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Abstract. In this work, we design a method to provide confidence inter-
vals for the position of a discontinuity arising in hyperbolic conservation
laws when some of the parameters of the problem are uncertain. This
is based on a sensitivity equation method, therefore can be used only if
the variance of the uncertain parameters is small. We illustrate how this
method works on a simple one-dimensional conservation law: the invis-
cid Burgers equation. Multiple test cases are defined, some for which the
analytical solution is known, in order to test the method.
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1 Introduction

First order nonlinear hyperbolic partial differential equations (PDEs) are known
to develop discontinuities, even when the initial condition is continuous. This
adds a challenge if one wants to perform uncertainty propagation studies: a
slight change in an input parameter can bring important changes in the output
in the neighbourhood of the discontinuity. This translates to a high variance of
the output close to the discontinuity [10]. If such variance is then used to compute
confidence intervals for the output, this leads to artificially large intervals in the
neighbourhood of the discontinuity, sometimes even providing negative values for
variables such as the pressure or the density [4]. The use of modified sensitivities
in [2, 4] solved the problem of negative values, but is equivalent to neglecting the
variance of the position of the discontinuity. In this work, we use a sensitivity
equation method to provide a first order estimate of this neglected quantity.

Here we consider a scalar one-dimensional conservation law, for the sake
of simplicity. However, this approach can be easily extended to systems. The
extension to higher dimension, on the other hand, is more difficult and beyond
the scope of this work.
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2 State model

In this section, we describe the state model and its analytical solution: this is
a well known problem and we use it mainly as an opportunity to introduce
the notation. A scalar one dimensional conservation law can be written in the
following form: {

∂tu(x, t) + ∂xf(u(x, t)) = 0 x ∈ R, t > 0

u(x, 0) = g(x) x ∈ R,
(1)

where u(x, t) is the conserved variable, f the flux function and g the initial
condition. The method of characteristics can be used to solve analytically (1),
and one can write the solution implicitly as follows:

u(x, t) = g(x− tf ′(u(x, t))), (2)

where f ′ = df
du . This method is valid as long as there is no intersection among

the characteristics: in case of intersection a shock is generated and the solution
u(x, t) becomes discontinuous. We can define the breaking time ts as the smallest
t for which the characteristics intersect:

ts = − 1

minh′(x)
, (3)

where h(x) := f ′(g(x)).
The point xs,0 from which the shock originates is known too:

xs,0 = x̄+ h(x̄)ts, where x̄ := argmin h′(x).

If the initial data g is discontinuous in a point xd, two scenarios are possible:
if h(x+d ) < h(x−d ), the initial discontinuity is transported for all t > 0 (ts = 0);
otherwise the initial discontinuity is smoothed out and a rarefaction wave is
generated.

Once the shock is generated, it moves along a curve xs(t) such that dxs

dt =
v(t), which separates the plane (x, t) into two parts, and in both of them the
method of characteristics is valid. We denote with the superscript + (respectively
−) the quantities in the right (respectively left) part of the plane, i.e. x > xs(t)
(respectively x < xs(t)). The speed of the shock v(t) can be computed using the
Rankine-Hugoniot conditions:

v(t) =
f(u+(xs(t), t))− f(u−(xs(t), t))

u+(xs(t), t)− u−(xs(t), t)
. (4)

The position of the shock xs(t) can be then determined by solving the following
ODE: 

dxs
dt

= v(t),

xs(ts) = xs,0.
(5)

Finally, the solution of (1) can be written in the following compact form:

u(x, t) = u+(x, t)H(x− xs(t)) + u−(x, t)H(xs(t)− x), (6)

where u± are obtained separately from (2) and H is the Heaviside function.
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3 Sensitivity equation

3.1 Derivation of the sensitivity equation

In this section, we apply the continuous sensitivity equation (CSE) method to
derive the sensitivity equations. First, we define the sensitivity with respect to
a parameter of interest a as the derivative of the state u with respect to a and
we use the notation ua:

ua =
∂u

∂a
. (7)

We now apply the CSE method and we differentiate the system (1) with
respect to the parameter a, obtaining:{

∂a(∂tu(x, t)) + ∂a(∂xf(u(x, t))) = 0 x ∈ R, t > 0

∂au(x, 0) = ∂ag(x) x ∈ R,

and exchanging the derivatives in space and time with the ones with respect to
a one obtains the following equation and initial condition for the sensitivity:{

∂tua + ∂x(fa(u, ua)) = 0 x ∈ R, t > 0

ua(x, 0) = ga(x) x ∈ R,
(8)

where ga := ∂ag, fa(u, ua) := f ′(u)ua + ∂af(u) and we dropped the time and
space dependence in the equation for simplicity.

3.2 Analytical solution of the sensitivity equation

The analytical solution of (8) can be computed in the regular zones by differen-
tiating (2) with respect to a:

ua(x, t) = g′(x− tf ′(u(x, t)))(−tf ′′(u(x, t))ua(x, t)) + ga(x− tf ′(u(x, t))),

therefore one can obtain an explicit expression for the sensitivity:

ua(x, t) =
ga(x− tf ′(u(x, t)))

1 + tf ′′(u(x, t))g′(x− tf ′(u(x, t)))
=

ga(x− tf ′(u(x, t)))

1 + th′(x− tf ′(u(x, t)))
. (9)

Let us observe that the denominator is zero if and only if there is an intersection
between two characteristics, therefore only along the shock.

If the state u is discontinuous, (9) is still valid on both sides of the shock.
Along the shock the state u is not differentiable in the classical sense; however,
it admits a Dirac distribution as weak derivative. Therefore, by differentiating
the compact expression (6) one obtains:

ua(x, t) = u+a (x, t)H(x− xs(t)) + u−a (x, t)H(xs(t)− x)

+(u− − u+)∂axs(t)δ(xs(t)− x),
(10)

where δ is the Dirac delta function and u±a are computed from (9) on either sides
of the shock.
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3.3 Correction term

In previous works [1–4], a correction to the sensitivity systems was proposed in
the case of discontinuous state, resulting in sensitivity solutions which do not
exhibit spikes that mimic the Dirac distribution. To obtain such sensitivities,
a source term is added, which should compensate the last term of (10). The
corrected sensitivity equation is:

∂tu
c
a + ∂xfa(u, uca) = S(u) x ∈ R, t > 0, (11)

where the source term has the following form:

S(u) = ∂av(u+ − u−)δ(xs(t)− x).

We use the superscript c to indicate the corrected sensitivity. For more details on
the derivation of the source term, see [3, 4] and Chapter 2 of [5] for the specific
declination of the method for 1D scalar conservation laws. The analytical solution
of (11) is:

uca(x, t) = u+a (x, t)H(x− xs(t)) + u−a (x, t)H(xs(t)− x), (12)

where u±a are the same as in (10), since they are defined in the regular zones.

4 First order estimate of the variance of the shock
position

In this section we provide a first order estimate of the variance of the position
of the shock xs(t). In this context, the parameter of interest a is a random
variable, whose expected value µa and variance σ2

a are known, and xs = xs(t; a)
is a function of this random variable. One can write a first order Taylor expansion
of xs with respect to a, centred in µa, obtaining:

xs(t; a) = xs(t;µa) + (a− µa)∂axs(t;µa) + o((a− µa)2). (13)

Then computing the average, one has:

E[xs(t; a)] ' xs(t;µa) + E[a− µa]∂axs(t;µa) = xs(t;µa),

and for the variance:

var[xs(t; a)] ' E[(xs(t; a)− xs(t;µa))2]

= E[(a− µa)2](∂axs(t;µa))2 = (σa∂axs(t;µa))2.

Therefore, in order to estimate the variance of the position of the shock, we need
to compute ∂axs(t). This can be obtained from u, ua, and uca as follows:

∂axs(t) =

∫
R

ua(x, t)− uca(x, t)

u− − u+
dx. (14)

The identity (14) can easily be verified by subtracting (12) from (10) and using
the definition of a Dirac delta function.
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5 Numerical strategy

The aim of this section is to present the numerical strategy to compute (14),
which can then be used to estimate the variance of the shock position.

From now on, we will consider the equations on an interval (x0, xN ), which is
divided into N cells, all of the same length ∆x. The subscript i indicates the i−th
cell, while i ± 1

2 refers to the interfaces. Concerning the time discretisation, we
will use a variable time step ∆t, chosen such that the CFL-condition is respected.
The superscript n indicates the n−th time step.

Systems (1) and (8) are classical hyperbolic conservation laws, for which
classical schemes can be used. However, for (11), a good discretisation of the
source term is crucial.

The method chosen for the state equation is the approximate Riemann solver
of Roe: the reason of this choice is that it provides the exact solution in the case
of an isolated shock. For the sake of simplicity we consider the case f ′(u) > 0.
The scheme in the internal cells (i.e. i 6= 0) is the following:

un+1
i = uni +

∆t

∆x
(f(uni−1)− f(uni )), (15)

while for the first cell we impose un0 = g(x0) ∀n.
For the sensitivity equation (8), i.e. the one without the source term, the

same scheme used for the state can be applied:

un+1
a,i = una,i +

∆t

∆x
(fa(uni−1, u

n
a,i−1)− fa(uni , u

n
a,i)).

We remark that this scheme provides a sensitivity with spikes.
We here propose a second scheme, which comes from a quite natural discreti-

sation of the source term:

un+1
a,i = una,i +

∆t

∆x
(fa(uni−1, u

n
a,i−1)− fa(uni , u

n
a,i)) + vna,i(u

n
i − uni−1)δni , (16)

where δni = 1 if there is a shock in the i−th cell at the n−th time step, δni = 0
otherwise. One of the main difficulties of this problem is to find an efficient shock
detector. If one considers a Riemann problem, the simplest definition of a shock
detector that works is:

δni =

{
0 ifuni−1 = uni ,

1 otherwise.
(17)

This of course does not work if the initial data is not a piecewise constant func-
tion. An option is the following shock detector based on the second derivative.
Let D be the maximum of the second derivative of the initial data and let k be
a constant to be tuned. Then

δni =

0 if
|uni−1 − 2uni + uni+1|

∆x2
> kD,

1 otherwise.
(18)
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The shock detector is used to compute the source term for the corrected sensi-
tivity system, but also to compute the jump of the state that appears in (14),
which is computed as follows:

(u+ − u−)(tn) = unk1 − u
n
k2 ,

where k1 is such that δnk1−1 = 1 and δnk1 = 0, and k2 is such that δnk2 = 0 and
δnk2+1 = 1.

6 Numerical results

In this section, we show some numerical results for different test cases: we con-
sider three different initial conditions for the state. For every test case, the
interval (0, 1) is discretised using N = 1000 cells.

1. The first test case is a Riemann problem, so that the analytical solution is
known:

g1(x) = uLH(xc − x) + uRH(x− xc), (19)

with uL = 1, uR = 0.1, xc = 0.5. For this problem, we consider two different
uncertain parameters: the left value uL, which gives a Riemann problem for
the sensitivity as well, since g1,uL

= H(xc−x); and the initial position of the
discontinuity, which gives g1,xc(x) = (uL − uR)δ(xc − x) as initial condition
for the sensitivity.

2. A problem with a piecewise linear initial condition:

g2(x) =


uL x < xL,
uR−uL

xR−xL
x+ uLxR−uRxL

xR−xL
xL ≤ x ≤ xR,

uR x > xR,

(20)

with uL = 2, uR = 0.1, xL = 0.25, xR = 0.75. The uncertain parameter for
this case is uL, which gives

g2,uL
(x) =


1 x < xL,

x 1
xL−xR

x+ xR

xR−xL
xL ≤ x ≤ xR,

0 x > xR.

(21)

The interest of this case is that we are able to compute the analytical solution
as for the Riemann problem, but the breaking time ts is strictly positive.

3. Finally, a problem with the following continuous initial condition:

g3(x) =

{
A sin2

(
π
L (x− xc) + π

2

)
if − 1 < 2x−xc

L < 1

0 otherwise,
(22)

where A = 1, L = 0.6, xc = 0.5. The uncertain parameters considered here
are L, which gives

g3,L(x) =

{
A π
L2 (x− xc) sin

(
2π
L (x− xc)

)
if − 1 < 2x−xc

L < 1

0 otherwise,
(23)
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and A, which gives

g3,A(x) =

{
sin2

(
π
L (x− xc) + π

2

)
if − 1 < 2x−xc

L < 1

0 otherwise.
(24)

For each test case, the uncertain parameter has a variance of 5% of its average
(i.e. σ2

a = 0.05µa). In Figure 1 we plot the confidence intervals for the position
of the shock, which are computed as follows :

CI :=

[
E[xs]−

√
var[xs]

α
,E[xs] +

√
var[xs]

α

]
(25)

where α is the level of the confidence interval and we chose α = 0.95. The form
(25) is a straightforward consequence of the Chebyshev inequality [6], for more
details see for instance [7]. For the test cases for which an analytical solution is
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(a) Test case 1, a = uL.
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(b) Test case 1, a = xc.
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(c) Test case 2.
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(d) Test case 3, a = L.
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(e) Test case 3, a = A.

Fig. 1: Confidence intervals for the position of the shock. In blue, the numerical
solution. In red, the analytical solution when available.

available, we observe perfect concordance with the numerical results. We remark
that one drawback of this method is the inability to estimate the variance of the
breaking time.
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7 Conclusion and perspectives

In this work, we use two different definitions of the sensitivity to provide a
first order estimate of the variance of the position of discontinuities, present
in hyperbolic conservation laws. This can then be used to compute confidence
intervals for the position of the shock. This method can be easily extended
to system of conservation laws, provided that anti-diffusive numerical schemes
(such as, for instance, the Glimm method) are used to solve both the state and
the sensitivity. The extension to higher space dimension is more challenging,
mainly due to the fact that anti-diffusive numerical schemes are needed in order
to correctly solve the sensitivity. Numerical schemes based on neural network,
such as [8], or shock tracking techniques [9] could be used for this.
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