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Abstract

Distributed training of Deep Learning models has been critical to many recent
successes in the field. Current standard methods primarily rely on synchronous
centralized algorithms which induce major communication bottlenecks and syn-
chronization locks at scale. Decentralized asynchronous algorithms are emerging as
a potential alternative but their practical applicability still lags. In order to mitigate
the increase in communication cost that naturally comes with scaling the number
of workers, we introduce a principled asynchronous, randomized, gossip-based op-
timization algorithm which works thanks to a continuous local momentum named
A2CiD2. Our method allows each worker to continuously process mini-batches
without stopping, and run a peer-to-peer averaging routine in parallel, reducing
idle time. In addition to inducing a significant communication acceleration at no
cost other than adding a local momentum variable, minimal adaptation is required
to incorporate A2CiD2 to standard asynchronous approaches. Our theoretical
analysis proves accelerated rates compared to previous asynchronous decentralized
baselines and we empirically show that using our A2CiD2 momentum significantly
decrease communication costs in poorly connected networks. In particular, we
show consistent improvement on the ImageNet dataset using up to 64 asynchronous
workers (A100 GPUs) and various communication network topologies.

1 Introduction

As Deep Neural Networks (DNNs) and their training datasets become larger and more complex, the
computational demands and the need for efficient training schemes continues to escalate. Distributed
training methods offer a solution by enabling the parallel optimization of model parameters across
multiple workers. Yet, many of the current distributed methods in use are synchronous, and have
significantly influenced the design of cluster computing environments. Thus, both the environments
and algorithms rely heavily on high synchronicity in machine computations and near-instantaneous
communication in high-bandwidth networks, favoring the adoption of centralized algorithms [7].

However, several studies [27, 44, 2, 28] are challenging this paradigm, proposing decentralized
asynchronous algorithms that leverage minor time-delays fluctuations between workers to en-
hance the parallelization of computations and communications. Unlike centralized algorithms,
decentralized approaches allow each node to contribute proportionally to its available resources,
eliminating the necessity for a global central worker to aggregate results. Combined with asyn-
chronous peer-to-peer (p2p) communications, these methods can streamline the overall training
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process, mitigating common bottlenecks. This includes the Straggler Problem [42], the synchro-
nization between computations and communications [9], or bandwidth limitations [47], poten-
tially due to particular network topologies like a ring graph [43]. However, due to the large
number of parameters which are optimized, training DNNs with these methods still critically
requires a considerable amount of communication [22], presenting an additional challenge [32].
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Figure 1: Adding A2CiD2 has the same effect as
doubling the communication rates on ImageNet on
the ring graph with 64 workers. See Sec. 4.

This work aims to address these challenges by
introducing a principled acceleration method
for pair-wise communications in peer-to-peer
training of DNNs, in particular for cluster com-
puting. While conventional synchronous set-
tings accelerate communications by integrating
a Chebychev acceleration followed by Gradi-
ent Descent steps [37], the potential of accel-
erated asynchronous pair-wise gossip for Deep
Learning (DL) remains largely unexplored. No-
tably, the sophisticated theory of Stochastic Dif-
ferential Equations (SDEs) offers an analytical
framework for the design and study of the con-
vergence of these algorithms [12]. We intro-
duce a novel algorithm A2CiD2 (standing for
Accelerating Asynchronous Communication in
Decentralized Deep Learning) that requires minimal overhead and effectively decouples commu-
nications and computations, accelerating pair-wise communications via a provable, accelerated,
randomized gossip procedure based on continuous momentum (i.e., a mixing ODE) and time [12, 34].
We emphasize that beyond the aforementioned hardware superiority, stochastic algorithms also allows
us to theoretically reach sublinear rates in convex settings [10], which opens the possibility to further
principled accelerations. In practice, our method enables a virtual doubling of the communication
rate in challenging network topologies without any additional cost, simply by maintaining a local
momentum variable in each worker (see Fig. 1).

Our key contributions are as follows: (1) We extend the continuized framework [12] to the non-
convex setting, in order to obtain a neat framework to describe asynchronous decentralized DL
training. (2) This framework allows us to refine the analysis of a baseline asynchronous decentralized
optimization algorithm. (3) We propose a novel and simple continuized momentum which allows
to significantly improve communication efficiency in challenging settings, which we name A2CiD2.
(4) We demonstrate that our method effectively minimizes the gap between centralized settings in
environments hosting up to 64 asynchronous GPUs. (5) Our code is implemented in Pytorch [35],
remove locks put on previous asynchronous implementations by circumventing their deadlocks, and
can be found in an open-source repository: https://github.com/AdelNabli/ACiD.

This paper is structured as follows: Sec. 3.1 outlines our model for asynchronous decentralized
learning, while Sec. 3.2 discusses the training dynamic used to optimize our Deep models. Sec. 3.4
offers a comprehensive theoretical analysis of our method, which is validated empirically in Sec. 4.

2 Related Work

Large-scale distributed DL. Two paradigms allow to maintain high-parallelization. On one side,
model-parallelism [9, 25], which splits a neural network on independent machines, allowing to
use local learning methods [4, 3]. On the other hand data-parallelism, which accelerates learning
by making use of larger mini-batch splitted across multiple nodes [38] to maximally use GPU
capacities. This parallelization entailing the use of larger batch-sizes, it requires an important process
of adapting hyper-parameters [16], and in particular the learning rate scheduler. Developed for this
setting, methods such as [16, 46] allow to stabilize training while maintaining good generalization
performances. However, they have been introduced in the context of centralized synchronous training
using All-Reduce schemes for communication, which still is the default setting of many approaches
to data parallelism.

Decentralized DL. The pioneer work [27] is one of the first study to suggest the potential superiority
of synchronous decentralized training strategies in practice. In terms of implementation in the cluster
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setting, decentralized frameworks have been shown to achieve higher throughput than optimized
All-Reduce strategies [45, 38]. From the theoretical side, [21] propose a framework covering many
settings of synchronous decentralized learning. However, as it consistently relies on using a global
discrete iterations count, the notion of time is more difficult to exploit, which reveals crucial in
our setting. Furthermore, no communication acceleration is incorporated in these algorithms. [22]
provides a comprehensive methodology to relate the consensus distance, i.e. the average distance
of the local parameters to the global average, to a necessary communication rate to avoid degrading
performance and could be easily applied to our method. [29] is a method focusing on improving
performance via a discrete momentum modification, which indicates momentum variables are key to
decentralized DL.

Asynchronous Decentralized DL. There exist many attempts to incorporate asynchrony in de-
centralized training [48, 5, 8, 28, 2], which typically aim at removing lock barriers of synchronous
decentralized algorithms. To the best of our knowledge, none of them introduce communication
acceleration, yet they could be simply combined with our approach. Although recent approaches
such as [2, 28] perform peer-to-peer averaging of parameters instead of gradients, thus allowing to
communicate in parallel of computing (as there is no need to wait for the gradients before communi-
cating), they are still coupled: parameter updates resulting from computations and communications
are scheduled in a specific order, limiting their speed. Furthermore, in practice, both those works
only implement a periodic averaging on the exponential graph (more favorable, see [43]) instead
of investigating the influence of the graph’s topology on the convergence of a randomized gossip
method, as we do. In fact, AD-PSGD [28], the baseline algorithm in asynchronous decentralized DL,
comes with a major caveat to avoid deadlocks in practice: they require a bipartite graph and schedule
p2p communications in a pseudo-random manner instead of basing the decision on worker’s current
availability, hindering the advantage given by asynchronous methods in the mitigation of stragglers.
Contrary to them, our implementation allows to pair workers in real time based on their availability,
minimizing idle time for communications.

Communication reduction. Reducing communication overhead is an important topic for scalability
[36]. For instance, [19, 20] allow to use of compression factor in limited bandwidth setting, and
the local SGD communication schedule of [30] is shown to be beneficial. Those methods could be
independently and simply combined with ours to potentially benefit from an additional communication
acceleration. By leveraging key properties of the resistance of the communication network [14],
[12] showed that standard asynchronous gossip [6] can be accelerated, even to give efficient primal
algorithms in the convex setting [34]. However, this acceleration has never been deployed in the
DL context, until now. RelaySum [41] is an approach which allow to average exactly parameters
produced by different time steps and thus potentially delayed. However, it requires either to use a
tree graph topology, either to build ad-hoc spanning trees and has inherent synchronous locks as it
averages neighbor messages in a specific order.

Notations: Let n ∈ N∗ and d ∈ N∗ an ambient dimension, for x = (x1, ..., xn) ∈
⊗n

i=1 Rd, we
write x̄ = 1

n

∑n
i=1 x

i and 1 the tensor of ones such that x̄ = 1
n1

Tx. Ξ is a probability space with
measure P . f(t) = O(1) means there is a C > 0 such that for t large enough, |f(t)| ≤ C, whereas
Õ-notation hides constants and polylogarithmic factors..

3 Method

3.1 Model for a decentralized environment

We consider a network of n workers whose connectivity is given by edges E . Local computations are
modeled as (stochastic) point-wise processes N i

t , and communications between nodes (i, j) ∈ E as
M ij
t . We assume that the communications are symmetric, meaning that if a message is sent from

node i to j, then the reverse is true. In practice, such processes are potentially highly correlated and
could follow any specific law, and could involve delays. For the sake of simplicity, we do not model
lags, though it is possible to obtain guarantees via dedicated Lyapunov functions [13]. In our setting,
we assume that all nodes have similar buffer variables which correspond to a copy of a common
model (e.g., a DNN). For a parameter x, we write xit the model’s parameters at node i and time t
and xt = (x1

t , ..., x
n
t ) their concatenation. In the following, we assume that each worker computes
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Table 1: Comparison of convergence rates for strongly convex and non-convex objectives against
concurrent works in the fixed topology setting. We neglect logarithmic terms. Observe that thanks
to the maximal resistance χ2 ≤ χ1, our method obtains substantial acceleration for the bias term.
Moreover, while our baseline is strongly related to AD-PSGD [28], our analysis refines its complexity
when workers sample data from the same distribution.

Method Strongly Convex Non-Convex

Koloskova et al. [21] σ2

nµ2ε +
√
L
χ1ξ+

√
χ1σ

µ3/2
√
ε

+ L
µχ1

Lσ2

nε2 + L
χ1ξ+

√
χ1σ

ε3/2
+ Lχ1

ε

AD-PSGD [28] - Lσ
2+ξ2

ε2 + n2Lχ1

ε

Baseline (Ours) σ2+χ1ξ
2

µ2ε + L
µχ1 Lσ

2+χ1ξ
2

ε2 + Lχ1

ε

A2CiD2 (Ours) σ2+
√
χ1χ2ξ

2

µ2ε + L
µ

√
χ1χ2 L

σ2+
√
χ1χ2ξ

2

ε2 +
L
√
χ1χ2

ε

about 1 mini-batch of gradient per unit of time (not necessarily simultaneously), which is a standard
homogeneity assumption [18], and we denote by λij the instantaneous expected frequency of edge
(i, j), which we assume time homogeneous.
Definition 3.1 (Instantaneous expected Laplacian). We define the Laplacian Λ as:

Λ ,
∑

(i,j)∈E

λij(ei − ej)(ei − ej)T . (1)

In this context, a natural quantity is the algebraic connectivity [6] given by:

χ1 , sup
‖x‖=1,x⊥1

1

xTΛx
. (2)

For a connected graph (i.e. , χ1 < +∞), we will also use the maximal resistance of the network:

χ2 ,
1

2
sup

(i,j)∈E
(ei − ej)TΛ+(ei − ej) ≤ χ1 . (3)

The next sections will show that it is possible to accelerate the asynchronous gossip algorithms from
χ1 to

√
χ1χ2 ≤ χ1, while [12] or [34] emphasize the superiority of accelerated asynchronous gossips

over accelerated synchronous ones.

3.2 Training dynamic

The goal of a typical decentralized algorithm is to minimize the following quantity:

inf
x∈Rd

f(x) , inf
x∈Rd

1

n

n∑
i=1

fi(x) = inf
xi=x1

1

n

n∑
i=1

fi(xi) .

For this, we follow a first order optimization strategy consisting in using estimates of the
gradient ∇fi(xi) via i.i.d unbiased Stochastic Gradient (SG) oracles given by ∇Fi(xi, ξi) s.t.
Eξi [∇Fi(xi, ξi)] = ∇fi(xi). The dynamic of updates of our model evolves as the following
SDE, for η, γ, α, α̃ some time-independent scalar hyper-parameters, whose values are found in our
theoretical analysis and used in our implementation, and dN i

t (ξi) some point processes on R+ × Ξ
with intensity dt⊗ dP:

dxit =η(x̃it − xit)dt− γ
∫

Ξ

∇Fi(xit, ξi) dN i
t (ξi)− α

∑
j,(i,j)∈E

(xit − x
j
t )dM

ij
t , (4)

dx̃it =η(xit − x̃it)dt− γ
∫

Ξ

∇Fi(xit, ξi) dN i
t (ξi)− α̃

∑
j,(i,j)∈E

(xit − x
j
t )dM

ij
t .
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We emphasize that while the dynamic Eq. 4 is formulated using SDEs [1], which brings the power of
the continuous-time analysis toolbox, it is still event-based and thus discrete in nature. Hence, it can
efficiently model practically implementable algorithms, as shown by Algo. 1. The coupling {xt, x̃t}
corresponds to a momentum term which will be useful to obtain communication acceleration as
explained in the next section. Again,

∫
Ξ
∇Fi(xit, ξi) dN i

t (ξi) will be estimated via i.i.d SGs sampled
as N i

t spikes. Furthermore, if x̄0 = x̃0, then, x̄t = x̃t and we obtain a tracker of the average across
workers which is similar to what is achieved through Gradient Tracking methods [19]. This is a key
advantage of our method to obtain convergence guarantees, which writes as:

dx̄t = −γ 1

n

n∑
i=1

∫
Ξ

∇Fi(xit, ξi) dN i
t (ξi) . (5)

3.3 Informal explanation of the dynamic through the Baseline case

To give some practical intuition on our method, we consider a baseline asynchronous decentralized
dynamic, close to AD-PSGD [28]. By considering η = 0, α = α̃ = 1

2 , the dynamic (4) simplifies to:

dxit =− γ
∫

Ξ

∇Fi(xit, ξi) dN i
t (ξi)−

1

2

∑
j,(i,j)∈E

(xit − x
j
t )dM

ij
t . (6)

In a DL setting, xi contains the parameters of the DNN hosted on worker i. Thus, (6) simply
says that the parameters of the DNN are updated either by taking local SGD steps, or by pairwise
averaging with peers j, (i, j) ∈ E . These updates happen independently, at random times: although
we assume that all workers compute gradients at the same speed on average (and re-normalized time
accordingly), the use of Poisson Processes model the inherent variability in the time between these
updates. However, the p2p averaging depends on the capabilities of the network, and we allow each
link (i, j) to have a different bandwidth, albeit constant through time, modeled through the frequency
λij . The gradient and communication processes are decoupled: there is no need for one to wait for
the other, allowing to compute stochastic gradients uninterruptedly and run the p2p averaging in
parallel, as illustrated by Fig.2. Finally, (4) adds a momentum step mixing the local parameters xi and
momentum buffer x̃i before each type of update, allowing for significant savings in communication
costs, as we show next.

Time

Worker 1

Worker 2

Worker 3

Comm. delay Comp. delay Idling

Time

Worker 1

Worker 2

Worker 3

comm. synchro. Comm. delay Comp. delay Idling comm. synchro.

Figure 2: Example of worker updates in synchronous (left) and asynchronous (right) optimization
methods. We remark that our asynchronous algorithm reduces idle time, and allow to communicate
in parallel of computing gradient, only synchronizing two workers at a time for averaging parameters.
Here, one p2p communication is performed per computation in expectation.

3.4 Theoretical analysis of A2CiD2

We now provide an analysis of our decentralized, asynchronous algorithm. For the sake of simplicity,
we will consider that communications and gradients spike as Poisson processes:

Assumption 3.2 (Poisson Processes). N i
t , M

ij
t are independent, Point-wise Poisson Processes. The

{N i
t}ni=1 have a rate of 1, and for (i, j) ∈ E , M ij

t have a rate λij .

We also assume that the communication network is connected during the training:
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Assumption 3.3 (Strong connectivity). We assume that χ1 <∞.

We will now consider two generic assumptions obtained from [21], which allow us to specify our
lemma to convex and non-convex settings. Note that the non-convex Assumption 3.5 generalizes the
assumptions of [28], by taking M = P = 0.
Assumption 3.4 (Strongly convex setting). Each fi is µ-strongly convex and L-smooth, and:

1

n

n∑
i=1

Eξi [‖∇Fi(x, ξi)−∇fi(x)‖2] ≤ σ2 and
1

n

n∑
i=1

‖∇fi(x∗)−∇f(x∗)‖2 ≤ ζ2 .

Assumption 3.5 (Non-convex setting). Each fi is L-smooth, and there exists P,M > 0 such that:

∀x ∈ Rd,
1

n

n∑
i=1

‖∇fi(x)−∇f(x)‖2 ≤ ζ2 + P‖∇f(x)‖2 ,

and,

∀x1, ..., xn ∈ Rd,
1

n

n∑
i=1

Eξi‖∇Fi(xi, ξi)−∇fi(xi)‖2 ≤ σ2 +
M

n

n∑
i=1

‖∇fi(xi)‖2 .

We can now state our convergence guarantees. An informal way to understand our proposition, is that
while gradient updates are non-convex, the communication updates are linear and thus benefit from
local convexity; its proof is delayed to Appendix C.
Proposition 3.6 (Convergence guarantees.). Assume that {xt, x̃t} follow the dynamic Eq. 4 and that
Assumption 3.2-3.3 are satisfied. Assume that 1x̄0 = x0 = x̃0 and let T the total running time. Then:

• Non-accelerated setting, we pick η = 0, α = α̃ = 1
2 and set χ = χ1,

• Acceleration (A2CiD2), we set η = 1
2
√
χ1χ2

, α = 1
2 , α̃ = 1

2

√
χ1

χ2
, and χ =

√
χ1χ2 ≤ χ1.

Then, there exists a constant step size γ > 0 such that if:

• (strong-convexity) the Assumption 3.4 is satisfied, then γ ≤ 1
16L(1+χ) and:

E
[
‖x̄T − x∗‖2

]
= Õ

(
‖x̄0 − x∗‖2e−

µT
16L(1+χ) +

σ2 + ζ2(1 + χ)

µ2T

)
,

• (non-convexity) the Assumption 3.5 is satisfied, then there is c > 0 which depends only on
P,M from the assumptions such that γ ≤ c

L(χ+1) and:

1

T

∫ T

0

E
[
‖∇f(x̄t)‖2

]
dt = O

(
L(1 + χ)

T
(f(x0)− f(x∗)) +

√
L(f(x0)− f(x∗))

T
(σ2 + (1 + χ)ξ2)

)
.

Also, the expected number of gradient steps is nT and the number of communications is Tr(Λ)
2 T .

Tab. 1 compares our convergence rates with concurrent works. Compared to every concurrent
work, the bias term of A2CiD2 is smaller by a factor

√
χ1

χ2
≥ 1 at least. Yet, as expected, in the

non-accelerated setting, we would recover similar rates to those. Compared to [20], the variance
terms held no variance reduction with the number of workers; however, this should not be an issue
in a DL setting, where it is well-known that variance reduction techniques degrade generalization
during training [15]. Comparing directly the results of [2] is difficult as they only consider the
asymptotic rate, even if the proof framework is similar to [28] and should thus lead to similar rates of
convergence.

3.5 Informal interpretation and comparison with decentralized synchronous methods

Here, we informally discuss results from Prop. 3.6 and compare our communication rate with state-
of-the-art decentralized synchronous methods such as DeTAG [31], MSDA [37] and OPAPC [23].
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Table 2: # of communications per “step”/time unit
on several graphs.

Method Star Ring Complete
Accelerated Synchronous n3/2 n2 n2

(e.g., [31, 37, 23])
A2CiD2 n n2 n

As we normalize time so that each node takes
one gradient step per time unit in expectation,
one time unit for us is analogous to one round
of computation (one "step") for synchronous
methods. Synchronous methods such as [31, 37,
23] perform multiple rounds of communications
(their Accelerated Gossip procedure) between rounds of gradient computations by using an inner loop
inside their main loop (the one counting "steps"), so that the graph connectivity do not impact the total
number of "steps" necessary to reach ε-precision. As Prop. 3.6 shows, the quantity 1 +

√
χ1[Λ]χ2[Λ]

is a factor in our convergence rate. Λ containing the information of both the topology E and the
edge communication rates λij , this is analogous to saying

√
χ1[Λ]χ2[Λ] = O(1) for our method

(i.e., the graph connectivity does not impact the time to converge), which, given the graph’s topology,
dictates the communication rate, see Appendix D for more details. Tab. 2 compares the subsequent
communication rates with synchronous methods.

4 Numerical Experiments

Now, we experimentally compare A2CiD2 to a synchronous baseline All-Reduce SGD (AR-SGD,
see [26]) and an asynchronous baseline using randomized pairwise communications (a variant of
AD-PSGD [28], traditionally used in state-of-the-art decentralized asynchronous training of DNNs).
In our case, the asynchronous baseline corresponds to the dynamic Eq. (6). Our approach is standard:
we empirically study the decentralized training behavior of our asynchronous algorithm by training
ResNets [17] for image recognition. Following [2], we pick a ResNet18 for CIFAR-10 [24] and
ResNet50 for ImageNet [11]. To investigate how our method scales with the number of workers, we
run multiple experiments using up to 64 NVIDIA A100 GPUs in a cluster with 8 A100 GPUs per
node using an Omni-PAth interconnection network at 100 Gb/s, and set one worker per GPU.

4.1 Experimental Setup
Table 3: Training times on CIFAR10 (± 6s).

n 4 8 16 32 64
Ours t (min) 20.9 10.5 5.2 2.7 1.5
AR t (min) 21.9 11.1 6.6 3.2 1.8

Hyper-parameters. Training a DNN using
multiple workers on a cluster requires several
adaptations compared to the standard setting. As
the effective batch-size grows linearly with the
number of workers n, we use the learning-rate schedule for large batch training of [16] in all our
experiments. Following [30], we fixed the local batch size to 128 on both CIFAR-10 and ImageNet.
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Figure 3: (a) Training loss for CIFAR10 with minibatch size 128 on the complete graph, w/o A2CiD2.
As the number of worker increases, the loss degrades, especially for n = 64. (b) Focus on the training
loss for the complete graph of size n = 64, w/o A2CiD2. As the rate of communication increases,
the gap with All-Reduce decreases. With 2 com/∇, a test accuracy of 94.6± 0.04 is reached.

Our goal being to divide the compute load between the n workers, all methods access the same total
amount of data samples, regardless of the number of local steps. On CIFAR-10 and ImageNet, this
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Algorithm 1: This algorithm block describes our implementation of our Asynchronous algorithm
with A2CiD2on each local machine. p2p comm. and∇ comp. are run independently in parallel.
Input: On each machine i ∈ {1, ..., n}, gradient oracle ∇fi, parameters η, α, α̃, γ, T .

1 Initialize on each machine i ∈ {1, ..., n}:
2 Initialize xi, x̃i ← xi, ti ← 0 and put xi, x̃i, ti in shared memory;
3 Synchronize the clocks of all machines ;
4 In parallel on workers i ∈ {1, ..., n}, while t < T , continuously do:
5 In one thread on worker i continuously do:
6 t← clock() ;
7 Sample a batch of data via ξi ∼ Ξ;
8 gi ← ∇Fi(xi, ξi) ; // Compute gradients

9

(
xi

x̃i

)
← exp

(
(t− ti)

(
−η η
η −η

))(
xi

x̃i

)
;

10 xi ← xi − γgi ; // Apply A2CiD2

11 x̃i ← x̃i − γgi ; // Take the grad step
12 ti ← t ;
13 In one thread on worker i continuously do:
14 t← clock() ;
15 Find available worker j ; // Synchronize workers i and j

16 mij ← (xi − xj) ; // Send xi to j and receive xj from j

17

(
xi

x̃i

)
← exp

(
(t− ti)

(
−η η
η −η

))(
xi

x̃i

)
; // Apply A2CiD2

18 xi ← xi − αmij ; // p2p averaging
19 x̃i ← x̃i − α̃mij ;
20 ti ← t ;
21 return (xiT )1≤i≤n.

number is set to 300 and 90 epochs respectively, following standard practice [22]. To circumvent
the fuzziness of the notion of epoch in the asynchronous decentralized setting, we do not "split the
dataset and re-shuffle it among workers at each epoch" as done with our standard All-Reduce baseline.
Rather, we give access to the whole dataset to all workers, each one shuffling it with a different
random seed. We use SGD with a base learning rate of 0.1, a momentum value set at 0.9 and 5×10−4

for weight decay. As advocated in [16], we do not apply weight decay on the learnable batch-norm
coefficients. For ImageNet training with the SGD baseline, we decay the learning-rate by a factor
of 10 at epochs 30, 60, 80 (epochs 50, 75 for CIFAR-10), and apply an analogous decay schedule
with our asynchronous decentralized methods. All of our neural network parameters are initialized
with the default Pytorch settings, and one All-Reduce averaging is performed before and after the
training to ensure consensus at initialization and before testing. For our continuous momentum, we
also need to set the parameters η, α̃. For all our experiments, we use the values given by Prop. 3.6.
As advocated, the asynchronous baseline correspond to the setting without acceleration, i.e. with
η = 0 and α = α̃ = 1

2 , whereas using A2CiD2 leads to consider η = 1
2
√
χ1χ2

, α = 1
2 , α̃ = 1

2

√
χ1

χ2
,

where χ1, χ2 are set to their theoretical value given by (2), (3) depending on the communication rate
and graph’s topology, assuming that each worker chose their peers uniformly among their neighbors
(we verify empirically that it is the case in practice, see Appendix E.2).

Practical implementation of the dynamic. The dynamic studied in Eq. (4) is a model dis-
playing many of the properties sought after in practice. In our implementation, described
in Algo. 1, each worker i has indeed two independent processes and the DNN parame-
ters and momentum variable {xi, x̃i} are locally stored such that both processes can update
them at any time. One process continuously performs gradient steps, while the other up-
dates {xi, x̃i} via peer-to-peer averaging. The gradient process maximizes its throughput
by computing forward and backward passes back to back. Contrary to All-Reduce based
methods that require an increasing number of communications with the growing number
of workers, inevitably leading to an increasing time between two rounds of computations,
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Figure 4: Training loss for CIFAR10 using a
minibatch size of 128. We display the train-
ing loss with up to 64 workers, w/ and w/o
A2CiD2, on the challenging ring graph.

we study the case where each worker has a fixed
communication rate, given as hyperparameter in our
implementation. We implement 3 different graph
topologies: complete, ring, and exponential [28, 2],
see Appendix E.1 for details. To emulate the P.P.Ps
for the communications, each worker samples a ran-
dom number of p2p averaging to perform between
each gradient computation, following a Poisson law
using the communication rate as mean. To minimize
idle time of the communication process, workers are
paired with one of their neighbors in a "First In First
Out" manner in an availability queue (a worker is
available when it finished its previous averaging and
still has some to do before the next gradient step). To
implement this, we use a central coordinator to store
the availability queues and the graph topology (this
is lightweight in a cluster: the coordinator only exchanges integers with the workers), but it could
be done in different ways, e.g. by pinging each other at high frequency. As we assumed a unit
time for the gradient process in our analysis, and that real time is used in our algorithm to apply our
A2CiD2momentum (see Algo. 1), we maintain a running average measure of the duration of the
previous gradient steps to normalize time.

4.2 Evaluation on large scale datasets Table 5: Accuracy on ImageNet for a batch-
size of 128. We compared a vanilla asyn-
chronous pairwise gossip approach with and
without A2CiD2, demonstrating the improve-
ment of our method. We also varied the com-
munication rate.

#Workers #com/#grad 16 32 64

AR-SGD baseline - 75.5 75.2 74.5

Complete graph
Async. baseline 1 74.6 73.8 71.3

Ring graph
Async. baseline 1 74.8 71.6 64.1
A2CiD2 1 74.7 73.4 68.0
Async. baseline 2 74.8 73.7 68.2
A2CiD2 2 75.3 74.4 71.4

CIFAR10. This simple benchmark allows to under-
stand the benefits of our method in a well-controlled
environment. Tab. 4 reports our numerical accuracy
on the test set of CIFAR10, with a standard deviation
calculated over 3 runs. Three scenarios are consid-
ered: a complete, an exponential and a ring graph.
In Fig. 3 (a), we observe that with the asynchronous
baseline on the complete graph, the more workers,
the more the training loss degrades. Fig. 3 (b) hints
that it is in part due to an insufficient communication
rate, as increasing it allows to lower the loss and close
the gap with the All-Reduce baseline. However, this
is not the only causative factor as Tab. 4 indicates
that accuracy generally degrades as the number of
workers increases even for AR-SGD, which is expected for large batch sizes. Surprisingly, even with
a worse training loss for n = 64, the asynchronous baseline still leads to better generalization than

Table 4: Accuracy of our method on CIFAR10 for a 128 batchsize with an equal number of pair-
wise communications and gradient computations per worker. We compared a vanilla asynchronous
pairwise gossip approach with and without A2CiD2, demonstrating the improvement of our method.

#Workers 4 8 16 32 64

AR-SGD baseline 94.5±0.1 94.4±0.1 94.5±0.2 93.7±0.3 92.8±0.2

Complete graph
Async. baseline 94.93±0.11 94.91±0.07 94.86±0.01 94.55±0.01 93.38±0.21

Exponential graph
Async. baseline 95.07±0.01 94.89±0.01 94.82±0.06 94.44±0.02 93.41±0.02
A2CiD2 95.17±0.04 95.04±0.01 94.87±0.02 94.56±0.01 93.47±0.01

Ring graph
Async. baseline 95.02±0.06 95.01±0.01 95.00±0.01 93.95±0.11 91.90±0.10
A2CiD2 94.95±0.02 95.01±0.10 95.03±0.01 94.61±0.02 93.08±0.20
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AR-SGD, and consistently improves the test accuracy across all tested values of n. The communica-
tion rate being identified as a critical factor at large scale, we tested our continuous momentum on
the ring graph, each worker performing one p2p averaging for each gradient step. Fig. 4 shows that
incorporating A2CiD2 leads to a significantly better training dynamic for a large number of workers,
which translates into better performances at test time as shown in Tab. 4.
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Figure 5: (a) Training loss for ImageNet using 128 batch size, with an equal number of communica-
tions and computations per worker. We display the training loss for various number of workers (up
to 64), using A2CiD2, for the ring graph. (b) Comparison of consensus distances when A2CiD2 is
applied versus doubling the rate of communications on the rign graph with 64 workers: applying
A2CiD2 has the same effect as doubling communications.

Table 6: Statistics of runs on Imagenet with 64
workers (for ours, on the exponential graph).

Method t (min) # ∇ # ∇
slowest worker fastest worker

AR-SGD 1.7 102 14k 14k
Baseline (ours) 1.5102 13k 14k
A2CiD2(ours) 1.5102 13k 14k

ImageNet. For validating our method in a real-
life environment, we consider the large-scale
ImageNet dataset. Tab. 6 confirms the advan-
tage of asynchronous methods by allocating less
compute to the slowest workers, leading to faster
training times. Tab. 5 reports our accuracy for
the complete and ring graphs. As χ1 = χ2 for the complete graph, we simply run our baseline
asynchronous method for reference. The case of the ring graph is much more challenging: for n = 64
workers, the accuracy drops by 10% compared to the synchronous baseline given by AR-SGD.
Systematically, with A2CiD2, the final accuracy increases: up to 4% absolute percent in the difficult
n = 64 setting. This is corroborated by Fig. 5, which indicates that incorporating A2CiD2 signifi-
cantly improves the training dynamic on ImageNet. However, for reducing the gap with the AR-SGD
baseline, it will be necessary to increase the communication rate as discussed next.

Consensus improvement. The bottom of Tab. 5, as well as Fig. 5 (b) study the virtual acceleration
thanks to A2CiD2. Not only increasing communications combined with A2CiD2 allows to obtain
competitive performance, but Fig. 1 shows that doubling the rate of communication has an identical
effect on the training loss than adding A2CiD2. This is verified in Fig. 5 (b) by tracking the consensus
distance between workers: A2CiD2 significantly reduces it, which validates the results of Sec. 3.4.

5 Conclusion

In this work, we confirmed that the communication rate is a key performance factor to successfully
train DNNs at large scale with decentralized asynchronous methods. We introduced A2CiD2, a
continuous momentum which only adds a minor local memory overhead while allowing to mitigate
this need. We demonstrated, both theoretically and empirically, that A2CiD2 substantially improves
performances, especially on challenging network topologies. As we only focused on data parallel
methods for training Deep Neural Networks in a cluster environment, in a future work, we would like
to extend our empirical study to more heterogeneous compute and data sources, as our theory could
encompass local SGD methods [39] and data heterogeneity inherent in Federated Learning [33].
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A Notations

For n ∈ N∗ the number of workers and d ∈ N∗ an ambient dimension, for all t > 0, the variable
xt ∈ Rn×d is a matrix such that xt = [x1

t , ..., x
n
t ]T, with xit ∈ Rd for all i ∈ {1, ..., n}. We remind

that 1 is the vector of n ones such that x̄ = 1
n

∑n
i=1 xi = 1

nx
T1 ∈ Rd. With I the identity and ‖.‖F

the matrix Frobenius norm, we write π = I− 1
n11

T the projection so that ‖πx‖2F =
∑n
i=1 ‖xi− x̄‖2.

For a continuously differentiable function f : Rd → R and a, b ∈ Rd, the Bregman divergence is
defined with df (a, b) = f(a)− f(b)− 〈∇f(b), a− b〉. For Λ ∈ Rn×n, we denote by Λ+ its pseudo
inverse. For a positive semi-definite Λ ∈ Rn×n, and x ∈ Rn×d, we introduce ‖x‖2Λ , Tr(xTΛx)

and Λ1/2 its square-root. We recall that the connectivity between workers is given by a set of edges
E , and denote by ei the ith basis vector of Rn.

For x ∈ Rn×d, we introduce:

∇F (x) , [∇f1(x1), ....,∇fn(xn)]T ∈ Rn×d and∇F̃ (x, ξ) , [∇F1(x1, ξ1), ...,∇Fn(xn, ξn)]T ∈ Rn×d.

Finally, to study the gradient steps taken on each individual worker independently, we introduce:

∇F̃i(x, ξ) , [0, ...0,∇Fi(xi, ξi), 0, ..., 0]T ∈ Rn×d.

B Technical Preliminaries

We recall some basic properties that we will use throughout our proofs.

Lemma B.1 (Implications of Assumption 3.4). If each fi is µ-strongly convex and L-smooth, we
have, for any a, b ∈ Rd:

1

2L
‖∇fi(a)−∇fi(b)‖2 ≤ dfi(a, b) ≤

L

2
‖a− b‖2 ,

and
µ

2
‖a− b‖2 ≤ dfi(a, b) ≤

1

2µ
‖∇fi(a)−∇fi(b)‖2 .
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Lemma B.2 (Generalized triangle inequality). For any a, b, c ∈ Rd and continuously differentiable
function f : Rd → R, by definition of the Bregman divergence, we have:

df (a, b) + df (b, c) = df (a, c) + 〈a− b,∇f(c)−∇f(b)〉 .

Lemma B.3 (Variance decomposition). For a random vector a ∈ Rd and any b ∈ Rd, the variance
of a can be decomposed as:

E
[
‖a− E[a]‖2

]
= E

[
‖a− b‖2

]
− E

[
‖E[a]− b‖2

]
.

Lemma B.4 (Jensen’s inequality). For any vectors a1, ..., an ∈ Rd, we have:∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥
2

≤ n
n∑
i=1

‖ai‖2 .

Lemma B.5. For any vectors a, b ∈ Rd and α > 0:

2〈a, b〉 ≤ α‖a‖2 + α−1‖b‖2 .

Lemma B.6. For any vectors a, b ∈ Rd and α > 0:

‖a− b‖2 ≤ (1 + α)‖a‖2 + (1 + α−1)‖b‖2 .

Lemma B.7. For any A ∈ Rn×d and B ∈ Rn×n, we have:

‖BA‖F ≤ ‖A‖F ‖B‖2 .

Lemma B.8 (Effective resistance contraction). For (i, j) ∈ E and any x ∈ Rn×d, we have:

‖(ei − ej)(ei − ej)Tx‖2Λ+ ≤ χ2‖(ei − ej)(ei − ej)Tx‖2F .

Proof. Indeed, we note that, by definition of χ2 (3):

‖(ei − ej)(ei − ej)Tx‖2Λ+ = Tr
(
xT(ei − ej)(ei − ej)TΛ+(ei − ej)(ei − ej)Tx

)
(7)

≤ 2χ2Tr
(
xT(ei − ej)(ei − ej)Tx

)
(8)

= χ2‖(ei − ej)(ei − ej)Tx‖2F (9)

Lemma B.9. For any x ∈ Rn×d, and Λ the Laplacian of a connected graph, we have:∑
(i,j)∈E

λij‖(ei − ej)(ei − ej)Tx‖2F = 2‖x‖2Λ .

Proof. Indeed, by definition of the Laplacian Λ (3.1), we have:∑
(i,j)∈E

λij‖(ei − ej)(ei − ej)Tx‖2F =
∑

(i,j)∈E

λijTr
(
xT(ei − ej)(ei − ej)T(ei − ej)(ei − ej)Tx

)
(10)

= 2
∑

(i,j)∈E

λijTr
(
xT(ei − ej)(ei − ej)Tx

)
(11)

= 2Tr

xT ∑
(i,j)∈E

λij(ei − ej)(ei − ej)Tx

 (12)
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Lemma B.10. For any x, y ∈ Rn×d, and Λ the Laplacian of a connected graph, we have:

2〈πx, y〉 ≤ 1

4
‖x‖2Λ + 4χ1‖y‖2F

Proof. By property of the Laplacian of a connected graph, we have that π = (Λ+)1/2Λ1/2. Thus:

2〈πx, y〉 = 2〈Λ1/2x, (Λ+)1/2y〉 (13)
(B.5)
≤ 1

4
‖Λ1/2x‖2F + 4‖(Λ+)1/2y‖2F (14)

(B.7)
≤ 1

4
‖x‖2Λ + 4χ1‖y‖2F (15)

C Proof of the main result of this paper

We remind that we study the following dynamic:

dxit =η(x̃it − xit)dt− γ
∫

Ξ

∇Fi(xit, ξi) dN i
t (ξi)− α

∑
j,(i,j)∈E

(xit − x
j
t )dM

ij
t ,

dx̃it =η(xit − x̃it)dt− γ
∫

Ξ

∇Fi(xit, ξi) dN i
t (ξi)− α̃

∑
j,(i,j)∈E

(xit − x
j
t )dM

ij
t ,

which simplifies to:

dxit = −γ
∫

Ξ

∇Fi(xit, ξi) dN i
t (ξi)− α

∑
j,(i,j)∈E

(xit − x
j
t )dM

ij
t

if A2CiD2is not applied. We also recall the main proposition, which we prove next:

Proposition C.1 (Convergence guarantees.). Assume that {xt, x̃t} follow the dynamic Eq. 4 and that
Assumption 3.2-3.3 are satisfied. Assume that 1x̄0 = x0 = x̃0 and let T the total running time. Then:

• Non-accelerated setting, we pick η = 0, α = α̃ = 1
2 and set χ = χ1,

• Acceleration (A2CiD2), we set η = 1
2
√
χ1χ2

, α = 1
2 , α̃ = 1

2

√
χ1

χ2
, and χ =

√
χ1χ2 ≤ χ1.

Then, there exists a constant step size γ > 0 such that if:

• (strong-convexity) the Assumption 3.4 is satisfied, then γ ≤ 1
16L(1+χ) and1:

E
[
‖x̄T − x∗‖2

]
= Õ

(
‖x̄0 − x∗‖2e−

µT
16L(1+χ) +

σ2 + ζ2(1 + χ)

µ2T

)
,

• (non-convexity) the Assumption 3.5 is satisfied, then there is c > 0 which depends only on
P,M from the assumptions such that γ ≤ c

L(χ+1) and:

1

T

∫ T

0

E
[
‖∇f(x̄t)‖2

]
dt = O

(
L(1 + χ)

T
(f(x0)− f(x∗)) +

√
L(f(x0)− f(x∗))

T
(σ2 + (1 + χ)ξ2)

)
.

Also, the expected number of gradient steps is nT and the number of communications is Tr(Λ)
2 T .

1Õ-notation hides constants and polylogarithmic factors.
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Proof. The core of the proof is to introduce the appropriate Lyapunov potentials φk(t,X), where
X could be (x, x̃) or x depending on whether we apply A2CiD2or not. If we apply A2CiD2, we

introduce the momentum matrixA =

(
−η η
η −η

)
. Then, by Ito’s lemma, given that all the functions

are smooth, and remembering that all Point-wise Poisson Processes N i
t have unit intensity, that the

M ij
t have intensity λij and that they are all independent, we obtain in a similar fashion to [12, 34]:

φk(T,XT )− φk(0, X0) =

∫ T

0

∂tφk(t,Xt) + 〈AXt, ∂Xφk(t,Xt)〉︸ ︷︷ ︸
momentum term

dt

+

n∑
i=1

∫ T

0

∫
Ξ

φk

(
t,Xt − γ

(
∇F̃i(xt, ξ)
∇F̃i(xt, ξ)

))
− φk(t,Xt)︸ ︷︷ ︸

variation due to each independent gradient update

dtdP(ξ)

+
∑

(i,j)∈E

∫ T

0

[
φk

(
t,Xt −

(
α(ei − ej)(ei − ej)Txt
α̃(ei − ej)(ei − ej)Txt

))
− φk(t,Xt)

]
λij︸ ︷︷ ︸

variation due to each independent p2p communication

dt

+MT ,

where MT is a martingale. In the case where A2CiD2is not applied, we set A = 0 to remove the
momentum term, and all updates are done only along x as there is no x̃. We remind that:∫ t

0

eαu du =
1

α
(eαt − 1) (16)

We now present our choice of potential for each cases:

• For the convex case in the non-accelerated setting, we introduce:

φ1(t, x) , At‖x̄− x∗‖2 +Bt‖πx‖2F .

• For the convex case with A2CiD2, we introduce:

φ2(t, x, x̃) , At‖x̄− x∗‖2 +Bt‖πx‖2F + B̃t‖x̃‖Λ+ .

• For the non-convex case in the non-accelerated setting, we introduce:

φ3(t, x) , Atdf (x̄, x∗) +Bt‖πx‖2F .

• For the non-convex case with A2CiD2, we introduce:

φ4(t, x) , Atdf (x̄, x∗) +Bt‖πx‖2F + B̃t‖x̃‖2Λ+ .

C.1 Some useful upper-bounds

As the same terms appear in several potentials, we now prepare some intermediary results which will
be helpful for the proofs.

Study of the ‖x̄− x∗‖2 terms:

First, we study the variations in the ‖x̄ − x∗‖2 term appearing in φ1 and φ2. As the up-
dates due to the communication are in the orthogonal of 1, it is only necessary to study the variations
induced by the gradient steps. Thus, we define:

∆x ,
n∑
i=1

‖x− γ∇F̃i(x, ξ)− x∗‖2 − ‖x̄− x∗‖2

17



We note that∇F̃i(x, ξ) = 1
n∇Fi(xi, ξi), which, using

∑
i∇fi(x∗) = 0, leads to:

Eξ1,...,ξn [∆x] =

n∑
i=1

−2γ

n
〈x̄− x∗,∇fi(xi)〉+

γ2

n2
Eξi [‖∇Fi(xi, ξi)‖2] (17)

=

n∑
i=1

−2γ

n
〈x̄− x∗,∇fi(xi)−∇fi(x∗)〉+

γ2

n2
Eξi [‖∇Fi(xi, ξi)‖2] (18)

(3.4),(B.3)
≤ γ2

n
σ2 +

n∑
i=1

−2γ

n
〈x̄− x∗,∇fi(xi)−∇fi(x∗)〉+

γ2

n2
‖∇fi(xi)‖2 (19)

(B.2)
=

γ2

n
σ2 +

n∑
i=1

−2γ

n
(dfi(x̄, x

∗) + dfi(x
∗, xi)− dfi(x̄, xi)) +

γ2

n2
‖∇fi(xi)‖2

(20)

(B.4)
≤ γ2

n
σ2 +

n∑
i=1

−2γ

n
(dfi(x̄, x

∗) + dfi(x
∗, xi)− dfi(x̄, xi))

+
2γ2

n2
‖∇fi(x∗)−∇fi(xi)‖2 +

2γ2

n2
‖∇fi(x∗)‖2 (21)

(3.4),(B.1)
≤ γ2

n
σ2 +

2γ2

n
ζ2 +

n∑
i=1

−2γ

n
(dfi(x̄, x

∗) + dfi(x
∗, xi)− dfi(x̄, xi)) +

4Lγ2

n2
dfi(x

∗, xi)

(22)

(B.1)
≤ γ2σ2

n
+

2γ2

n
ζ2 − γµ‖x̄− x∗‖2 +

Lγ

n
‖πx‖2F +

n∑
i=1

(
−2γ

n
+

4Lγ2

n2

)
dfi(x

∗, xi)

(23)

Study of the df (x̄, x∗) terms:

Next, using the same reasoning as for ∆x, we also need to only study the gradient updates
in the non-convex setting for the first part of φ3, φ4. Thus, we set:

∆f ,
n∑
i=1

df (x̄− γ 1

n
∇Fi(xi, ξi), x∗)− df (x̄, x∗) . (24)

First, it is useful to note that under Assumption 3.5, using (B.3), we have:

Eξ1,...,ξn‖∇F̃ (x, ξ)‖2F ≤ nσ2 + (1 +M)

n∑
i=1

‖∇fi(xi)‖2 . (25)

Then, using
∑
i∇fi(x∗) = 0 and the L-smoothness of f = 1

n

∑
i fi, we get:

Eξ1,...,ξn [∆f ]
(B.2)
=

n∑
i=1

E[df (x̄− γ 1

n
∇Fi(xi, ξi), x̄)]− γ

n
〈∇fi(xi),∇f(x̄)〉 (26)

(B.1)
≤

n∑
i=1

1

2n2
Lγ2E[‖∇Fi(xi, ξi)‖2]− γ

n
〈∇fi(xi),∇f(x̄)〉 (27)

(25)
≤ Lγ2

2n
σ2 − γ‖∇f(x̄)‖2 +

n∑
i=1

M + 1

2n2
Lγ2‖∇fi(xi)‖2 −

n∑
i=1

γ

n
〈∇fi(xi)−∇fi(x̄),∇f(x̄)〉

(28)

(B.5)
≤ Lγ2

2n
σ2 +

γ

2n
L2‖πx‖2F −

γ

2
‖∇f(x̄)‖2 +

n∑
i=1

M + 1

2n2
Lγ2‖∇fi(xi)‖2 (29)
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As we also have:
n∑
i=1

‖∇fi(xi)‖2
(B.4)
≤

n∑
i=1

3(‖∇fi(xi)−∇fi(x̄)‖2 + ‖∇fi(x̄)−∇f(x̄)‖2 + ‖∇f(x̄)‖2) (30)

(3.5)
≤ 3L2‖πx‖2F + 3nζ2 + 3n(1 + P )‖∇f(x̄)‖2 (31)

We get in the end:

Eξ1,...,ξn [∆f ] ≤ Lγ2

2n
σ2 +

3(M + 1)

2n
γ2Lζ2 +

(
3(M + 1)

2n2
L3γ2 +

γ

2n
L2

)
‖πx‖2F

+

(
3(M + 1)

2n
(1 + P )Lγ2 − γ

2

)
‖∇f(x̄)‖2 (32)

Remark C.2. As observed in (5), note that for both the terms ‖x̄ − x∗‖2 and df (x̄, x∗), as we are
considering x̄ and 1

n11
Tπ = 0, Poisson updates from the communication process amount to zero.

Moreover, as 1
n11

T(x− x̃) = 0, the update from the momentum is also null for these terms.

Study of the ‖πx‖2F terms:

We get from the Poisson updates for the gradient processes:

Eξ1,...,ξn

[
n∑
i=1

‖π(x− γ∇F̃i(x, ξ))‖2F − ‖πx‖2F

]
= −2γ〈πx,∇F (x)〉+ γ2

n∑
i=1

Eξ1,...,ξn‖π∇F̃i(x, ξ)‖2F

≤ −2γ〈πx,∇F (x)〉+ γ2Eξ1,...,ξn‖∇F̃ (x, ξ)‖2F ,

and, using the definition of the Laplacian Λ (3.1), we get from the communication processes:∑
(i,j)∈E

λij
(
‖π(x− α(ei − ej)(ei − ej)Tx)‖2F − ‖πx‖2F

)
= −2α〈x,Λx〉+

∑
(i,j)∈E

λijα2‖(ei − ej)(ei − ej)Tx‖2F

(B.9)
= −2α〈x,Λx〉+ 2α2‖x‖2Λ

= 2α(α− 1)‖x‖2Λ .

Putting together both types of Poisson updates, we define:

E[∆π] , −2γ〈πx,∇F (x)〉+ γ2Eξ1,...,ξn‖π∇F̃ (x, ξ)‖2F + 2α(α− 1)‖x‖2Λ (33)
(B.10)
≤ 4χ1γ

2‖∇F (x)‖2F +

(
1

4
− 2α(1− α)

)
‖x‖2Λ + γ2Eξ1,...,ξn‖∇F̃ (x, ξ)‖2F (34)

For α = 1
2 , we get:

E[∆π] ≤ 4χ1γ
2‖∇F (x)‖2F −

1

4χ1
‖πx‖2F + γ2Eξ1,...,ξn‖∇F̃ (x, ξ)‖2F (35)

For A2CiD2, we add the momentum term 〈η(x̃− x), 2πx〉 to define:

∆1
Λ , 2η〈x̃, πx〉 − 2η‖πx‖2F − 2γ〈πx,∇F (x)〉+ γ2Eξ1,...,ξn‖∇F̃ (x, ξ)‖2F + 2α(α− 1)‖x‖2Λ

(36)
(B.5)
≤ 2η〈x̃, πx〉 − 3

2
η‖πx‖2F +

2

η
γ2‖∇F (x)‖2F − 2α(1− α)‖x‖Λ + γ2Eξ1,...,ξn‖∇F̃ (x, ξ)‖2F .

(37)

Study of the ‖x̃‖2Λ+ terms:

19



These terms only appear in the Lyapunov potentials used when applying A2CiD2. From
the Poisson updates and momentum, we get:

∆2
Λ , 2η〈x− x̃, x̃〉Λ+ − 2γ〈x̃,Λ+∇F̃ (x, ξ)〉+ γ2‖∇F̃ (x, ξ)‖2Λ+ − 2α̃〈πx, x̃〉

+ α̃2
∑

(i,j)∈E

λij‖(ei − ej)(ei − ej)Tx‖2Λ+ . (38)

Taking the expectation and using (B.9), (B.8), (B.7), (B.5) leads to:

E[∆2
Λ] ≤ χ1η‖πx‖2F +

(η
2
− η
)
‖x̃‖2Λ+ +

2

η
χ1γ

2‖π∇F (x)‖2F − 2α̃〈πx, x̃〉

+ 2χ2α̃
2‖x‖Λ + χ1γ

2Eξ1,...,ξn‖∇F̃ (x, ξ)‖2F (39)

C.2 Resolution: putting everything together

In this part, we combine the terms for each potential. We remind that with Assumption 3.4:
n∑
i=1

Eξi [‖∇Fi(xi, ξi)‖2] = nσ2 +

n∑
i=1

‖∇fi(xi)‖2 (40)

≤ nσ2 +

n∑
i=1

2‖∇fi(x∗)−∇fi(xi)‖2 + 2‖∇fi(x∗)‖2 (41)

≤ nσ2 + 2nζ2 + 4L

n∑
i=1

dfi(x
∗, xi) (42)

Convex case, non-accelerated. We remind that
φ1(t, x, x̃) = At‖x̄− x∗‖2 +Bt‖πx‖2.

Then, using (23), (35) and defining Ψ1 , ∂tφ1(t,Xt) + E[At∆x+Bt∆π], we have:
Ψ1 ≤ ‖x̄− x∗‖2 (A′t − µγAt) (43)

+ ‖πx‖2
(
B′t +

Lγ

n
At −

1

4χ1
Bt

)
(44)

+

n∑
i=1

dfi(x
∗, xi)

(
−2γ

n
At +

4Lγ2

n2
At + 4L

(
4χ1γ

2 + γ2
)
Bt

)
(45)

+

(
γ2σ2

n
+

2γ2

n
ζ2

)
At +

(
nγ2σ2 + 2nζ2(4χ1γ

2 + γ2)
)
Bt (46)

We pick α = 1
2 , Bt = 1

nAt, with At = e−rt (we denote by r the rate of the exponentials At, Bt).
Then (43), (44) imply:

r ≤ min(µγ,
1

4χ1
− Lγ) (47)

As we want (45) to be negative, we have:

−1 + γ

(
2L

n
+ 2L(4χ1 + 1)

)
≤ 0 (48)

which leads to:

γ ≤ 1

2L
(

1
n + 4χ1 + 1

) (49)

and taking γ ≤ 1
2

1
2L(3+4χ1+1) = 1

16L(1+χ1) works. Now, as 1
4χ1
− Lγ ≥ 3

16χ1
and µγ ≤ 1

16χ1
, we

pick r = µγ. As we have:

E [φ1(T, xT )− φ1(0, x0)] =

∫ T

0

(A′t‖x̄t − x∗‖2 +B′t‖πxt‖2 +AtEξ1,...,ξn [∆x] +BtE[∆π]) dt

(50)
using (46) and (16) leads to:

E‖x̄t−x∗‖2 ≤ e−γµt
(
‖x̄0 − x∗‖2 +

1

n
‖πx0‖2

)
+
γ

µ

(
σ2(

1

n
+ 1) + 2ζ2(

1

n
+ 4χ1 + 1)

)
(51)
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Convex case with A2CiD2. We remind that
φ2(t, x, x̃) = At‖x̄− x∗‖2 +Bt‖πx‖2 + B̃t‖x̃‖Λ+ .

Then, using (23), (37), (39) and defining Ψ2 , ∂tφ2(t,Xt) + E[At∆x+Bt∆
1
Λ + B̃t∆

2
Λ], we have:

Ψ2 ≤ ‖x̄− x∗‖2 (A′t − µγAt) (52)

+ ‖πx‖2
(
B′t +

Lγ

n
At −

3

2
ηBt + ηχ1B̃t

)
(53)

+ ‖x̃‖2Λ+

(
B̃′t −

η

2
B̃t

)
(54)

+ ‖x‖2Λ
(

2α̃2χ2B̃t − 2α(1− α)Bt

)
(55)

+ 〈x̃, πx〉
(

2ηBt − 2α̃B̃t

)
(56)

+

n∑
i=1

dfi(x
∗, xi)

(
−2γ

n
At +

4Lγ2

n2
At + 4L

(
2γ2

η
+ γ2

)
(Bt + χ1B̃t)

)
(57)

+

(
γ2σ2

n
+

2γ2

n
ζ2

)
At +

(
nγ2σ2 + 2nζ2(γ2 +

2γ2

η
)

)
(Bt + χ1B̃t) (58)

Then, we assume α = 1
2 , α̃ = 1

2

√
χ1

χ2
, η = 1

2
√
χ1χ2

, Bt = 1
nAt, B̃t = 1

χ1
Bt, At = e−rt (we denote

by r the rate of the exponentials At, Bt, B̃t), which satisfies (55) and (56). Then (52), (53), (54)
imply:

r ≤ min(µγ,
η

2
,
η

2
− Lγ) = min(µγ,

η

2
− Lγ) (59)

As we want (57) to be negative, we have:

−1 + γ

(
2L

n
+ 4L(

2

η
+ 1)

)
≤ 0 (60)

which leads to:

γ ≤ 1

2L
(

1
n + 4

η + 2
) (61)

and taking γ ≤ 1

2L(6+ 4
η+2)

= 1

16L(1+
√
χ1χ2)

works. Now, we have:

η

2
− Lγ ≥ 1

4
√
χ1χ2

(
1−

4
√
χ1χ2

16
(
1 +
√
χ1χ2

)) ≥ 3

16
√
χ1χ2

(62)

As µγ ≤ µ

16L(1+
√
χ1χ2)

≤ 1
16
√
χ1χ2

, taking r = µγ works. Finally, using (58) and (16) leads to:

E‖x̄t − x∗‖2 ≤ e−γµt
(
‖x̄0 − x∗‖2 +

2

n
‖πx0‖2

)
+
γ

µ

(
σ2(

1

n
+ 2) + 2ζ2(

1

n
+ 8
√
χ1χ2 + 2)

)
(63)

Non-convex case, non-accelerated. We remind that:
φ3(t, x) = Atdf (x̄, x∗) +Bt‖πx‖2

Here, we pick α = 1
2 , At = 1, Bt = L

nAt. Thus, A′t = B′t = 0. Then, using (32), (35), (31), (25)
we obtain:

AtE[∆f ] +BtE[∆π]) ≤ ‖∇f(x̄)‖2
(
−γ

2
At +

3

2n
Lγ2(M + 1)(P + 1)At + 3nγ2(4χ1 +M + 1)(P + 1)Bt

)
(64)

+ ‖πx‖2
(
L2γ

2n
(1 +

3

n
(M + 1)Lγ)At + 3L2γ2(4χ1 +M + 1)Bt −

1

4χ1
Bt

)
(65)

+ γ2
(
σ2 + 3(M + 1)ζ2

)( L

2n
At + nBt

)
+ 12nχ1γ

2ζ2Bt (66)
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Our goal is to use half of the negative term of (64) to cancel the positive ones, so that there remains at
least −γ4At‖∇f(x̄)‖2 in the end. Thus, we want:

3Lγ2

(
(M + 1)(P + 1)

2n
+ (4χ1 +M + 1)(P + 1)

)
≤ γ

4
(67)

and taking γ ≤ 1
48(M+1)(P+1)(1+χ1) works. We verify that with γ defined as such, (65) is also

negative. Finally, we upper bound (66) with 3Lγ2
(
σ2 + 3(M + 1 + 4χ1)ζ2

)
. As we have:

E[φ3(T, xT )− φ3(0, x0)] =

∫ T

0

(A′tdf (x̄t, x
∗) +B′t‖πxt‖2 +AtE[∆f ] +BtE[∆π]) dt (68)

we note that if γ ≤ c
L(χ1+1) for some constant c > 0 which depends on M,P , we will get:

γ

4

∫ T

0

E[‖∇f(x̄t)‖2] dt ≤ L

n
‖πx0‖2 + df (x0, x

∗) +O
(
LTγ2(σ2 + (1 + χ1)ζ2)

)
(69)

which also writes:
1

T

∫ T

0

E[‖∇f(x̄t)‖2] dt ≤ 4

γT
(f(x0)− f(x∗)) +O

(
Lγ(σ2 + (1 + χ1)ζ2)

)
(70)

Non-convex case, with A2CiD2. We have:

φ4(t, x) = Atdf (x̄, x∗) +Bt‖πx‖2 + B̃t‖x̃‖2Λ+

Here, we pick α = 1
2 , η = 1

2
√
χ1χ2

, At = 1, Bt = L
nAt, Bt = χ1B̃t and an identical reasoning to

the convex setting allows to say we can find a constant c > 0 such that if γ ≤ c
L(1+

√
χ1χ2) , then:

1

T

∫ T

0

E[‖∇f(x̄t)‖2] dt = O
(

1

γT
(f(x0)− f(x∗)) + Lγ(σ2 + (1 +

√
χ1χ2)ζ2)

)
(71)

C.3 Optimizing the step-size

In this part, we follow [40, 21] and optimize the step-size a posteriori. We set χ = χ1 for the
non-accelerated setting and χ =

√
χ1χ2 with A2CiD2.

Strongly-convex cases: From (51) and (63), we can write that, for γ ≤ 1
16L(1+χ) and initializing

x0 such that πx0 = 0, we have:

E‖x̄t − x∗‖2 = O
(
‖x̄0 − x∗‖2e−γµt +

γ

µ
(σ2 + ζ2(1 + χ))

)
(72)

Then, taking the proof of [40] and adapting the threshold, we consider two cases (with r0 ,
‖x̄0 − x∗‖2):

• if 1
16L(1+χ) ≥

log(max{2,µ2r0T/σ
2})

µT , then we set γ = log(max{2,µ2r0T/σ
2})

µT .

In this case, (72) gives:

E‖x̄T − x∗‖2 = Õ
(

1

µ2T
(σ2 + ζ2(1 + χ))

)
(73)

• if 1
16L(1+χ) <

log(max{2,µ2r0T/σ
2})

µT , then we set γ = 1
16L(1+χ) .

Then, (72) gives:

E‖x̄T − x∗‖2 = O
(
r0e
− µT

16L(1+χ) +
1

µ

1

16L (1 + χ)
(σ2 + ζ2(1 + χ))

)
(74)

= Õ
(
r0e
− µT

16L(1+χ) +
1

µ2T
(σ2 + ζ2(1 + χ))

)
(75)
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Non-convex cases: From (70) and (71), we can write that, for some constant c > 0 depending on
M,P such that γ ≤ c

L(1+χ) , we have:

1

T

∫ T

0

E[‖∇f(x̄t)‖2] dt = O
(

1

γT
(f(x0)− f(x∗)) + Lγ(σ2 + (1 + χ)ζ2)

)
(76)

Then, taking the proof of Lemma 17 in [21] and adapting the threshold, we consider two cases (with
f0 , f(x0)− f(x∗)):

• if c
L(1+χ) <

(
f0

TL(σ2+(1+χ)ζ2)

)1/2

, then we take γ = c
L(1+χ) , giving:

1

T

∫ T

0

E[‖∇f(x̄t)‖2] dt = O

(
L(1 + χ)

T
f0 + L

(
f0

TL(σ2 + (1 + χ)ζ2)

)1/2

(σ2 + (1 + χ)ζ2)

)
(77)

= O

(
L(1 + χ)

T
f0 +

√
Lf0

T
(σ2 + (1 + χ)ζ2)

)
(78)

• if c
L(1+χ) ≥

(
f0

TL(σ2+(1+χ)ζ2)

)1/2

, then we take γ =
(

f0
TL(σ2+(1+χ)ζ2)

)1/2

, giving:

1

T

∫ T

0

E[‖∇f(x̄t)‖2] dt = O

(
f0

T

(
TL(σ2 + (1 + χ)ζ2)

f0

)1/2

+

√
Lf0

T
(σ2 + (1 + χ)ζ2)

)
(79)

= O

(√
Lf0

T
(σ2 + (1 + χ)ζ2)

)
(80)

D Comparison with accelerated synchronous methods

By definition of Λ (3.1), our communication complexity (the expected number of communications)
is simply given by Tr(Λ)

2 per time unit. As discussed in Sec. 3.5, our goal is to replicate the
behaviour of accelerated synchronous methods such as DeTAG [31], MSDA [37] and OPAPC [23]
by communicating sufficiently so that the graph connectivity does not impact the time to converge,
leading to the condition

√
χ1[Λ]χ2[Λ] = O(1).

Now, let us consider a gossip matrixW as in [31, 37, 23] (i.e., W is symmetric doubly stochastic) and
its Laplacian L = In−W . Then, using Λ =

√
χ1[L]χ2[L]L is sufficient for having

√
χ1[Λ]χ2[Λ] =

O(1).

• Synchronous methods: between two rounds of computations ("steps"), the number of
communication edges used is |E|√

1−θ with θ = max{|λ2|, |λn|} the eigenvalues of W .

• Ours: the number of communication edges used per time unit for our method is Tr(Λ)
2 =

1
2

√
χ1[L]χ2[L]Tr(L).

As, in [31, 37, 23], each communication edge is used at the same rate, we can apply Lemma 3.3 of
[34] stating:

√
χ1[L]χ2[L]Tr(L) ≤

√
‖L‖χ1(n− 1)|E|. We have:

• W is stochastic: ‖L‖ ≤ 2.
• the graph is connected: n− 1 ≤ |E|.
• definition of χ1 and θ: 1− θ ≤ 1

χ1[L]

Thus,
√
χ1[L]χ2[L]Tr(L) ≤

√
2|E|√
1−θ , which proves that our communication complexity per time unit

is at least as good as any accelerated synchronous method.
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E Experimental details

E.1 Graph topologies
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Figure 6: The three types of graph topology implemented. From left to right: complete, exponential,
cycle, all with 16 nodes. From left to right, the approximate values of (χ1, χ2) with a communication
rate of "1 p2p comm./∇ comp." for each worker are: (1, 1), (2, 1), (13, 1).

Fig. 6 displays an example of each of the three graph topologies implemented. The exponential graph
follows the architecture described in [28, 2]. Note the discrepancy between the values of χ1 and χ2

for the cycle graph, highlighting the advantage of using A2CiD2in the asynchronous setting (to lower
the complexity from χ1 to

√
χ1χ2).

E.2 Uniform neighbor selection check
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Figure 7: Heat-map of the communication history (showed through a weighted adjacency matrix)
during the asynchronous training on CIFAR10 with 32 workers. We display the results for the
complete graph (left), exponential (centre) and ring (right) graph.

Our asynchronous algorithm acts as follows: to reduce latency, the first two workers (i.e., GPUs) in
the whole pool that declare they are ready to communicate (i.e., finished their previous communication
and have to perform more before the next gradient step) are paired together for a p2p communication
if they are neighbors in the connectivity network. During training, we registered the history of the
pairwise communications that happened. Fig. 7 displays the heat-map of the adjacency matrix,
confirming that our assumption of "uniform pairing among neighbors" (used to compute the values of
χ1, χ2) seems to be sound.
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