. It
communicates with language runtimes through a JSON-RPC
version of LRP. A JSON Schema specification is available’ for
both LRP and cDAP.

The debugger itself can be decomposed in four main compo-
nents. * The Language Runtime Proxy ensures the communica-
tion with the language runtime through LRP. In the case of this
prototype, we work with a JSON-RPC version of our protocol,
without closing the possibility to use other network protocols.
This proxy is used by the Debug Runtime; this component keeps
track of all the relevant information about the debugging of
a given program. It relies on the Breakpoint Manager for all
things related to breakpoints; this includes tracking which break-
points are present in the running program, as well as checking
their activation before each step. Finally, the Debug Session is
responsible for the communication with the UI through cDAP.
The role of this component is to translate cDAP requests to
calls to the Debug Runtime. For the sake of simplicity, our
current implementation of the Debug Session can only handle
the debugging of one program at a time.

4.2. Visual Studio Code Extension

Visual Studio Code® is a lightweight IDE distributed by Mi-
crosoft. It supports communication with debuggers through
DAP. We integrate our debugger in Visual Studio Code through
an extension developed in TypeScript. This extension does not
have to re-implement DAP communication, which is already
generically handled by Visual Studio Code. Its goals are:

— To declare languages that implement LRP services, and
can therefore be used in conjunction with our debugger.
The authors have no yet identified a way to dynamically
discover which languages are compatible with our debug-
ger, so this declaration has to be manually performed in
the extension.

6 https://github.com/NaoMod/Protocol-Based-Interactive-Debugging-for-
DSLs-Prototype

7 https://github.com/NaoMod/Configurable-Debugger-Protocols-Specification

8 https://code.visualstudio.com

— To implement the additional services over DAP related
to domain-specific breakpoints. Together with DAP, this
forms the cDAP protocol used to communicate with our
configurable debugger.

This extension does not yet support the automated launch
of either the debugger or language runtime. Rather, these com-
ponents are expected to be already running. An explanation
of the launch process and the manipulation of domain-specific
breakpoints is given in the repository of the prototype.

5. Evaluation

This section describes how we evaluated our contributions ac-
cording to the research questions listed in Section 1.

5.1. Experimental setup
We detail below our experimental setup.

Considered DSL runtimes and models Table 2 summarizes
the two DSL runtimes considered for our evaluation. The first
is the Python-based runtime of the State Machines DSL already
presented in Section 2.1. The second is a Java-based runtime of
a minimal model transformation language called MiniTL.

Loosely inspired from ATL (Jouault et al. 2008), MiniTL
can be used to define a model transformation from an input
Ecore metamodel to an output Ecore metamodel. A MiniTL
transformation is composed of a set of rules each with an input
pattern and an output pattern. Each input pattern defines how to
match an object conforming to the declared input metamodel,
while each output pattern defines what element conforming
to the output metamodel to create. The runtime of MiniTL
is implemented with the Eclipse Modeling Framework (EMF),
using Ecore for the abstract syntax, Xtext for the concrete syntax,
and Kermeta for the operational semantics. The MiniTL runtime
therefore runs on a JVM.

For each executable DSL, we considered two different small
executable models, each in the form of a text file conforming to
the grammar of the DSL.

Considered breakpoint types We aim to define different
breakpoint types for each considered DSL runtime. For the
State Machines DSL, we wish to have two types of breakpoints
for states: one for when a state is about to be reached, and one
for when a state is about to be exited. We also consider a break-
point type for when a transition is about to be fired. For MiniTL,
we consider two breakpoint types: one when a transformation
rule is about to be applied to all matching elements, and one
when a feature of an element of the output model is about to be
assigned a value.

Considered IDE To demonstrate that our approach can be
integrated in any IDE that supports DAP, we focused on one
IDE currently popular among developers: Visual Studio Code.

Procedure and metrics Our evaluation aims to assess how our
prototype implementation, previously presented in Section 4,
can be used to debug models conforming to the two DSL run-
times presented above. Our evaluation comprises three phases:
DSL runtime extension, IDE tooling, and model debugging.

Protocol-Based Interactive Debugging for Domain-Specific Languages 11

https://github.com/NaoMod/Protocol-Based-Interactive-Debugging-for-DSLs-Prototype
https://github.com/NaoMod/Protocol-Based-Interactive-Debugging-for-DSLs-Prototype
https://github.com/NaoMod/Configurable-Debugger-Protocols-Specification
https://code.visualstudio.com

Language Runtime Implementation . .
Language Considered Breakpoint Types
Technological Space Approach
* State Reached
State Machines Python ANTLR4 « State Exited
¢ Transition Fired
. * Rule Applied To All Elements
MiniTL Java XText + EMF + Kermeta3

* Value Assigned to Feature

Table 2 Summary of the executable DSLs considered in the experimental setup

In the DSL runtime extension phase, we extend each con-
sidered DSL runtime to implement the services expected by
our proposed Language Runtime Protocol (LRP), including the
services required for each breakpoint type considered for the
DSL. As required by our prototype, these services must follow
the JSON-RPC standard, and must translate the queries they
receive into actual calls to the internal implementation of the
DSL. We measure the effort required to build this integration
layer with the amount of lines of code that must be written. This
phase contributes to answering RQ1, RQ2 and RQ3.

In the IDE tooling phase, we integrate the proposed generic
interactive debugger in the considered IDE, i.e. Visual Studio
Code. This requires a Visual Studio Code extension with (1)
the required boilerplate code for the pure DAP-based commu-
nication with the debugger, and (2) the required code to both
communicate with the debugger through our extension of DAP
for domain-specific breakpoints, and to provide Ul elements
to interact with these services. Again, we measure the effort
required to build this integration layer with the amount of lines
of code that must be written. This phase aims to answer RQ4.

Finally, in the model debugging phase, we execute each
considered model of each considered DSL runtime using the
complete end-to-end setup: the considered IDE, itself integrated
with the generic interactive debugger, itself integrated with the
DSL runtimes. With each execution, we create one breakpoint
per considered breakpoint type, and we use the continue service
to reach each breakpoint. This phase contributes to answering
RQI1 and RQ3.

5.2. Results

We discuss below the results obtained through the evaluation
phases for each considered research question.

RQ1 In the runtime extension phase, we implemented the
LRP interface for both the State Machines and MiniTL lan-
guage runtimes. These runtimes implement DSL with distinct
domains and use different implementation technologies. The
LRP protocol itself can then be considered DSL-agnostic.
During the model debugging phase, we executed the models
considered for each DSL. For all models, we were able to create
a breakpoint of each considered type. The creation of break-
points was realized in a unified fashion, by placing a source
breakpoint on the source file of each model. The execution

12 Enet et al.

stopped correctly when the condition corresponding to each
breakpoint was met. We therefore consider that our approach
can provide interactive debugging in a DSL-agnostic way.

RQ2 In the runtime extension phase, existing runtimes were
modified to support LRP services. The exact effort required to
implement LRP is difficult to quantify, since some code might
be embedded into the existing runtime code. For the State
Machines DSL, 589 lines of code (LoC) were necessary; we
estimate that half of this code could be reused in other language
runtimes implemented in Python. Regarding MiniTL, 1116
LoC were required to integrate support for LRP. Again, we
suggest that half of this code could be reused for other runtimes
depending on Java. While the implementation effort to support
LRP is important we argue that it is still easier to achieve for
language engineers than to re-implement a complete debugger.
In addition, this approach becomes increasingly interesting as
the capabilities of the debugger evolve; the implementation
effort for language engineers stays the same.

RQ3 In the runtime extension phase, we extended each lan-
guage runtime with the capacity to check domain-specific break-
points through the checkBreakpoint LRP service. It is possible
to call this service to verify the condition of a breakpoint dur-
ing the execution of a program by the language runtime. As
such, LRP is sufficient for language runtimes to define domain-
specific breakpoints.

In the model debugging phase, models were executed for
each considered DSL runtime. Source breakpoints were put di-
rectly on the source files of the models, and were then translated
to domain-specific breakpoints. The semantics of these break-
points could be switched during runtime thanks to the available
breakpoint types. Hence, we consider that our approach allows
the definition and usage of domain-specific breakpoints for het-
erogeneous DSLs. Note that other usual debugging features,
such as stepping operators and variables view, were working but
were not configured in a domain-specific way. More specifically,
using any of the stepping operators resulted in the execution of
a single execution step.

RQ4 During the IDE tooling phase, we developed an exten-
sion in TypeScript for VSCode as to integrate our configurable
debugger. 147 LoC were necessary for the implementation, 132
of which were dedicated to the extension of DAP for domain-

specific breakpoints. Since VSCode already supports communi-
cation through DAP, no additional code is required to interact
with the debugger through standard DAP services. Thus, we
consider that the implementation effort required to integrate our
debugger in IDEs that already support DAP is reasonable.

5.3. Limitations

Our evaluation does not currently include an assessment of the
usability of our approach by real developers. This would require
finding a set of developers that use an executable DSL on a
regular basis and would beneficiate from debugging features.

The evaluation would also profit from a comparison with
other DSL-agnostic debugging approaches, such as ones listed
in Section 6. However, this analysis is made complicated by the
fact that none of these approaches has exactly the same scope as
ours; some focus on advanced debugging features, others don’t
consider integration with multiple Uls, etc. Also, the variety in
the technological spaces of the different solutions adds another
layer of complexity for this comparison.

In general, the measure of lines of code is not very repre-
sentative of the complexity of the implementation. However,
we consider that the use cases present in our evaluation are
simple enough to not warrant the use of other metrics. If more
complex use cases are explored in the future, then the addition
of supplementary measures may be interesting.

6. Related Work

Several language engineering workbenches provide solutions
for debugging, but offer limited options for defining domain-
specific debugging services. For instance Spoofax (Kats &
Visser 2010) provides a DSL for the declarative definition of
debuggers (Lindeman et al. 2011). Debug events exposed by the
language must be mapped to a predefined set of event classes.
These existing classes might not be sufficient to express the
variety of events that can be produced by each DSL.

The Eclipse GEMOC Studio debugger (Bousse et al. 2018)
is a debugger with advanced capabilities, such as reverse exe-
cution, that is available for DSLs at a reduced implementation
cost. It exists inside the Eclipse GEMOC Studio (The GEMOC
Initiative 2023), an environment for the development and use
of executable DSLs. The Eclipse GEMOC Studio debugger is
composed of a standalone component, to which engines can be
connected. These engines are responsible for hiding approach-
specific details during the execution of a program, and present
a standardized interface through which the GEMOC debugger
can interact with the running program. Therefore, it is possible
to make new approaches work with the debugger without hav-
ing to completely re-implement a debugger. Another notable
aspect of this debugger is that breakpoints can be associated
to elements of the graphical syntax, providing some level of
customization. However, the breakpoint type associated to each
graphical element is automatically deduced from the language
implementation, with no means to configure them. The main
limitation of this framework is that it can only be exploited by
languages implemented in one of the approaches available in
the Eclipse GEMOC Studio. While new approaches can be

added to the Eclipse GEMOC Studio, an underlying require-
ment is that they must all be based on the Eclipse Modeling
Framework (Steinberg et al. 2008) (EMF).

The Moldable Debugger (Chis et al. 2014) proposes a frame-
work to define domain-specific operations and views for inter-
nal DSLs implemented inside object-oriented host languages.
Some components of the debugger, handling low-level com-
munication with the host language, can be reused to build new
domain-specific debugging constructs. Still, the debugger im-
plementation is strongly coupled to the host language: for in-
stance, the prototype implementation of the Moldable Debugger
is written in Pharo, and can only deal with DSLs hosted in this
language. Domain-specific breakpoints can be described over
primitive debugging predicates available on all DSLs. However,
these predicates can only be used through GPLs—in the case of
the prototype implementation, Pharo—and no infrastructure is
provided to easily define these breakpoints.

Multiverse debugging is a debugging method focused on pro-
viding operations that ease the debugging of non-deterministic
languages (Pasquier et al. 2022). The GVmind debugger inter-
faces itself with various languages through a formally-defined
interface: the Semantic Language Interface. This interface
presents an evaluate service, which takes an expression in an
arbitrary formalism and returns the result of its evaluation over
the runtime state of the program. This approach is useful to
let end-users define their own breakpoint types; however, it
forces language runtimes to implement the semantics of an ex-
pression formalism in addition to its own semantics. Another
limitation of this work is its compatibility with existing Uls; the
GVmind debugger is currently implemented in the AnimUML
environment in an ad-hoc manner.

Leroy et al. (Leroy et al. 2020) describe behavioral inter-
faces, i.e. means to interact with a program during its execution.
These interfaces are tailored for DSLs with discrete-event opera-
tional semantics, i.e. DSLs that can react to incoming stimuli. In
contrast, our approach considers that DSLs receive no external
inputs passed the execution initialization.

Besnard et al. (Besnard et al. 2018) define a unified se-
mantics interface for the simulation, formal verification and
execution of UML models. In comparison, our approach thrives
to be applicable to languages implemented in heterogeneous
ways and is geared towards execution and debugging.

7. Conclusion

Reducing the development cost of interactive debuggers for
Domain-Specific Languages (DSLs) is a necessary undertaking
to bring DSLs on par with General-purpose Programming Lan-
guages (GPLs). We proposed in this paper a reusable generic
architecture to reduce the effort required to build such tools,
and we demonstrated with two DSLs that with only reasonable
integration effort, the resulting interactive debugger can both be
compatible with heterogeneous DSLs, and allow the definition
of domain-specific debugging services (i.e. breakpoint types).
We see different complementary research directions to con-
tinue this work. The evaluation can be extended both with more
IDEs (e.g. Eclipse or IntelliJ), and with a larger selection of DSL

Protocol-Based Interactive Debugging for Domain-Specific Languages 13

runtimes, in order to cover more domains and more language
engineering techniques. The proposed Language Runtime Pro-
tocol could be extended to cover concurrent execution seman-
tics (i.e. with non-determinism and parallel composite steps)
(Zschaler et al. 2023). More configuration domain-specific de-
bugging services could be provided, such as composite steps
or runtime state with different scopes. The flexibility of the
domain-specific breakpoint types available to the user could
be increased by not relying on cDAP for the communication
between the Ul and the debugger. Lastly, the development of the
integration layer of a DSL runtime could be facilitated, e.g. by
defining helpers for each considered language engineering ap-
proach (in the same spirit as execution engines of the GEMOC
Studio (Bousse et al. 2016)).

References

Besnard, V., Brun, M., Jouault, F., Teodorov, C., & Dhaussy, P.
(2018). Unified LTL verification and embedded execution of
UML models. In Proceedings of the 21th ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages
and Systems (pp. 112-122). doi: 10.1145/3239372.3239395

Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Dean-
toni, J., & Combemale, B. (2016, October). Execution
framework of the GEMOC studio (tool demo). In Pro-
ceedings of the 2016 ACM SIGPLAN international con-
ference on software language engineering. ACM. doi:
10.1145/2997364.2997384

Bousse, E., Leroy, D., Combemale, B., Wimmer, M., & Baudry,
B. (2018, March). Omniscient debugging for executable
DSLs. Journal of Systems and Software, 137, 261-288. doi:
10.1016/j.jss.2017.11.025

Chis, A., Girba, T., & Nierstrasz, O. (2014). The mold-
able debugger: A framework for developing domain-specific
debuggers. In International Conference on Software Lan-
guage Engineering (pp. 102—121). Springer. doi: 10.1007/
978-3-319-11245-9_6

Degueule, T., Combemale, B., & Jézéquel, J.-M. (2017). On
language interfaces. In Present and ulterior software engi-
neering (pp. 65-75). Springer International Publishing. doi:
10.1007/978-3-319-67425-4_5

Eclipse =~ Fundation.
https://www.eclipse.org/glsp/.

Eysholdt, M., & Behrens, H. (2010). Xtext: Implement your
language faster than the quick and dirty way. In Proceedings
of the ACM international conference companion on Object
oriented programming systems languages and applications
companion (pp. 307-309). doi: 10.1145/1869542.1869625

Free Software Foundation. (2023). GDB: The GNU Project
Debugger. https://www.sourceware.org/gdb/.

Jeanjean, P., Combemale, B., & Barais, O. (2021, February).
IDE as code: Reifying language protocols as first-class citi-
zens. In 14th innovations in software engineering conference
(formerly known as india software engineering conference).
ACM. doi: 10.1145/3452383.3452406

Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, 1. (2008, June).
ATL: A model transformation tool. Science of Computer

(2023). GLSP.

14 Enet et al.

Programming, 72(1-2), 31-39. doi: 10.1016/j.scico.2007.08
.002

Kats, L. C., & Visser, E. (2010, October). The spoofax
language workbench: Rules for declarative specification
of languages and IDEs. In Proceedings of the ACM in-
ternational conference on Object oriented programming
systems languages and applications (pp. 444—463). New
York, NY, USA: Association for Computing Machinery. doi:
10.1145/1869459.1869497

Leroy, D., Bousse, E., Wimmer, M., Mayerhofer, T., Combe-
male, B., & Schwinger, W. (2020, July). Behavioral interfaces
for executable DSLs. Software and Systems Modeling, 19(4),
1015-1043. doi: 10.1007/s10270-020-00798-2

Lindeman, R. T., Kats, L. C., & Visser, E. (2011). Declara-
tively defining domain-specific language debuggers. ACM
SIGPLAN Notices, 47(3), 127-136. doi: 10.1145/2189751
2047885

Microsoft. (2023a). Official page for Debug Adapter Protocol.
https://microsoft.github.io/debug-adapter-protocol/.

Microsoft. (2023b). Official page for Language Server Protocol.
https://microsoft.github.io/language-server-protocol/.

Object Management Group. (2023). Unified Modeling Lan-
guage Specification. https://www.omg.org/spec/UML/.

Parr, T. J., & Quong, R. W. (1995). ANTLR: A predicated-LL
(k) parser generator. Software: Practice and Experience,
25(7), 789-810. doi: 10.1002/spe.4380250705

Pasquier, M., Teodorov, C., Jouault, F., Brun, M., Roux, L. L.,
& Lagadec, L. (2022, October). Practical multiverse debug-
ging through user-defined reductions: Application to UML
models. In Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems (pp.
87-97). New York, NY, USA: Association for Computing
Machinery. doi: 10.1145/3550355.3552447

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008).
EMF: Eclipse Modeling Framework. Pearson Education.

The GEMOC Initiative. (2023). GEMOC Studio.
https://gemoc.org/studio.html.

Wu, H., Gray, J., & Mernik, M. (2008, August). Grammar-
driven generation of domain-specific language debuggers.
Software: Practice and Experience, 38(10), 1073-1103. doi:
10.1002/spe.863

Zeller, A. (2023). How debuggers work. In The debug-
ging book. CISPA Helmholtz Center for Information Se-
curity. https://www.debuggingbook.org/html/Debugger.html.
Retrieved 2023-01-06 17:58:51+01:00, from https://www
.debuggingbook.org/html/Debugger.html (Retrieved 2023-
01-06 17:58:51+01:00)

Zschaler, S., Bousse, E., Deantoni, J., & Combemale, B. (2023,
January). A generic framework for representing and analyz-
ing model concurrency. Software and Systems Modeling. doi:
10.1007/s10270-022-01073-2

https://www.debuggingbook.org/html/Debugger.html
https://www.debuggingbook.org/html/Debugger.html
https://www.debuggingbook.org/html/Debugger.html

About the authors

Josselin Enet is a PhD student in software engineering at
Nantes University (France). His thesis revolves around pro-
viding reusable language tooling for DSLs, regardless of meta-
languages and domain. You can contact the author at jos-
selin.enet@ls2n.fr.

Erwan Bousse is an Associate Professor at Nantes Univer-
sity (France). He obtained his PhD in France in 2015 at
the University of Rennes 1 for his work on execution traces
and omniscient debugging of executable models. His cur-
rent research interests include Software Language Engineering
(SLE), Model-Driven Engineering (MDE), Domain-Specific
Languages (DSLs), model execution and simulation, and the
debugging and testing of models. You can contact the author at
erwan.bousse @Is2n.fr or visit https://bousse-e.univ-nantes.io/.

Massimo Tisi is an associate professor at the Institut Mines-
Telecom Atlantique (IMT Atlantique, Nantes, France), and
deputy leader of the NaoMod team, LS2N (UMR CNRS 6004).
Since 2019 he coordinates the Lowcomote Marie Curie Euro-
pean Training Network. His research interests revolve around
software and system modeling, domain-specific languages and
applied logic. He contributes to the design of the ATL model-
transformation language and investigates the application of de-
ductive verification techniques to model-driven engineering.
You can contact the author at massimo.tisi @1s2n.fr.

Gerson Sunye is an associate professor at the Nantes University
(France) in the domain of software engineering and distributed
architectures and the head of the Nantes Software Modeling
Group. He received the PhD degree in Computer Science from
the University of Paris 6, France, in 1999. From 1999 to 2001 he
was a postdoctoral researcher at the IRISA Computer Science
laboratory. He has 4 years of industry experience in software
development. He received his Habilitation in 2015. He is
the author of several papers in international conferences and
journals in software engineering. His research interests include
software testing, design patterns and large-scale distributed
systems. You can contact the author at gerson.sunye @1s2n.fr or
visit https://sunye-g.univ-nantes.io/.

Protocol-Based Interactive Debugging for Domain-Specific Languages

15

mailto:josselin.enet@ls2n.fr?subject=Your paper "Protocol-Based Interactive Debugging for Domain-Specific Languages"
mailto:josselin.enet@ls2n.fr?subject=Your paper "Protocol-Based Interactive Debugging for Domain-Specific Languages"
mailto:erwan.bousse@ls2n.fr?subject=Your paper "Protocol-Based Interactive Debugging for Domain-Specific Languages"
https://bousse-e.univ-nantes.io/
mailto:massimo.tisi@ls2n.fr?subject=Your paper "Protocol-Based Interactive Debugging for Domain-Specific Languages"
mailto:gerson.sunye@ls2n.fr?subject=Your paper "Protocol-Based Interactive Debugging for Domain-Specific Languages"
https://sunye-g.univ-nantes.io/

