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Introduction

This article is a feedback and practical analysis of list data structures. After many years of programming practice, we realized that we never use a linked list anymore. Is this famous list structure implementation that we all studied at one time or another during our studies really useful ?

The theoretical advantages of a linked list are however numerous and attractive:

1. It allows a constant incremental allocation of the memory. Indeed, the addition of an element is equivalent to the allocation of a cell in the list. 2. There are never any memory moves of cells during the life of the linked list.

3. Knowing the location of the insertion or removal of an element, the operation requires a constant number of instructions.

As for the drawbacks, it is the necessity of a partial and sequential path from cell to cell to reach an ith element that degrades performance. Many more complex implementations are possible to partially compensate for this shortcoming. We study two of them here: the presence of a backward chaining ("doubly linked" list), and the index cache management. When computers did not have much RAM and the speed of moving from one memory area to another was still critical, advantages 1 and 2 made the linked list profitable.

In this paper, we want to know if there are still situations where the linked list is an advantageous and efficient implementation.

Eager to have a concrete and recent study of the structures in list and in search of the best strategy, the Bjarne Stroustrup's benchmark 1 seems to provide elements of an answer. Here, we propose to pursue the study and analyze the behavior of different list implementations using B. Stroustrup's benchmark. In this study, we introduce a new implementation called ArrayBlock, with the claim to have a relatively advantageous behavior in all circumstances of use. We also propose another benchmark, we called Fairbench, which seems more relevant to test the efficiency and the behavior of linked lists in conditions closer to a realistic usage [START_REF] Curry | Arrays vs linked lists -data structures and algorithms[END_REF] .

Note also that there is a lot of educational material about linked lists and/or the use of arrays, there are also some youtube vidéos [1, 2, 5], also some web articles [3, 4, 6, 7], but we found no research publication directly related to the main topic of this article 3 .

Representations based on linked lists

We consider three implementation options for linked lists: NoCacheList (figure 1), LinkedList (figure 2) and SingleList (figure 3). Figure 1 shows the memory representation of NoCacheList. It is a chained list that store both the head and tail pointers. To avoid having to traverse the 1 Bjarne Stroustrup's keynote in GoingNative 2012: Why you should avoid Linked List. https://www.youtube.com/watch?v=YQs6IC-vgmo 2 All the benchmarks have been tested in the same programming language, with the generation of a C code, on the same 16 GB machine, with the same compiler gcc.

3 By the way, we are looking for a good conference to publish this paper which deserves to be shared. If you have a suggestion, please, drop me a mail (dominique.colnet@loria.fr).

list to find out its length, a memory cache, called size, is used to store this information. In the example of the figure 1, the list holds 4 data. Note that this representation corresponds to the LinkedList class of the Java standard library. As in Java, index 0 allows access to the first element (data #0), the second is at index 1 (data #1), and so on. Of course, if an element is added or removed, the size attribute must be updated accordingly. The memory cache technique can also be used to store the location corresponding to the last access made in the list (see LinkedList on figure 2). The two variables, cache index and cache link store the user index and the pointer to the last accessed link respectively. In the example in Figure 2, if the user wants to access data #2, the fastest way is to go through the index cache. Thanks to the double linking and the index cache, sequential runs, from left to right or also from right to left, are in constant time for any list size. The third representation considered, SingleList on the figure 3, corresponds to a single-linked list and, as in the previous case, has a memory cache for both the index and the size. Obviously, because of its single chaining, a SingleList will only be efficient when traversing from the left to the right. With the three previous representations, NoCacheList, LinkedList and SingleList, we cover the different possibilities for linked lists in a relatively exhaustive way.

One of the major drawbacks of linked lists is the amount of memory used by pointers. Even though the memory addresses of today's machines are limited to 48 bits, due to re-alignment problems, each pointer currently costs 64 bits. Thus, for a list of integers or pointers, the memory space of a list of N elements in case of double linking is N × 3 × 64 bits, that is 24 × N bytes.

Array-based representations

Using contiguous memory areas (i.e. native arrays) saves memory space. For array-base representations, we have chosen two standard forms: ArrayList (figure 4) and ArrayRing (figure 5). Finally, the third representation is the implementation we called ArrayBlock (figure 6). The ArrayList representation shown in the figure 4 is quite common in programming languages libraries. This representation has exactly the same name in the Java library. In Cpp this data structure is also known as std::vector. The principle of this data structure is to provide a storage area that is at least equal to, and often larger than what is needed, to avoid having to constantly adjust the size of the corresponding memory array. In the example of the figure 4, the storage memory block consists of 8 slots, 4 of which are used and 4 are in reserve. The variable storage holds the pointer to the storage area and the variable capacity holds the allocation size of the storage area. The variable size stores the fact that only 4 slots are used. From the user's point of view, in order to comply with the same access interface as for the lists, the 4 stored datas are accessible via the index interval [0,size-1]. This representation is very simple because the access to the storage area is done without having to modify the index given by the user. This array representation is particularly well-suited for adding/deleting in queue. For example, deleting the last data item is simply a decrement of size. In the case of adding at the last position, if there are available slots in reserve, the operation is also trivial. Obviously for an insert or an addition at the beginning, the operations become more complicated. For example, to insert at the first position, all the elements must be shifted one place to the right in order to make room for the new element at the index 0.

Althought the memory capacity is twice the number of elements, the memory used is N × 2 × 64 bits, that is 16 × N bytes. Thus with a reserve area of the same size as the used area, the memory consumption remains reasonable compared to the space taken up by a doubly linked list.

The figure 5 gives an example of the ArrayRing representation which allows to solve the problem of the addition in the first position quite simply. The principle is to use the storage area in a circular way. To do this, we add a variable lower that allows us to know where the data that the user accesses with index 0 is located. In the storage area, starting from this point, the data are stored from left to right, and, when we reach the end of the storage area, we start again from the beginning. The math that gets you from the user index to the storage area index is just an addition with lower. Whether it is a leading or trailing addition/deletion, the ArrayRing representation is of course very powerful. As in the case of ArrayList, the insertion anywhere other than head or tail remains problematic and requires potentially consequential moves. Nevertheless, the ArrayRing representation remains quite efficient when the insertion is close to either end (0 or size-1). Note that it is always better to have a capacity that is a power of 2. In fact, the modulo that is necessary for the circular overflow of the indices is calculated using the bitwize operator and4 . The figure 6 gives an example of the ArrayBlock representation which is intended to behave more efficiently for all cases of insertions/deletions. This representation consists in using a resizable primary table that allows access to secondary level tables, the blocks, which are all of the same size. All blocks as well as the primary table itself are managed in a circular way, according to the same principle as for ArrayRing. The size of a secondary table is therefore a power of two, and relatively close to the size of memory page of the operating system, that is 2048 elements5 , which is the value that gave the best performance. Moreover, as in the case of lists, the representation ArrayBlock has an index cache thanks to the variables cache prim and cache index. The variable cache prim is used to store the index of the block corresponding to the last access. The variable cache index returns the user index corresponding to the first data of the corresponding block. Thus, as seen before, when memory accesses are located in a certain area, ideally close to cache index, we can restart the search from the block corresponding to the cache prim index. The strategy of the insertion and deletion algorithms is to preserve as much as possible, about a third, for free spaces within each block. In this way we avoid shifts in the primary table as much as possible. In this article, we will not go into detail about the insert and delete strategies, which can be very different and whose effectiveness depends mainly on the tests performed.

Without claiming to be completely exhaustive, these three array-based representations, ArrayList, ArrayRing and ArrayBlock provide a fairly complete overview. Figure 7 shows the results for the B. Stroustrup benchmark with all the data structures previously described. Without having to go very far for the value of N , as announced by B. Stroustrup, there is a clear separation between linked and array-based implementations. In addition, this first run also shows the importance of having a cache for the last access index. In fact, the NoCacheList implementation is very slow already for a very small value of N . Even if it is possible to integrate the index memory cache into an iterator, it is still preferable to integrate it directly into the list as soon as the manipulation interface allows access to the elements via an indexing mechanism.

The Bjarne Stroustrup benchmark

Still on the figure 7 still on chained implementations, we can see the interest of the bidirectional linking, between SingleList and LinkedList. In fact, thanks to double chaining, it is possible to go backwards from the index cache, which is not possible with single chaining. As one might expect, SingleList should be reserved for algorithms that essentially only traverse in the ascending direction of the indices. The three best results are obtained with array-based representations: ArrayList, ArrayRing and ArrayBlock.

Figure 8 also shows the execution of B. Stroustrup's benchmark keeping only the array-based implementations in order to push the N value further. However, even though the three array-based implementations are clearly more efficient than the chaining-based ones, the execution times deteriorate very quickly for values of N that remain very modest. The complexity induced by the sequential insertion algorithm during the first insertion phase is of the order of O(N 2 ) in direct correlation with our results.

To visualize the relevance of the ArrayBlock structure in the case of random insertion/deletion on large data structures, we have slightly modified B. Stroustrup's benchmark by replacing the sequential search for the insertion location (lines 4 to 7 of the algorithm 1) with a dichotomous search, which reduces the complexity of the first phase of the benchmark to O(log 2 (N )). The results for this modified version of the benchmark are shown in figure 9. The best results are clearly obtained with the ArrayBlock implementation. In fact, for the ArrayList and ArrayRing implementations, a deletion or an insertion implies on average a shift of N/2 elements. For ArrayBlock, the number of elements to move does not depend on N ; the shift are directly related to the constant size of a block. Note that ArrayRing performs slightly better than ArrayList because it is possible to choose the most advantageous direction for shifting the elements. As for the bad performance of LinkedList, the problem does not come from the insertion or deletion which is in constant time, but from the random access into the list which has an average complexity of O(N/4).

Algorithm 2

The fairbench: the right benchmark for lists.

1: list ← emptyList() ; index ← 0 ; 2: for i ← 1, N do ⊲ Step 1: filling of the list 3: if (i/N < 1/3) then 4:
list ← addLast(list, data(i)) ;

5:

else if (i/N < 2/3) then 6:

list ← addF irst(list, data(i)) ; 

if (i/N < 1/3) then 18: index ← index -1 ; 19: list ← remove(list, index) ; 20: else if (i/N < 2/3) then 21:
list ← removeF irst(list) ; The idea of the fairbench (see algorithm 2), is to design a benchmark that is truly adapted to the concept of a list, in order to know whether linked implementations have good performance compared to array-based implementations, and this for a consequent value of N .

The first phase (see step 1 of the algorithm 2) for the fairbench is to grow the collection to its maximum of N using only addLast for the first third, then using only addFirst for the second third, and finally adding the last third during a single sequential run in the direction of increasing indices. Before we emptying the list completely, we perform a complete run from right to left to calculate the sum of all the values (see step 2 of the algorithm 2). The third and last phase consists in emptying the list by proceeding in the opposite way to the filling phase (see step 3 of the algorithm 2). This benchmark is clearly designed to benefit linked lists as much as possible.

Figure 10 shows the results of fairbench without going too far for the value of N in order to be able to distinguish which implementations are eliminated first. This figure clearly separates the losers (SingleList, ArrayList and ArrayRing) from the winners (LinkedList and ArrayBlock). Without being ridiculous, the value of N separating the winners from the losers, remains relatively modest considering the memory of today's computers. Note that the poor performance of SingleList, a list with single linking, is mainly explained by the use of removeLast in this benchmark. Figure 11 shows the results of running fairbench maximizing the value of N over the memory of the computer used for testing [START_REF] Wicht | C++ benchmark -std::vector vs std::list[END_REF] . Although fairbench is designed to favor linked implementations, it is still ArrayBlock which behaves better than LinkedList. Of all the data structures presented, LinkedList is the most memory hungry, so it is LinkedList that determines the maximum value of N . All the following figures also maximize the value of N .

A closer look at the very good results of LinkedList shows that fairbench favors the very accurate cache of LinkedList (figure 2) over the larger cache of ArrayBlock (figure 6). However, even if the index only moves by 1, the To complete our comparison, we have added two benchmarks, both of which also clearly favor linked representations. One of them favors adding and deleting at the head of the list: we add only with addFirst, and we empty the list only with removeFirst. The other one favors adding and deleting in queue: we add only with addLast, and we empty the list only with removeLast. In both cases, before emptying the list, we make a single run from left to right, thus accessing all the elements.

Moreover, since we are only interested in lists of a significant size, we saturate 16 GB of memory in both cases and keep only the implementations that withstand these constraints. The results are shown in figures 13 and 14. Even though these results speak for themselves, we should mention that it is not possible to add SingleList in figure 13 because in the case of removeLast, the complexity is about O(n). No surprise, it is also not possible to present ArrayList on the figure 14.

Conclusion

Indeed, our study shows that it is very difficult to find much interest in using linked lists in real applications. As long as we are on small values of N , linked implementations rarely have a significant advantage. However, if we stick to the idea of using linked lists, this article also highlights the importance of implementing an index cache for the managing of a linked list. Overall, the increase in RAM size and the speed of today's processors allows more complex implementations to be used. Also, the processor's memory caches give advantage to contiguous accesses and speed up data shifting. Our ArrayBlock implementation takes advantage of these technological innovations and gives very good results in all the tests we have done. However, we could invent and test many types of benchmarks, but we focused on extreme cases that theoretically give the linked list an advantage.

The memory representation of ArrayBlock is very similar to the more basic implementation of the virtual memory management on current processors. The two levels of the MMU indirection table on 32-bit processors (4 levels for 64bit processors) are similar to our primary table. Then, the fixed 4KB pages are similar to our small circular arrays of fixed size in powers of 2. The primary table gives the flexibility to add non-contiguous blocks for fast insertions, and our small contiguous arrays bring the speed of direct access to an element. The circular index management for both the primary table and the small contiguous arrays allows the complexity of adding or deleting to be divided by two. The cost of a circular index management is negligible compared to the benefits. We show it perfectly here with quite surprising results with a simple implementation of the circular management of an array ArrayRing.
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 1 Fig. 1 Memory layout of NoCacheList. Doubly linked list with memory cache for the size.

Fig. 2

 2 Fig.2Memory layout of LinkedList. Two-way linked list with memory cache for the size and the last visited index (cache link and cache index).
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 3 Fig.3Memory layout of SingleList. One-way linked list with memory cache for the size and the last visited index (cache link and cache index).

Fig. 4

 4 Fig. 4 Memory layout of ArrayList. Used area on the left and supply area on the right. Same indexing in the native array and in the user interface.

Fig. 5

 5 Fig.5Memory layout of ArrayRing. The storage area is used in a circular fashion, from left to right. The variable lower is used to locate the internal index of data #0.

Fig. 6

 6 Fig.6Memory layout of ArrayBlock. A resizable primary table and storage fixed-size areas in power of 2. Circular management of all the tables.
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 157 Fig.7The benchmark of B. Stroustrup with all the implementations of the paper but not going too far for the value of N . Strong separation between linked list and array based structures.
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 89 Fig. 8 Figure 7 continued. B. Stroustrup's benchmark, keeping only the array-based implementations and going a little bit further for N .

  just fine for linked lists
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 10 Fig. 10 Fairbench without going too far for N . Winners: LinkedList and ArrayBlock.
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 11 Fig.11Fairbench with N that saturates a 16 GB (gigabyte) memory. LinkedList needs around 13 GB where ArrayBlock needs around 10 GB for the largest value of N .
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 13 Fig. 13 Step 1: N times addLast. Step 2: one whole traversal. Step 3: N times removeLast

Fig. 14 Step 1 :

 1 Fig.14Step 1: N times addFirst. Step 2: one whole traversal. Step 3: N times removeFirst.

  Fairbench with modifications of lines 8 and 18 in the algorithm 2. The variable index is incremented using a random number in range[1, 128].cache of LinkedList still needs to be updated. For ArrayBlock, as long as the accessed index remains in the same block, the cache value does not change. A simple modification of fairbench, shown in figure12, reveals the effect of the large cache of ArrayBlock.
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6 addLast / removeLast or addFirst / removeFirst

Let c be the capacity of the table which is a power of two. Given a valid index i in the table and an offset ∆ with respect to that index, the corresponding index is given by ((i ± ∆)&(c -1)). If c is statically known, the calculation will only take one processor cycle.

MMU (Memory Management Unit) is generally 4096 bytes in size. This is equivalent to 512 words of

bits. This choice of a 4 KB page was particularly well suited to 32-bit architectures. However, it is generally accepted that the use of a larger table of 8 KB or even 16 KB is preferable on 64-bit architectures.

Note that we found no relative performance differences when using either a more powerful computer and/or with more memory. Similarly, we found no relative difference when changing the C compiler.

For high-level languages designers, the search for an ideal list structure implementation under all circumstances is also important. A high-level language whose goal is to simplify the choice of data structures by using a single structure for lists, especially for untyped languages, must pay attention to this implementation or else its overall performance will be severely degraded. For this important issue, our implementation is clearly a very polyvalent solution.