
HAL Id: hal-04124714
https://hal.science/hal-04124714v1

Preprint submitted on 10 Jun 2023 (v1), last revised 27 Aug 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

RIP Linked List
Benoît Sonntag, Dominique Colnet

To cite this version:

Benoît Sonntag, Dominique Colnet. RIP Linked List. 2023. �hal-04124714v1�

https://hal.science/hal-04124714v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Springer Nature 2021 LATEX template

RIP Linked List

Benoit Sonntag1* and Dominique Colnet2*

1* University of Strasbourg, France .
2*LORIA, University of Lorraine, France.

*Corresponding author(s). E-mail(s): Benoit.Sonntag@lisaac.org;
Dominique.Colnet@loria.fr;

Abstract

Linked lists have always been an excellent teaching tool in programming.
The question arises as to whether it is really worthwhile to use linked lists
in the programs we run on a daily basis. It seems that in most cases array-
based data structures are more advantageous, both in terms of memory
space and, most importantly, in terms of execution speed. While it is
easy to calculate the complexity of the operations, what about the actual
execution efficiency? In this paper we try to answer this question by intro-
ducing a new benchmark. Our survey compares several linked-list imple-
mentations with some array-based implementations. We also propose a
new array-based data structure that is well suited for list operations.

Keywords: linked lists, arrays, memory cache, performance

1 Introduction

This article is a feedback and practical analysis of list data structures. After
many years of programming practice, we realized that we never use a linked
list anymore. Is this famous list structure implementation that we all studied
at one time or another during our studies really useful ?

The theoretical advantages of a linked list are however numerous and
attractive:

1. It allows a constant incremental allocation of the memory. Indeed, the
addition of an element is equivalent to the allocation of a cell in the list.

2. There are never any memory moves of cells during the life of the linked list.

1



Springer Nature 2021 LATEX template

2 RIP Linked List

3. Knowing the location of the insertion or removal of an element, the
operation requires a constant number of instructions.

As for the drawbacks, it is the necessity of a partial and sequential path from
cell to cell to reach an ith element that degrades performance. Many more
complex implementations are possible to partially compensate for this short-
coming. We study two of them here: the presence of a backward chaining
(”doubly linked” list), and the index cache management. When computers
did not have much RAM and the speed of moving from one memory area to
another was still critical, advantages 1 and 2 made the linked list profitable.
In this paper, we want to know if there are still situations where the linked
list is an advantageous and efficient implementation.

Eager to have a concrete and recent study of the structures in list and in
search of the best strategy, the Bjarne Stroustrup’s benchmark1 seems to pro-
vide elements of an answer. Here, we propose to pursue the study and analyze
the behavior of different list implementations using B. Stroustrup’s benchmark.
In this study, we introduce a new implementation called ArrayBlock, with the
claim to have a relatively advantageous behavior in all circumstances of use.
We also propose another benchmark, we called Fairbench, which seems more
relevant to test the efficiency and the behavior of linked lists in conditions
closer to a realistic usage2.

Note also that there is a lot of educational material about linked lists and/or
the use of arrays, there are also some youtube vidéos [1, 2, 5], also some web
articles [3, 4, 6, 7], but we found no research publication directly related to
the main topic of this article3.

2 Representations based on linked lists

We consider three implementation options for linked lists: NoCacheList (figure
1), LinkedList (figure 2) and SingleList (figure 3).

4size

first link

data #0 data #1 data #2 data #3

last link

Fig. 1 Memory layout of NoCacheList. Doubly linked list with memory cache for the size.

Figure 1 shows the memory representation of NoCacheList. It is a chained
list that store both the head and tail pointers. To avoid having to traverse the

1Bjarne Stroustrup’s keynote in GoingNative 2012: Why you should avoid Linked List.
https://www.youtube.com/watch?v=YQs6IC-vgmo

2All the benchmarks have been tested in the same programming language, with the generation
of a C code, on the same 16 GB machine, with the same compiler gcc.

3By the way, we are looking for a good conference to publish this paper which deserves to be
shared. If you have a suggestion, please, drop me a mail (dominique.colnet@loria.fr).



Springer Nature 2021 LATEX template

RIP Linked List 3

list to find out its length, a memory cache, called size, is used to store this
information. In the example of the figure 1, the list holds 4 data. Note that
this representation corresponds to the LinkedList class of the Java standard
library. As in Java, index 0 allows access to the first element (data#0), the
second is at index 1 (data#1), and so on. Of course, if an element is added
or removed, the size attribute must be updated accordingly.

4size

first link

data #0 data #1 data #2 data #3

last linkcache link #2 cache index

Fig. 2 Memory layout of LinkedList. Two-way linked list with memory cache for the size

and the last visited index (cache link and cache index).

The memory cache technique can also be used to store the location cor-
responding to the last access made in the list (see LinkedList on figure 2).
The two variables, cache index and cache link store the user index and the
pointer to the last accessed link respectively. In the example in Figure 2, if the
user wants to access data#2, the fastest way is to go through the index cache.
Thanks to the double linking and the index cache, sequential runs, from left
to right or also from right to left, are in constant time for any list size.

4size

first link

data #0 data #1 data #2 data #3

last linkcache link cache index#2

Fig. 3 Memory layout of SingleList. One-way linked list with memory cache for the size

and the last visited index (cache link and cache index).

The third representation considered, SingleList on the figure 3, corre-
sponds to a single-linked list and, as in the previous case, has a memory
cache for both the index and the size. Obviously, because of its single chain-
ing, a SingleList will only be efficient when traversing from the left to the
right. With the three previous representations, NoCacheList, LinkedList and
SingleList, we cover the different possibilities for linked lists in a relatively
exhaustive way.

One of the major drawbacks of linked lists is the amount of memory used by
pointers. Even though the memory addresses of today’s machines are limited
to 48 bits, due to re-alignment problems, each pointer currently costs 64 bits.
Thus, for a list of integers or pointers, the memory space of a list of N elements
in case of double linking is N × 3× 64 bits, that is 24×N bytes.



Springer Nature 2021 LATEX template

4 RIP Linked List

3 Array-based representations

Using contiguous memory areas (i.e. native arrays) saves memory space. For
array-base representations, we have chosen two standard forms: ArrayList
(figure 4) and ArrayRing (figure 5). Finally, the third representation is the
implementation we called ArrayBlock (figure 6).

0

data #0

1

data #1

2

data #2

3

data #3

4 5 6 7

4size 8capacitystorage

Fig. 4 Memory layout of ArrayList. Used area on the left and supply area on the right.
Same indexing in the native array and in the user interface.

The ArrayList representation shown in the figure 4 is quite common in pro-
gramming languages libraries. This representation has exactly the same name
in the Java library. In Cpp this data structure is also known as std::vector.
The principle of this data structure is to provide a storage area that is at least
equal to, and often larger than what is needed, to avoid having to constantly
adjust the size of the corresponding memory array. In the example of the figure
4, the storage memory block consists of 8 slots, 4 of which are used and 4 are
in reserve. The variable storage holds the pointer to the storage area and the
variable capacity holds the allocation size of the storage area. The variable
size stores the fact that only 4 slots are used. From the user’s point of view,
in order to comply with the same access interface as for the lists, the 4 stored
datas are accessible via the index interval [0,size-1]. This representation is
very simple because the access to the storage area is done without having to
modify the index given by the user. This array representation is particularly
well-suited for adding/deleting in queue. For example, deleting the last data
item is simply a decrement of size. In the case of adding at the last position,
if there are available slots in reserve, the operation is also trivial. Obviously for
an insert or an addition at the beginning, the operations become more com-
plicated. For example, to insert at the first position, all the elements must be
shifted one place to the right in order to make room for the new element at
the index 0.

Althought the memory capacity is twice the number of elements, the mem-
ory used is N × 2× 64 bits, that is 16×N bytes. Thus with a reserve area of
the same size as the used area, the memory consumption remains reasonable
compared to the space taken up by a doubly linked list.

The figure 5 gives an example of the ArrayRing representation which allows
to solve the problem of the addition in the first position quite simply. The
principle is to use the storage area in a circular way. To do this, we add a
variable lower that allows us to know where the data that the user accesses
with index 0 is located. In the storage area, starting from this point, the data
are stored from left to right, and, when we reach the end of the storage area,



Springer Nature 2021 LATEX template

RIP Linked List 5

0

data #0

1

data #1

2

data #2

3

data #3

4 5 6 7

8capacitystorage 4size 6lower

Fig. 5 Memory layout of ArrayRing. The storage area is used in a circular fashion, from
left to right. The variable lower is used to locate the internal index of data#0.

we start again from the beginning. The math that gets you from the user
index to the storage area index is just an addition with lower. Whether it is a
leading or trailing addition/deletion, the ArrayRing representation is of course
very powerful. As in the case of ArrayList, the insertion anywhere other than
head or tail remains problematic and requires potentially consequential moves.
Nevertheless, the ArrayRing representation remains quite efficient when the
insertion is close to either end (0 or size-1). Note that it is always better
to have a capacity that is a power of 2. In fact, the modulo that is necessary
for the circular overflow of the indices is calculated using the bitwize operator
and4.

11size

primary

4
primary
capacity

lower 1

size 4

block

lower 0

3

block

lower 6

4

block

lower -1

0

block

0

1

2

3

0 1 2 3 4 5 6 7

data #0 data #1 data #2 data #3

0 1 2 3 4 5 6 7

data #4 data #5 data #6

0 1 2 3 4 5 6 7

data #7 data #8data #9 data #10

size

size

size

3primary
count

2cache
prim

#7cache
index

0primary
low

Fig. 6 Memory layout of ArrayBlock. A resizable primary table and storage fixed-size areas
in power of 2. Circular management of all the tables.

The figure 6 gives an example of the ArrayBlock representation which is
intended to behave more efficiently for all cases of insertions/deletions. This
representation consists in using a resizable primary table that allows access to
secondary level tables, the blocks, which are all of the same size. All blocks as
well as the primary table itself are managed in a circular way, according to the
same principle as for ArrayRing. The size of a secondary table is therefore a
power of two, and relatively close to the size of memory page of the operating

4Let c be the capacity of the table which is a power of two. Given a valid index i in the table
and an offset ∆ with respect to that index, the corresponding index is given by ((i±∆)&(c− 1)).
If c is statically known, the calculation will only take one processor cycle.



Springer Nature 2021 LATEX template

6 RIP Linked List

system, that is 2048 elements5, which is the value that gave the best perfor-
mance. Moreover, as in the case of lists, the representation ArrayBlock has an
index cache thanks to the variables cache prim and cache index. The vari-
able cache prim is used to store the index of the block corresponding to the
last access. The variable cache index returns the user index corresponding
to the first data of the corresponding block. Thus, as seen before, when mem-
ory accesses are located in a certain area, ideally close to cache index, we
can restart the search from the block corresponding to the cache prim index.
The strategy of the insertion and deletion algorithms is to preserve as much as
possible, about a third, for free spaces within each block. In this way we avoid
shifts in the primary table as much as possible. In this article, we will not go
into detail about the insert and delete strategies, which can be very different
and whose effectiveness depends mainly on the tests performed.

Without claiming to be completely exhaustive, these three array-based rep-
resentations, ArrayList, ArrayRing and ArrayBlock provide a fairly complete
overview.

4 The Bjarne Stroustrup benchmark

Algorithm 1 The Bjarne Stroustrup benchmark

1: list← emptyList() ;
2: for i← 1, N do ⊲ Step 1: filling of list
3: value← random number ;
4: index← 0 ;
5: while (index ≤ size(list)− 1) ∧ (value(list, index) < value) do
6: index← index+ 1 ;
7: end while

8: list← add(list, index, value) ;
9: end for

10: for i← 1, N do ⊲ Step 2: clearing of list
11: index← random in [0, size(list)− 1] ;
12: list← remove(list, index) ;
13: end for

The benchmark proposed by B. Stroustrup consists of two phases (see
algorithm 1). The first phase consists, for a given N value, in progressively
building a sorted list composed of N randomly selected values. The second
phase consists in removing the N values one by one, by randomly choosing the
index of the removed value for each removal. Note that during the first phase
of the insertion, as indicated by B. Stroustrup, we naively and sequentially

5MMU (Memory Management Unit) is generally 4096 bytes in size. This is equivalent to 512
words of 64 bits. This choice of a 4 KB page was particularly well suited to 32-bit architectures.
However, it is generally accepted that the use of a larger table of 8 KB or even 16 KB is preferable
on 64-bit architectures.



Springer Nature 2021 LATEX template

RIP Linked List 7

search for the right position to make the insertion. It is not a dichotomous
search for the right place to insert, as one might think.

2e5

4e5

6e5

8e5

0.5e4 1e4 1.5e4N

T
im

e
 i
n
 

c
lo

c
k
 t

ic
s

NoCacheList
SingleList
LinkedList

ArrayBlock
ArrayList

ArrayRing

Fig. 7 The benchmark of B. Stroustrup with all the implementations of the paper but
not going too far for the value of N . Strong separation between linked list and array based
structures.

Figure 7 shows the results for the B. Stroustrup benchmark with all the
data structures previously described. Without having to go very far for the
value of N , as announced by B. Stroustrup, there is a clear separation between
linked and array-based implementations. In addition, this first run also shows
the importance of having a cache for the last access index. In fact, the
NoCacheList implementation is very slow already for a very small value of N .
Even if it is possible to integrate the index memory cache into an iterator, it is
still preferable to integrate it directly into the list as soon as the manipulation
interface allows access to the elements via an indexing mechanism.

Still on the figure 7 and still on chained implementations, we can see the
interest of the bidirectional linking, between SingleList and LinkedList.
In fact, thanks to double chaining, it is possible to go backwards from the
index cache, which is not possible with single chaining. As one might expect,
SingleList should be reserved for algorithms that essentially only traverse
in the ascending direction of the indices. The three best results are obtained
with array-based representations: ArrayList, ArrayRing and ArrayBlock.

Figure 8 also shows the execution of B. Stroustrup’s benchmark keeping
only the array-based implementations in order to push the N value further.
However, even though the three array-based implementations are clearly more
efficient than the chaining-based ones, the execution times deteriorate very
quickly for values of N that remain very modest. The complexity induced by
the sequential insertion algorithm during the first insertion phase is of the
order of O(N2) in direct correlation with our results.

To visualize the relevance of the ArrayBlock structure in the case of ran-
dom insertion/deletion on large data structures, we have slightly modified B.
Stroustrup’s benchmark by replacing the sequential search for the insertion
location (lines 4 to 7 of the algorithm 1) with a dichotomous search, which



Springer Nature 2021 LATEX template

8 RIP Linked List

1e8

2e8

3e8

4e8

1e5 2e5 3e5 4e5N

T
im

e
 i
n
 

c
lo

c
k
 t

ic
s

ArrayBlock
ArrayList

ArrayRing

Fig. 8 Figure 7 continued. B. Stroustrup’s benchmark, keeping only the array-based imple-
mentations and going a little bit further for N .

5e6

10e6

15e6

20e6

25e6

1e6 2e6 3��N

T
im

e
 i
n
 

c
lo

c
k
 t

ic
s

LinkedList
ArrayList

ArrayRing
ArrayBlock

Fig. 9 Variation of benchmark B. Stroustrup: dichotomous insertion during the first phase.
It is then possible to use a larger list by using ArrayBlock.

reduces the complexity of the first phase of the benchmark to O(log2(N)). The
results for this modified version of the benchmark are shown in figure 9. The
best results are clearly obtained with the ArrayBlock implementation. In fact,
for the ArrayList and ArrayRing implementations, a deletion or an insertion
implies on average a shift of N/2 elements. For ArrayBlock, the number of
elements to move does not depend on N ; the shift are directly related to the
constant size of a block.

Note that ArrayRing performs slightly better than ArrayList because it
is possible to choose the most advantageous direction for shifting the elements.
As for the bad performance of LinkedList, the problem does not come from
the insertion or deletion which is in constant time, but from the random access
into the list which has an average complexity of O(N/4).



Springer Nature 2021 LATEX template

RIP Linked List 9

Algorithm 2 The fairbench: the right benchmark for lists.

1: list← emptyList() ; index← 0 ;
2: for i← 1, N do ⊲ Step 1: filling of the list
3: if (i/N < 1/3) then
4: list← addLast(list, data(i)) ;
5: else if (i/N < 2/3) then

6: list← addF irst(list, data(i)) ;
7: else

8: index← index+ 1 ;
9: list← add(list, index, data(i)) ;

10: end if

11: end for

12: for i← 1, N do ⊲ Step 2: traversal of the list
13: sum← sum+ value(list, i) ;
14: end for

15: index← N/2 ; ⊲ Step 3: clearing of the list
16: for i← 1, N do

17: if (i/N < 1/3) then
18: index← index− 1 ;
19: list← remove(list, index) ;
20: else if (i/N < 2/3) then

21: list← removeF irst(list) ;
22: else

23: list← removeLast(list) ;
24: end if

25: end for

5 Fairbench: just fine for linked lists

The idea of the fairbench (see algorithm 2), is to design a benchmark that is
truly adapted to the concept of a list, in order to know whether linked imple-
mentations have good performance compared to array-based implementations,
and this for a consequent value of N .

The first phase (see step 1 of the algorithm 2) for the fairbench is to grow
the collection to its maximum of N using only addLast for the first third, then
using only addFirst for the second third, and finally adding the last third
during a single sequential run in the direction of increasing indices. Before we
emptying the list completely, we perform a complete run from right to left to
calculate the sum of all the values (see step 2 of the algorithm 2). The third
and last phase consists in emptying the list by proceeding in the opposite way
to the filling phase (see step 3 of the algorithm 2). This benchmark is clearly
designed to benefit linked lists as much as possible.

Figure 10 shows the results of fairbench without going too far for the value
of N in order to be able to distinguish which implementations are eliminated
first. This figure clearly separates the losers (SingleList, ArrayList and
ArrayRing) from the winners (LinkedList and ArrayBlock). Without being



Springer Nature 2021 LATEX template

10 RIP Linked List

4e5

6e5

8e5

10e5

12e5

14e5

16e5

18e5

20e5

1e5 2e5 3e5 4e5 5e5 6e5N

T
im

e
 i
n
 

c
lo

c
k
 t

ic
s

SingleList
ArrayList

ArrayRing
LinkedList

ArrayBlock

Fig. 10 Fairbench without going too far for N . Winners: LinkedList and ArrayBlock.

ridiculous, the value of N separating the winners from the losers, remains rel-
atively modest considering the memory of today’s computers. Note that the
poor performance of SingleList, a list with single linking, is mainly explained
by the use of removeLast in this benchmark.

4e6

6e6

8e6

10e6

12e6

2e7 5e7 10e7 15e7 20e7N

T
im

e
 i
n
 

c
lo

c
k
 t

ic
s

LinkedList
ArrayBlock

Fig. 11 Fairbench with N that saturates a 16 GB (gigabyte) memory. LinkedList needs
around 13 GB where ArrayBlock needs around 10 GB for the largest value of N .

Figure 11 shows the results of running fairbench maximizing the value of
N over the memory of the computer used for testing6. Although fairbench is
designed to favor linked implementations, it is still ArrayBlock which behaves
better than LinkedList. Of all the data structures presented, LinkedList is
the most memory hungry, so it is LinkedList that determines the maximum
value of N . All the following figures also maximize the value of N .

A closer look at the very good results of LinkedList shows that fairbench
favors the very accurate cache of LinkedList (figure 2) over the larger cache
of ArrayBlock (figure 6). However, even if the index only moves by 1, the

6Note that we found no relative performance differences when using either a more powerful
computer and/or with more memory. Similarly, we found no relative difference when changing the
C compiler.



Springer Nature 2021 LATEX template

RIP Linked List 11

2e7

3e7

4��

5e7

6��

7e7

8��

2e7 5e7 10e7 15e7 20e7N

T
im

e
 i
n
 

c
lo

c
k
 t

ic
s

LinkedList
ArrayBlock

Fig. 12 Fairbench with modifications of lines 8 and 18 in the algorithm 2. The variable
index is incremented using a random number in range [1, 128].

cache of LinkedList still needs to be updated. For ArrayBlock, as long as the
accessed index remains in the same block, the cache value does not change. A
simple modification of fairbench, shown in figure 12, reveals the effect of the
large cache of ArrayBlock.

6 addLast / removeLast or addFirst / removeFirst

3e6

5e6

7e6

9��

11e6

2e7 5e7 10e7 15e7 20e7N

T
im

e
 i
n
 

c
lo

c
k
 t

ic
s

LinkedList
ArrayBlock
ArrayR�ng
ArrayList

Fig. 13 Step 1: N times addLast. Step 2: one whole traversal. Step 3: N times removeLast

To complete our comparison, we have added two benchmarks, both of which
also clearly favor linked representations. One of them favors adding and delet-
ing at the head of the list: we add only with addFirst, and we empty the list
only with removeFirst. The other one favors adding and deleting in queue:
we add only with addLast, and we empty the list only with removeLast. In
both cases, before emptying the list, we make a single run from left to right,
thus accessing all the elements.

Moreover, since we are only interested in lists of a significant size, we satu-
rate 16 GB of memory in both cases and keep only the implementations that



Springer Nature 2021 LATEX template

12 RIP Linked List

3e6

5e6

7e6

��	

11e6

2e7 5e7 10e7 15e7 20e7N

T
im

e
 i
n
 

c
lo

c
k
 t

ic
s

LinkedList
S
n��eList

ArrayBlock
Array
n�

Fig. 14 Step 1:N times addFirst. Step 2: one whole traversal. Step 3: N times removeFirst.

withstand these constraints. The results are shown in figures 13 and 14. Even
though these results speak for themselves, we should mention that it is not
possible to add SingleList in figure 13 because in the case of removeLast,
the complexity is about O(n). No surprise, it is also not possible to present
ArrayList on the figure 14.

7 Conclusion

Indeed, our study shows that it is very difficult to find much interest in using
linked lists in real applications. As long as we are on small values of N , linked
implementations rarely have a significant advantage. However, if we stick to
the idea of using linked lists, this article also highlights the importance of
implementing an index cache for the managing of a linked list.

Overall, the increase in RAM size and the speed of today’s processors
allows more complex implementations to be used. Also, the processor’s memory
caches give advantage to contiguous accesses and speed up data shifting. Our
ArrayBlock implementation takes advantage of these technological innovations
and gives very good results in all the tests we have done. However, we could
invent and test many types of benchmarks, but we focused on extreme cases
that theoretically give the linked list an advantage.

The memory representation of ArrayBlock is very similar to the more basic
implementation of the virtual memory management on current processors. The
two levels of the MMU indirection table on 32-bit processors (4 levels for 64-
bit processors) are similar to our primary table. Then, the fixed 4KB pages are
similar to our small circular arrays of fixed size in powers of 2. The primary
table gives the flexibility to add non-contiguous blocks for fast insertions, and
our small contiguous arrays bring the speed of direct access to an element.
The circular index management for both the primary table and the small
contiguous arrays allows the complexity of adding or deleting to be divided by
two. The cost of a circular index management is negligible compared to the
benefits. We show it perfectly here with quite surprising results with a simple
implementation of the circular management of an array ArrayRing.



Springer Nature 2021 LATEX template

RIP Linked List 13

For high-level languages designers, the search for an ideal list structure
implementation under all circumstances is also important. A high-level lan-
guage whose goal is to simplify the choice of data structures by using a single
structure for lists, especially for untyped languages, must pay attention to this
implementation or else its overall performance will be severely degraded. For
this important issue, our implementation is clearly a very polyvalent solution.

References

[1] Computerphile. Arrays vs linked lists - computerphile, 2018. URL https://
www.youtube.com/watch?v=DyG9S9nAlUM.

[2] Caleb Curry. Arrays vs linked lists - data structures and algorithms, 2021.
URL https://www.youtube.com/watch?v=dMy2hq9OUMc.

[3] Dat Hoang. Performance of array vs. linked-list on modern computers,
2018. URL https://dzone.com/articles/performance-of-array-vs-linked-
list-on-modern-comp.

[4] Johnny’s Software Lab. The quest for the fastest linked list, 2021. URL
https://johnysswlab.com/the-quest-for-the-fastest-linked-list/.

[5] Bjarne Stroustrup. Why you should avoid linked list, 2012. URL
https://www.youtube.com/watch?v=YQs6IC-vgmo. Keynote speaker in
GoingNative 2012.

[6] Baptiste Wicht. C++ benchmark - std::vector vs std::list, 2012.
URL https://baptiste-wicht.com/posts/2012/11/cpp-benchmark-vector-
vs-list.html.

[7] Baptiste Wicht. C++ benchmark – std::vector vs std::list vs std::deque,
2012. URL https://baptiste-wicht.com/posts/2012/12/cpp-benchmark-
vector-list-deque.html#.

https://www.youtube.com/watch?v=DyG9S9nAlUM
https://www.youtube.com/watch?v=DyG9S9nAlUM
https://www.youtube.com/watch?v=dMy2hq9OUMc
https://dzone.com/articles/performance-of-array-vs-linked-list-on-modern-comp
https://dzone.com/articles/performance-of-array-vs-linked-list-on-modern-comp
https://johnysswlab.com/the-quest-for-the-fastest-linked-list/
https://www.youtube.com/watch?v=YQs6IC-vgmo
https://baptiste-wicht.com/posts/2012/11/cpp-benchmark-vector-vs-list.html
https://baptiste-wicht.com/posts/2012/11/cpp-benchmark-vector-vs-list.html
https://baptiste-wicht.com/posts/2012/12/cpp-benchmark-vector-list-deque.html#
https://baptiste-wicht.com/posts/2012/12/cpp-benchmark-vector-list-deque.html#

	Introduction
	Representations based on linked lists
	Array-based representations
	The Bjarne Stroustrup benchmark
	Fairbench: just fine for linked lists
	addLast / removeLast or addFirst / removeFirst
	Conclusion

