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bfa.karami@uca.ma

cerraji0elmahdi@gmail.com

3Ecole Nationale des Sciences Appliquées de Marrakech, Université Cadi Ayyad, Morocco
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Abstract

In this paper, we are concerned with the study of the mathematical analysis for an optimal control
of a nonlocal degenerate aggregation model. This model describes the aggregation of organisms such
as pedestrian movements, chemotaxis, animal swarming. We establish the well-posedness (existence
and uniqueness) for the weak solution of the direct problem by means of an auxiliary nondegenerate
aggregation equation, the Faedo-Galerkin method (for the existence result) and duality method (for the
uniqueness). Moreover, for the adjoint problem, we prove the existence result of minimizers and first
order necessary conditions. The main novelty of this work concern the presence of a control to our
nonlocal degenerate aggregation model. Our results are complemented with some numerical simulations.

Keywords: Aggregation equation ; Nonlocal models ; Degenerate diffusion ; Finite volume ; Optimal
control ; Adjoint problem.

1 Introduction

Nonlocal aggregation model has recently received great attention in biological applications. There exists
a large variety of biological aggregation models such as the flocking of birds, aggregation of fish and the
swarming insect. We refer the reader to a large number of works have focused on biological aggregation
[6, 7, 10, 12, 16, 18, 19, 20, 22, 23].

∗MB would like to thank the SPICY research project for supporting this work
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In this paper, we consider the following nonlocal degenerate equation:
∂tu− div (a(u)∇u− u∇K ⋆ u) = F (u,w) in ΩT ,

(a(u)∇u− u∇K ⋆ u) · η = 0 on ΣT ,

u(x, 0) = u0(x), in Ω.

(1)

Herein, ΩT := Ω × (0, T ), ΣT := ∂Ω × (0, T ), T > 0 is a fixed time, and Ω is a bounded domain in R3,
with Lipschitz boundary ∂Ω and outer unit normal η. In the model above, the density of the population is
represented by u = u(x, t), a(u) is a density-dependent diffusion coefficient. Furthermore, K is the sensing
(interaction) kernel that models the long-range attraction. In the convolution term, u is extended by zero,
outside of Ω. More precisely

∇K ⋆ u(x) =

∫
Ω

∇K(x− y)u(y)dy.

Note that system (1) arises in many models of biology and in particular in social organizations which is one
of the fundamental aspects of animal behaviors.
In this paper, we assume that the density-dependent diffusion coefficient a(u) degenerates for u = 0 and
u = u. This means that the diffusion vanishes when u approaches values close to the threshold u and also
in the absence of the population. This interpretation was proposed in [2] and in the references therein for
the chemotaxis model.
To summarize, the following main assumptions are made:

a ∈ C1([0, 1]), a(0) = a(u) = 0 and a(s) > 0 for 0 < s < u,

K ∈ C2(R3) is a nonnegative radially nonincreasing function

with ∥K∥C2(R3) <∞ and

∫
R3

K(x) dx = 1.

(2)

In addition, the reaction function F has the following form

F (u,w) = αu− w u2,

where, α > 0 is the Malthusian growth coefficient and w(·) (the control) is a nonnegative function of the
intraspecific competition.
Regarding the degeneracy of the diffusion coefficient, a typical example of a is a(u) = u(u − u). Note that
the degeneracy of the diffusion coefficient and the nonlocal term are major concerns for the mathematical
and numerical treatment of the equation (1).

To put this paper in the proper perspective, we mention that the nonlocal aggeregation equation investigated
analytically and numerically by many authors: [22, 6] for the study of the pure aggregation equation, i.e,
a(u) = 0 and F = 0, [8] for the existence result, [3, 4] for the blowup of the solution and [13, 14] for the
analysis of the numerical simulation.
Many studies have focused on the competition between the degenerate diffusion as a repellent force and
nonlocal aggregation terms as attractive force (see for e.g. [15]). This competition is observed in many
biological phenomenon from social pattern formation to microbiological dynamics under chemotaxis force
[5]. From a mathematical perspective, we mention for example the work [17] where the author proposed and
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proved the existence results of local and global solutions to a class of aggregation equations depending on
attraction kernel regularity. In passing we want to mention that the authors in [5] considered and studied
the model (1) with F := 0 and a(u) = 0 for u = 0.

In our study, we are concerned with the mathematical analysis and numerical simulations of an optimal
control problem arising in the study of population dynamics. Our model is governed by a degenerate
aggregation-diffusion equation. To this model, we introduce a notion of a weak solution for the direct
problem and prove its well-posedness. Comparing to [5] (Equation (1) with F := 0 and a(u) = 0 for u = 0),
in this paper we prove the existence of solutions by applying the Faedo-Galerkin method, deriving a priori
estimates, and then passing to the limit in the approximate solutions using monotonicity and compactness
arguments. The uniqueness of these weak solutions is guaranteed by using the duality method. For the
analysis of our optimal control problem, we use the Lagrangian framework, in which the control problem is
set as a constrained minimization problem. Note that, if there exists of a minimum to a suitable Lagrangian
functional, it is a stationary point.
The numerical solution of our optimal control problem constrained by degenerate nonlocal aggregation
model requires the proper discretization of the direct and the adjoint problems, and the treatment of an
optimization problem. From the standpoint of our specific application, the main goal is to determine the
control response to reduce the pattern formation generated by a nonlocal attraction term. More specifically,
we are interested in determining the optimal intra species competition to insure a minimal pattern formation
due the attraction force.
The structure of the paper is organized as follows: In Section 2, we present the main results and we prove
the well-posedness (existence and uniqueness) result to our degenerate aggregation model. Section 3 will be
devoted to the optimal control problem. We present our optimal control approach, introduce a functional
useful for minimize, prove the existence of the control and we derive the adjoint-state problem. Finally,
in Section 4, we introduce the numerical scheme for both direct and adjoint problem, present the optimal
control procedure and we demonstrate various realizations showing the effect of the optimal control solution
on the overcrowding of the population.

2 Existence and uniqueness of weak solution

2.1 Weak solutions for the nonlocal degenerate equation

Before stating our main results, we give the definition of a weak solution for the system (1).

Definition 1. A weak solution of (1) is a nonnegative function u satisfying the following conditions:

u ∈ L∞(ΩT ), A(u) :=
∫ u

0

a(r) dr ∈ L2(0, T ;H1(Ω)),

u ∈ Cw(0, T ;L
2(Ω)), ∂tu ∈ L2(0;T ; (H1(Ω))′), u(0) = u0,

(3)

and, for all φ ∈ L2(0, T ; (H1(Ω))′)∫ T

0

<∂tu, φ>dt+

∫∫
ΩT

a(u)∇u · ∇φ dx dt−
∫∫

ΩT

u (∇K ⋆ u) · ∇φ dx dt =

∫∫
ΩT

F (u,w)φdx dt, (4)
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where Cw(0, T ;L
2(Ω)) denotes the space of continuous functions with values in (a closed ball of) L2(Ω)

endowed with the weak topology, and <·, ·> denotes the duality pairing between H1(Ω) and (H1(Ω))′.

Our first result is the following well-posedness (existence and uniqueness) theorem for weak solutions.

Theorem 2. Assume condition (2) holds and u0 ∈ L∞(Ω) with 0 ≤ u0 ≤ u, where u is a positive constant in
R. Then there exists a unique weak solution to the nonlocal degenerate equation (1) in the sense of Definition
1.

2.2 Existence of weak solution

Note that a major difficulty for the analysis of the equation (1) is the strong degeneracy of the diffusion
term and the presence of the nonlocal term. To handle this difficulty, we replace the original diffusion term
a(u) by aε(u) = a(u) + ε (ε > 0) and consider the following nonlocal non-degenerate equation

∂tu− div (aε(u)∇u− u∇K ⋆ u) = F (u,w) in ΩT ,

(aε(u)∇u− u∇K ⋆ u) · η = 0 on ΣT ,

u(x, 0) = u0(x), in Ω.

(5)

To prove Theorem 2 we first prove existence of solutions to the non-degenerate problem (5) by using the
Faedo-Galerkin method (in an appropriate functional setting). Convergence is achieved by means of a priori
estimates and compactness arguments.
In what follows, we use a.e. to denote almost everywhere, which means that a property or condition holds
for all points in a set except for a set of points that has measure zero.

2.2.1 The Faedo-Galerkin solution

To construct our Faedo-Galerkin approximation, we employ a classical Hilbert basis, which is orthonormal
in L2 and orthogonal in H1. We look for solutions to the problem obtained from the projection of (5) onto
the finite dimensional subspace Sn := Span{e1, . . . , en}. The approximate solution takes the following form

un : [0, T ]→ Sn, un(t) =

n∑
l=1

cn,l(t)el.

Herein, {el}∞l=1 is an orthogonal basis in H1(Ω) and an orthonormal basis in L2(Ω). Our first goal is to
determine the coefficients cn = {cn,l}nl=1 such that (l = 1, . . . , n)

<∂tun, el>+

∫
Ω

aεn(un)∇un · ∇el dx−
∫
Ω

un (∇K ⋆ un) · ∇el dx =

∫
Ω

(wun − u2
n)el dx, (6)

and, with reference to the initial condition

un(0) = u0,n =

n∑
l=1

cnl (0)el, cnl (0) :=

∫
Ω

u0,n(x)el(x) dx.
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Herein, εn := 1/n, n > 0. More explicitly we can write (6) as an equation of ordinary differential equation
(l = 1, . . . , n)

c′n,l(t) = −
∫
Ω

aεn(un)∇un · ∇el dx+

∫
Ω

un (∇K ⋆ un) · ∇el dx+

∫
Ω

(wun − u2
n)el dx

:= Fl(t, cn,1(t), . . . , cn,n(t)),

(7)

where, we have used the orthonormality of the basis. Observe that Fl (l = 1, . . . , n) is a Carathéoodory
function. Therefore, using the standard ODE theory, there exists an absolutely continuous functions {cn,l}nl=1

satisfying (7) for a. e. t ∈ [0, t′) for some t′ > 0. The next is to show that the local solution constructed
above can be extended to the whole time interval [0, T) (independent of n) but this can be done as in [1],
so we omit the details.

Observe that from (6), the Faedo-Galerkin solution satisfies the following weak formulation∫ T

0

< ∂tun, φ > dt+

∫∫
ΩT

aεn(un)∇un · ∇φ dx dt−
∫∫

ΩT

un (∇K ⋆ un) · ∇φ dx dt =

∫∫
ΩT

F (un, wn)φdx dt,

(8)

for all test functions φ ∈ L2(0, T ;H1(Ω)).

2.2.2 Maximum principle

In this section, we prove that the solution of the nonlocal degenerate equation (4) satisfies the following version of
maximum principle.

Lemma 3. Assume that 0 ≤ u0 ≤ u, then the solution un to the problem (5) satifies

0 ≤ un(x, t) ≤ eλtu, for a.e. (x, t) ∈ ΩT , (9)

where λ ∈ R such that

λ ≥ −∥w∥L∞(ΩT ) − ∥div (∇K ⋆ un)∥L∞(ΩT ). (10)

Proof. For technical reasons, we need to extend the function f(u) := αu − wu2 so that it becomes measurable on
ΩT , continuous with respect to u. We do this by setting (recall that α and w are nonnegative)

F̃ (u,w) =

{
F (u,w) if u ≥ 0,

0 else.

Next, we define the following new variable ũn by setting un = eλtũn where λ > 0 is defined in (10). It follows
from (5) that ũn satifies

∂tũn − div
(
am(eλtũn)∇ũn

)
+ eλtdiv

(
ũ+
n∇K ⋆ ũn

)
= −λũn + e−λtF̃ (eλtũ+

n , w). (11)

where ũ+
n = max{ũn, 0}. Multiplying this equation by u−

n = max{−ũn, 0} and integrating over Ω, the result is
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1

2

d

dt

∫
Ω

∣∣ũ−
n

∣∣2 dx−
∫
Ω

aεn(e
λtũn)∇ũn · ∇ũ−

n dx+ eλt
∫
Ω

ũ+
n∇K ⋆ ũn · ∇ũ−

n dx =

∫
Ω

(λũn − e−λtF̃ (e−λtũ+
n , w))ũ

−
n dx.

(12)

Observe that ∫
Ω

aεn(e
λtũn)∇ũn · ∇ũ−

n dx = −
∫
Ω

aεn(e
λtũn)

∣∣∇ũ−
n

∣∣2 dx ≤ 0,∫
Ω

ũ+
n∇K ⋆ ũn · ∇ũ−

n dx = 0,

and ∫
Ω

(λũn − e−λtF (e−λtũ+
n , w))ũ

−
n dx = −

∫
Ω

λ
∣∣ũ−

n

∣∣2 dx ≤ 0.

Using this, we get easily from (12)
1

2

d

dt

∫
Ω

∣∣ũ−
n

∣∣2 dx ≤ 0.

Since the data u0 is is nonnegative, we deduce that ũ−
n (x, t) = 0, for a.e. (t, x) ∈ ΩT .

In the following step, we show that ũn(x, t) ≤ u, for a.e. (x, t) ∈ ΩT . To do this, it suffices to prove that (ũn−u)+ = 0.
We multiply the equation (11) by (ũn − u)+ and and we integrate over Ω, to obtain

1

2

d

dt

∫
Ω

∣∣(ũn − u)+
∣∣2 dx+

∫
Ω

aεn(e
λtũn)∇ũn · ∇(ũn − u)+ dx− eλt

∫
Ω

ũnKn · ∇(ũn − u)+ dx

=

∫
Ω

(−λũn + e−λtF̃ (eλtũn, w))(ũn − u)+ dx

≤
∫
Ω

(−λũn + αũn)(ũn − u)+ dx

=

∫
Ω

(−λ+ α)
∣∣(ũn − u)+

∣∣2 dx+

∫
Ω

(−λ+ α)u(ũn − u)+ dx

(13)

where Kn := ∇K ⋆ un. Regarding the degenerate diffusion term, we have∫
Ω

aεn(e
λtũn)∇ũn · ∇(ũn − u)+ dx =

∫
Ω

aεn(e
λtũn)

∣∣∇(ũn − u)+
∣∣2 dx ≥ 0. (14)

For the nonlocal term, we use an integration by part to deduce∫
Ω

ũnKn · ∇(ũn − u)+ dx =

∫
Ω

(ũn − u)+Kn · ∇(ũn − u)+ dx+

∫
Ω

uKn · ∇(ũn − u)+ dx

=
1

2

∫
Ω

Kn · ∇
∣∣(ũn − u)+

∣∣2 dx+

∫
Ω

uKn · ∇(ũn − u)+ dx

=− 1

2

∫
Ω

div (Kn)
∣∣(ũn − u)+

∣∣2 dx+
1

2

∫
∂Ω

∣∣(ũn − u)+
∣∣2 Kn · ηdσ(x)

−
∫
Ω

udiv (Kn)(ũn − u)+ dx+

∫
∂Ω

u(ũn − u)+Kn · ηdσ(x)

≤− 1

2

∫
Ω

div (Kn)
∣∣(ũn − u)+

∣∣2 dx−
∫
Ω

udiv (Kn)(ũn − u)+ dx,

(15)
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where we have used (recall that in (2), K is radially nonincreasing)

Kn · η ≤ 0 on ΣT .

Collecting the previous estimates (14) and (15), we readily conclude from (13)

1

2

d

dt

∫
Ω

∣∣(ũn − u)+
∣∣2 dx+

∫
Ω

(λ− w +
1

2
div (Kn))

∣∣(ũn − u)+
∣∣2 dx+

∫
Ω

u(λ− w + div (Kn))(ũn − u)+ dx. ≤ 0.

(16)

Now, by the choice of λ in (10), we deduce from (16)

1

2

d

dt

∫
Ω

∣∣(ũn − u)+
∣∣2 dx ≤ 0.

Using that u0 ≤ u, we conclude from this un(t, ·) ≤ eλtu in Ω for t ∈ (0, T ). This concludes the proof of the
lemma.

2.2.3 A priori estimates

First, we let the functions

A(r) =

∫ r

0

a(s)ds and A(r) =

∫ r

0

A(s)ds.

To pass to the limit in (8) and prove the existence of the solution u, we need the following a priori estimates lemma.

Lemma 4. The solution un to the problem (5) satifies

∥A(un(x, t))∥L∞(0,T ;L1(Ω)) + ∥∇A(un)∥L2(ΩT ) + εn ∥un∥L∞(0,T ;L2(Ω)) + εn ∥∇un∥L2(ΩT ) ≤ C,

∥∂tun∥L2(0,T ;(H1(Ω))′) ≤ C,
(17)

for some constant C > 0 not depending of n.

Proof. We substitute φ = Aεn(un) := A(un) + εn un in (8) and we integrate over (0, τ) with τ < T to obtain∫ τ

0

< ∂tun, Aεn(un) > dt+

∫∫
Ωτ

|∇A(un)|2 dx dt+ εn

∫∫
Ωτ

|∇un|2 dx dt

−
∫∫

Ωτ

un(∇K ⋆ un) · ∇Aεn(un) dx dt =

∫∫
Ωτ

F (un, w)Aεn(un) dx dt.

(18)

Next, using Young inequality and Lemma 3, we obtain∣∣∣∣∫∫
Ωτ

un(∇K ⋆ un) · ∇Aεn(un) dx dt

∣∣∣∣ ≤ ∫∫
Ωτ

|∇K ⋆ un|2 |un|2 dx dt+
1

2

∫∫
Ωτ

|∇A(un)|2 dx dt

+
εn
2

∫∫
Ωτ

|∇un|2 dx dt

≤ C1 +
1

2

∫∫
Ωτ

|∇A(un)|2 dx dt+
εn
2

∫∫
Ωτ

|∇un|2 dx dt

(19)

and ∫∫
Ωτ

|F (w, un)Aεn(un)| dx dt ≤ C2, (20)
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for some constants C1, C2 > 0. Now, exploiting (19) and (20), we deduce from (18)

sup
0<τ≤T

∫
Ω

A(un(τ)) dx+ εn sup
0<τ≤T

∫
Ω

|un(τ)|2 dx+
1

2

∫∫
ΩT

|∇A(un)|2 dx+.
εn
2

∫∫
Ωτ

|∇un|2 dx dt ≤ C3, (21)

for some coanstant C3 > 0. This implies the desired first estimate of (17).

To prove the second estimate of (17), we take φ ∈ L2(0, T ; H1(Ω)) and we use the weak formulation (8) to obtain

∣∣∣ ∫ T

0

< ∂tun, φ > dt
∣∣∣ ≤ ∫∫

ΩT

∣∣∇Aεn(un) · ∇φ
∣∣ dx dt+ ∫∫

ΩT

∣∣un (∇K ⋆ un) · ∇φ
∣∣ dx dt+ ∫∫

ΩT

∣∣F (un, w)φ
∣∣ dx dt,

≤
∥∥∇Aεn(un)

∥∥
L2(ΩT )

∥∥∇φ∥∥
L2(ΩT )

+ ∥∇K ⋆ un∥L∞(ΩT )

∥∥un

∥∥
L2(ΩT )

∥∥∇φ∥∥
L2(ΩT )

+
∥∥F (un, w)

∥∥
L2(ΩT )

∥∥φ∥∥
L2(ΩT )

≤ C4

∥∥φ∥∥
L2(0,T ; H1(Ω))

,

(22)

for some constant C4 > 0, where we have used (21). This implies∥∥∥∂tum

∥∥∥
L2(0,T ; (H1(Ω))′)

≤ C4. (23)

2.2.4 Passing to the limit

Thanks to Lemma 4 and Aubin-Simon compactness theorem (see for e.g. [21]), we can extract subsequences, which
we do not relabel, such that, as n→ ∞,

un → u weakly-⋆ in L∞(ΩT ),

A(un) → A weakly in L2(0, T ;H1(Ω)),
√
εnuε → 0 weakly in L2(0, T ;H1(Ω)),

∂tuε → ∂tu weakly in L2(0, T ; (H1(Ω))′).

(24)

Next, we use the compact embedding L∞(Ω) ⊂ (H1(Ω))′ and Corollary 4 of [21], to deduce that un is a Cauchy
sequence in C(0, T ; (H1(Ω))′).

Observe that A(uε) is uniformly bounded in S, where

S = {u ∈ L2(0, T,H1(Ω)) : ∂tu ∈ L2(0, T ; (H1(Ω))′)}.

From the compact imbedding S ⊂ L2(ΩT ), we deduce that there exists a subsequence of un such that

A(un) → A strongly in L2(ΩT ).

Since A is monotone, we get A(u) = A. Therefore,

A(un) → A(u) strongly in L2(ΩT ) and a.e. in ΩT .
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Moreover, as A−1 is well-defined and continuous, we apply the dominated convergence theorem to un = A−1(A(un))
to obtain

un → u strongly in L2(ΩT ) and a.e. in ΩT .

Using this and the weak-⋆ convergence of un to u in L∞(ΩT ), we obtain

un → u strongly in Lq(ΩT ) for 1 ≤ q <∞.

With the above convergences we are ready to identify the limit u as a weak solution of (1). Let φ ∈ L2(0, T ;H1(Ω))
be a test function in (8). By (24) it is clear that as ε→ 0∫ T

0

⟨∂tun, φ⟩ dt→
∫ T

0

⟨∂tu, φ⟩ dt

and ∫∫
ΩT

aεn(un)∇un · ∇φdx dt→
∫∫

ΩT

a(u)∇u · ∇φdx dt.

Since un (∇K ⋆ un) is bounded in L∞(ΩT ), we also have that, as n→ ∞,∫∫
ΩT

un (∇K ⋆ un) · ∇φdx dt→
∫∫

ΩT

u (∇K ⋆ u) · ∇φdx dt,

Similarly, we have as n→ ∞, ∫∫
ΩT

F (un, w)φdx dt→
∫∫

ΩT

F (u,w)φdx dt.

We have finally identified u as a solution of (1).

2.3 Uniqueness of the weak solution

In this section we prove uniqueness of weak solutions to our nonlocal degenerate aggregation model, thereby com-
pleting the well-posedness analysis. The uniqueness proof of weak solutions is proved by using duality technique.

First, we consider u1 and u2 two solutions of the system (1). We set U = u1 − u2, then U satisfies (for i = 1, 2)
∂tU −∆(A(u1)−A(u2)) + div (u1∇K ⋆ u1 − u2∇K ⋆ u2) = F (u1, w)− F (u2, w) in ΩT ,

(∇A(ui)− ui∇K ⋆ ui) · η = 0 on ΣT ,

ui(x, 0) = u0(x), in Ω.

(25)

Now, we define the function φ solution of the problem

−∆φ(t, ·) = U(t, ·) in Ω and ∇φ(t, ·) · η = 0 on ∂Ω, (26)

for a.e. t ∈ (0, T ). Since u1 and u2 are bounded in L∞, then we get from the theory of linear elliptic equations, the
existence, uniqueness and regularity of solution φ satisfying

φ ∈ C([0, T ];H2(Ω)) with

∫
Ω

φ(t, ·) dx = 0.

Note that from the boundary condition of φ in (26) and U(0, ·) = 0 we deduce that

∇φ(0, ·) = 0 in L2(Ω). (27)
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Multiplying the second equation in (25) by ψ ∈ L2(0, T ;H1(Ω)) and integrating over Ωt := (0, t)× Ω, we get∫ t

0

⟨∂sU,ψ⟩ ds+
∫∫

Ωt

∇(A(u1)−A(u2)) · ∇ψ dx ds =
∫∫

Ωt

(
u1∇K ⋆ u1 − u2∇K ⋆ u2

)
·∇ψ dx ds

+

∫∫
Ωt

(
F (u1, w)− F (u2, w)

)
ψ dx ds.

(28)

Since φ ∈ L2(0, T ;H1(Ω)) we can take ψ = φ in (28) and we obtain from (26) and (27)

2

∫ t

0

⟨∂sU,φ⟩ ds = −2

∫ t

0

⟨∂s∆φ,φ⟩ ds

=

∫
Ω

|∇φ(t, x)|2 dx−
∫
Ω

|∇φ(0, x)|2 dx

=

∫
Ω

|∇φ(t, x)|2 dx

(29)

and ∫ t

0

⟨∂sU,φ⟩ ds−
∫∫

Ωt

(A(u1)−A(u2))∆φdx ds

=

∫∫
Ωt

(
u1∇K ⋆ u1 − u2∇K ⋆ u2

)
·∇φdx ds+

∫∫
Ωt

(
F (u1, w)− F (u2, w)

)
φdx ds.

(30)

Since u1 and u2 are bounded in L∞, then there exist constants C5, C6 > 0 such that

|F (u1, w)− F (u2, w)| ≤ C5 |u1 − u2| ,
|u1∇K ⋆ u1 − u2∇K ⋆ u2)| ≤ C6 |u1 − u2| .

(31)

Using (26), (31), Hölder’s, Young’s, Sobolev Poincaré’s inequalities yields from (30)∫ t

0

⟨∂sU,φ⟩ ds ≤ −Ca

∫∫
Ωt

|U |2 dx ds+ Ca

4

∫∫
Ωt

|U |2 dx ds+ C7

∫ t

0

∥∇φ∥2L2(Ω) ds+
Ca

4

∫∫
Ωt

|U |2 dx ds

+C8

∫ t

0

∥φ∥2L2(Ω) ds

≤ C9

∫ t

0

∥∇φ∥2L2(Ω) ds,

(32)

for some constants C7, C8, C9 > 0. Using this and (29), we deduce∫
Ω

|∇φ(t, x)|2 dx = 2

∫ t

0

⟨∂sU,φj⟩ ds

≤ 2C9

∫ t

0

∥∇φ∥2L2(Ω) ds.
(33)

Finally, using Gronwall’s lemma to conclude from (33)

∇φ = 0 a.e. in ΩT ,

ensuring the uniqueness of weak solutions.
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3 The optimal control problem

In this subsection, we provide the existence of the solution for the optimal control problem of the nonlocal degenerate
equation (1). We considered the following cost functional for the optimization of the population density and
aggregation term

J(w, u) =
ε1
2

∫ T

0

∫
Ωc

|w|2 dx dt+ ε2
2

∫∫
ΩT

|u(∇K ⋆ u)|2 dx dt, (34)

where ε1 and ε2 denote regularization parameters. Herein, Ωc ⊂ Ω is the control subdomain. We define the set of
admissible controls U by

U = {w ∈ L∞(ΩT ) : w ≤ w(t, x) ≤ w}, (35)

where w ∈ R∗
+ and w ∈ R∗

+ are the minimal and the maximal intraspecific competition rates, respectively. We
consider the following minimization problem:

min
w
J(w, u) subject to (1). (36)

3.1 Existence of the control

In this subsection, we show the existence of the optimal solution w⋆ ∈ U for the problem (36).

Lemma 5. Assume that u0 ∈ L∞(Ω). Then, there exists a solution w⋆ ∈ U of the optimal control problem (34).

Proof. Let wn be a minimizing sequence of J such that

inf
w∈U

{J} ≤ J(wn) ≤ inf
w∈U

{J}+ 1

n
.

Thanks to the definition of J , the sequence (wn)n is bounded in L2(ΩT ). This implies that wn converge weakly to
an w∗. Let un be a solution to the problem (1) with respect to the control wn. Working exactly as in Section 2, we
deduce the following convergence (upon a subsequence)

un → u⋆ strongly in Lq(ΩT ) and a.e. in ΩT for 1 ≤ q <∞.

Note that, since the cost functional J(·, ·) is continuous and convex on L2(ΩT )×U , it follows that J(·, ·) is weakly lower
semicontinuous. Hence, by exploiting the strong convergence of un combined with the weak lower semi-continuity of
J we arrive to

J(u⋆, w⋆) ≤ lim inf
n→∞

J(wn) ≤ inf
w∈U

{J(w)} = J(u⋆, w⋆).

This implies the existence result of our optimal control solution (36).
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3.2 Optimal conditions and dual problem

In this subsection, we derive the optimality conditions based on the Lagrangian formulation. We introduce the

Lagrange functional L defined by (recall that A(u) =

∫ u

0

a(s) ds):

L(u,w, p) = J(w, u) +

∫∫
ΩT

(
ut − div

(
a(u)∇u− u(∇K ⋆ u)

)
− F (u,w)

)
p dx dt

=
ε1
2

∫ T

0

∫
Ωc

|w|2 dx dt+ ε2
2

∫∫
ΩT

|u(∇K ⋆ u)|2 dx dt

+

∫∫
ΩT

(
ut − div

(
a(u)∇u− u(∇K ⋆ u)

)
− F (u,w)

)
p dx dt

=
ε1
2

∫ T

0

∫
Ωc

|w|2 dx dt+ ε2
2

∫∫
ΩT

|u(∇K ⋆ u)|2 dx dt−
∫∫

ΩT

∂tu p dx dt

+

∫∫
ΩT

(
∇A(u)− u(∇K ⋆ u)

)
∇p dx dt−

∫∫
ΩT

F (u,w)p dx dt

(37)

=
ε1
2

∫ T

0

∫
Ωc

|w|2 dx dt+ ε2
2

∫∫
ΩT

|u(∇K ⋆ u)|2 dx dt−
∫∫

ΩT

∂tu p dx dt

−
∫∫

ΩT

A(u)∆p dx dt+

∫∫
ΣT

A(u)∇p · η dσ(x) dt−
∫∫

ΩT

u(∇K ⋆ u) · ∇p dx dt−
∫∫

ΩT

F (u,w)p dx dt.

(38)

The first order optimality system characterizing the adjoint variables, is given by the Lagrange multipliers which
result from equating the partial derivative of L with respect to u equal to zero:

(∂L(u,w, p)
∂u

, δu
)
=ε2

∫∫
ΩT

u(∇K ⋆ u)
(
(∇K ⋆ u) δu+ u(∇K ⋆ δu)

)
dx dt−

∫∫
ΩT

∂tp δu−
∫∫

ΩT

a(u)∆p δu dx dt

−
∫∫

ΩT

(
δu(∇K ⋆ u) + u(∇K ⋆ δu)

)
∇p dx dt−

∫∫
ΩT

∂uF (u,w)p δu dx dt

=ε2

∫∫
ΩT

u|∇K ⋆ u|2δu dx dt+ ε2

∫∫
ΩT

|u|2(∇K ⋆ u)(∇K ⋆ δu) dx dt−
∫∫

ΩT

∂tp δu

−
∫∫

ΩT

a(u)∆p δu dx dt−
∫∫

ΩT

(∇K ⋆ u)∇p δu dx dt−
∫∫

ΩT

u(∇K ⋆ δu)∇p dx dt

+

∫∫
ΩT

∂uF (u,w)p δu dx dt

=

∫∫
ΩT

[
−∂tp− a(u)∆p− (∇K ⋆ u)∇p+ ε2u|∇K ⋆ u|2 − ∂uF (u,w)p

]
δu dx dt

−
∫∫

ΩT

[
u∇p− ε2|u|2(∇K ⋆ u)

]
·(∇K ⋆ δu) dx dt

(39)
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Observe that

B :=

∫∫
ΩT

(
u∇p− ε2|u|2(∇K ⋆ u)

)
(x) · (∇K ⋆ δu)(x)dx dt

=

∫ T

0

∫
Ω×Ω

(
u∇p− ε2|u|2(∇K ⋆ u)

)
(x) · ∇K(x− y) δu(y)dydx dt

= −
∫ T

0

∫
Ω×Ω

(
u∇p− ε2|u|2(∇K ⋆ u)

)
(x) · ∇K(y − x) δu(y)dydx dt

= −
∫∫

ΩT

(
u∇p− ε2 |u|2 (∇K ⋆ u)

)
⋆∇K δudx dt.

(40)

Next, we exploit (39) and (40) to deduce the adjoint equation of the nonlocal degenerate aggregation model (1)

−∂tp− a(u)∆p− (∇K ⋆ u)∇p+ (u∇p) ⋆∇K = ∂uF (u,w)p+ FK(u) in ΩT ,

∇p · η = 0 on ΣT ,

p(x, T ) = pT (x) = 0, in Ω.

(41)

where
∂uF (u,w) = α− 2wu and FK(u) := ε2

(
|u|2 ∇K ⋆ u

)
⋆∇K − ε2u|∇K ⋆ u|2.

To find the optimal conditions, we calculate the gradient of the functional J(w, u):

(
∂L

∂w
, δw) = ε1

∫ T

0

∫
Ωc

w δw dx dt−
∫∫

Ωc

u2 p δw dx dt and ∇J(w, u) = ∂L

∂w
. (42)

Therefore, the optimality condition can be written as follows∫ T

0

∫
Ωc

(ε1 w + u2 p) dx dt = 0.

Remark 6. Note that in aggregation equations, it is common to use an even kernel (K(−x) = K(x)). We mention
that the gradient of an even function became odd (i.e. ∇K(−x) = −∇K(x).)

4 Numerical Discretization

In this section, we present numerical methods to solve the nonlocal aggregation problem (1). We propose a numerical
scheme to approximate the solution of the associated adjoint problem (41) and we implement the optimal control
solver of the minimization problem (34). To approximate the solution of the direct problem (1) and adjoint problem
(41), we will use the numerical scheme introduced in [9]. First, let us consider a Cartesian mesh with the step hi in
the direction i ∈ {1, ..., d} and h = maxi hi. Denoting by (CJ)J∈Zd the space cells, where each cell CJ has a center
xJ := (x1..., xd) with xi = Jihi for i ∈ {1, ..., d}. Next, we let ei the canonical basis of Zd and we denote (un

J)J∈Zd

the approximation of cell average of u(t, ·) at a given time tn = nτ .
We propose the following numerical approximation for the direct problem (1) (recall that (s)+ = max{0, s} and
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(s)− = max{0,−s} for a real number s)

un+1
J = un

J +

d∑
i=1

τ

hi

((
Bn

i,J

)+
a(un

J)−
(
Bn

i,J+ei

)−
a(un

J+ei)−
(
Bn

i,J−ei

)+
a(un

J−ei) +
(
Bn

i,J

)−
a(un

J)

)

−
d∑

i=1

τ

hi

(
(An

i,J)
+un

J − (An
i,J+ei)

−un
J+ei − (An

i,J−ei)
+un

J−ei + (An
i,J)

−un
J

)
+τF (un

J , w
n
J ).

(43)

The numerical discrete aggregation and diffusion velocities are defined respectively by

An
i,J := −

∑
L∈Zd

un
LDiK

L
J and Bn

i,J :=
un
J+ei

− un
J

hi
,

where DiK
L
J = ∂xiK(xJ − xL) for a pointy potential K.

Now, for the solution of adjoint problem (41), we consider (pnJ)J∈Z the finite volume approximation of cell average of
p(t, ·) at a given time t = nτ . We use the following numerical approximation of the adjoint problem (41)

pn−1
J = pnJ +

d∑
i=1

τ

hi

((
Bn

i,J

)+
a(un

J)−
(
Bn

i,J+ei

)−
a(un

J+ei)−
(
Bn

i,J−ei

)+
a(un

J−ei) + (Bn
i,J)

−a(un
J)

)

−
d∑

i=1

τ

hi

(
(An

i,J)
+un

J − (An
i,J+ei)

−un
J+ei − (An

i,J−ei)
+un

J−ei + (An
i,J)

−un
J

)

−
d∑

i=1

τ

hi

(
Fn

i,J −Fn
i,J+ei

)
+ τ (FK(un

J) + ∂uF (un
J , w

n
J )p

n
J) ,

(44)

where

Bn
i,J :=

pnJ+ei
− pnJ

hi
, and An

i,J :=

d∑
i=1

∑
L∈Zd

un
L

pnL+ei
− pnL−ei

2hi
DiK

L
J .

The term Fn
i,J can be computed as

Fn
i,J := ψn

i,Ju
n
J−ei + ϕn(rni,J)ψ

n
i,J

(
1− τ

hi
ψn

i,J

)[
un
J − un

J−ei

]
where the convection velocity is given by

ψn
i,J := a′(un

J)
un
J − un

J−ei

hi
−
∑
L∈Z

un
LDiK

L
J and rni,J :=

un
J−ei

− un
J−2ei

un
J − un

J−ei

.

Following the establishment of the essential discretization of the direct and adjoint problems. We must develop a
numerical approach to minimize the specified cost function(34). It is common knowledge that the basic gradient
descent approach does not ensure global convergence relative to the initial guest. Therefore, we implemented the
nonlinear conjugate gradient technique [11] to achieve global convergence performance (see Algorithm 1). However,
this class of methods has many limitations in terms of convergence to a global minimum.
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Algorithm 1 The optimal control solver.

1: Input: u0, err ← 1
2: Initialize: w0, α, tol, k ← 0
3:

4: while ||∇J(wk)|| > tol do
5: for t = t1, ..., tfinal do
6: Giving τk2 Compute uh from the direct problem;
7: end for
8: Compute the cost function J(wk, uh)
9: for t = tfinal, ..., t0 do

10: Giving wk, uh, compute ph by solving the adjoint problem;
11: end for
12: Compute the gradient gk+1 = ∇J(wk, ph);
13: Compute yk = gk+1 − gk
14: Compute step length αk

15: Update the values of w wk+1 = wk + αkdk;

16: Compute βk = (yk − 2dk
||yk||2

dTk yk
)T

gk+1

dTk yk
17: dk = −gk + βkdk−1;
18: Update the direction dk = gk + βkdk−1

19: k ← k + 1
20: end while

5 Numerical simulations

In this section, we present an efficient implementation of the proposed numerical schemes (43)-(44) with the optimal
control Algorithm 1 to simulate the population dynamics under attractive forces. We focus our simulations on the
effect of the optimal control (34) on the pattern formation induced by attractive forces under several initial conditions.
To compute un

J for direct (43) and pnJ for adjoint (44) problems, we choose the computational domain Ω := (−4, 4)×
(−4, 4), the diffusion function a(u) = u(u − u), the time step τ = 0.001 and h1 = h2 = 0.1. For the aggregation
kernel, we choose the Gaussian distribution :

K(x) =
1

σ
√
2π

exp
(
−1

2

∥x∥2

σ2

)
for all x ∈ R2 (45)

where σ > 0 is a given parameter.
In the next subsections we will present various tests and simulations. The first test is devoted to examine the effect of
the aggregation and degenerate diffusion terms in the absence of the reaction term. Afterward, we will investigate the
effect of the reaction term under various parameters. The final subsection focuses on evaluating the efficiency of the
optimal control algorithm by considering two different initial conditions, and examining the impact of the resulting
optimal control on the aggregation dynamics in each case.
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5.1 Aggregation diffusion equation

In order to show the effect of the attractive force under a degenerate diffusion coefficient, we run different numerical
simulations under different initial conditions.
Figure 1 presents the dynamic of a three group under attractive force. In Figure 2, we depict the evolution of a
randomly distributed initial population density.

Figure 1: Evolution of the population dynamics using Gaussian attraction (with σ = 0.8), the initial condition
u0 = exp(c((X + 1)2 + Y 2)) + 0.8 exp(c(X2 + (Y − 1)2)) + exp(c((X − 0.8)2 + (Y + 1)2)) where c = −1.

Figure 2: Evolution of the population dynamics using Gaussian attraction (with σ = 0.2) and a random
initial population density u0.

It is well known that a diffusion process drives individuals of a given population towards lower densities according to
gradient direction. In the other hand, the attraction force forms a velocity field that drives individuals from lower
density groups to higher density groups. These two effects drives the solution to various forms of steady states. For
example, in Figure 1, we notice that a single group is formed from three different population densities. Starting from
a randomly distributed initial condition with a sharper attraction kernel (i.e. σ = 0.2), Figure 2 shows the formation
of several groups due to attraction forces.

5.2 Aggregation equation with nonlinear interaction term

To lessen the effect of over-crowding phenomenon, a degenerate diffusion plays a counter effect role. In more realistic
phenomenon inspired from nature, the overcrowding effect comes with costs on the population. The mortality
rate of the population rises due to some limited resources. This can be modeled by using logistic reaction term
F (u,w) := αu− wu2.
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Figure 3: Evolution of the population dynamics using the logistic source term F (with α = 0.25 and
w = 0.25), a nonlocal pointy Gaussian potential (with σ = 0.8) and the initial population u0 = exp(c((X +
1)2 + Y 2)) + 0.8 exp(c(X2 + (Y − 1)2)) + exp(c((X − 0.8)2 + (Y + 1)2)) where c = −1.

Figure 4: Evolution of the population dynamics using the logistic source term F (with α = 0.1 and w = 0.1),
the nonlocal pointy Gaussian potential (with σ = 0.8) and the initial population u0 = exp(c((X + 1)2 +
Y 2)) + 0.8 exp(c(X2 + (Y − 1)2)) + exp(c((X − 0.8)2 + (Y + 1)2))where c = −1.

Note that the logistic reaction term F (with α = 0.25 and w = 0.25) eliminates the aggregation phenomenon in Figure
3. Moreover, the solution achieves in short time range a constant steady-state solution u ≡ 1. When α = 0.1 and
w = 0.1, we observe that the evolution of the population is closer to the aggregation dynamics (see Figure 4). In the
last experiment of the direct problem (consult Figure 5), we notice that the reaction term drives a random distributed
initial condition to a more regular steady-state solution comparing to Figure 2. We conclude that, according to the
value of α, we can control the dominance of the logistic reaction term.
In the next subsection, we study and control the aggregation effect acting on the intraspecific competition rate w.

5.3 Optimal control simulation of the degenerate aggregation model

In this subsection, we implement several tests showing the efficiency of the proposed optimal control procedure to
eliminate the hoarding effect. In each test, we plot the comparison between the controlled and the uncontrolled
dynamics. In Figure 6 and 8, we present a comparison between the controlled and uncontrolled dynamics of a given
initial population density and a given attraction kernel. In the first and second rows of each figure, we illustrate the
effects of an uncontrolled and controlled dynamic, respectively and the third raw illustrates the development of the
optimal solution w.
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Figure 5: Evolution of the population dynamics using the logistic source term F (with α = 0.01 and
w = 0.01), the nonlocal pointy Gaussian potential (with σ = 0.2) and a random initial population density.

Figure 6: A comparison between controlled and uncontrolled dynamics acting on competition coefficient w
where a(u) = u(u−u), σ = 0.5, T = 3, c = −1, u0(x, y) = 0.8 exp(c((X +1)2 +Y 2))+ 0.64 exp(c(X2 +(Y −
1)2)) + 0.8 exp((X − 0.8)2 + (Y + 1)2).

18



Figure 7: The outputs of the algorithm 1 with respect to Figure 6 with ε1 = 1 and ε2 = 10−8. The L2-norm
of the gradient of the cost functional at the left, the minimization values of the cost functional J(w, u) at
the middle and the average of the optimal control w(t) =

∫
Ω
w(x, t) dx at the right.

Figure 8: A comparison between controlled and uncontrolled dynamics acting on competition coefficient w
where σ = 0.25, T = 4, α = 0.005. The initial condition u0(x, y) is a uniform random distribution.
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Figure 9: The outputs of the algorithm 1 with respect to Figure 8 with ε1 = 1 and ε2 = 10−10. The L2-norm
of the gradient of the cost functional at the left, the minimization values of the cost functional J(w, u) at
the middle and the average of the optimal control w(t) =

∫
Ω
w(x, t) dx at the right.

The gradient of the functional, as depicted in Figures 7 and 9, is an important metric for evaluating the performance
of the optimization process. A decrease in the gradient to a value less than 10−5 indicates a significant improvement in
the minimization process. This decrease in gradient is accompanied by a significant reduction in the cost functional,
which approaches values close to 0. This leads to a reduced crowding effect compared to the outcome of the direct
problem, where the population dynamics is not guided by a control mechanism. Observations of the controlled
solution in comparison to the uncontrolled solution in Figure 6 reveal that the optimal control, represented by the
control variable w, is effective in minimizing the attraction force between groups of individuals. By targeting the
centers of the groups, the optimal control minimizes the attraction force and prevents the formation of a single
crowd at t = 3.0. This same effect is observed in Figure 8 with a random initial distribution, where the optimal
control decreases the gradient and the resulting attractive force, preventing the formation of multiple crowds. These
observations demonstrate the effectiveness of the optimal control approach in reducing crowding effects.

6 Conclusion

In this paper we dealt with an optimal control to a two-sidedly degenerate aggregation equation with logistic source
term. We provided a rigorous analysis of the mathematical model. We have proposed an optimal control procedure
to reduce the over-crowding and pattern formation. We derived the adjoint state equation with the corresponding
explicit formulation of the gradient of the cost functional. We showed a numerical simulation of the natural dynamics
of different initial population under different attraction forces. Moreover, we have computed the optimal carrying
capacity that reduces the pattern formation and the over-crowding effect.
Finally, we want to mention that the well-posedness of the adjoint problem (41) will be the subject of a forthcoming
paper.

Acknowledgment.
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