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Dielectrics include several types of materials such as Insulators, Ionic, Semiconductors, Ferroelectric and other solids that are sensitive to polarization effects triggered by an electric field inside or outside them. They are versatile and described as non-polar, polar and dipolar possessing an important number of applications ranging from microelectronic to capacitors, sensors, actuators, clocks and resonators... They span several fields of technology such as control, communications, industrial, medical and consumer with traditional as well as sustainable appliances, vehicles and devices.

I. INTRODUCTION

The "Dielectric" word could be linked to the greek prefix "di" or 2 and perhaps implying E 2 effects where E is some applied or internal electric field contrasting with simple polarization effects proportional to E.

Actually the prefix "di" is shortened from "dia" meaning "across" meaning that the E field can exist across a dielectric (that ought to be called a "diaelectric" but shortened to dielectric) in contrast to a metal that blocks an internal field E via a swift reaction of the free electrons to screen it. Thus a dielectric reacts in opposition to a "diamagnet" that screens a magnetic induction field B. Out of the four possibilities of screening of the E, D, H, B fields only Maxwell displacement field D screening is still an open problem, whereas E is screened with a metal (or Faraday cage), H, is screened with a soft magnet (material with a very large permeability µ constant) whereas B is is screened with a superconductor also called "perfect diamagnet". Consequently a dielectric is more tolerant to an intruding electric field simply because it does not have enough free electrons to react against E. In electronic band language it means that band bending is allowed in a dielectric in contrast to a metal that tend to keep its bands flat since E ∝ grad[E nk ] where E nk is the electronic band dispersion relation with index n and wave-vector k.

The time to react to an applied field is the "dielectric relaxation time" given by τ D = /σ that originates from the charge continuity equation divJ + ∂ρ ∂t = 0 [START_REF] Elliott | Physics of amorphous materials[END_REF]. Since J = σE, and divE = ρ/ we obtain: (σ/ )ρ + ∂ρ ∂t = 0 which is integrated as: ρ(t) = ρ(0) exp(-t/τ D ), where ρ(0) is the charge density at time t = 0.

Several assumptions were made in order to this result:

1. The material has uniform physical parameters: ρ, , σ 2. ρ is the free charge density. Dealing with dielectrics means we have to consider free and induced (bound) charges.

3. J = σE is the Drude current that assumes no current density exists other than induced by E.

For instance; in the presence of a magnetic field there are paramagnetic and diamagnetic currents [START_REF] Tinkham | Introduction to Superconductivity[END_REF], in dielectrics there are polarization currents and in ferromagnetic materials magnetization currents... Moreover, several conclusions may be drawn from τ D = /σ since Insulators have σ ∈ [10 -18 , 10 -8 ] S/cm, Semiconductors have σ ∈ [10 -8 , 10 +3 ] S/cm and Metals have σ ∈ [10 +3 , 10 +8 ] S/cm [START_REF] Sze | Physics of Semiconductor Devices[END_REF]. [START_REF] Elliott | Physics of amorphous materials[END_REF]. In metals, it is possible to evaluate the screening time of the free electrons by taking ≈ 0 = 8.85 × 10 -12 SI and a metallic σ yielding about τ D ∼ 10 -19 sec.

2. In insulators, doing the same estimation as previously we get τ D on the order of seconds, minutes, days... since σ is very small in the insulator case. An application is the creation of a latent image in Xerography [START_REF] Elliott | Physics of amorphous materials[END_REF]: we need a material with a surface τ D long enough to keep an image so that it could be further processed [START_REF] Elliott | Physics of amorphous materials[END_REF] but a short τ D perpendicularly to the surface to evacuate leftover charges from previous latent images.

Dielectrics are classified according to Fig. 1: 1. Piezoelectrics where pressure (piezo in greek) plays a major role in their properties useful for sensors, actuators...

2.

Ferroelectrics possessing a permanent polarization and a hysteresis loop (cf Fig. 11) useful for information storage in Fe-RAM for instance...

3.

Pyroelectrics where is temperature dependent making them useful in sensors, infrared cameras...

Dielectrics have a large number of applications [1; 4]:

1. When they are insulating, they can be used as electrical or thermal insulators 2. They can be used as capacitors to store charge and act like electron based batteries that are faster than classical ones based on much heavier ions 3. They can be used in electrical appliances in power systems, microelectronic industry to act as barriers to protect some part of a circuit, cable or appliance...

4.

They can be used in microwave circuits and devices employed in communication, home or industrial applications 5. Electrets are ferroelectric materials possessing a permanent dipolar moment like a hard magnet and are used in sensors, medical implants, anti-pollution filters... Some of their applications are related to the dielectric constant = r 0 since it is the main parameter of capacitors. Capacitance given by Q = CV is a measure of charge Q storage when a potential V is present. In order to get a sense of magnitude of C, consider a charge Q at the center of a metallic sphere of radius R. From electrostatics, Gauss theorem gives V = Q 4π 0R on the surface of the sphere. Thus the capacitance of a radius R metallic sphere C = 4π 0 R and given 0 = 8.85 × 10 -12 F/m we get R = 9 × 10 9 or 9 million kms for a sphere having a capacitance C = 1 Farad.

Many properties of dielectrics originate from their flexibility to deal with charges since they have at least seven types:

1. Free charges whose density is smaller than metals 2. Bound charges induced by an internal electric field or attached to ions 3. Charge clusters organized as dipoles providing them with permanent or transient polarization 4. Space charges in zones depleted of charges, like in semiconductor junctions 5. Trapped interfacial charges in contact zones between a metal and a semiconductor, between two semiconductors...
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Fig. 1: Classification of dielectrics according to symmetries and applications.

A. Ferroelectrics, paraelectrics and anti-ferroelectrics

A ferroelectric has a Curie temperature T c signaling the loss of hysteresis and the transformation into a paraelectric following a Langevin line (cf Fig. 11).

A paraelectric is a material containing randomly oriented dipoles thus P = 0 whereas an anti-ferroelectric contains opposing dipoles such that P = 0 where the polarization is given by P = i p i /V where V is the material volume.

B. Point Symmetry groups

Point Symmetry Groups define Centrosymmetric Groups with no polar character and Polar groups that endow the corresponding crystals with ferroelectric, pyroelectric or piezoelectric character (see Fig. 3).
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Fig. 2: (Color online) Hysteresis loop (in blue) for a ferroelectric material and Langevin line (in red) for a paraelectric as well as for an antiferroelectric. P s is the saturation polarization of the ferroelectric when all dipoles are aligned along a single direction. E c is the coercive field reducing P to zero.

C. Relative dielectric constants r

We have = r 0 where Vacuum permittivity 0 is defined in Appendix A.

Relative dielectric constants r range over about four orders of magnitude in insulator materials. Because of their low density, gases have dielectric constants only slightly larger than one. At one atmosphere, the r relative dielectric constant of air is 1.0006. Most common ceramics and polymers have r in the range between 2 and 10. Polyethylene r = 2.3 and silica glass r = 3.8. These materials are low-density dielectrics with somehow important covalent bonding. Ionic materials like NaCl and Al 2 O 3 have slightly higher r values in the 6-10 range. High r materials like water ( r ∼ 80) and perovskite BaTiO 3 ( r ∼ 1000) have special polarization mechanisms involving rotating dipoles or ferroelectric phase transformations. Given an electric charge Q placed in a field B created by a pole of strength g, its wave function ψ is modified by the Peierls substitution with a phase factor given by: exp(-iQ(A • r)/ ). Performing a path around the electric charge alters the phase with: ∆ = Q A • dr. Using Stokes theorem, we have:

∆ = Q S curl(A) • dS = Q S B • dS (1) 
The induction created by g at a distance r is B = µ0g 4π 1 r 2 and the flux Φ over the sphere of radius r is Φ = B × 4πr 2 , thus Φ = µ 0 g. The phase picked up by the wave function after performing a complete loop around the pole should be 2πn where n is an integer:
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Structure of a perovskite of formula ABO 3 explaining the high value of r from the large dipole moment variation due to the Oxygen atoms contribution making a cage around element B. In terms of charges, we have A 2+ , B 4+ and O 2-yielding a neutral ABO 3 structure since: 2+4 -3x2=0. The dipole moment p = i q i r i is also 0. However when we have slight displacements of the B ion and the surrounding 6 Oxygen ions, we get a dipolar variation of: δp = +4δz -12δz = -8δz.

∆ = 2πn = Q µ 0 g, n ∈ N (2) 
Thus we get the charge quantization condition: Q = 2π gµ0 n implying that the elementary electric charge is e = 2π gµ0 .

It suffices to have a single magnetic pole in the Universe in order to have electric charge quantization. The search for the elusive monopole is still ongoing.

B. Dipoles

Neutrality of matter imposes charges of opposite signs to reorganize in dipoles, quadrupoles,... or even in multipoles, as for instance in Water where we have formation of octupoles... A dipole is given by two opposite charges ±q distant by .

The dipole moment is defined by p = i q i r i = (-q.0 + q )u where u is a unit vector linking charges [-q, +q]. The coordinates r i along u are 0 for -q and for +q. Thus p = q u. The dipole strength q is expressed practically in Debye units. If we take q = e and = 1 Angstrom. we get numerical values on the order of 10 -30 in SI units.

Thus Debye suggested a practical unit on that order: 1 Debye is 10 -10 esu × 1 Angstrom. The result is 1 Debye= 3.3356 × 10 -30 C.m from the esu defined in Appendix A.

For example, we have some values in Table 2. 

C. Multipoles

In Electrostatics, a multipole is defined from:

Q ijk... = dr ρ(r) x i x j x k ... (3) 
where ρ(r) is the charge density. When we have factors x i the multipole tensor Q ijkl... has 2 parts. The total charge ( = 0):

Q = dr ρ(r) (4) 
should be zero for material neutrality.

The dipole moment ( = 1) vector in D s dimensions is:

Q i = dr ρ(r) x i i = 1..D s (5) 
The quadrupole moment ( = 2) tensor Q ij in D s dimensions is:

Q ij = dr ρ(r) x i x j i, j = 1..D s (6) 
should have D s components but the neutrality condition reduces this number by unity.

III. POLARIZATION IN DIELECTRICS

Polarization is dipole moment per unit volume.

In a solid, we consider a distribution of dipoles and the total potential created by a surface σ(r) or a volume distribution ρ(r) of charges (cf. fig. 5). It is given by:

φ(r) = V dV 1 4π 0 ρ(r) |r -r | + S dS 1 4π 0 σ(r ) |r -r | (7) 
In order to extend the above from charge to dipole distribution, we recall that for a single dipole we have:

φ(r) = 1 4π 0 p • r r 3 , p at origin φ(r) = 1 4π 0 (r -r ) • p |r -r | 3 , p at r (8) 
Transforming a single p into an infinitesimal element dp = P (r )dV with P (r ) the local Polarization i.e. dipole moment per volume, we transform the above formula in the case of dipole distribution into:

φ(r) = 1 4π 0 V dV (r -r ) • P (r ) |r -r | 3 (9) 
Recalling the gradient result:

(r -r ) |r -r | 3 = ∇ 1 |r -r | (10) 
we infer that ∇ 1 |r-r | • P (r ) is transformed, using the Vector Calculus formula: 

grad 1 r • P (r) = div P r - 1 r divP (11) 
we get:

φ(r) = V dV 1 4π 0 ρ P (r ) |r -r | + S dS 1 4π 0 σ P (r ) |r -r | (12) 
where: ρ P = -divP and σ P = P • n with n the outward normal to the body after transforming the volume integral into a surface one as described below:

1 4π 0 V dV ∇ • P (r ) |r -r | = 1 4π 0 S dS • P (r ) |r -r | (13) 
since dS = ndS .

As a corollary, we deduce a total charge density ρ t = ρ + ρ P consisting of the free charge density ρ and the polarized ones ρ P leading to the introduction of Maxwell displacement field D = 0 E + P with the additional relations: divE = ρ t / 0 (total) whereas divP = -ρ P to finally yield: divD = ρ t -ρ P = ρ (free).

The displacement field can be intuitively understood with a simple capacitor current continuity condition across it (cf fig. 6). The current across the capacitor i = dQ/dt is the origin of the term ∂D ∂t in the Maxwell equation curlH = J + ∂D ∂t .

In order to make Maxwell equations self-contained we must relate somehow he polarization to the electric field since it is induced by it and this is not an easy task due to the many types of electrical induction effects leading to the introduction of a local electric field E loc reflecting the internal structure of the solid.

Let us write: P = 0 χE where χ is the electric susceptibility and at the same time introduce a polarizability term α such that P = 0 αE loc where E loc the local electric field contains local polarization sources and E is the macroscopic Maxwell field.

Writing D = 0 E + P = E = 0 (1 + χ)E yields r = 1 + χ and the optical refraction index as n = √ r = √ 1 + χ.
In an isotropic solid both α, , χ are scalars, but when the solid is anisotropic they become tensors The simplest representation of Resonance and Relaxation processes is provided by an oscillator made of a massspring system or a pendulum both performing small oscillations. Following the description depicted in fig. 7 x is the sole generalized coordinate. Newton equation of motion in presence of damping and external time harmonic force f exp(-iωt) writes:

α ij , ij , χ ij where i, j = 1...D s in a D s dimensional space. J D=0 J D=0 i V -Q E ε D J=0 +Q i
mẍ + γ ẋ + kx = f exp(-iωt) (14) 
k is spring constant and damping force -γ ẋ opposes velocity.

The solution is found by substituting x ∝ exp(-iωt):

x = (f /m) exp[-i(ωt + δ(ω))] (ω 2 0 -ω 2 ) 2 + ω 2 γ 2 /m 2 (15) with δ(ω) = -atan[ ωγ m(ω 2 0 -ω 2 )
] the phase delay function and

ω 2 0 = k/m.
This allows us to write:

x = α(ω)f exp(-iωt), α(ω) = (1/m) exp[-iδ(ω)] (ω 2 0 -ω 2 ) 2 + ω 2 γ 2 /m 2 (16) 
We move on to the pendulum problem depicted in fig. 8. Note that θ is the sole generalized coordinate.

The classical torque equation of motion relative to angular momentum is: mr × ṙ = -J θz where (z is a unit vector along z direction as in fig. 8). J is the moment of inertia of mass m with respect to point O equal to m 2 and the total force F yields the torque r × F with respect to point O thus the torque equation of motion is:

J θ + γ θ + mg sin θ = f exp(-iωt) (17) 
In the case of small oscillations we write: The spring-mass and the pendulum are equivalent in the small oscillation case and allow us to extract the polarizability α(ω) = α (ω) -iα (ω) with the real and imaginary parts, as well as the delay function δ(ω) in the resonant (γ small) and the relaxation cases (γ large) as displayed in Fig. 9.

J θ + γ θ + mg θ = f exp(-iωt) (18 
The polarizability α(ω) allows to find the complex dielectric permittivity (ω) as explained below.

B. Space charge Polarizability

Inside a dielectric or at an interface [START_REF] Kao | Dielectric phenomena in solids[END_REF] between two dielectrics there are trapped charges that may jump from site to site (hopping process) or might be separated into positive and negative charges (interfacial process) under the action of the local electric field.

In both cases: hopping or interfacial, it is possible to view the mechanism as a relaxation process similar to the spring-mass model. Thus we write for the space charge polarizability:

α sc (ω) = (1/m) exp[-iδ(ω)] (ω 2 0 -ω 2 ) 2 + ω 2 γ 2 /m 2 (19) with δ(ω) = -atan[ ωγ m(ω 2 0 -ω 2 )
] the phase delay function and k = mω 2 0 . Effective parameters m, γ, k values should correspond to a hopping or an interfacial mechanism [START_REF] Kao | Dielectric phenomena in solids[END_REF].
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Fig. 9: Resonant behavior of polarization functions α (ω) and α (ω) at left whereas relaxing behavior is at right. Below are the corresponding phase delay function δ(ω) at left (resonant) and at right relaxing. Note the -π phase delay jump at the resonance frequency.

C. Electronic Polarizability

The electronic polarizability α el is almost independent of temperature. The evaluation of electronic or atomic polarization is based on inducing the bound electronic cloud of an atom in a way such that a dipolar moment appears.

When the electronic cloud -Q is displaced (cf. fig. 10) a positive charge must be considered in order to preserve atomic neutrality.

By Gauss law, the electric field created by the charge of radius x is E = -(4/3)πρ B x 3 x/(4π 0 x 3 ). ρ B is the bound electronic charge density.

We have (4/3)πρ B R 3 = Q, the induced dipole p = Qx and the polarizability α el = p/E yielding α el = 4π 0 R 3 .

If we take R=1 Angstrom, we get α el ∼ 10 -40 F.m 2 . The frequency dependence of bound electrons polarizability is considered next. We assume that an electron (of charge q = -e) is bound harmonically to a particular location (e.g., the position of a particular ion). Its equation of motion is written by:

m r + ṙ τ = -kr -eE (20) 
τ is a Drude relaxation time responsible for damping, whereas -kr is the restoring force and E is the surrounding electric field.

Assume E ∝ exp(iωt) and let k = mω 2 0 . Then we can substitute r ∝ exp(iωt) to obtain: The dipole moment of the atom p = -er and the polarization P = N p/V = -N er/V = N α el 0 E/V . This gives for α el :

r = - eE/m ω 2 0 + iω/τ -ω 2 = - p e (21) 
α el = (e 2 /m)[ω 2 0 + iω/τ -ω 2 ] (ω 2 0 -ω 2 ) 2 + (ω/τ ) 2 (22) 
The dielectric function becomes: r = 1 + 4π N V α el :

r (ω) = 1 + (4π N V e 2 /m)[ω 2 0 + iω/τ -ω 2 ] (ω 2 0 -ω 2 ) 2 + (ω/τ ) 2 (23) 

D. Ionic Polarizability

The ionic polarizability α ion is almost independent of temperature.

In an ionic crystal like NaCl, we have displacements of positive and negative ions u + and u -with respective masses M + , M -. This two-body system can be reduced to a single one using relative coordinates u = u + -u -and a reduced mass: 1/µ = 1/M + + 1/M -with an equation of motion of a form akin to a damped spring-mass system:

µ(ü + γ u + ω 2 0 u) = e * E ( 24 
)
e * is an effective charge, E an effective local field a nd γ a damping coefficient.

Substituting u ∝ exp(-iωt) we get the solution:

u(ω) = e * E/µ ω 2 0 -ω 2 -iγω (25) 
The polarization becomes P = N V (e * u + 0 α el )E and the dielectric constant becomes:

r (ω) = 1 + N V α el + N V [e * ] 2 µ 0 ω 2 0 -ω 2 -iγω (26) 
The ionic polarizability is roughly given by: α ion ∼ [e * ] 2 µ 0ω 2 0 ∼ 10 -40 F.m 2 , which is similar to the electronic value.

E. Orientational Polarizability

Let us consider a set of dipoles at a temperature T . Each dipole p is described by two degrees of freedom θ, φ in spherical coordinates.

In the presence of a field E and a temperature T the Canonical ensemble partition function is given by:

Z = 2π 0 dφ π 0 dθ sin θ exp(-W/k B T ) = dΩ exp(-W/k B T ) (27) 
where W = -p • E = -pE cos θ is the energy of the dipole in the field E. by choosing the z direction parallel to E. k B is Boltzmann constant. Moreover dΩ = dφdθ sin θ the elementary solid angle in the θ, φ direction and ξ = pE/k B T .

Note that we are considering the dipoles as rigid whose moduli are unaffected by field E. Integration gives: The polarization is P dip = N V pL(ξ). In general ξ << 1 since in SI at room temperature, typically p ∼ 10 -30 C.m , k B T ∼ 10 -20 Joule, yielding a ξ prefactor p/k B T ∼ 10 -10 leading to L(ξ) ∼ ξ/3 and P dip = N V pξ/3.

Z = 4π sinh(ξ) ξ (28) 

F. Depolarization field in dielectrics

In a finite solid, there is a distribution of dipoles on its surface creating a dipolar field since the overall surface distribution should be neutral. This field called the depolarization is proportional to the volume polarization and given by E D = -N P / 0 where N is a depolarization coefficient. For isotropic solids N is a scalar but for a general solid it is a tensor N ij with a trace property [START_REF] Landau | Electrodynamics of Continuous Media[END_REF] N ii = 1 assuming Einstein summation convention, i.e. T rN = 1.

In the case of a thin film in the x -y plane with infinite lengths along the x, y axes and a small finite length along z we have N xx = N yy = 0 meaning a very small depolarization across x, y. This results in N zz = 1 from the trace property.

The next example contrasts with the thin film. It is the case of an infinite cylinder along z with finite radius in the x -y plane. Since the length is infinite along z the associated depolarizing field is very small yielding N zz = 0 but N xx = N yy by circular symmetry. Using the trace property, we have

N xx = N yy = 1/2.
In the case of a sphere of finite radius, we have the symmetry N xx = N yy = N zz . With the trace property, we have

N xx = N yy = N zz = 1/3.
It is possible to retrieve this result directly by taking a polarized sphere with a polarization vector P along the z direction as in fig. 12). Using the formulae: ρ P = -divP and σ P = P • n, we get σ P = P cos θ and ρ P = 0.

The depolarization field E D is:

E D = - dS σ P cos θz 4π 0 R 2 (30) 
Performing azimuthal integration, we get dS = 2πR sin θRdθ (cf. fig. 12) and consequently: In 2D microelectronics targeting dielectric devices, depolarizing electrostatic fields and interfacial chemical bonds can destroy this long-range polar order in these devices.

E D = - P z 2 0 π 0 dθ cos 2 θ sin θ ( 
Recently, a class of new materials emerged with 2D perpendicular polarization called dipole lock solving the depolarization field problem [START_REF] Xiao | Intrinsic Two-Dimensional Ferroelectricity with Dipole Locking[END_REF].

Recent experimental discovery, in atomically thin In 2 Se 3 crystals, of 2D out-of-plane ferroelectricity originating from locking between out-of-plane dipoles and in-plane lattice asymmetry, opened new possibilities for combating the depolarization problem and even paved the way for making ultrahigh density RAM devices.

The next task is to relate α to χ and E to E loc using the Lorentz model approach, taking into account of polarization and depolarization fields.

IV. FREQUENCY DEPENDENT COMPLEX DIELECTRIC FUNCTION

The complex dielectric permittivity (ω) = (ω) -i (ω) is measured as a function of the angular frequency ω and we give below several possibilities [9]:

Debye function:

The simplest relaxation model is Debye given by:

r (ω) = ∞ + ∆ [1 + (i ω τ )] (32) 
with τ the relaxation time and ∆ the relaxation strength given by the difference S -∞ where S = r (ω = 0) and ∞ = r (ω → ∞).

This can be written as:

r (ω) = ∞ + ∆ [1 + (ω τ ) 2 ] r (ω) = - ωτ ∆ [1 + (ω τ ) 2 ] ( 33 
)
This gives a semi-circle in the -plane (also called Cole-Cole plane displayed in fig. 13). 2. Cole-Cole function:

r (ω) = ∞ + ∆ [1 + (i ω τ ) α ] ( 34 
)
This model is based on the -graph. When the graph is semi-circular, we have a simple Debye model, otherwise we have a quasi semi-elliptic shape depending on α value.

Davidson-Cole function:

r (ω) = ∞ + ∆ [1 + (i ω τ )] γ (35)

Havriliak-Negami function:

An empirical expression is Havriliak-Negami function, a combination of the previous functions:

r (ω) = ∞ + ∆ [1 + (i ω τ ) a ] b (36)
5. Kohlrausch-Williams-Watts function:

r (ω) = ∞ + ∆ ∞ 0 dt - dφ(t) dt exp(-iωt), φ(t) = exp[-(t/τ 0 ) β ] (37) 
6. Distribution of relaxation times: A more general model has a distribution of relaxation times G(τ ) used for modeling the complex permittivity. In this case the r and r are expressed as

r (ω) = ∞ + ∆ ∞ -∞ G(τ )d(ln τ ) 1 + ω 2 τ 2 , (38a) r (ω) = ∆ ∞ -∞ ωτ G(τ )d(ln τ ) 1 + ω 2 τ 2 . ( 38b 
)
with the normalization condition

∞ -∞ G(τ )d(ln τ ) = 1. (39) 
IR (Infra-Red) and THz (Tera-Hertz) optical phonon parameters are generally obtained as a function of temperature with a generalized-oscillator picture translated into a complex permittivity expressed in multiplicative form [START_REF] Gervais | Infrared and Millimeter Waves[END_REF]:

r (ω) = ∞ j ω 2 LOj -ω 2 + iωγ LOj ω 2 T Oj -ω 2 + iωγ T Oj (40) 
where ω T Oj and ω LOj denotes the transverse and longitudinal frequency of the j-th optical phonon, respectively. γ T Oj and γ LOj represent the corresponding j-th mode damping constants. (ω) is obtained from optical reflectivity R(ω):

R(ω) = r (ω) -1 r (ω) + 1 2 . (41) 
For a given temperature, the transmission spectrum of a material can be based on a dielectric function obtained from a set of classical damped oscillators (Transmission through a plane-parallel sample is based on Fresnel formulae with account for interference effects [START_REF] Born | Principles of Optics[END_REF]):

r (ω) = ∞ + n j=1 ∆ j ω 2 T Oj ω 2 T Oj -ω 2 + iωγ T Oj (42)
where ∆ j is the j-th mode contribution to the static permittivity. The parameters in Eq. 42 have the same meaning as in Eq. 40.

ω L and ω T are the TO and LO phonon frequencies, respectively. Note that ω L > ω T since S > ∞ in general. Values of S and ∞ for some polar materials are listed in Table 3. 
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V. LORENTZ MODEL AND CLAUSIUS-MOSSOTTI RELATIONS

In order to find the various electric fields in a dielectric, Lorentz introduced a model based on a fictitious cavity inside a dielectric with polarization P (cf fig. 15) and wrote: 

E loc = E ext + E D + E 2 + E 3 ( 43 
)
The fields are E ext , E D are obvious, E 2 is created by the cavity internal surface whereas E 2 is created by the dipoles distributed inside the cavity volume.

-σ σ +++++++++++++++++++ ----------------------E P induces surface charges with uniform density ±σ of the sample as well as non-uniform density σ P = P • n on the surface of the sphere with normal n. The volume density of the charge induced inside the sphere is zero since P is uniform.

The dipole moments inside the Lorentz sphere contribute a surface charge density on the surface of the Lorentz sphere and by inspecting fig. 12 and fig. 15 we infer that E 2 is exactly the opposite of the demagnetization field of the sphere in fig. 12 since the respective normal vectors n are opposed to each other. Thus E 2 = P z 3 0 .

The field E 3 when the distribution dipoles in the spherical cavity is isotropic.

Collecting all results, we have, assuming the Maxwell field is

E = E ext + E D E loc = E + E 2 + E 3 = E + P z 3 0 (44) 
Since: P = ( -0 )E and P = P z = 0 αE loc , we get: ( -0 ) = α( 2 3 + 3 0 ) that can be rearranged as:

r -1 r + 2 = α 3 0 (45)
This is the Clausius-Mossotti formula.

1. Identify first the physical characteristics distinguishing the two phases of the system (ferro vs para phases).

2. Introduce an order parameter making the differences between the two phases (e. g. the polarization value).

3. Write a Free energy function of the order parameter; the value of the order parameter is chosen to minimize the free energy (mean field approximation).

4. Check that in the long range limit the mean field approximation gives the right answer.

5. Compute the corrections to the mean field approximation due to the finite range of the interaction.

Landau hypothesis assumes that the Free energy is a functional of the temperature dependent order parameter η(T ) i.e. F [η(T )]. Consequently, if we work around T c we can expand the Free energy around η ∼ 0 analytically in even powers of η such that:

F [η(T )] ∼ a(T )[η(T )] 2 + b(T )[η(T )] 4 + ... ( 50 
)
assuming a symmetric free energy when η(T ) → -η(T ).

Considering a(T ) = a 0 (T -T c ) and b(T ) > 0 and performing minimization, we get the curves depicted in fig. 16 for the ferro and para-electric phases with the variation of the equilibrium order parameter η eq (T ) versus temperature above and below T c . Ferroelectrics belong to different families of materials as displayed in Table . 4: Moreover the Perovskite oxides provide a good illustration of the varieties of order in dielectric materials as displayed in Table 5:

Ferrielectric materials have opposing moments with different magnitudes such that we do not have exact compensation as in the Antiferroelectric case but rather a weak ferroelectric. Ferrielectric examples are Ba 4 Ti 3 O 12 and some smectic liquid crystals [6; 16].

B. Ferroelectric hysteresis loop measurement: Sawyer-Tower method

The Sawyer Tower measurement circuit is based on a charge measurement method which relies on a reference capacitor in series with a ferroelectric capacitor (cf. fig. 17. The hysteresis loop is given by the polarization P = P (E). Thus we need two independent measurements for P and E.

The charge in capacitor C 2 is given by: Q = σS 2 where σ = P • n where n is the normal to the capacitor plate. The voltage drop across the reference capacitor C 1 is proportional to polarization charge

P since Q = C 1 V 1 thus V 1 = P S 2 /C 1 determines P .
In order to determine the corresponding E, we use V 2 = Ed 2 where d 2 is capacitor C 2 interplate distance. This yields 

N + CH 2 COOH) 2 (H 3 N + CH 2 COO -) • SO 2- 4 .
TGS is Monoclinic with Unit cell parameters: a = 0.9417 nm, b = 1.2643 nm, c = 0.5735 nm and unit cell angles:

α = 90 • , β = 110 • , γ = 90 • .
Adapted from Kao [START_REF] Kao | Dielectric phenomena in solids[END_REF].

Oxide Crystal Structure at 20 Table 5: Perovskite oxide crystals with their Curie temperature T c and type. Adapted from Springer Handbook of Materials for Electronics [START_REF] Whatmore | Ferroelectric Materials[END_REF].

E = V 2 /d 2 = (V -V 1 )/d 2 where V = V 1 + V 2 yielding E.
Accuracy and measurement artefact avoidance require to work at low frequencies (about 60 Hz) and to have a reference capacitor with capacitance C 1 ∼ 100C 2 adapting every C 1 value to each ferroelectric capacitor value C 2 .

VII. DIELECTRIC MATERIALS APPLICATIONS A. Dielectrics and microelectronics

The minimum feature F (also called process node) is a practical measure of device miniaturization. It is the metric scale used by a foundry to control all sizes of interest such as length, width and depth of various properties (gate, gate-oxide, contacts, conduction channels...) related to an individual device (transistor) fabrication or in making remote contacts between different devices (metal wire width and thickness) ...

ε V E S S 1 2 2 V 1 2 -Q +Q -Q +Q C C ε 0 2 d V 1
Fig. 17: Ferroelectric hysteresis loop measurement by the Sawyer-Tower method based on a reference capacitor C 1 and the capacitor C 2 containing the ferroelectric material whose hysteresis curve should be measured.

B. DRAM and FeRAM memory devices

A DRAM (Dynamic Random Access Memory) is a memory outside the CPU however limited by the CPU number of bit architecture (in present 64-bit architecture, the limit is 2 64 B (bytes) or 16 billion GB). The qualifier "dynamic" means that information bits are stored as a charge in a capacitor refreshed electrically in order to save energy. The charge storage time is given by τ = RC where R is a resistance associated with capacitance C storing the information bits. For instance, in a capacitor with C ∼ 1nF to which a voltage V =1mV is applied the charge is Q = CV = 10 -12 Coulomb thus one bit is equivalent to approximately Q/e ∼ 10 7 electrons.

In sharp contrast to magnetic and Flash, ferroelectric scaling does not behave as desired. In magnetic scaling, the moment is not affected whereas an electric dipole moment p is directly reduced by scaling since p = q . Nevertheless, with the development of dipole-lock materials such as very thin In 2 Se 3 crystals, the scaling problem will be solved in order to develop ultrahigh density RAM devices. DRAM architecture is a matrix of capacitors each one controlled by a transistor at each bit node (matrix element) yielding the 1T-1C architecture. RAM terminology originates from the fact when a given bit is addressed at some bit node it looks as if it were a random access because consecutive addresses do not need to be spatially adjacent. Thus it is more suitable to state that they behave as an Apparently Random fashion (ARAM instead of RAM).

Ferroelectric technology evolved from 2T-2C (2 Transistors-2 Capacitors) technology to 1T-1C catching up with DRAM evolution and reducing device area and lowering power consumption.

C. Gate-Oxide thickness

Silicon dioxide has been used traditionally as a gate oxide material for electric insulation. Shrinking the transistor implied reducing the dioxide gate dielectric thickness in order to increase the gate capacitance and thereby drive current and device performance. When gate oxide thickness is thinner than 2 nm, quantum tunneling induces leakage currents across the oxide decreasing device performance. If the silicon dioxide is replaced by a high-dielectric constant (called kappa by electronic engineers) material gate capacitance increases without current leakage.

The dielectrics used by several electronic foundries belong to a family of Hafnium silicates such as HfO 2 and HfSiO.

Multigate devices devices belong to a class tailored to improve scaling and reduce leakage between source and drain (This occurs when the gate becomes too thin) with fins, nanowires or nanoribbons arranged perpendicularly to the gate.

For instance, presently the MOSFET is replaced by the FinFET and the fins are perpendicular to both gate and gate-oxide, whereas nanowires and nanoribbons are perpendicular to gate but parallel to gate-oxide.

D. Piezoelectric applications

Piezoelectricity is a fundamental property of non-centrosymmetric crystals that occur in two types of point symmetry groups [START_REF] Landau | Electrodynamics of Continuous Media[END_REF] (PSG). There are ten PSG (see Appendix I.B) called polar groups (possessing a special direction) associated with pyroelectric and piezoelectric materials (polarization along the special direction) and ten other PSG that are piezoelectric only (their polarization being induced by mechanical deformation [4; 17]).

These PSG are classified as polar and non polar [START_REF] Kao | Dielectric phenomena in solids[END_REF] (see Appendix I.B):

• Pyroelectric and piezoelectric (Polar groups displaying polarization along a special direction):

-Triclinic system C 1 -Monoclinic system C 1h , C 2 -Orthorhombic system C 2v -Tetragonal system C 4 , C 4v -Trigonal (Rhombohedric) system C 3 , C 3v -Hexagonal system C 6 , C 6v
• Piezoelectric only (Non polar groups characterized by a polarization induced by mechanical deformation):

-Orthorhombic system D 2 -Tetragonal system D 4 , D 2d , S 4
-Trigonal (Rhombohedric) system D 3

-Hexagonal system D 6 , C 3h , D 3h

-Cubic system T , T d

Piezoelectric coefficient tensor d i,jk is rank 3 tensor with indices i, j, k = 1, 2, 3 corresponding to x → 1, y → 2, z → 3. We relate polarization vector to stress via P i = d i,jk σ jk where σ jk is the stress tensor.

In total, we have 27 d i,jk coefficients since i, j, k = 1, 2, 3, however writing d i,jk means index i must be treated separately from indices j, k since i relates to polarization P whereas j, k indices relate to the symmetric stress tensor σ i.e. σ jk =σ kj .

Neumann's principle states that "Symmetry elements of any physical property of a crystal must include the symmetry elements of the point group of the crystal" implying that crystal physical quantities are preserved after performing point group symmetry operations on them.

The j, k symmetry is exploited with Voigt notation that amounts to replace two indices by a single one according to the recipe: when j = k, (j, k) → j and when jn e k, (j, k) → 9 -(j + k). More specifically, we have six possibilities: 

where elements whose Voigt index is 4,5,6 are given by:

d i4 = d i23 + d i32 , d i5 = d i31 + d i13 , d i6 = d i12 + d i21 for i = 1, 2, 3 as a result of symmetry.
The first material representing piezoelectrics is Quartz (silicon dioxide SiO 2 ), a very important material from the technological point of view since it is an essential component of all oscillators (clocks) used in consumer electronics devices (watches, computers, resonators, cameras, ovens...). Quartz is the second most important material after Silicon. Quartz has a typical piezoelectric coefficient on the order of 10 -12 C/N or 1 pC/N with prefix p for pico. (cf. If we consider the SI metrological point of view, the ampere precedes in fact the Coulomb and we ought to define e from the ampere.

The SI unit of current is 1 ampere= 1 Coulomb/s in SI. Moreover, unit rationalization calls for a factor 1/(4π 0 ) with vacuum permittivity 0 obtainable from Maxwell equations providing the vacuum velocity of light c through the Wave equation as 0 µ 0 c 2 = 1.

The ampere defines the attractive force per unit length F/L as 2 dynes/cm between two wires separated by 1 m and traversed by opposing currents. It still remains to find a relation between the Ampere and the elementary charge e.

Consequently, we review briefly the experimental methods deployed to measure a unit charge e that must obey several compatibility constraints (ranging from Aerosol science to surface, solid state physics, electronics and finally electrochemistry) in order to be considered as such. Moreover, atomic and particle physics should also weigh in this evaluation. The seven defining constants of the SI and the seven corresponding units they define. J is Joule, W is Watt, lm is Lumen and K cd refers to the Candela efficacy.

1. Aerosol science: Oil-drop experiment Millikan built an experiment consisting of measuring the charge of a liquid drop subjected to gravity, viscosity and electric forces such that the drop is immobilized in air. His summer student Harvey Fletcher suggested oil after testing many other liquids and finally made the experiment succeed after a long stalling period of time.

Measuring the charges of many different oil drops, it may be inferred that all charges are integer multiples of a unique charge e.

2. Surface physics: Photoelectric effect Millikan, applied a voltage V to a metal (sodium, lithium) preventing the electrons from leaving its surface excited by a radiation of a known wavelength λ. Given the energy equality: eV = hc/λ, we obtain the ratio h/e allowing us to obtain e after h determination.

3. Solid-state physics: Josephson and von Klitzing constants Another accurate method for measuring the elementary charge is by inferring it from measurements of two effects in quantum mechanics: The Josephson effect, voltage oscillations that arise in certain superconducting structures; and the quantum Hall effect, a quantum effect of electrons at low temperatures, strong magnetic fields, and confinement into two dimensions. The Josephson constant is K J = 2e h where h is Planck constant. It can be measured directly with the Josephson effect. The von Klitzing constant R K = h e 2 can be measured directly using the quantum Hall effect. The elementary charge can be deduced from these constants as: e = 2R K K J . 4. Electronics: Shot noise A current consists of discrete electrons flowing through a circuit [20; 21]. Noise power is made of 1/f, Thermal and Shot contributions. When the transmission of charged e particles is randomly distributed as Poissonian, shot noise is given by S = 2eI [20; 21] where I is the current. This allows to extract e = S/2I.

Electrolysis: Avogadro constant N

A and Faraday constant F F = N A e can be measured directly using Faraday laws of electrolysis. Measuring the mass change of the anode or cathode, and the total charge passing through a wire and taking into account the molar mass of the ions, one can deduce F and obtain e = F N A .

SI system 2018 revolution

In 2018, a major paradigm shift occurred in the metrology world. Instead of relying on force and mass measurements on the basis of calibration and comparison, seven constants were selected to be the basis of the SI system redefining all other metrological quantities. These seven quantities were selected for stability and high accuracy (see Table 8). This paradigm provides new definitions of the kilogram, the kelvin, the mole, and the ampere with some consequences to some fundamental constants.

Thus h, k B , N A , m e are exact with uncertainty to electron mass m e dropping from 12 ppb to 0.5 ppb whereas the kilogram's rising from 0 to 10 ppb. Moreover the Volt standard shifts by 100 nV and Ohm's by 17 nΩ. The molar mass of Carbon-12 loses the exact 12g/mol label, µ 0 is no longer defined exactly as 4π × 10 -7 H/m, 0 is no longer defined exactly as 8.854187817 × 10 -12 F/m and finally the triple point of Water is no longer defined exactly as 273.16 K.
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 5 Fig.5: Distribution of dipoles in a solid with r the observation point and P (r ) a dipolar source point in the body.

Fig. 6 :

 6 Fig.6: The continuity of the current i = dQ/dt outside and inside the capacitor gives with Q = CV , E = V /d, C = S/d, D = E. S and d are respectively the condenser plate surface and interplate distance. Outside the capacitor J = 0, D = 0 whereas inside it we have the opposite situation: J = 0, D = 0

Fig. 7 :

 7 Fig.7: Simple harmonic oscillator with spring and mass with damping opposing velocity described by coefficient γ and excited by a time harmonic force.

Fig. 8 :

 8 Fig.8: Simple pendulum with force F = mg + f + f γ + f A applied to mass m yielding torque r × F with respect to point O. mg is gravity force, f is excitation force, f γ is damping force whereas f A is attachment force. Damping force f γ opposite to velocity ṙ = θe θ where e θ ⊥e r . m center of mass position is r = e r . Thus m angular momentum mr × ṙ = -J θz where J = m 2 and z is a unit vector along z direction perpendicular to the page.
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 10 Fig.10: External sphere represents an electronic cloud -Q surrounding a positive charge Q placed at a location x.

Fig. 11 :

 11 Fig.11: Dipole in presence of an electric field E along z. The dipole is considered rigid with modulus unaffected by E.

Fig. 12 :

 12 Fig.12: z direction polarized sphere with radius R. The induced charges are on the outside sphere surface and the normal vector is n oriented outward.

Fig. 13 :

 13 Fig.13: Dielectric functions in the Cole-Cole plane. At left is Debye semi-circular function showing angular frequency varying from 0 to ∞. At right is an arbitrary Cole-Cole function.

Fig. 14 :

 14 Fig.14: (Color on line) Relaxation processes: Space charges are the slowest with typical frequencies in the Hz and Dipole Orientation processes are in the 100 MHz regime (Microwave). Resonance processes contain Ion vibrations in the THz (IR), outer electrons are in the PHz (10 15 Hz) whereas inner ones are in the EHz (10 18 Hz).
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 15 Fig.15: Fictitious cavity inside a P polarized dielectric illustrating the evaluation of the various fields E ext , E D , E 2 , E 3 contributing to the local field E loc according to the Lorentz model. The induced charges are on the inside sphere surface and the normal vector is n oriented inward.

FFig. 16 :

 16 Fig.16: At left, Free energy for the ferro and para-electric phases as a function of η(T ). At right, behavior of η eq (T )versus temperature.

Table 1 :

 1 Room temperature relative dielectric constant r for various substances going from lower to higher densities approximately. PZT* is Pb Zr x Ti 1-x O 3 , PMN** is Pb (Mg 0.33 Nb 0.66 )O 3 and CCTO †is CaCu 3 Ti 4 O 12 . A relaxor is a material of composition Pb(B,B') O 3 with B,B' complementary such as (Mg 0.33 Nb 0.66 ) with a broad temperature variation of r in comparison to a perovskite. Electric charge quantization and value was established by Millikan Oil drop experiment with its SI value e = 1.60217653 × 10 -19 Coulomb[START_REF] Peter | CODATA Recommended Values of the Fundamental Physical Constants: 2002[END_REF]. The origin of Charge quantization is still debated since Dirac suggested its existence as due to the existence of the magnetic monopole as follows:

	Substance	r
	Vacuum	1
	Gas	1.x
	Ceramics and polymers	2-10
	Ionics	6-10
	Pure Water	80
	Perovskites	1000
	Special ceramics like PZT*	500-6000
	Relaxor materials like PMN** 20,000-35,000
	Conjugate polymers	1.8-10 5
	CCTO †	10 5 -10 6

Table 2 :

 2 TMAB or tris[P,N,N dimethyl-amino-phenyl-athyl-duril] borane has the largest dipole moment.

	Substance Dipole moment (Debye)
	CO2	0
	CH4	0
	H2O	1.85
	NaCl	9
	KBr	10.5
	TMAB	60

Table 3 :

 3 Dielectric constants S and ∞ for some polar crystals. Adapted from Quinn[START_REF] Quinn | Solid State Physics, UNITEXT for Physics[END_REF].

		.7 1.93 4.5
	NaCl 5.62 2.25 2.50
	KBr	4.78 2.33 2.05
	Cu2O 8.75 4.0 2.2
	PbS	17.9 2.81 6.37

Table 4 :

 4 Ferroelectric crystals with their Curie temperature T c and saturation polarization P s . Triglycine sulfate (TGS) chemical formula is (H 3

			Tc (K) Ps (µC.cm -2 )
	KDP type	KH2PO4	123	4.75
		KD2PO4	213	4.83
		RbH2PO4	147	5.6
		KH2AsO4	97	5.0
		GeTe	670	-
	TGS type Tri-glycine sulfate 322	2.8
		Tri-glycine selenate 295	3.2
	Perovskites	BaTiO3	408	26.0
		KNbO3	708	30.0
		PbTiO3	765	> 50
		LiTaO3	938	50
		LiNbO3	1480	71

  11 → 1, 22 → 2, 33 → 3, 23 → 4, 31 → 5, 12 → 6. The total number of d i,jk coefficients is 18 since i = 1, 2, 3 and Voigt index has six possibilities. As a result, the Voigt piezoelectric 3×6 rectangular matrix [d] is written with the explicit entries: 11 d 12 d 13 d 14 d 15 d 16 d 21 d 22 d 23 d 24 d 25 d 26 d 31 d 32 d 33 d 34 d 35 d 36

		 d 
	[d] =	 	 

Table 7 )

 7 .

	Structure	Piezoelectric Coefficients
	Cubic (43m)	d14	
	Bi12 SiO20	40	
	NaClO3	1.7	
	GaAs	2.6	
	ZnS	3.2	
	Hexagonal (6mm)	d31 d33 d15
	ZnO	-5.0 12.4 -8.3
	CdS	-5.2 10.3 -14.0
	AlN	-2.0 5.0 4.0
	Tetragonal (4mm)	d31 d33 d15
	BaTiO3	-34.5 85.6 392
	PbTiO3	-25 117 62
	Tetragonal (42m)	d14 d36	
	KH2 PO4	1.3 21	
	NH4 H2 PO4	1.8 48	
	Tetragonal (422)	d14	
	TeO2	8.1	
	Trigonal (3m)	d31 d22 d33 d15
	LiNbO3	-1.0 21	16 74
	LiTaO3	-3.0 9.0 9.0 26
	Tourmaline	-0.3 -0.3 -1.8 -3.6
	Trigonal (32)	d11 d14	
	α-Quartz	2.3 -0.67	
	Orthorhombic (222)	d14 d25 d36
	Rochelle salt	2300 -56 12
	Orthorhombic (mm2) d31 d32 d33 d15 d24
	PbNb2 O6	-43 24	60 180 170
	Ceramics (m)	d31 d33 d15
	BaTiO3	-78 190 260
	Pb(Zr, Ti)O3-5H	-274 593 741
	Pb(Zr, Ti)O3-8	-27 225 330
	K0.5 Na0.5 NbO3	-51 127 306

Table 7 :

 7 Piezoelectric d ij coefficients in pC/N organized by symmetry groups. The non-zero d ij coefficients are given for every symmetry class. Note the PZT varieties: Pb(Zr, Ti)O 3 -5H and Pb(Zr, Ti)O 3 -8 with large disparity in coefficient values. Ceramics are poled or annealed under an electric field in order to increase their polarization. Adapted from Newnham [19] e = 3 × 10 9 e ≈ ec/10 StatCoulomb. Thus e ≈ 4.8 × 10 -10 StatCoulomb. Using the previously derived relation between StatCoulomb and the Coulomb, we get e = 4.8 × 3.3356 × 10 -20 = 1.6 × 10 -19 Coulomb as expected since its SI value is 1.60217653 × 10 -19 Coulomb [5].

Table 8 :

 8 

A. Non-polar materials

The polarization can be written as: P = N V p where p is a representative dipole moment.

In a non-polar material, polarization is essentially electronic, thus we write from eq. 45

considering that optical frequencies are ∼ ∞ yielding the squared refraction index n 2 = ∞ . M the material molecular weight and ρ M its density are related to the [number of dipoles]/volume ratio as

where N A is Avogadro number.

B. Polar materials

In this case, we have the electronic and ionic contribution terms giving:

Note that in this case, we consider the low-frequency dielectric constant S which is sensitive to ions response in sharp contrast to ∞ that is sensitive to electrons.

C. Dipolar materials

In this case, Electronic, Ionic and Orientational terms contribute:

D. Broad frequency-range materials

In this case, all terms contribute: Electronic, Ionic, Orientational and Space Charge:

where P sc and α sc are respectively the Space Charge polarization [START_REF] Kao | Dielectric phenomena in solids[END_REF] and polarizability.

VI. FERROELECTRICS, ANTIFERROELECTRICS, FERRIELECTRICS AND PARAELECTRICS A. Landau theory of critical phenomena

The different patterns of ordering of dipoles within matter is brought about with a temperature dependent phase transition. When all dipoles are ordered along a common direction, we have a ferroelectric, but when the dipoles are opposite to each other, we have either an Antiferro-electric (all dipole magnitudes are same) or a ferrielectric (dipole magnitudes are different). When dipoles are randomly oriented we have a paraelectric with a zero average polarization.

Landau theory of phase-transitions [13; 14] is based on the notion of an order parameter η and a critical temperature T c . When T < T c , η = 0, we have an ordered phase (Ferroelectric, AntiFerroelectric, Ferrielectric) and when T > T c , η = 0. T c is called the Curie temperature.

Parisi [START_REF] Parisi | Mean field theory for spin glasses in Disordered Systems and Localization[END_REF] prescription in order to achieve Landau goal is the following: ) is another important piezoelectric [18; 19] with a typical piezoelectric coefficient on the order of 1000 pC/N. It is used in transducer technology, sonar, biomedical ultrasound, fuel injectors, printers, and bimorph pneumatic valves (cf. Table 7).

Note that in general sensors use piezoelectric effect whereas actuators use the inverse effect called electrostriction given by ε ij = di,jk E k where ε ij is the deformation tensor and di,jk the electrostriction coefficient tensor.

E. Pyroelectricity applications

Materials with a dielectric constant dependent on temperature are pyroelectric and their polarization are described by δP = πδT where π is a vector whose components π i ≥ 0, ≤ 0 possess units of µC/K.m 2 .

Historically, Tourmaline was the first to be discovered as such with π 1 = 4µ C/K.m 2 . Later on, Perovskites such as BaTiO 3 was found to have π 1 = -200µ C/K.m 2 , TGS with π 1 = -270µ C/K.m 2 and Sr 0.5 Ba 0.5 Nb 2 O 8 with

Pyroelectrics are used as fire alarms, fire detectors, infra-red sensors in cameras, THz imagery, fighter-jet antimissiles...

APPENDIX A: Electrostatic units

In the CGS-ESU (Electrostatic Units) system, the unit of charge e is defined from the dyne obeying Coulomb law between two charges in Vacuum distant by r= 1 cm. Thus: In order to determine the value of the electric charge in SI and CGS units, we consider a spherical shell of radius R carrying a charge e. The SI potential energy of the shell is