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Abstract—Linked lists have long served as a valuable teaching
tool in programming. However, the question arises: Are they truly
practical for everyday program use? In most cases, it appears
that array-based data structures offer distinct advantages, par-
ticularly in terms of memory efficiency and, more importantly,
execution speed. While it’s relatively straightforward to calculate
the complexity of operations, gauging actual execution efficiency
remains a challenge. This paper addresses this question by
introducing a new benchmark. Our study compares various
linked list implementations with several array-based alternatives.
We also demonstrate the ease of incorporating memory caching
for linked lists, enhancing their performance. Additionally, we
introduce a new array-based data structure designed to excel in
a wide range of operations.

Index Terms—linked lists, arrays, memory cache, performance,
memory blocks

I. INTRODUCTION

This article is a feedback and practical analysis of list data

structures. After many years of programming practice, we

realized that we never use a linked list anymore. Is this famous

list structure implementation that we all studied at one time

or another during our studies really useful ?

The theoretical advantages of a linked list are however

numerous and attractive:

1) It allows a constant incremental allocation of the mem-

ory. Indeed, the addition of an element is equivalent to

the allocation of a single cell in the list.

2) There are never any memory moves of cells during the

life of the linked list.

3) Knowing the location of the insertion or removal of an

element, the operation requires a constant number of

instructions.

As for the drawbacks, it is the necessity of a partial and

sequential path from cell to cell to reach an ith element that

degrades performance. Many more complex implementations

are possible to partially compensate for this shortcoming. We

study two of them here: the presence of a backward chaining

(”doubly linked” list), and the index cache management. When

computers did not have much RAM and the speed of moving

from one memory area to another was still critical, advantages

1 and 2 made the linked list profitable. In this paper, we want

to know if there are still situations where the linked list is an

advantageous and efficient implementation.

Eager to have a concrete and recent study of the struc-

tures in list and in search of the best strategy, the Bjarne

Stroustrup’s benchmark1 seems to provide elements of an

answer. Here, we propose to pursue the study and analyze the

behavior of different list implementations using B. Stroustrup’s

benchmark. In this study, we introduce a new implementation

called ArrayBlock, with the claim to have a relatively

advantageous behavior in all real-life usage scenarios. We also

propose another benchmark, we called Fairbench, which

seems more relevant to test the efficiency and the behavior of

linked lists in conditions closer to a realistic usage.

Note also that there is a lot of educational mate-

rial about linked lists and/or the use of arrays, there

are also some youtube vidéos [Stroustrup(2012)], [Com-

puterphile(2018)], [Curry(2021)], also some web articles

[Wicht(2012a)], [Wicht(2012b)], [Hoang(2018)], [Lab(2021)],

but we found no research publication directly related to the

main topic of this article.

II. LINKED-LISTS REPRESENTATIONS

We explore three linked list implementation options:

NoCacheList (Figure 1), LinkedList (Figure 2) and

SingleList (Figure 3).

Figure 1 shows the memory representation of

NoCacheList. It is a doubly linked list that stores

both the head and tail pointers. To avoid having to traverse

the list to find out its length, a memory cache, called size,

is used to store this information. In the example of Figure 1,

the list holds 4 pieces of data. Note that this representation

corresponds exactly to the LinkedList class of the Java

standard library2. As in Java, index 0 allows access to the

first element (data #0), the second is at index 1 (data#1),

and so on. Of course, if an element is added or removed, the

size attribute must be updated accordingly.

The memory cache technique can also be used to store

the location corresponding to the last access made in the

list (see LinkedList on Figure 2). The two variables,

1Bjarne Stroustrup’s keynote in GoingNative 2012: Why you should avoid
Linked List. https://www.youtube.com/watch?v=YQs6IC-vgmo

2The Java 8 (or later version of the language) is exactely like
NoCacheList. At the time we are writing this article, there is still no other
cache than the size cache.
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Memory Layout of NoCacheList
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Figure 1. A doubly linked list with a memory cache for size, containing 4 data items. The head pointer is stored in first link, and the tail pointer in
last link.

Memory Layout of LinkedList
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Figure 2. Same layout as the one of Figure 1, but with an extra cache of the last visited index (cachelink and cacheindex).

Memory Layout of SingleList
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Figure 3. One-way linked list with memory cache for the size and the last visited index (cachelink and cacheindex).

cacheindex and cache link store the user index and the

pointer to the last accessed link respectively. In the example

in Figure 2, if the user wants to access data #2, the fastest

way is to go through the index cache. Thanks to the double

linking and the index cache, sequential runs, from left to right

or also from right to left, are in constant time for any list size.

The third representation considered, SingleList on the

Figure 3, corresponds to a single-linked list and, as in

the previous case, has a memory cache for both the index

and the size. Obviously, because of its single chaining, a

SingleList will only be efficient when traversing from

the left to the right. With the three previous representations,

NoCacheList, LinkedList and SingleList, we cover

the different possibilities for linked lists in a relatively exhaus-

tive way.

One of the major drawbacks of linked lists is the amount of

memory used by pointers. Even though the memory addresses

of today’s machines are limited to 48 bits, due to re-alignment

problems, each pointer currently costs 64 bits. Thus, for a

list of integers or pointers, the memory space of a list of N
elements in case of double linking is N × 3× 64 bits, that is

N × 24 bytes.

III. ARRAY-BASED REPRESENTATIONS

Using contiguous memory areas (i.e., native arrays) saves

memory space. For array-based representations, we have cho-

sen two standard, well-known forms: ArrayList (Figure 4)

and ArrayRing (Figure 5). Finally, the third representation

is the implementation we call ArrayBlock (Figure 6).

The ArrayList representation shown in the Figure 4

is quite common in programming languages libraries. This

representation has exactly the same name in the Java library.

In C++ this data structure is also known as std::vector.

The principle of this data structure is to provide a storage

area that is at least equal to, and often larger than what

is needed, to avoid having to constantly adjust the size of

the corresponding memory array [Colnet and Sonntag(2015)].

In the example of the Figure 4, the storage memory block

consists of 8 slots, 4 of which are used and 4 are in reserve.

The variable storage holds the pointer to the storage area

and the variable capacity holds the allocation size of the

storage area. The variable size stores the fact that only 4 slots

are used. From the user’s point of view, in order to comply

with the same access interface as for the lists, the 4 stored

datas are accessible via the index interval [0,size-1]. This

representation is very simple because the access to the storage



Memory Layout of ArrayList
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Figure 4. Used area on the left and supply area on the right. Same indexing in the native array and in the user interface.

Memory Layout of ArrayRing
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Figure 5. The storage area is used in a circular fashion, from left to right. The variable lower is used to locate the internal index of data #0.

Memory Layout of ArrayBlock
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Figure 6. A resizable primary table and storage fixed-size areas in power of 2. Circular management of all the tables.

area is done without having to modify the index given by the

user. This array representation is particularly well-suited for

adding/deleting in queue. For example, deleting the last data

item is simply a decrement of size. In the case of adding

at the last position, if there are available slots in reserve, the

operation is also trivial. Obviously for an insert or an addition

at the beginning, the operations become more complicated.

For example, to insert at the first position, all the elements

must be shifted one place to the right in order to make room

for the new element at the index 0.

Althought the memory capacity is twice the number of

elements, the memory used is N × 2× 64 bits, that is N × 16
bytes. Thus with a reserve area of the same size as the used

area, the memory consumption remains reasonable compared

to the space taken up by a doubly linked list (i.e. N × 24
bytes).

The Figure 5 gives an example of the ArrayRing repre-

sentation which allows to solve the problem of the addition

in the first position quite simply. The principle is to use the

storage area in a circular way. To do this, we add a variable

lower that allows us to know where the data that the user

accesses with index 0 is located. In the storage area, starting

from this point, the data are stored from left to right, and, when

we reach the end of the storage area, we start again from the

beginning. The math that gets you from the user index to the

storage area index is just an addition with lower. Whether

it is a leading or trailing addition/deletion, the ArrayRing

representation is of course very powerful. As in the case

of ArrayList, the insertion anywhere other than head or

tail remains problematic and requires potentially consequential

moves. Nevertheless, the ArrayRing representation remains

quite efficient when the insertion is close to either end (0 or



size-1). Note that it is always better to have a capacity that

is a power of 2. In fact, the modulo that is necessary for the

circular overflow of the indices is calculated using the bitwize

operator and3.

The Figure 6 gives an example of the ArrayBlock

representation which is intended to behave more efficiently for

all cases of insertions/deletions. This representation consists in

using a resizable primary table that allows access to secondary

level tables, the blocks, which are all of the same size.

All blocks as well as the primary table itself are managed

in a circular way, according to the same principle as for

ArrayRing. The size of a secondary table is therefore a

power of two, and relatively close to the size of memory

page of the operating system, that is 2048 elements4, which

is the value that gave the best performance. Moreover, as

in the case of lists, the representation ArrayBlock has

an index cache thanks to the variables cacheprim and

cacheindex. The variable cacheprim is used to store

the index of the block corresponding to the last access. The

variable cacheindex returns the user index corresponding

to the first data of the corresponding block. Thus, as seen

before, when memory accesses are located in a certain area,

ideally close to cacheindex, we can restart the search

from the block corresponding to the cacheprim index. The

strategy of the insertion and deletion algorithms is to preserve

as much as possible, about a third, for free spaces within each

block. In this way we avoid shifts in the primary table as much

as possible. In this article, we will not go into detail about the

insert and delete strategies, which can be very different and

whose effectiveness depends mainly on the tests performed.

Without claiming to be completely exhaustive, these three

array-based representations, ArrayList, ArrayRing and

ArrayBlock provide a fairly complete overview.

IV. THE BJARNE STROUSTRUP BENCHMARK

The benchmark proposed by B. Stroustrup consists of two

phases (see algorithm 1). The first phase consists, for a given

N value, in progressively building a sorted list composed of

N randomly selected values. The second phase consists in

removing the N values one by one, by randomly choosing the

index of the removed value for each removal. Note that during

the first phase of the insertion, as indicated by B. Stroustrup,

we naively and sequentially search for the right position to

make the insertion. It is not a dichotomous search for the

right place to insert, as one might think.

Figure 7 shows the results for the B. Stroustrup benchmark

with all the data structures previously described. Without

having to go very far for the value of N , as announced by

3Let c be the capacity of the table which is a power of two. Given a
valid index i in the table and an offset ∆ with respect to that index, the
corresponding index is given by ((i±∆)&(c− 1)). If c is statically known,
the calculation will only take one processor cycle.

4MMU (Memory Management Unit) is generally 4096 bytes in size. This is
equivalent to 512 words of 64 bits. This choice of a 4 KB page was particularly
well suited to 32-bit architectures. However, it is generally accepted that
the use of a larger table of 8 KB or even 16 KB is preferable on 64-bit
architectures.

Algorithm 1 The Bjarne Stroustrup benchmark

1: list← emptyList()
2: for i← 1, N do ⊲ Step 1: filling of list
3: val← random number
4: index← 0
5: while (index ≤ size(list)−1)∧(item(list, index) < val)

do
6: index← index+ 1
7: end while
8: list← insert(list, index, val)
9: end for

10: for i← 1, N do ⊲ Step 2: clearing of list
11: index← random in [0, size(list)− 1]
12: list← remove(list, index) ;
13: end for
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Figure 7. The benchmark of B. Stroustrup using all the implementations of the
paper, emphasizing limited N values. Even for relatively small collections, a
clear distinction is evident between linked lists (red) and array-based structures
(blue).

B. Stroustrup, there is a clear separation between linked and

array-based implementations. In addition, this first run also

shows the importance of having a cache for the last access

index. In fact, the NoCacheList implementation is very

slow already for a very small value of N . Even if it is possible

to integrate the index memory cache into an iterator, it is still

preferable to integrate it directly into the list as soon as the

manipulation interface allows access to the elements via an

indexing mechanism.

Still on the Figure 7 and still on chained implementations,

we can see the interest of the bidirectional linking, between

SingleList and LinkedList. In fact, thanks to double

chaining, it is possible to go backwards from the index cache,

which is not possible with single chaining. As one might

expect, SingleList should be reserved for algorithms that

essentially only traverse in the ascending direction of the

indices (i.e. from left to right).

The three best results are obtained with array-based repre-

sentations: ArrayList, ArrayRing, and ArrayBlock.

Note here that ArrayBlock is significantly slower than

the other two array-based representations. Indeed, on arrays
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Figure 8. With B. Stroustrup’s benchmark, but pushing further for the value
of N. The excessively slow representations are no longer shown (you will no
longer see NoCacheList).

of relatively small size, as in this initial benchmark, using

ArrayBlock results in a time loss.

Note in passing that, in practice, it is essential for the pro-

gramming language being used to facilitate a seamless switch

between representations. In object-oriented languages, when

the library is well-designed, the change of representation is

achieved by modifying only the collection creation instruction.

It is the mechanism of dynamic binding, or even better, the

compiler that statically takes care of redirecting operations to

the corresponding implementation.

Disregarding NoCacheList, Figure 8 also illustrates the

execution of B. Stroustrup’s code, extending the N value.

However, even though the three array-based implementations

are clearly more efficient than the chaining-based ones, the

execution times deteriorate very quickly for values of N that

remain very modest. The complexity induced by the sequential

insertion algorithm during the first insertion phase is of the

order of O(N2) in direct correlation with our experimental

results. Still referring to Figure 8, even if N is greater,

using ArrayBlock still results in a non-negligible time loss

(around 2 times slower).

To visualize the relevance of the ArrayBlock structure in

the case of random insertion/deletion on large data structures,

we have slightly modified B. Stroustrup’s benchmark by

replacing the sequential search for the insertion location (lines

4 to 7 of the algorithm 1) with a dichotomous search, which

reduces the complexity of the first phase of the benchmark

to O(log2(N)). The results for this modified version of the

benchmark are shown in Figure 9. The best results are clearly

obtained with the ArrayBlock implementation. In fact,

for the ArrayList and ArrayRing implementations, a

deletion or an insertion implies on average a shift of N/2
elements. For ArrayBlock, the number of elements to move

does not depend on N ; the shift are directly related to the

constant size of a block.

Note that ArrayRing performs marginally better than
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Figure 9. Variation of benchmark B. Stroustrup: dichotomous insertion during
the first phase. It is then possible to use a larger list by using ArrayBlock.
Memory saturation would take too much time.

ArrayList because it allows choosing the most advanta-

geous direction for shifting the elements. As for the bad

performance of LinkedList, the problem does not come

from the insertion or deletion which is in constant time, but

from the random access into the list which has an average

complexity of O(N/4).

V. FAIRBENCH: JUST FINE FOR LINKED LISTS

Algorithm 2 The fairbench: the right benchmark for lists.

1: list← emptyList() ; index← 0
2: for i← 1, N do ⊲ Step 1: list filling
3: if (i/N < 1/3) then
4: list← addLast(list, someData(i))
5: else if (i/N < 2/3) then
6: list← addF irst(list, someData(i))
7: else
8: index← index+ 1 ⊲ or random incr. Fig.

12/13/14
9: list← insert(list, index, someData(i))

10: end if
11: end for
12: for i← 1, N do ⊲ Step 2: list traversal
13: sum← sum+ value(list, i)
14: end for
15: index← N/2 ; ⊲ Step 3: list clearing
16: for i← 1, N do
17: if (i/N < 1/3) then
18: index← index− 1 ; ⊲ or random decr. Fig.

12/13/14
19: list← remove(list, index)
20: else if (i/N < 2/3) then
21: list← removeF irst(list)
22: else
23: list← removeLast(list)
24: end if
25: end for

The idea of the fairbench (see algorithm 2), is to design

a benchmark that is truly adapted to the concept of a list,

in order to know whether linked implementations have good
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Figure 10. Fairbench: to provide a chance for linked lists to win. Without
going too far for N . And the winners are: LinkedList and ArrayBlock.

performance compared to array-based implementations, and

this for a consequent value of N .

The first phase (see step 1 of the algorithm 2) for the

fairbench is to grow the collection to its maximum of N using

only addLast for the first third, then using only addFirst

for the second third, and finally adding the last third during

a single sequential run in the direction of increasing indices.

Before emptying the list completely, we perform a complete

run from right to left to calculate the sum of all the values (see

step 2 of the algorithm 2). The third and last phase consists

in emptying the list by proceeding in the opposite way to the

filling phase (see step 3 of the algorithm 2). This benchmark

is clearly designed to benefit linked lists as much as possible.

Figure 10 shows the results of fairbench without going

too far for the value of N in order to be able to distin-

guish which implementations are eliminated first. This Fig-

ure clearly separates the losers (SingleList, ArrayList

and ArrayRing) from the winners (LinkedList and

ArrayBlock). Without being ridiculous, the value of N
separating the winners from the losers, remains relatively

modest considering the memory of today’s computers. Note

that the poor performance of SingleList, a list with single

linking, is mainly explained by the use of removeLast in

this benchmark.

Figure 11 shows the results of running fairbench maximiz-

ing the value of N over the memory of the computer used for

testing5. Of all the data structures presented, LinkedList

is the most memory hungry, so it is LinkedList that

determines the maximum possible value of N (see Section

VII for more details on the computers/compilers used).

Although fairbench is designed to favor linked implemen-

tations, it is still ArrayBlock which behaves better than

LinkedList. However, the difference in execution speed,

while already noticeable, did not correspond to our obser-

5All the subsequent figures are designed to maximize the value of N , as
denoted by the green tag located in the bottom right corner.
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Figure 11. Fairbench with N that saturates a 16 GB (gigabyte) memory in
order to determine the true winner. LinkedList needs around 13 GB where
ArrayBlock needs around 10 GB for the largest value of N (see Section
VII for details).

vations during development6. Upon closer examination of

the excellent results achieved by LinkedList, it becomes

evident that fairbench tends to optimize for the precise memory

caching of LinkedList.

Indeed, the memory cache of a LinkedList refers to

the memory location of a single element (see Figure 2). If

access to the element immediately before or after is necessary,

the memory cache of the LinkedList must be updated

accordingly. Regarding ArrayBlock (see Figure 6), the

memory cache designates an entire block, requiring fewer

updates. As long as two consecutive accesses do not vary more

than the average number of elements per block, the cache of

an ArrayBlock often remains valid. Thus, in Algorithm 2,

we attempted to replace the index variations in lines 8 and 18

with random variations.

After several attempts, the hypothesis of a memory cache

too specific for linked lists seems to be proving correct. Thus,

in Figures 12, 13, and 14, we replace the increment/decrement

of 1 with a progressively larger random increment/decrement.

As we can see, the situation deteriorates significantly with

the increasing increments. That being said, it is evident that

these modifications to the Fairbench algorithm are, in a way,

a return to Bjarne Stroustrup’s benchmark. Nevertheless, it is

observed that on collections of significant sizes, it is always

ArrayBlock that achieves the best performance.

VI. ENDGAME: ADD FIRST OR REMOVE LAST

To complete our comparison, we have added two bench-

marks, both of which also clearly favor linked representations.

One of them favors adding and deleting at the head of the list:

we add only with addFirst, and we empty the list only with

removeFirst. The other one favors adding and deleting in

6We use ArrayBlock in the development of large-scale software, includ-
ing compilers and robotics systems, and noticed an even more pronounced
difference when transitioning from LinkedList to ArrayBlock.
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Figure 12. Fairbench with modifications of lines 8 and 18 in the algorithm
2. The variable index is incremented/decremented using a random number
in range [1, 32].
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Figure 13. Fairbench with modifications of lines 8 and 18 in the algorithm
2. The variable index is incremented/decremented using a random number
in range [1, 64].

Algorithm 3 addLast / traversal / removeLast benchmark

1: list← emptyList()
2: for i← 1, N do ⊲ Step 1: filling of list
3: list← addLast(list, randomNumber)
4: end for
5: for i← 1, N do ⊲ Step 2: list traversal
6: sum← sum+ value(list, i)
7: end for
8: for i← 1, N do ⊲ Step 3: clearing of list
9: list← removeLast(list) ;

10: end for
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Figure 14. Fairbench with modifications of lines 8 and 18 in the algorithm
2. The variable index is incremented/decremented using a random number
in range [1, 128].
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Figure 15. addLast / traversal / removeLast (algorithm 3).

queue: we add only with addLast, and we empty the list

only with removeLast. In both cases, before emptying the

list, we make a single run from left to right, thus accessing

all the elements.

Moreover, since we are only interested in lists of a signif-

icant size, we saturate 16 GB of memory in both cases and

keep only the implementations that withstand these constraints.

The results are shown in figures 15 and 16. Even though these

results speak for themselves, we should mention that it is not

possible to add SingleList in Figure 15 because in the case

of removeLast, the complexity is about O(n). No surprise,

it is also not possible to present ArrayList on the Figure

16.

VII. BENCHMARKING METHODOLOGY

All the benchmarks presented in this article were conducted

on the same computer configuration, consistently utilizing the

same programming language, the same compiler with identical

options, and the same library.



Algorithm 4 addFirst / traversal / removeFirst benchmark

1: list← emptyList()
2: for i← 1, N do ⊲ Step 1: filling of list
3: list← addF irst(list, randomNumber)
4: end for
5: for i← 1, N do ⊲ Step 2: list traversal
6: sum← sum+ value(list, i)
7: end for
8: for i← 1, N do ⊲ Step 3: clearing of list
9: list← removeF irst(list) ;

10: end for
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Figure 16. addFirst / traversal / removeFirst (algorithm 4).

We have, of course, verified that the change of processor

has no effect. Whether using an Intel Core or AMD processor

is inconsequential. No relative differences were observed fol-

lowing the processor change. The performance curves exhibit

a remarkable relative stability.

The tests were conducted on memory capacities ranging

from 4 to 16 GB, and similarly, no relative disparities were

detected across these different configurations. The curves

presented in the article correspond to a 16 GB memory, and

the maximum value of N (Nmax = 2 × 108) was chosen to

reach this maximum value with the most memory-intensive

data structure (see Figure 11). For those of you who will rerun

the tests on your own machine, don’t forget to decrease or

increase the maximum value of N based on the maximum

size of your memory7.

Furthermore, it should be noted that transitioning from

one operating system to another, whether it be Linux or

MacOS, had no notable impact. It is highly conceivable that

the results remain consistent when using Microsoft Windows

or, of course, also an Android smartphone.

Regarding execution times, we chose to display only the

number of clock ticks, considering that an absolute value in

minutes or seconds would not add any significant information8.

7A constant is provided for this purpose in the code accompanying the
article.

8Nevertheless, it is worth noting that it took approximately 5 hours to
recalculate all the figures in this article.

Additionally, each execution is repeated multiple times, and

only the minimal value in terms of execution time is retained.

Working on a machine dedicated to benchmark execution, we

also observed a rapid convergence towards a stable result.

Thus, after 3 or 4 executions of the same test, we converge

towards a minimal value that remains stable thereafter.

It is during the implementation of a project combining com-

pilation and robotics that we developed our own data structure,

named ArrayBlock. The outstanding results achieved with

ArrayBlock during these developments motivated the writ-

ing of this article.

Regarding the language utilized in the context of our

robotics project, it is important to note that we used the

Lisaac programming language [Sonntag and Colnet(2022)]

[Sonntag and Colnet(2013)]. This language allows us to

achieve optimal performance, and we primarily use it because

it generates excellent C code. The interfacing with robotics

peripherals is thus straightforward. Since Lisaac code is

initially translated into C before benefiting from all the op-

timizations of the C compiler, it is evident that we would gain

nothing by writing all these benchmarks directly in C.

Furthermore, since the Lisaac language is an object-

oriented language, all benchmark algorithms are written only

once and shared through inheritance. The Collection type

serves as a common abstraction for all the data structures

presented in this article. Therefore, each time, the same code

inherited from Collection is applied to all the different

data structures being compared.

Regarding the compilation of the C code, all the benchmarks

in this article were compiled with gcc. The use or non-use of

gcc optimization options has no relative effect. The change of

the C compiler also does not disturb the ranking.

VIII. CONCLUSION

Indeed, our study shows that it is very difficult to find much

interest in using linked lists in real applications. As long as

we are on small values of N , linked implementations rarely

have a significant advantage. However, if we stick to the idea

of using linked lists, this article also highlights the importance

of implementing an index cache for the managing of a linked

list9. As mentioned earlier, the optimal approach is to integrate

a cache within the data structure itself. Additionally, if iterators

also exist in your library, it is advisable to have a dedicated

cache for each iterator [Zendra and Colnet(1999)].

Overall, the increase in RAM size and the speed of to-

day’s processors allows more complex implementations to

be used. Also, the processor’s memory caches give advan-

tage to contiguous accesses and speed up data shifting. Our

ArrayBlock implementation takes advantage of these tech-

nological innovations and gives very good results in most

all the tests we have done. In fact, as soon as the size of

the collection becomes substantial, ArrayBlock is likely

the best choice. However, we could invent and test many

9At the time we are writing this article, the C++ std::list data structure
have no index memory cache.



types of benchmarks, but we focused on extreme cases that

theoretically give the linked list an advantage.

The memory representation of ArrayBlock is very sim-

ilar to the more basic implementation of the virtual memory

management on current processors. The two levels of the

MMU indirection table on 32-bit processors (4 levels for 64-bit

processors) are similar to our primary table. Then, the fixed

4KB pages are similar to our small circular arrays of fixed

size in powers of 2. The primary table gives the flexibility

to add non-contiguous blocks for fast insertions, and our

small contiguous arrays bring the speed of direct access to an

element. The circular index management for both the primary

table and the small contiguous arrays allows the complexity of

adding or deleting to be divided by two. The cost of a circular

index management is negligible compared to the benefits. We

show it perfectly here with quite surprising results with a

simple implementation of the circular management of an array

ArrayRing.

Note that currently, the implementation of Python10 uses a

data structure equivalent to an ArrayList for the native []
operator, even in the case of a substantial collection. For high-

level languages designers, the search for an ideal list structure

implementation under all circumstances is also important. A

high-level language whose goal is to simplify the choice of

data structures by using a single structure for lists, especially

for untyped languages, must pay attention to this implementa-

tion or else its overall performance will be severely degraded.

For this important issue, our implementation is clearly a very

polyvalent solution.

DATA-AVAILABILITY STATEMENT

All the material to prepare or rebuild this article and rerun

all benchmarks locally on your own computer is available in

the following compressed archive:

http://ks387606.kimsufi.com/riplinkedlist.tgz

When you decompress this archive, you will get a direc-

tory with the same name: riplinkedlist. This directory

contains the complete source files for the article written in

LATEX, all figures, and all the code written in Lisaac for

benchmarks, as well as a compact release of the Lisaac

compiler. Furthermore, the source code of the elit editor,

written in Lisaac, is also in the directory. Take the time to

read the README until the end before running the ./INSTALL

script in a command line terminal.
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