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Revisiting Whittaker-Henderson Smoothing
Guillaume Biessy∗, PhD, LinkPact†and Sorbonne Université‡

October 15, 2024

Introduced nearly a century ago, Whittaker-Henderson smoothing is still widely
used by actuaries for constructing one-dimensional and two-dimensional experience
tables for mortality, disability and other Life Insurance risks. Our paper reframes
this smoothing technique within a modern statistical framework and addresses six
questions of practical relevance regarding its use.

Firstly, we adopt a Bayesian view of this smoothing method to build credible
intervals. Next, we shed light on the choice of the observation and weight vectors
to which the smoothing should be applied by linking it to a maximum likelihood
estimator introduced in the context of duration models. We then enhance the
precision of the smoothing by relaxing an implicit asymptotic normal approximation
on which it relies. Afterward, we select the smoothing parameters based on
maximizing a marginal likelihood function. We later improve numerical performance
in the presence of many observation points and consequently parameters. Finally,
we extrapolate the results of the smoothing while preserving, through the use of
constraints, consistency between estimated and predicted values.

Keywords: smoothing, duration models, experience tables, maximum likelihood, generalized
additive models, empirical Bayes approach, marginal likelihood, extrapolation.

Notations

In this paper, vector names are written in bold characters and matrix names in uppercase
letters. If y is a vector and A is a matrix, Var(y) denotes the variance-covariance matrix
associated with y, diag(A) represents the diagonal of matrix A, and Diag(y) is the diagonal
matrix such that diag(Diag(y)) = y. The sum of the diagonal elements of A is denoted as
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tr(A) and its transpose as AT . In the case where A is invertible, A−1 denotes its inverse, A−T is
the inverse of its transpose, and |A| is the product of the eigenvalues of A. For a non-invertible
matrix A, A− refers to the Moore-Penrose pseudoinverse of A, and |A|+ denotes the product
of the non-zero eigenvalues of A. By writing the eigendecomposition as A = UΣV T , where
U and V are two orthogonal matrices and Σ is a diagonal matrix containing the eigenvalues
of A, and by denoting Σ− as the matrix obtained by replacing the non-zero eigenvalues in Σ
with their inverses while keeping the zero eigenvalues unchanged, the pseudoinverse is given by
A− = V Σ−UT . The Kronecker product of two matrices A and B is denoted as A ⊗ B, and
their Hadamard product, or element-wise product, is denoted as A⊙B. vec(A) represents the
vector obtained by stacking the columns of matrix A together. Finally, the symbol ∝ indicates
a proportional relationship between the expressions on both sides of it.

1 Introduction

Whittaker-Henderson smoothing is a graduation method aimed at correcting the effect of
sampling fluctuations on a vector of evenly-spaced discrete observations. Initially proposed by
Whittaker (1922) for graduating mortality tables and further improved by Henderson (1924),
it quickly became one of the most popular graduation method among actuaries, especially in
North America. Extending to the two-dimensional case, Whittaker-Henderson (WH) smoothing
may be used to build experience tables for a wide range of Life insurance risks including but
not limited to disability, long-term care, lapse, mortgage default, and unemployment. We first
give a brief reminder of the method then introduce the objectives and plan of the paper.

1.1 A brief reminder of Whittaker-Henderson mathematical formulation

1.1.1 The one-dimensional case

Let y be a vector of observations and w a vector of positive weights, both of size n. The
estimator associated with Whittaker-Henderson smoothing is given by:

ŷ = argmin
θ
{F (y, w, θ) + Rλ,q(θ)} (1)

where:

• F (y, w, θ) =
n∑

i=1
wi(yi − θi)2 represents a fidelity criterion to the observations,

• Rλ,q(θ) = λ
n−q∑
i=1

(∆qθ)2
i represents a smoothness criterion.
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In the latter expression, λ ≥ 0 is a smoothing parameter and ∆q denotes the forward difference
operator of order q, such that for any i ∈ [1, n− q]:

(∆qθ)i =
q∑

k=0

(
q
k

)
(−1)q−kθi+k.

Let us define W = Diag(w), the diagonal matrix of weights, and Dn,q as the order q difference
matrix of dimensions (n− q)× n, such that (Dn,qθ)i = (∆qθ)i for all i ∈ [1, n− q]. The most
commonly used difference matrices of order 1 and 2 have the following forms:

Dn,1 =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
... . . . ...

0 . . . 0 −1 1

 and Dn,2 =


1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

...
...

... . . . ...
0 . . . 0 1 −2 1

 .

The fidelity and smoothness criteria can be rewritten with matrix notations as:

F (y, w, θ) = (y− θ)T W (y− θ) and Rλ,q(θ) = λθT DT
n,qDn,qθ.

The associated estimator for smoothing hence becomes:

ŷ = argmin
θ

{
(y− θ)T W (y− θ) + θT Pλθ

}
(2)

where Pλ = λDT
n,qDn,q.

1.1.2 The two-dimensional case

In the two-dimensional case, let us consider a matrix Y of observations and a matrix Ω
of non-negative weights, both of dimensions nx × nz. The estimator associated with the
Whittaker-Henderson smoothing can be written as:

Ŷ = argmin
Θ
{F (Y, Ω, Θ) + Rλ,q(Θ)}

where:

• F (Y, Ω, Θ) =
∑nx

i=1
∑nz

j=1 Ωi,j(Yi,j−Θi,j)2 represents a fidelity criterion to the observations,

• Rλ,q(Θ) = λx
∑nz

j=1
∑nx−qx

i=1 (∆qxΘ•,j)2
i + λz

∑nx
i=1

∑nz−qz
j=1 (∆qz Θi,•)2

j is a smoothness crite-
rion with λ = (λx, λz).
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This latter criterion can be written as the sum of two one-dimensional regularization criteria,
with orders qx and qz, weighted by non-negative smoothing parameters λx and λz, and applied
respectively to all rows and all columns of Θ. It is also possible to adopt matrix notations by
defining y = vec(Y ), w = vec(Ω), and θ = vec(Θ) as the vectors obtained by stacking the
columns of the matrices Y , Ω, and Θ, respectively. Additionally, let us denote W = Diag(w) and
n = nx × nz. The fidelity and smoothness criteria can then be rewritten as linear combinations
of the vectors y, w, and θ:

F (y, w, θ) = (y− θ)T W (y− θ)
Rλ,q(θ) = θT (λxInz ⊗DT

nx,qx
Dnx,qx + λzDT

nz ,qz
Dnz ,qz ⊗ Inx)θ.

and the associated estimator also takes the form of Equation 2 except in this case

Pλ = λxInz ⊗DT
nx,qx

Dnx,qx + λzDT
nz ,qz

Dnz ,qz ⊗ Inx .

1.1.3 An explicit solution

Equation 2 has an explicit solution, given by:

ŷ = (W + Pλ)−1Wy. (3)

Indeed, as a minimum, ŷ satisfies:

0 = ∂

∂θ

∣∣∣∣
ŷ

{
(y− θ)T W (y− θ) + θT Pλθ

}
= −2W (y − ŷ) + 2Pλŷ.

It follows that (W + Pλ)ŷ = Wy, and if W + Pλ is invertible, then ŷ is indeed a solution of
Equation 3. When λ ̸= 0, W + Pλ is invertible as long as w has q non-zero elements in the
one-dimensional case, and Ω has at least qx × qz non-zero elements distributed over qx different
rows and qz different columns in the two-dimensional case. Those conditions are always satisfied
in practice.

1.2 Plan for the paper

Even after a century, Whittaker-Henderson smoothing remains widely used by actuaries in
many countries, notably France and the U.S.A. Other non-parametric smoothing method
have emerged, in particular spline-based methods (Reinsch 1967), which became even more
popular after the introduction of P-Splines smoothing (Eilers and Marx 1996). When used
on evenly-spaced discrete observations, this last method and WH smoothing are actually very
similar. Indeed, they both balance a fidelity criterion with a smoothness criterion, the latter
being based on difference matrices. The key difference is that P-spline smoothing uses a
low-rank basis of cubic splines while WH smoothing relies on a full-rank basis whose parameters
are directly the fitted values of the model (the associated model matrix being the identity
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matrix). This elegant simplicity has been for much in the success of WH smoothing and gives
it a special status among smoothing methods. The obvious drawback is that its large number
of parameters makes it more computationally intensive than low-rank based smoothers. For an
overview of alternative smoothers, the interested reader may find Chapter 5 of Wood (2006)
interesting.

Whittaker-Henderson smoothing was first introduced as an empirical method and an alternative
to weighted average or polynomial regression. While the statistical theory about smoothing
methods has had a lot of interesting development, notably within the framework of generalized
additive models (Hastie and Tibshirani 1990), this has not fundamentally changed the way
actuaries view Whittaker-Henderson smoothing. The aim of this paper is to bridge the gap
between this empirical view of Whittaker-Henderson smoothing and the recent statistical theory
about non-parametric smoothing methods. To do so, we reframe Whittaker-Henderson within
a modern statistical framework, which allows us to tackle 6 operational questions that arise
from the use of this method, each of which being covered in a dedicated Section.

1.2.1 How to measure uncertainty in smoothing results?

We propose to measure the uncertainty in smoothing results based on the available observation
volume. In a Frequentist approach, the estimator associated with WH smoothing is biased,
which prevents the construction of unbiased finite-size sample confidence intervals. However,
smoothing may under some conditions be naturally interpreted in a Bayesian framework,
allowing the construction of credible intervals. The connection between Whittaker-Henderson
smoothing and Bayesian approaches had already been hinted by Whittaker himself who referred
to the smoothness criterion as the logarithm of an antecedent probability (Whittaker and
Robinson 1924). This connection was latter identified by Kimeldorf and Jones (1967) and made
more explicit by Taylor (1992).

1.2.2 Which observation and weight vectors to use?

For the Bayesian interpretation of Whittaker-Henderson smoothing to hold, it needs to be
applied to a vector y of independent observations with known variances and a vector of weights
w containing the inverses of those variances. In the framework of duration models and under the
assumption of piecewise constant transition intensities, we show that the maximum likelihood
estimator of crude rates provides vectors (y, w) that asymptotically satisfies those conditions.

1.2.3 How to improve the accuracy of smoothing with limited data volume?

The previous theoretical framework relies on a 2-step procedure where a crude rates estimator
is first derived, which proves asymptotically normally distributed, and Whittaker-Henderson
smoothing is then applied to this estimator rather than to the original data. This approach
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however is not well founded in practical situations where the available data volume is limited.
We propose a generalization of Whittaker-Henderson smoothing where this 2-step approach is
replaced by the maximization of a penalized log-likelihood involving the aggregated event and
exposure counts directly. This maximization is carried out by Newton method. We compare
those two approaches using several simulated datasets whose size and characteristics are close to
those of real actuarial datasets and show that the normal approximation in the 2-step method
sometimes cause significant bias in the results.

1.2.4 How to choose the smoothing parameter(s)?

We then address the crucial choice of the smoothing parameter λ. For many years, it has been
left to the hand of the actuary, using graphical validation. Giesecke and Center (1981) sets
the smoothing parameter so that the variance in smoothing results correspond to the average
variance for a Chi-square statistic but consider the associated degrees of freedom to be n− q,
neglecting the reduction in effective dimension caused by the smoothness criterion. Brooks et al.
(1988) uses the global cross-validation criteria introduced by Wahba (1980). However, as shown
in Wood (2011), this criteria may sometimes lead to severe under-smoothing. We propose
instead to rely on the maximization of a marginal likelihood function, an approach proposed
by Patterson H. D. (1971) and first used for smoothing parameter selection by Anderssen and
Bloomfield (1974). It fits nicely in the Bayesian framework previously introduced and possess
good finite-size sample properties as shown by Reiss and Todd Ogden (2009). Maximization of
the marginal likelihood function relies on the optimization methods of Brent (1973) and John
A. Nelder and Mead (1965), employed respectively in the one-dimensional and two-dimensional
case. These methods are implemented in the optimize and optim functions in the stats
library of the statistical programming language R. In the context of the proposed generalization
of smoothing, where solving likelihood equations and selecting the smoothing parameter are
performed through nested iterations, we compare the precision and computational time of two
strategies called outer iteration and performance iteration, the latter approach having been
introduced by Gu (1992) as a faster alternative to the former. These strategies differ in the
order in which the iterations are nested, and we demonstrate that the latter approach indeed
significantly reduces computation time at the cost of negligible loss of precision.

1.2.5 How to improve smoothing performance with a large number of data points?

We propose a practical solution to alleviate the computational burden when the number of
observations - and thus parameters - is substantial. This situation is common in practice,
especially for two-dimensional tables used in the modelling of disability and long-term care
risks. To address this issue, an eigendecomposition of the one-dimensional penalization matrices
involved in smoothing is used. This decomposition provides a new interpretation of smoothing
and opens the door to the use of a rank reduction method to reduce the number of parameters
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and consequently the computational time, while incurring minimal loss of precision. This
approach is inspired by Wood (2020) (p. 311).

1.2.6 How to extrapolate smoothing results?

Finally, we cover the extrapolation of smoothing results. The fact that results from models
such as WH smoothing or P-splines smoothing may, as is the case for parametric models,
be naturally extrapolated beyond the range of the initial data is frequently overlooked by
actuaries. Indeed, the literature on this issue is sparse and focused on forecasting mortality
rates for mortality modelling. Currie, Durban, and Eilers (2004) uses P-splines to fit and
forecast mortality rates by treating the extrapolated positions as 0-weight observations. In a
valuable contribution, Carballo, Durban, and Lee (2021) shows that while this solution works
well in one-dimensional case, in the two-dimensional case adding 0-weight observations alter
the results compared to working with the initial observations alone. To remediate this issue,
the authors enforce constraints to maintain the values that would have been obtained using the
initial observations alone. However, the confidence intervals given in Carballo, Durban, and
Lee (2021) for the extrapolation of the smoothing do not account for the innovation error which
means it implicitly assumes that, while the underlying law of the observations has some degree
of wigglyness in the range of the initial data, it is perfectly smooth outside this range. We
provide a refined expression for credible intervals that also accounts for the innovation error.

2 How to measure uncertainty in smoothing results?

The explicit solution given by Equation 3 indicates that E(ŷ) = (W + Pλ)−1WE(y) ̸= E(y)
when λ ̸= 0. This implies that penalization introduces a smoothing bias, which prevents the
construction of a finite-size sample confidence interval centered on E(y). Therefore, in this
Section, we turn to a Bayesian approach where smoothing can furthermore be interpreted more
naturally.

2.1 Maximum a posteriori estimate

Let us suppose that y|θ ∼ N (θ, W −) and θ ∼ N (0, P −
λ ). The Bayes formula allows us to

express the posterior likelihood f(θ|y) associated with these choices in the following form:

f(θ|y) ∝ f(y|θ)f(θ) ∝ exp
(
−1

2
[
(y− θ)T W (y− θ) + θT Pλθ

])
.

Hence the mode of the posterior distribution, θ̂ = argmax
θ

[f(θ|y)], also known as the maximum

a posteriori (MAP) estimate, coincides with the solution ŷ from Equation 2, whose explicit
form is given by Equation 3.
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2.2 Posterior distribution of θ|y

A second-order Taylor expansion of the log-posterior likelihood around ŷ = θ̂ gives us:

ln f(θ|y) = ln f(θ̂|y) + ∂ ln f(θ|y)
∂θ

∣∣∣∣T
θ=θ̂

(θ − θ̂) + 1
2(θ − θ̂)T ∂2 ln f(θ|y)

∂θ∂θT

∣∣∣∣∣
θ=θ̂

(θ − θ̂) (4)

where ∂ ln f(θ|y)
∂θ

∣∣∣∣
θ=θ̂

= 0 and ∂2 ln f(θ|y)
∂θ∂θT

∣∣∣∣∣
θ=θ̂

= −(W + Pλ).

As this last derivative no longer depends on θ, higher-order derivatives beyond two are all zero.
The Taylor expansion allows for an exact computation of ln f(θ|y). By substituting the result
back into Equation 4, we obtain:

f(θ|y) ∝ exp
[
ln f(θ̂|y)− 1

2(θ − θ̂)T (W + Pλ)(θ − θ̂)
]

∝ exp
[
−1

2(θ − θ̂)T (W + Pλ)(θ − θ̂)
]

which can immediately be recognized as the density of the N (θ̂, (W + Pλ)−1) distribution.

2.3 Consequence for Whittaker-Henderson smoothing

The assumption θ ∼ N (0, P −
λ ) corresponds to a simple Bayesian formalization of the use of the

smoothness criterion. It reflects an (improper) prior belief of the modeller about the underlying
distribution of the observation vector y.

The use of Whittaker-Henderson smoothing in the Bayesian framework and the construction of
credible intervals are conditioned on the validity of the assumption y|θ ∼ N (θ, W −), i.e. the
components of the observation vector should be independent and have known variances. In
addition, the weight vector w may not be chosen empirically but should contain the inverses of
these variances. Under these assumptions, 100(1− α)% credible intervals for smoothing can be
constructed and take the form:

E(y)|y ∈
[
ŷ± Φ−1

(
1− α

2

)√
diag {(W + Pλ)−1}

]
(5)

where ŷ = (W + Pλ)−1W y and Φ denotes the cumulative distribution function of the standard
normal distribution. According to Marra and Wood (2012), these credible intervals provide
satisfactory coverage of the corresponding Frequentist confidence intervals and may therefore
be used as practical substitutes.
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3 Which observation and weight vectors to use?

Section 2 highlighted the need to apply the Whittaker-Henderson smoothing to independent
observation vectors y and to weight vectors w corresponding to the inverses of the variances of
the components of y in order to obtain a measure of uncertainty in the results. In this Section,
we propose, within the framework of duration models used for constructing experience tables
for life insurance risks, vectors y and w that satisfy these conditions.

3.1 Duration models framework: one-dimensional case

Consider the observation of m individuals in a longitudinal study subject to the phenomena of
left truncation and right censoring. Suppose one wants to estimate a distribution that depends
on only one continuous explanatory variable, denoted by x. For example, one may think of
a mortality distribution with the explanatory variable of interest x representing age. Such a
distribution is fully characterized by one of the following quantities:

• the cumulative distribution function F (x) or its complement, the survival function
S(x) = 1− F (x),
• the associated probability density function f(x) = − d

dxS(x),
• the instantaneous hazard function µ(x) = − d

dx ln S(x).

Suppose that the considered distribution depends on a vector of parameters θ that one wants
to estimate using maximum likelihood. The likelihood associated with the observation of the
individuals can be written as follows:

L(θ) =
m∏

i=1

[
f(xi + ti, θ)

S(xi, θ)

]δi
[

S(xi + ti, θ)
S(xi, θ)

]1−δi

(6)

where xi represents the age at the start of observation, ti represents the observation duration,
i.e., the time elapsed between the starting and ending dates of observation, and δi is the
indicator of event observation, which takes the value 1 if the event of interest is observed and 0
if the observation is censored. We will not go into the details of how these three quantities
are derived, however they should take into account individual-specific information such as the
subscription date, lapse date if applicable, as well as the global characteristics of the product
such as the presence of a waiting period or medical selection phenomenon, and the choice of a
restricted observation period due to delays in the reporting of event of interests. These factors
typically lead to a narrower observation period than the actual period where individuals are
present in the portfolio. The various quantities introduced above are related by the following
relationships:

S(x) = exp

 x∫
u=0

µ(u)du

 and f(x) = µ(x)S(x).
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The log-likelihood associated with Equation 6 can be rewritten using only the instantaneous
hazard function (also known as force of mortality in the case of the death risk):

ℓ(θ) =
m∑

i=1

δi ln µ(xi + ti, θ)−
ti∫

u=0

µ(xi + u, θ)du

 (7)

While it is possible to base model estimation on direct maximisation of Equation 7, this
approach does not scale well with the number of individuals m and requires the approximation
of the integral through quadrature, except for some simple parametric models. We instead
discretize the problem by assuming that the mortality rate is piecewise constant over one-
year intervals between two integer ages or more formally µ(x + ϵ) = µ(x) for all x ∈ N and
ϵ ∈ [0, 1[. The advantages of this discretization are underlined for example in Gschlössl,
Schoenmaekers, and Denuit (2011) but the idea goes back to at least Hoem (1971). Let us
further note that, if 1 denotes the indicator function, then for any xmin ≤ a < xmax, we have∑xmax

x=xmin 1(x ≤ a < x + 1) = 1, where xmin = min(x) and xmax = max(x). Equation 7 may
therefore be rewritten as:

ℓ(θ) =
m∑

i=1

[
xmax∑

x=xmin

δi1(x ≤ xi + ti < x + 1) ln µ(xi + ti, θ)

−
ti∫

u=0

xmax∑
x=xmin

1(x ≤ xi + u < x + 1)µ(xi + u, θ)du

 .

The assumption of piecewise constant mortality rate implies that:

1(x ≤ xi + ti < x + 1) ln µ(xi + ti, θ) = 1(x ≤ xi + ti < x + 1) ln µ(x, θ) and
1(x ≤ xi + u < x + 1)µ(xi + u, θ) = 1(x ≤ xi + u < x + 1) ln µ(x, θ).

It is then possible to interchange the two summations to obtain the following expressions:

ℓ(θ) =
xmax∑

x=xmin

[ln µ(x, θ)d(x)− µ(x, θ)ec(x)] where

d(x) =
m∑

i=1
δi1(x ≤ xi + ti < x + 1) and

ec(x) =
m∑

i=1

ti∫
u=0

1(x ≤ xi + u < x + 1)du =
m∑

i=1
[min(ti, x− xi + 1)−max(0, x− xi)]+

by denoting a+ = max(a, 0), where d(x) and ec(x) correspond to the number of observed deaths
between ages x and x + 1 and the sum of observation durations of individuals between these
ages, respectively (the latter quantity is also known as central exposure to risk).

10



3.2 Extension to the two-dimensional case

The extension of the proposed approach to the two-dimensional framework requires only minor
adjustments to the previous reasoning. Let zmin = min(z) and zmax = max(z). The piecewise
constant assumption for the mortality rate needs to be extended to the second dimension.
Formally, one now assumes that µ(x + ϵ, z + ξ) = µ(x, z) for all pairs x, z ∈ N and ϵ, ξ ∈ [0, 1[.
The sums involving the variable x are then replaced by double sums considering all combinations
of x and z. The log-likelihood is given by:

ℓ(θ) =
xmax∑

x=xmin

zmax∑
z=zmin

[ln µ(x, z, θ)d(x, z)− µ(x, z, θ)ec(x, z)] where

d(x, z) =
m∑

i=1
δi1(x ≤ xi + ti < x + 1)1(z ≤ zi + ti < z + 1) and

ec(x, z) =
m∑

i=1

ti∫
u=0

1(x ≤ xi + u < x + 1)1(z ≤ zi + u < z + 1)du

=
m∑

i=1
[min(ti, x + 1− xi, z + 1− zi)−max(0, x− xi, z − zi)]+

3.3 Likelihood equations

The choice µ(θ) = exp(θ), which includes one parameter per observation, allows us to relate
to the Whittaker-Henderson smoothing. Using the exponential function ensures positive values
for the estimated mortality rate. The expressions of the likelihood in the one-dimensional or
two-dimensional case can then be written in a common vectorized form:

ℓ(θ) = θT d− exp(θ)T ec (8)

where d and ec represent the vectors of observed deaths and exposures to risk, respectively.
The derivatives of the likelihood function for this model are given by:

∂ℓ

∂θ
= [d− exp(θ)⊙ ec] and ∂2ℓ

∂θ∂θT
= −Diag(exp(θ)⊙ ec). (9)

Note that these likelihood equations are exactly what we would obtain by assuming that the
observed numbers of deaths, conditional on the observed exposures to risk ec, follow Poisson
distributions with parameters µ(θ)⊙ec. The model presented here has many similarities with a
Poisson GLM (John Ashworth Nelder and Wedderburn 1972) although the initial assumptions
are not the same for both models.

These likelihood equations have an explicit solution given by θ̂ = ln(d/ec). This model, which
treats each age independently, is known as the crude rates estimator. The properties of the
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maximum likelihood estimator imply that asymptotically θ̂ ∼ N (θ, W −1
θ̂

), where Wθ̂ is a
diagonal matrix with elements exp(θ̂) ⊙ ec = (d/ec) ⊙ ec = d. It should be noted that the
asymptotic nature and hence the validity of this approximation are conditioned by the number
of individuals m in the portfolio and not the size n of the aggregated vectors d and ec.

Thus, we have shown that in the framework of duration models, using the crude rates estimator,
asymptotically ln(d/ec) ∼ N (ln µ, W −1), where W = Diag(d). This justifies applying the
Whittaker-Henderson smoothing to the observation vector y = ln(d/ec) and weight vector
w = d. According to the results from Section 2, we obtain the following associated credible
intervals:

ln µ|d, ec ∈
[
θ̂ ± Φ−1

(
1− α

2

)√
diag {(Diag(d) + Pλ)−1}

]

where θ̂ = (Diag(d) + Pλ)−1Diag(d)[ln(d) − ln ec]. Confidence intervals for µ may then be
obtained directly by exponentiating the above expression.

4 How to improve the accuracy of smoothing with limited data
volume?

4.1 Generalized Whittaker-Henderson smoothing

The approach described in Section 3.3 relies on the asymptotic properties of the maximum
likelihood estimator, which provide a theoretical framework for applying smoothing using the
crude rates estimator. However, the validity of these asymptotic properties in practice, where
we have a limited number of observations, is questionable, as will be shown in this Section.

Another approach is to apply the Bayesian reasoning presented in Section 2 directly to the
likelihood of Equation 8. Let us assume again that θ ∼ N (0, P −

λ ) and write, using Bayes’
theorem:

f(θ|d, ec) ∝ f(d, ec|θ)f(θ) ∝ exp
[
ℓ(θ)− 1

2θT Pλθ

]
.

The quantity ℓP (θ) = ℓ(θ)− 1
2(θ)T Pλ(θ) will be referred to as the penalized likelihood. The

maximum a posteriori θ̂ = argmax
θ

f(θ|d, ec) corresponds, once again, to the maximum of the

penalized likelihood θ̃ = argmax
θ

ℓP (θ).

A second-order Taylor expansion of the posterior log-likelihood around θ̂ yields:

ln f(θ|d, ec) ≃ ln f(θ̂|d, ec) + ∂ ln f(θ|d, ec)
∂θ

∣∣∣∣T
θ=θ̂

(θ − θ̂) + 1
2(θ − θ̂)T ∂2 ln f(θ|d, ec)

∂θ∂θT

∣∣∣∣∣
θ=θ̂

(θ − θ̂)

(10)
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with ∂ ln f(θ|d, ec)
∂θ

∣∣∣∣
θ=θ̂

= 0 and ∂2 ln f(θ|d, ec)
∂θ∂θT

∣∣∣∣∣
θ=θ̂

= −(Wθ̂ + Pλ).

where Wθ̂ = Diag(exp(θ̂)⊙ ec).

Unlike the normal case studied in Section 2, the higher-order derivatives of the posterior
log-likelihood are not zero, and the Equation 10 represents an approximation of the posterior
log-likelihood known as the Laplace approximation, which becomes more accurate as the
number of observations increases. Asymptotically:

f(θ|d, ec) ∝ exp
[
ℓP (θ̂)− 1

2(θ − θ̂)T (Wθ̂ + Pλ)(θ − θ̂)
]

∝ exp
[
−1

2(θ − θ̂)T (Wθ̂ + Pλ)(θ − θ̂)
]

and the posterior distribution is thus equivalent to N (θ̂, (Wθ̂ + Pλ)−1). Since θ = ln µ, this
result allows for the construction of 100(1− α)% asymptotic credible intervals for ln µ|d, ec, of
the form:

ln µ|d, ec ∈
[
θ̂ ± Φ−1

(
1− α

2

)√
diag

{
(Wθ̂ + Pλ)−1}] .

Unlike Equation 9, it is not possible here to explicitly determine the maximum of the pe-
nalized likelihood θ̂. However, the Newton algorithm allows for a numerical solution of
the likelihood equations by constructing a sequence of estimators (θk)k≥0 that converges to
θ̂ = argmax

θ
ℓP (θ).

These estimators are recursively defined as:

θk+1 = θk −

 ∂2ℓP

∂θ2

∣∣∣∣∣
θ=θk

−1
∂ℓP

∂θ

∣∣∣∣
θ=θk

= θk + (Wk + Pλ)−1(d− exp(θk)⊙ ec − Pλθk)]
= (Wk + Pλ)−1Wkzk

by denoting Wk = Diag(exp(θk)⊙ ec) and zk = θk + W −1
k [d− exp(θk)⊙ ec]. An interesting

initialization choice for the algorithm starts with the crude rates estimator, setting θ0 =
ln(d/ec), from which we derive W0 = Diag(d) and z0 = ln(d/ec).

With this choice, the result of the first iteration θ1 = (W0 + Pλ)−1W0z0 coincides with the
solution of the original WH smoothing, while subsequent iterations may be seen as successive
applications of the original smoothing to pseudo-observation vectors zk and associated weight
vectors wk = diag(Wk), adjusted at each iteration. The proposed approach can thus be
considered as an iterative variant of the original Whittaker-Henderson smoothing, where the
choice of observation and weight vectors is refined at each step. The connection between
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the approach presented in this Section and the original WH smoothing is very similar to the
one between linear model and generalized linear models. Therefore, we refer to this approach
as generalized Whittaker-Henderson smoothing through the rest of the paper. Algorithm 1
provides an implementation of this generalization of the initial WH smoothing.

4.2 Impact of the normal approximation made by the original
Whittaker-Henderson smoothing

We have shown that the original Whittaker-Henderson smoothing can be interpreted as an
approximation of a penalized likelihood maximization problem, based on a crude rate estimator
which has an asymptotically normal distribution. To assess the impact of this approximation
in practice, we rely on 6 simulated datasets that capture the characteristics of real biometric
risks :

• The first 3 datasets mimic the behaviour of three annuity portfolios with 20,000, 100,000
and 500,000 policyholders respectively. The only covariate considered in this setting is
age.

• The subsequent 3 datasets mimic the behaviour of three annuity portfolios of policyholders
in a long-term care situation, with 1,000, 5,000, and 25,000 dependent policyholders
respectively. Modelling of long-term care typically relies on a multi-state model with
3 states (active, disabled and dead) and in this case we only focus on the transition
between the disabled and dead states. We consider both age and time already spent in
the long-term care situation as relevant covariates in this setting.

Those 6 datasets initially consist of individual longitudinal data from which we compute
observed event counts d as well as central exposure to risk ec for each combination of discretized
explanatory variables of interest: age x for the first 3 portfolios and combinations (x, z) of age
and long-term care duration for the subsequent portfolio. Further information about how those
datasets were generated is provided in the appendices. We then apply Whittaker-Henderson
smoothing to the observation vectors y = ln(d/ec) and weight vectors w = d on one hand, or
directly to the vectors d and ec within the framework of generalized WH smoothing proposed
in Section 4 on the other hand. The parameter λ used is determined for each of the 6 portfolios
by using a method that will be presented in Section 5. For now, let us just point out that
for each portfolio, the same parameter λ, and therefore the same prior belief on the vector
θ = ln µ, is used for both approaches.

The two approaches estimate the same quantity θ = ln µ hence they may be directly compared
through their respective estimates θ̂norm and θ̂ML. Since the first estimator can be seen as an
approximate version of the second, we propose to use as error measure:

∆(θ) = ℓP (θ̂ML)− ℓP (θ)
ℓP (θ̂ML)− ℓP (θ̂∞)

(11)
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Table 1: Impact of the normal approximation associated with Whittaker smoothing on a
selection of 6 fictional insurance portfolios.

Portfolio Head count Relative error on penalized deviance
One-dimensional 20 000 7,51%
One-dimensional 100 000 0,23%
One-dimensional 500 000 0,09%
Two-dimensional 1 000 1 784,61%
Two-dimensional 5 000 122,89%
Two-dimensional 25 000 6,95%

where θ̂∞ corresponds to the parameter vector that maximizes the penalized likelihood with
an infinite penalty. It will become apparent in Section 6.2 that this choice corresponds
to the polynomial function of degree q − 1 that maximizes the likelihood. By definition,
θ̂ML = argmax

θ
ℓP (θ), and thus ∆(θ) ≥ 0 for any vector θ. Furthermore, ∆(θ̂ML) = 0 and

∆(θ̂∞) = 1. A model for which ∆(θ) > 1 can be considered as having no practical interest as,
according to the prior belief, it is less probable than a simple polynomial fit. The indicator
∆ constructed in this way allows interpreting the quality of the used approximation within
certain limits. Going forward, we make the arbitrary choice that a difference of less than 1% is
considered negligible, while a difference greater than 10% is considered prohibitive. Differences
between 1% and 10% will be interpreted in a more nuanced way.

The discrepancies between the two approaches obtained for each of the 6 portfolios studied are
presented in Table 1. These discrepancies naturally decrease with the size of the portfolio, as the
validity of the normal approximation increases. In the one-dimensional case, the discrepancy is
modest for the two largest portfolios but significant for the smallest one. In the two-dimensional
case, the discrepancy is significant for the largest portfolio and prohibitive for the two smallest
ones. This is because using the observed death vector as the weight vector introduces a bias
by overweighting observations with the highest crude rate and underweighting those with
the lowest crude rate. In light of these results, it seems appropriate to favour generalized
Whittaker-Henderson smoothing, especially since its implementation does not pose significant
practical difficulties.

5 How to choose the smoothing parameter(s)?

5.1 Impact of the smoothing parameter(s)

This Section is dedicated to the choice of the smoothing parameter λ in the one-dimensional case
or the pair λ = (λx, λz) in the two-dimensional case. Those smoothing parameters control the
relative importance of the fidelity and smoothness criterion in Equation 1. Figure 1 provides an
illustration of one-dimensional smoothing on the annuity dataset based on 100,000 policyholders
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introduced in Section 4.2, using three different values of the smoothing parameter. The effective
degrees of freedom shown in this figure is computed by summing the diagonal values of H, the
hat matrix of the model. The hat matrix satisfies ŷ = Hy and can be identified in Equation 3
as H = (W + Pλ)−1W . These effective degrees of freedom serve as a non-parametric equivalent
of the number of independent parameters in parametric models but can take non-integer values.
The concept of degrees of freedom will be further discussed in Section 6 of the paper. It
can be observed here that the result of smoothing is highly sensitive to the chosen value of
the smoothing parameter. The choice of λ = 101 leads to a highly volatile fit that largely
reproduces the sampling fluctuations present in the data. On the other hand, the choice of
λ = 107 seems too rigid to capture the underlying pattern of the data. The choice of λ = 104

appears, at first glance, as a satisfactory compromise between those two extremes.

edf : 45.45 edf :  8.03 edf :  2.18

λ = 101 λ = 104 λ = 107
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Figure 1: Whittaker-Henderson smoothing applied to a synthetic portfolio of 100,000 policy-
holders for 3 choices of the smoothing parameter. The points represent the initial
observations, the curves depict the result of the smoothing, and the shaded areas
represent the associated credibility intervals. edf refers to the effective degrees of
freedom of the model.

Figure 2 illustrates the application of smoothing to the simulated annuity dataset with 5,000
policyholders in situation of long-term care also presented in Section 4.2. Different combinations
of the two smoothing parameters in this model are used to produce the 9 plots represented in
this figure. While some combinations of smoothing parameters may be deemed implausible,
such as those associated with the choice λx = 100, it is challenging in the two-dimensional case
to determine graphically which combination of parameters is most suitable. This is why the
selection of the smoothing parameter should rather be based on the optimization of a statistical
criterion.
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Figure 2: Whittaker-Henderson smoothing applied to a synthetic portfolio of 5,000 policyholders
in long-term care situation for 9 combinations of smoothing parameters. The contour
lines and colors depict the surface of the smoothed force of mortality as a function of
the age of the policyholders and the duration in the long-term care state.

5.2 Statistical criteria for parameter selection

Statistical criteria used for the choice of smoothing parameters typically belong to one of two
major families. On one hand, there are criteria based on the minimization of the prediction
error for the model, among which the Akaike information criterion (AIC, Akaike 1973) and the
generalized cross-validation (GCV, Wahba 1980). On the other hand, it is possible to rely on
the maximisation of a marginal likelihood function. It was first introduced by Patterson H.
D. (1971) in the Gaussian case, initially under the name of restricted likelihood (REML), and
applied by Anderssen and Bloomfield (1974) for the selection of smoothing parameters. Wahba
(1985) and Kauermann (2005) show that criteria minimizing prediction error have the best
asymptotic performance, but their convergence to the optimal smoothing parameters is slower.
For finite-size samples, criteria based on the maximization of a likelihood function prove a more
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robust choice, as shown in Reiss and Todd Ogden (2009) or Wood (2011).

Figure 3 represents the values of GCV and marginal likelihood as a function of the smoothing
parameter, based on the synthetic datasets used to produce Figure 1. While the marginal
likelihood exhibits a clear maximum, GCV has two minima, one of which coincides with the
marginal likelihood maximum. The second and global minimum results in a model with nearly
45 degrees of freedom, which clearly is not a plausible choice for the underlying mortality
curve. For these reasons, we favour the marginal likelihood as the selection criterion, which also
naturally fits within the Bayesian framework introduced in Sections 2 and 4. We first discuss
smoothing parameter selection in the case of the original Whittaker-Henderson smoothing
and then turn to the generalized case introduced in Section 4, introducing two competing
approaches that are subsequently compared.
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Figure 3: Comparison in the context of one-dimensional Whittaker-Henderson smoothing of
two criteria for selecting the smoothing parameter: the Generalized Cross-Validation
(GCV) criterion and the marginal likelihood

5.3 Selection in the context of the original smoothing

Let us start from the notations and assumptions from Section 2, namely y|θ ∼ N (θ, W −)
and θ|λ ∼ N (0, P −

λ ). In a purely Bayesian approach, it would be necessary to define a
prior distribution on λ and then estimate the posterior distribution of each parameter vector
using methods such as Markov Chain Monte Carlo (see for example Gilks, Richardson, and
Spiegelhalter 1995). The empirical Bayesian approach we adopt rather seeks to find the value
of λ that maximizes the marginal likelihood:

Lm
norm(λ) = f(y|λ) =

∫
f(y, θ|λ)dθ =

∫
f(y|θ)f(θ|λ)dθ.
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This corresponds to the maximum likelihood method applied to the smoothing parameter. Let
us explicitly rewrite the expressions of f(y|θ) and f(θ|λ) introduced in Section 2:

f(y|θ) =
√
|W |+
(2π)n∗

exp
(
−1

2(y− θ)T W (y− θ)
)

f(θ|λ) =
√
|Pλ|+

(2π)p−q
exp

(
−1

2θT Pλθ

)

where |A|+ denotes the product of the non-zero eigenvalues of A, n∗ is the number of non-zero
diagonal elements of W , and q is the number of zero eigenvalues of Pλ (q = qx × qz in the
two-dimensional case). Based on the Taylor expansion used in Section 2, let us recall that:

ln f(y, θ|λ) = ln f(y, θ̂λ|λ) + 1
2(θ − θ̂λ)T (W + Pλ)(θ − θ̂λ)

which leads to:

Lm
norm(λ) =

∫
exp[ln f(y, θ|λ)]dθ

= f(y, θ̂λ|λ)
∫

exp
[
−1

2(θ − θ̂λ)T (W + Pλ)(θ − θ̂λ)
]

dθ

= fy(y|θ̂λ)fθ(θ̂λ|λ)
√

(2π)p

|W + Pλ|

=
√

|W |+|Pλ|+
(2π)n∗−q|W + Pλ|

exp
(
−1

2

[
(y− θ̂λ)T W (y− θ̂λ) + θ̂

T
λ Pλθ̂λ

])
.

The associated log-likelihood can be expressed as follows:

ℓm
norm(λ) = −1

2

[
(y− θ̂λ)T W (y− θ̂λ) + θ̂

T
λ Pλθ̂λ

− ln |W |+ − ln |Pλ|+ + ln |W + Pλ|+ (n∗ − q) ln(2π)] .

(12)

The lack of an explicit solution to Equation 12 forces us to resort to numerical methods
to find λ̂norm that maximizes ℓm

norm. The Newton algorithm could once again be employed
here and is a robust choice. This approach was notably adopted by Wood (2011). However,
explicitly calculating the derivatives of the likelihood ℓm

norm is rather difficult from an operational
perspective. Instead, we rely on the general heuristics provided by Brent (1973) and John A.
Nelder and Mead (1965), which are applicable to any sufficiently regular function. They do
not require prior computation of derivatives and are implemented in the optimize and optim
functions of the statistical programming language R.

Computing the marginal likelihood using Equation 12 requires the estimation of various
intermediate quantities, the most demanding being the estimation of θ̂λ. This estimation is
based on Equation 3 and ideally involves the inversion of the symmetric matrix W +Pλ through a

19



Cholesky decomposition. The calculation of ln |W +Pλ| is immediate for the triangular matrices
resulting from this decomposition. Note that since the matrix Pλ is a linear combination of
the matrix DT

n,qDn,q in the one-dimensional case, and the matrices Inz ⊗ DT
nx,qx

Dnx,qx and
DT

nz ,qz
Dnz ,qz ⊗ Inx in the two-dimensional case, it is only necessary to form these matrices once.

Furthermore, the calculation of ln |Pλ|+ can be efficiently performed by computing once the
eigendecomposition of the matrix DT

n,qDn,q (or the matrices DT
nx,qx

Dnx,qx and DT
nz ,qz

Dnz ,qz in
the two-dimensional case). This calculation then only requires multiplying these eigenvalues by
the corresponding element of λ and taking the logarithm. Finally, since the terms ln |W |+ and
(n∗ − q) ln(2π) do not depend on λ, they can be ignored altogether.

5.4 Selection in the generalized smoothing framework: outer iteration approach

It is possible to extend the previous approach to the framework of penalized likelihood introduced
in Section 4. The Taylor expansion used in Section 5.3 can be applied in this context and
yields:

Lm
ML(λ) =

∫
exp[ln f(d, ec, θ|λ)]dθ

≃ f(d, ec, θ̂λ|λ)
∫

exp
(
−1

2(θ − θ̂λ)T (Wθ̂λ
+ Pλ)(θ − θ̂λ)

)
dθ

≃ l(θ̂λ)fθ(θ̂λ|λ)

√√√√ (2π)p

|Wθ̂λ
+ Pλ|

≃ l(θ̂λ)

√√√√ (2π)q|Pλ|+
|Wθ̂λ

+ Pλ|
exp

(
−1

2 θ̂
T
λ Pλθ̂λ

)
.

This gives us the expression for the likelihood in this framework:

ℓm
ML(λ) ≈ l(θ̂λ)− 1

2

[
θ̂

T
λ Pλθ̂λ − ln |Pλ|+ + ln |Wθ̂λ

+ Pλ| − q ln(2π)
]

. (13)

Unlike in the normal case, the Taylor expansion does not allow for an exact calculation of the
marginal likelihood but provides an approximation known as the Laplace approximation, whose
validity depends on the number of available observations. Equation 13 does not have an explicit
solution and requires numerical resolution. The calculation of the Laplace approximation of
the marginal likelihood is done in a similar manner to Equation 12 from Section 5.3, with the
only notable difference being that the vector θ̂λ must be estimated iteratively using Algorithm
1. This leads to Algorithm 2 in the appendices for selecting the smoothing parameter which
includes two nested iterative calculations: the calculation of θ̂λ, for a fixed λ, using the Newton
algorithm, and the search for the maximum of ℓm

ML using heuristics such as the Brent and
Nelder-Mead algorithms in the one-dimensional and two-dimensional case, respectively. Since
the selection of λ corresponds to the outer iterative loop here, and to distinguish it from the
approach introduced in the next Section, we will refer to it as the outer iteration approach.
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5.5 Selection in the generalized smoothing framework: performance iteration
approach

An alternative to the approach developed in Section 5.4 is to start from Algorithm 1 and
notice that at each step of the algorithm, the equations solved coincide with those obtained
by assuming that zk|θ ∼ N (θ, W −1

k ) and θ ∼ N (0, P −
λ ). Therefore, it is possible to rely on

the methodology proposed in Section 5.3 and numerically estimate, at the beginning of each
iteration of Algorithm 1, the smoothing parameter that maximizes the marginal likelihood
ℓm

norm in which y would be replaced by zk and W by Wk. This is just what Algorithm 3 in the
appendix proposes. A justification for this approach is given by (Wood 2006, p149). From
a practical point of view, this approach conceptually reverses the nesting order of the two
types of iterations and may, in some cases, provide a considerable reduction in computation
time. It was hence introduced by Gu (1992) as the performance (oriented) iteration approach.
However, unlike the outer iteration approach, the convergence of the performance iteration
approach cannot be guaranteed. Indeed, the penalized likelihood calculated in Algorithm 3
is not directly comparable between iterations because it is based on a different smoothing
parameter and, therefore, a different prior. There are situations in which this algorithm might
not converge, although for the optimization problem addressed in this paper convergence was
always achieved.

5.6 Comparison of outer iteration and performance iteration approaches

In Sections 5.4 and 5.5, we introduced two alternatives for the selection of parameters in
generalized Whittaker-Henderson smoothing. This Section aims to study the consequences of
choosing one approach over the other in terms of both result accuracy and computational time.
While the objective of Section 4.2 was to highlight a bias in the asymptotic approximation
associated with the original Whittaker-Henderson smoothing for small portfolios, here we aim
to measure these impacts more precisely. We limit our analysis to intermediate-sized portfolios
as presented in Section 4.2 (i.e., 100,000 rows for the one-dimensional case and 5,000 rows for
the two-dimensional case), however we use 100 replicates of each portfolio, generated from the
same mortality and censoring laws, to increase the robustness of our analysis.

The outer iteration and performance iteration approaches can be directly compared based
on the selected parameter λ and using the marginal likelihood ℓm

ML(λ). We define the error
criterion in a similar way to Section 4.2, :

∆(λ) = ℓm
ML(λ̂outer)− ℓm

ML(λ)
ℓm

ML(λ̂outer)− ℓm
ML(∞)

(14)

where ℓm
ML(∞) corresponds to the approximation of the marginal likelihood associated with

the choice of an infinite smoothing parameter. Again, the defined ∆ satisfies the properties
∆(λouter) = 0 and ∆(∞) = 1. This criterion is interpreted in the same way as the one given by
Equation 11.
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Figure 4 represents the empirical distribution of the difference between the outer iteration and
performance iteration approaches, and Figure 5 represents the distribution of the associated
computation time for each approach. The use of the performance iteration approach results
in a difference below 1% for the 100 simulated datasets, both in the one-dimensional and
two-dimensional case. The associated computation time is reduced by a factor of 2 in the
one-dimensional case and nearly 4 in the two-dimensional case. Considering the significant
computation times involved in the two-dimensional case, the use of the performance iteration
approach therefore presents a real advantage from an operational perspective.
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Figure 4: Distribution of the difference between the two presented approaches for selecting
the smoothing parameter, for 100 simulated portfolios, in the one-dimensional and
two-dimensional cases.
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Figure 5: Distribution of the computation time associated with the two presented approaches
for selecting the smoothing parameter, for 100 simulated portfolios, in the one-
dimensional and two-dimensional cases.
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6 How to improve smoothing performances with a large number of
data points?

6.1 Motivation

Whittaker-Henderson smoothing is a full-rank smoothing as it contains as many parameters as
there are observation points. This characteristic allows it to faithfully reproduce any input
signal as long as a sufficient number of observations are supplied. More formally, the estimator
associated with smoothing is asymptotically unbiased since:

E(ŷ) = (W + Pλ)−1WE(y) →
m→∞

E(y)

where m represents the number of observed individuals on which the matrix W depends. The
downside is that WH smoothing may become impractical in presence of many observations
points n. Indeed, the algorithms presented in Section 5 require the inversion of the n × n
matrix W + Pλ, an operation with a time complexity of O(n3), which needs to be repeated at
each iteration of the algorithm, regardless of the chosen method.

For biometric risks that depend solely on age, discretized on an annual basis, the number of
observations rarely exceeds 100, and computation time is not a significant concern. However,
in the two-dimensional case, the number of observations can take much larger values in several
practical cases, including:

• For the disability risk in France, it is necessary to construct disability survival tables for
entry ages ranging from 18 to 61 and exit ages ranging from the entry age to 62. This
represents [(62− 18)× (62− 18 + 1)/2 = 990 observations.

• Also for the disability risk in France, it is necessary to construct transition tables from
incapacity to disability for entry ages ranging from 18 to 67 and monthly incapacity
durations ranging from 0 to 36 months. This represents (67 − 18) × (36 − 0) = 1, 764
observations.

• For the long-term care risk, as the coverage is lifelong, it is necessary to construct tables for
all ages and years spent in long-term care encountered in the data. Assuming observation
ages ranging from 50 to 110 and durations ranging from 0 to 20 years, this represents
(110− 50)× (20− 0) = 1, 200 observations.

The practical applications described above thus require computation times of at least several
minutes for each smoothing application. When such smoothing is used repeatedly, for example
when combined with simulations, reducing the computation time becomes a vital goal.
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6.2 Smoothing and eigendecomposition

The eigendecomposition of the penalization matrix is key to a better understanding of smoothing
and allows for an approximation of the smoothing problem with p < n parameters. Let us
consider the one-dimensional case and write the decomposition for the symmetric matrix
DT

n,qDn,q. It takes the form DT
n,qDn,q = UΣUT , where Σ is a diagonal matrix containing the

eigenvalues of DT
n,qDn,q and U is an orthogonal matrix such that UT U = UUT = In. Let us

perform the reparameterization β = UT θ ⇔ θ = Uβ. The smoothness criterion becomes:

θT Pλθ = (Uβ)T Pλ(Uβ) = λβT UT UΣUT Uβ = λβT Σβ.

and Equation 2 may be rewritten as:

ŷ = U β̂ where β̂ = argmin
β

{
(y− Uβ)T W (y− Uβ) + λβT Σβ

}
. (15)

In the original formulation of smoothing, the parameters directly corresponds to the smoothed
values. With the new parameterization of Equation 15, β can be interpreted as a vector of
coordinates in the basis of eigenvectors of Pλ, providing a decomposition of the signal into
components that are more or less smooth according to the difference matrix. Figure 6 represents
8 of the eigenvectors associated with q = 2 for a basis of size n = 74, which corresponds to the
number of observations in Figure 1. The eigenvalues associated with the first q eigenvalues are
zero. This can easily be seen by noting that Dn,q is a matrix of dimensions (n− q)× n and of
rank n− q.

By using the fact that U−1 = UT and making the connection with Equation 3, we obtain the
explicit solution:

ŷ = U(UT WU + Sλ)−1UT Wy where Sλ = λΣ (16)

In order to interpret Equation 16, let us consider the special case where all weights are equal
to 1 and therefore:

ŷ = U(UT U + λΣ)−1UT y = U(In + λΣ)−1UT y

The transformation from y to ŷ can then be seen as a 3-step process, reading the equation
from right to left:

1. Decomposition of the signal y in the basis of eigenvectors through the left multiplication
by UT .

2. Attenuation of the signal components based on the eigenvalues associated with these
components. If we denote s = diag(Σ), then (In + λΣ)−1 = Diag[1/(1 + λs)]. After
the left multiplication by (In + λΣ)−1, each component is hence divided by a factor
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Figure 6: Graphical representation of a subset of columns from a basis of eigenvectors associated
with n = 74 and q = 2 in the one-dimensional case. The 8 vectors in the subset are
displayed in order of increasing penalization.

1 + λs ≥ 1. This coefficient increases linearly with λ, but at different rates depending of
the associated eigenvalue.

3. Recomposition of the attenuated signal in the canonical basis through the left multiplica-
tion by U .

In the presence of non-unit weights, things are not as straightforward since UT WU is no longer
a diagonal matrix. However, it is still possible to interpret the effect of smoothing thanks to
the matrix F = (UT WU + Sλ)−1UT WU . Indeed:

UT ŷ = UT U θ̂ = θ̂ = (UT WU + Sλ)−1UT Wy = (UT WU + Sλ)−1UT WUUT y = FUT y

Since the vectors UT y and β̂ = UT ŷ represent the coordinates of y and ŷ in the basis of
eigenvectors of DT

n,qDn,q, F corresponds to a coordinate transformation matrix playing a
similar role for the parameters as the hat matrix H = U(UT WU + Sλ)−1UT W does for the
observations. The diagonal values of F can be interpreted as the effective degrees of freedom
associated with each eigenvector after smoothing. It can be verified that:

tr(F ) = tr[(UT WU + Sλ)−1UT WU ] = tr[U(UT WU + Sλ)−1UT W ] = tr(H)
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which means that the sum of the effective degrees of freedom remains the same whether it is
counted per observation or per parameter.

Figure 7 represents the effective degrees of freedom per parameter in the previous illustration
of smoothing. The first q eigenvectors are never penalized, so their effective degrees of freedom
are always equal to 1, regardless of the smoothing parameter used. The other eigenvectors have
strictly decreasing effective degrees of freedom with λ. These degrees of freedom are generally
decreasing with increasing eigenvalues of DT

n,qDn,q, although in the presence of non-unit weights
and for small values of λ, this may not always be the case.
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Figure 7: Distribution of residual degrees of freedom per eigenvector after applying the
Whittaker-Henderson smoothing, in the one-dimensional case, for different values of
the smoothing parameter.

6.3 Extension to the two-dimensional case

In the two-dimensional case, we have Pλ = λxInz ⊗ DT
nx,qx

Dnx,qx + λzDT
nz ,qz

Dnz ,qz ⊗ Inx .
Similar to the one-dimensional case, we can perform the eigendecomposition of the matrices
DT

nx,qx
Dnx,qx and DT

nz ,qz
Dnz ,qz , yielding DT

nx,qx
Dnx,qx = UxΣxUT

x and DT
nz ,qz

Dnz ,qz = UzΣzUT
z .

Let us define U = Uz ⊗ Ux and perform the reparameterization β = UT θ ⇔ θ = Uβ. By
leveraging the properties of the Kronecker product, we can rewrite the smoothness criterion in
a simplified form:

θT Pλθ = (Uβ)T Pλ(Uβ) = βT (λxInz ⊗ Σx + λzΣz ⊗ Inx)β.

This leads to an alternative formulation of the optimization problem:

ŷ = U β̂ where β̂ = argmin
β

{
(y− Uβ)T W (y− Uβ) + λβT (λxInz ⊗ Σx + λzΣz ⊗ Inx)β

}
.

(17)
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The solution to the smoothing problem, as in the one-dimensional case, is given by:

ŷ = U(UT WU + Sλ)−1UT Wy where Sλ = λxInz ⊗ Σx + λzΣz ⊗ Inx . (18)

Figure 8 represents the residual degrees of freedom associated with each parameter after apply-
ing the smoothing, in the two-dimensional case, for different combinations of the smoothing
parameters. Similar to the one-dimensional case, these degrees of freedom decrease as the
smoothing parameters increase and are particularly small for higher eigenvalues. The eigen-
vectors are sorted in ascending order of eigenvalues for each one-dimensional penalty matrix
DT

nx,qx
Dnx,qx and DT

nz ,qz
Dnz ,qz .
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Figure 8: Distribution of residual degrees of freedom of the model by eigenvector after applying
Whittaker-Henderson smoothing in the two-dimensional case, for different combina-
tions of smoothing parameters.
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6.4 Eigendecomposition and rank reduction

In addition to providing a more intuitive interpretation of the smoothing effect, the eigen-
decomposition of the penalty matrix is key to reducing the dimension of the optimization
problem associated with it. Figures 7 and 8 show that eigenvectors corresponding to higher
eigenvalues are more severely penalized by the smoothing, to the extent that a large majority
of the eigenvectors represented in these figures have residual degrees of freedom very close
to 0 for most values of λ. This suggests that if we simply remove the parameters associated
with these eigenvectors from the model, the results of smoothing would hardly be affected.
We propose setting the coordinates associated with the n− p largest eigenvectors to 0, thus
retaining only a reduced number p < n of parameters to estimate. In the one-dimensional case,
this translates to replacing ŷ by the approximate estimator:

ŷp = Up(UT
p WUp + λΣp)−1UT

p Wy (19)

where the matrix Up contains the first p columns of U , and Σp contains the rows and columns
associated with the p smallest eigenvalues of Σ. In the two-dimensional case, we use:

ŷpx,pz = Upx,pz (UT
px,pz

WUpx,pz + λxIpz ⊗ Σx,px + λzΣz,pz ⊗ Ipx)−1UT
px,pz

Wy (20)

where Upx,pz = Uz,pz ⊗ Ux,px , Ux,px (resp. Uz,pz ) contains the first px (resp. pz) columns of Ux

(resp. Uz), and Σx,px (resp. Σz,pz ) contains the rows and columns associated with the px (resp.
pz) smallest eigenvalues of Σx (resp. Σz).

In the two-dimensional case, there are several acceptable strategies for choosing the pair
(px, pz). One simple solution is to set an upper bound pmax on the number of parameters to be
retained and choose px and pz proportionally to nx and nz. Let κ =

√
pmax/nxnz, and define

px = ⌊min(κ, 1)nx⌋ and pz = ⌊min(κ, 1)nz⌋. By construction, the pair (px, pz) ∈ N2 defined
this way satisfies the condition px × pz ≤ κ2nxnz = pmax. Other strategies may prove more
efficient. Indeed, if the underlying law is known to have greater smoothness in one dimension
compared to the other, retaining a smaller proportion of components associated with that
dimension is advisable.

The results presented in this Section can be directly extended to generalized Whittaker-
Henderson smoothing by replacing y with zk and W with Wk in Equations 19 and 20.

6.5 Impact of rank reduction method

Here, we aim to assess the impact of using the rank-reduced estimators defined in Section 6.4 on
the smoothing results and computation time. To do so, we start from the 100 replicate datasets
(one-dimensional and two-dimensional) used in Section 5.6. The approach from Section 6.4
may be used for the selection of the smoothing parameter as well as for the final smoothing
step. In what follows however, once the optimal parameter is chosen, we use the estimator ŷ
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(or θ̂) associated with the full-rank problem in Equation 3 or Algorithm 1 in order to make
it easier to compare it to the full-rank method. We may therefore use the error measure
defined by Equation 14 to quantify the impact of the rank reduction method on the smoothing
results. The quantity ℓm

ML(λ) involved in this formula will be computed based on the values of λ
obtained from the performance iteration approach for different values of the number of retained
components p. In addition, the quantities ℓm

ML(λouter) and ℓm
ML(∞) appearing in the expression

of the criterion will always be calculated using the outer iteration method and retaining all
components in order to capture potential cross-effects between the retained approach and the
use of rank reduction.
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Figure 9: Distribution of the discrepancies induced by the proposed rank reduction method,
depending on the number of retained eigenvectors during the selection of the smoothing
parameter, in the one-dimensional and two-dimensional cases.

Figure 9 represents the impact of rank reduction on the smoothing results as a function of
the number of retained components. In the one-dimensional case, reducing the number of
retained eigenvectors from 74 to 10 only marginally impacts the results obtained. However, as
shown in Figure 10, it reduces the computation time by a factor of 3. In the two-dimensional
case, reducing the number of components from 627 to 160 reduces the computation time by a
factor of close to 10, with imperceptible differences in the obtained results. The proposed rank
reduction method, in combination with the performance iteration approach, thus allows, in the
two-dimensional case, by considering only 160 components, to reduce the computation time by
a factor of 40 at the cost of an average error of 0.03%, which exceeds 0.5% in only 1 of the 100
simulated datasets considered. This solution therefore offers significant operational advantages,
especially for applications mentioned in Section 6.1 where computation times are far higher
than in the presented analysis.
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Figure 10: Distribution of computation time for the proposed rank reduction method, depending
on the number of retained eigenvectors during the selection of the smoothing
parameter, in the one-dimensional and two-dimensional cases.

7 How to extrapolate the smoothing?

Non-parametric methods such as P-splines or Whittaker-Henderson smoothing may be naturally
extrapolated beyond the range of the original data, in the same way as parametric models.
Nonetheless, this requires to take some precautions especially in the two-dimensional case as
we show in this Section.

7.1 Defining the (unconstrained) extrapolation of the smoothing

Let ŷ be the result of Whittaker-Henderson smoothing for an observation vector y, which
corresponds in the one-dimensional case to an explanatory variable vector x or in the two-
dimensional case to a combination of explanatory variables x and z. Suppose we have an
observation vector x+ or combinations of vectors x+ and z+ for which we want to make
predictions using the model. Since Whittaker-Henderson smoothing applies only to evenly
spaced observations, without loss of generality, let x+ and z+ be sequences of consecutive
integers such that x ⊂ x+ and z ⊂ z+. In the one-dimensional case, let n+ be the length of
x+, and in the two-dimensional case, let nx+ and nz+ be the respective lengths of x+ and z+,
with n+ = nx+× nz+. Let Cx (resp. Cz) be a matrix of size nx× nx+ (resp. nz × nz+) defined
as Cj = (0nj ,min j−min j+ |Inj ,nj |0nj ,max j+−max j) for j ∈ {x, z}, and let us note:
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C =
{

Cx in the one-dimensional case
Cz ⊗ Cx in the two-dimensional case

The matrix C of size n× n+ defined in this way has the following properties:

• For any vector y+ of size n+, Cy+ is a vector of size n containing only the n values of
y+ matching the positions of the observations in the initial smoothing,

• CT y is a vector of size n+ containing the values of y at the positions corresponding to
the initial observations and zeros elsewhere,

• CCT = In.

The extrapolation of Whittaker-Henderson smoothing can now be defined as finding the solution
ŷ+ to the extended optimization problem:

ŷ+ = argmin
θ+

{
(y+ − θ+)T W+(y+ − θ+) + θT

+P+θ+
}

(21)

where y+ = CT y, W+ = CT WC, and

P+ =
{

λDT
n+,qDn+,q in the one-dimensional case

λxIz+ ⊗DT
nx+,qx

Dnx+,qx + λzDT
nz+,qz

Dnz+,qz ⊗ Ix+ in the two-dimensional case.

In this last expression, λ, λx and λz are the parameters chosen for the smoothing. Similar to
the initial smoothing, Equation 21 involves a fidelity criterion and a smoothness criterion. It
should be noted that:

(y+ − θ+)T W+(y+ − θ+) = (CT y− θ+)T CT WC(CT y− θ+) = (y− θ)T W (y− θ)

hence the fidelity criterion remains unchanged compared to the initial estimation problem.
This is consistent with the fact that extrapolation does not involve any additional data. The
smoothness criterion on the other hand applies to all elements of the vector θ+, whether
initially present or not.

7.2 Unconstrained solution for the one-dimensional case

The solution to the extended optimization problem of Equation 21 is readily obtained by taking
the derivatives in θ+ and setting them to 0, as in Section 1.1.3. This yields the solution:

ŷ+ = (W+ + P+)−1W+y+ where y+ = CT y and W+ = CT WC (22)

Let us further assume that y+|θ+ ∼ N (θ+, W −
+ ) where θ+ ∼ N (0, P −

+ ) and proceed as in
Section 2 to obtain the following credible intervals:

E(y+)|y+ ∈
[
(W+ + P+)−1W+y+ ± Φ−1

(
1− α

2

)√
diag {(W+ + P+)−1}

]
(23)
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To get a better understanding about how the variance-covariance matrix Ψ+ = (W+ + P+)−1

for the unconstrained extrapolation problem of Equation 21 is related to the variance-covariance
matrix Ψ = (W + Pλ)−1 of the original smoothing problem, let us introduce:

Cj =
[

Imin j−min j+,min j−min j+ 0min j−min j+,nj 0min j−min j+,max j+−max j

0max j+−max j,min j−min j+ 0max j+−max j,nj Imax j+−max j,max j+−max j

]
for j ∈ {x, z},

C =
{

Cx in the one-dimensional case
Cz ⊗ Cx in the two-dimensional case

and Q =
[
C
C

]
.

With this definition, Q is a permutation matrix of size n+ × n+ which selects the rows whose
indices correspond to those of the initial observation positions in the extended observation
vector and move them to the first positions. It also verifies Q−1 = QT = Q.

In the unidimensional case, the extended difference matrix Dn+,q takes the form:

Dn+,q =

D2− D1− 0
0 Dn,q 0
0 D1+ D2+

 = Q

Dn,q 0 0
D1− D2− 0
D1+ 0 D2+

Q = Q

[
Dn,q 0
D1 D2

]
Q

where D1 =
[
D1−
D1+

]
and D2 =

[
D2− 0

0 D2+

]
Detailed expressions of matrices D1+ and D2+ for the most common values of q may be found
in Carballo et al. (2021) where they are simply noted D1 and D2. To cover extrapolation on
both sides of the initial observation vector, matrices D1− and D2− were introduced. Those
may be simply obtained by taking the transpose of adequate size D1 and D2 matrices found in
Carballo et al. (2021). The extended weight and penalization matrices thus take the form:

W+ = Q

[
W 0
0 0

]
Q and P+ = DT

n+,qDn+,q = λQ

[
Pλ + P 11

+ P 12
+

P 21
+ P 22

+

]
Q (24)

where P 11
+ = λDT

1 D1, P 12
+ = λDT

1 D2, P 21
+ = λDT

2 D1 and P 22
+ = λDT

2 D2.

Applying the formulas for the inversion of a symmetric matrix partitioned with 2× 2 blocks to
Q(W+ + P+)Q, we obtain a more detailed expression for Ψ+:

Ψ+ = Q

[
Ψ11

+ Ψ12
+

Ψ21
+ Ψ22

+

]
Q = Q

[
Ψ11

+ −Ψ11
+ P 12

+ (P 22
+ )−1

−(P 22
+ )−1P 21

+ Ψ11
+ (P 22

+ )−1 + (P 22
+ )−1P 21

+ Ψ11
+ P 12

+ (P 22
+ )−1

]
Q.

(25)

where Ψ11
+ = [W + Pλ + P 11

+ − P 12
+ (P 22

+ )−1P 21
+ ]−1.

Let us denote by initial positions coefficients the subvector Cŷ+ that corresponds to the
coefficients at the position of the initial observations in ŷ+ and by new positions coefficients
the remaining coefficients Cŷ+. The initial positions coefficients may be recovered as Cŷ+ =
CΨ+CT W+y+ = Ψ11

+ Wy. This does not simplify to ΨWy = ŷ for all weighted observation
vectors Wy unless Ψ11

+ = Ψ. Indeed, the initial positions coefficients are chosen to optimize
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the overall smoothness of the extrapolated coefficient vectors and not only the smoothness
associated with the subvector Cŷ+. Besides, the expression of Ψ22

+ contains two terms: an
innovation error (P 22

+ )−1 associated with the prior on the new positions coefficients while
(P 22

+ )−1P 21
+ Ψ11

+ P 12
+ (P 22

+ )−1 represents an additional uncertainty on the new positions coefficients
caused by the uncertainty on the initial positions coefficients.

In the one-dimensional case, D2 is a block-diagonal matrix of triangular matrices with non-
zero diagonal elements and is thus non-singular. Hence P 11

+ − P 12
+ (P 22

+ )−1P 21
+ = DT

1 D1 −
DT

1 D2(DT
2 D2)−1D2T D1 = 0 which means that Ψ11

+ = (W + Pλ)−1 = Ψ and Cŷ+ = ŷ.
Therefore, in the one-dimensional case, the solution given by Equation 21 preserves the values
from the original fit. As shown by Carballo et al. (2021), it is indeed always possible in the case
of penalizations based on difference matrices to pick the new positions coefficients so that the
smoothness criterion does not increase or in other words to find a perfectly smooth extrapolation
for the fit. This is illustrated by Figure 11 which shows the extrapolation associated with the
Whittaker-Henderson smoothing applied to the data used to produce Figure 1.
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Figure 11: Extrapolation of Whittaker-Henderson smoothing in the one-dimensional case.
The smoother extrapolation is achieved, on both sides of the smoothing, using a
polynomial of degree q - 1 (in this case a straight line as q = 2).

7.3 Constrained solution for the two-dimensional case

In the two-dimensional case, while the extended penalization matrix P+ still takes the form
of Equation 24, expressions of P 11

+ , P 12
+ , P 21

+ and P 22
+ are more complex. In particular,

P 11
+ −P 12

+ (P 22
+ )−1P 21

+ ̸= 0 which implies that Ψ11
+ ̸= Ψ and Cŷ+ ̸= ŷ. Solving Equation 22 thus

leads to a change in the value of the initial positions coefficients compared to the coefficients
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obtained during the initial smoothing as shown by Carballo, Durban, and Lee (2021). Indeed,
the smoothness criterion includes penalizations on both rows and columns and it is no longer
possible, as in the one-dimensional case, to extrapolate the fit without increasing that criterion.
As the smoothness criterion carries more weight in the extrapolation problem compared to the
original problem, the optimal solution to the extended optimization problem will compromise
on the fidelity to the initial observations in order to improve the overall smoothness.

To obtain an estimator ŷ∗
+ that minimizes the penalized regression problem under the constraint

of preserving the initial coefficients, i.e. Cŷ∗
+ = ŷ, we follow the approach proposed by Carballo,

Durban, and Lee (2021) and introduce the Lagrange multiplier ω. The associated constrained
extended optimization problem is now written as:

(ŷ∗
+, ω̂) = argmin

θ∗
+,ω

{
(y+ − θ∗

+)T W+(y+ − θ∗
+) + θ∗T

+ P+θ∗
+ + 2ωT (Cθ∗

+ − ŷ)
}

. (26)

Taking the partial derivatives of Equation 26 with respect to θ∗
+ and ω gives:

∂

∂θ∗
+

{
(y+ − θ∗

+)T W+(y+ − θ∗
+) + θ∗T

+ P+θ∗
+ + 2ωT (Cθ∗

+ − ŷ)
}

= −2W+(y+ − θ∗
+) + 2P+θ∗

+ + 2ωT C

∂

∂ω

{
(y+ − θ∗

+)T W+(y+ − θ∗
+) + θ∗T

+ P+θ∗
+ + 2ωT (Cθ∗

+ − ŷ)
}

= 2(Cθ∗
+ − ŷ)

Setting these derivatives to zero yields the linear system:[
W+ + P+ CT

C 0

] [
ŷ∗

+
ω̂

]
=
[
W+y+

ŷ

]

The solution for ŷ∗
+ can be derived using formulas for the inversion of a symmetric partitioned

matrix with 2× 2 blocks:

ŷ∗
+ =(W+ + P+)−1

{
I − CT [C(W+ + P+)−1CT ]−1C(W+ + P+)−1

}
W+y+

+ (W+ + P+)−1CT [C(W+ + P+)−1CT ]−1ŷ

Since W+ = CT WC, the first term is actually zero, and this expression simplifies to:

ŷ∗
+ = (W+ + P+)−1CT [C(W+ + P+)−1CT ]−1ŷ = Q

[
I

−(P 22
+ )−1P 21

+

]
ŷ (27)

which is a linear transformation of ŷ. Defining A∗
+ = Q

[
I

−(P 22
+ )−1P 21

+

]
, a natural candidate

for the variance-covariance of y∗
+|θ+ is given by:

A∗
+ΨA∗T

+ = Q

[
Ψ −ΨP 12

+ (P 22
+ )−1

−(P 22
+ )−1P 21

+ Ψ (P 22
+ )−1P 21

+ ΨP 12
+ (P 22

+ )−1

]
Q (28)
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Equation 28 is very similar to Equation 25 with however two differences. First, every occurrence
of Ψ11

+ is replaced by Ψ. This is consistent with the constraint that the initial positions
coefficients are forced to take the value of the coefficients used during the initial smoothing.
Second, as the solution to the constrained extended optimization problem of Equation 26 was
expressed as a linear transformation of ŷ, Equation 28 is missing the innovation error term
(P 22

+ )−1 associated with the prior on the new positions coefficients. Not including this term
would be tantamount to considering that θ+ has some degree of wigglyness in the region of the
initial data but is perfectly smooth everywhere else. Adding the innovation error back, we
obtain the following variance-covariance matrix for the constrained optimization problem:

Ψ∗
+ = Q

[
Ψ −ΨP 12

+ (P 22
+ )−1

−(P 22
+ )−1P 21

+ Ψ (P 22
+ )−1 + (P 22

+ )−1P 21
+ ΨP 12

+ (P 22
+ )−1

]
Q (29)

which still verifies

Ψ∗
+W+y+ = Ψ∗

+CWy = Q

[
I

−(P 22
+ )−1P 21

+

]
ΨWy = ŷ∗

+.

The associated 100(1− α)% credible intervals are readily obtained as:

E(y+)|y+ ∈
[
ŷ∗

+ ± Φ−1
(

1− α

2

)√
diag(Ψ∗

+)
]

.

Figure 12 represents the results of the constrained extrapolation presented in this Section, with
the associated standard deviation which accounts for the innovation error. It is based on the
data used to generate Figure 2. Without the dotted lines marking the boundaries of the initial
smoothing region, it would not be possible to tell from those plots where the extrapolation
starts, which is precisely the goal of this procedure. Figure 13 represents the ratio between the
mortality rates obtained from the unconstrained solution of Equation 22 and the constrained
solution of Equation 27. The unconstrained solution shows significant discrepancies both in
the initial smoothing region and the extrapolated region compared to the constrained solution.
Finally, Figure 14 represents ratios between standard deviation derived using all of the three
presented extrapolation methods. The denominator is the constrained extrapolation method
which accounts for the innovation error, which is used as a reference, while the numerator shows
the unconstrained method as well as the constrained method which ignores the innovation
error. The constrained extrapolation method which includes the innovation error has a higher
standard deviation compared to the unconstrained method as it always result in estimates that
are less smooth.
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Figure 12: Constrained extrapolation of Whittaker-Henderson smoothing in the two-dimensional
case. The contour lines of mortality rates and the associated standard deviation are
depicted. The dotted lines delimitate the boundaries of the initial smoothing region.
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Whittaker-Henderson smoothing. The numerator corresponds to the unconstrained
extrapolation and the denominator is the constrained extrapolation presented in
Figure 12.
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Unconstrained Without innovation error
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Figure 14: Ratio of standard deviation of log-mortality rates resulting from the extrapolation
of the two-dimensional Whittaker-Henderson smoothing. The numerator on the left
plot corresponds to the unconstrained extrapolation and the one on the right plot to
the constrained extrapolation that does not account for the innovation error. The
denominator of both ratios is the constrained extrapolation presented in Figure 12.

8 Discussion

In this paper, we first showed that Whittaker-Henderson smoothing, a method introduced in
1922, can be naturally interpreted in a Bayesian framework, which allows for credible intervals
to be built, provided that the observations are independent and their variances are known and
used as weights. By linking it to the framework of duration models, we have proved that in the
construction of survival laws from experience, smoothing can be applied to the vector of crude
exit rates, using the number of observed terminations as vector of weights. This is justified by
the asymptotic normality of the maximum likelihood estimator of the raw exit rates. We have
then established that the use of this asymptotic property comes at the cost of significant bias
when the number of observations is limited, and that a more precise iterative version of the
smoothing may instead be used by iteratively solving penalized likelihood equations.

Furthermore, we introduced an empirical Bayesian approach for selecting the smoothing
parameter, based on maximizing a marginal likelihood function. The parameter selection
introduces a second iterative process that is added to the one generated by solving the penalized
likelihood equations for a fixed smoothing parameter. In this case, there are two main possible
approaches for parameter selection, depending on the order in which the iterations are nested:
the outer iteration and the performance iteration approaches. The latter has significantly lower
computation time compared to the former, at the expense of lacking theoretical convergence
guarantees, which however does not seem an issue in practice. We also introduced a rank
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reduction method based on eigendecomposition of one-dimensional penalty matrices, which
greatly accelerates the selection of the smoothing parameter - our study on simulated data
show a 40-fold reduction in computation time - with negligible loss of precision.

Finally, we addressed the issue of extrapolation of smoothing and shown that it requires solving
a new optimization problem. Extrapolation is straightforward in the one-dimensional case.
However, in the two-dimensional case constraints needs to be imposed in order to preserve the
values of the coefficients obtained during the initial smoothing step and the variance-covariance
matrix needs to be corrected to include the innovation error associated with the extrapolated
data.

Whittaker-Henderson smoothing has been used for nearly a century by actuaries, with little
change in the approach. In parallel, statistical theory on smoothing methods has undergone
numerous developments, particularly in the past 30 years with the emergence of generalized
additive models, covered notably by Hastie and Tibshirani (1990) and Wood (2006). Our
goal in this paper was to bridge the gap between those two perspectives. We also created an
R package named WH, which implements all the steps mentioned in the paper and should be
straightforward to use. Most results derived in this paper are directly applicable to other types
of smoothing, such as the widely used P-splines smoothing method introduced by Eilers and
Marx (1996). Compared to Whittaker-Henderson smoothing, P-splines are low-rank smoothers
which naturally consider fewer parameters than observations, removing the need for the method
introduced in Section 6.

While Whittaker-Henderson smoothing is applicable to both the one-dimensional and two-
dimensional case, it does have some limitations. Firstly, it requires regularly spaced observations.
This aligns well with the format of life insurance pricing and reserving assumptions, which
traditionally include age and duration spent in certain states which trigger claim payment.
However, this can be a limit when the terminations are not evenly distributed. For example,
in the case of disability and long-term care risks, most terminations occur in the first few
months following entry into the state. In such situations, using a spline basis that is arranged
to prioritize areas with more observations, as proposed by Wood (2017), could yield better
results. Secondly, Whittaker-Henderson smoothing in its original form does not allow for the
incorporation of additional explanatory variables in the experience table, starting with gender,
which plays a major role in most biometric risks. Fortunately, it is possible to introduce these
additional variables as random effects in the model by adopting a Smoothing Splines ANOVA
approach, as described in Lee and Durban (2011) and Gu (2013), yielding results that are both
precise and robust compared to a unisex or stratified model.
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Appendix A : Algorithms

Algorithm 1 provides an implementation of generalized WH smoothing as defined in Section 4
while Algorithms 2 and 3 also perform the estimation of the smoothing parameters repectively
in the outer iteration and performance iteration approaches introduced in Section 5.

Algorithm 1: Iterative solution of generalized Whittaker-Henderson smoothing
inputs : d and ec
outputs : θ̂ and Var(θ̂)
parameters: λ, q, ϵℓ = 10−8

begin
Construct the penalty matrix Pλ based on the difference matrices of order q.
k ← 0
θ0 ← ln(d/ec)
l0 ← −∞, condℓ ← true
while condℓ do

Wk ← Diag(exp(θk)⊙ ec)
zk ← θk + W −1

k [d− exp(θk)⊙ ec]
Ψk+1 ← (Wk + Pλ)−1

θk+1 ← Ψk+1Wkzk

lk+1 ← ℓP (θk+1), condℓ ← lk+1 − lk ≥ ϵℓ × sum(d)
k ← k + 1

θ̂ ← θk, Var(θ̂)← Ψk
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Algorithm 2: Parameter selection for generalized Whittaker-Henderson smoothing -
outer iteration approach.
inputs : d and ec
outputs : λ̂, θ̂λ̂ and Var(θ̂λ̂)
parameters: q, ϵℓ = 10−8, ϵml = 10−8

begin
k ← 0
ml0 ← −∞, condml ← true
while condml do

If k = 0, choose an arbitrary value λ0 for the smoothing parameter(s); otherwise,
choose the next value λk using the selected heuristic

Use Algorithm 1 to determine the vector θλk
associated with the choice of λk

with an accuracy greater than ϵℓ

Calculate the marginal likelihood ℓm
ML(λk) associated with the choice of λk using

the intermediate quantities calculated during the estimation of θλk

mlk+1 ← ℓm
ML(λk), condml ← mlk+1 −mlk ≥ ϵml × sum(d)

k ← k + 1
θ̂ ← θ̂λ̂, Var(θ̂)← Ψk

Algorithm 3: Parameter selection for generalized Whittaker-Henderson smoothing -
performance iteration approach
inputs : d and ec
outputs : λ̂, θ̂λ̂ and Var(θ̂λ̂)
parameters: q, ϵℓ = 10−8, ϵml = 10−8

begin
k ← 0
θ0 ← ln(d/ec)
l0 ← −∞, condℓ ← true
while condℓ do

Wk ← Diag(exp(θk)⊙ ec)
zk ← θk + W −1

k [d− exp(θk)⊙ ec]
Estimate the parameter λk maximizing the regularized marginal likelihood ℓm

norm
associated with the observation vector zk and the weight matrix Wk, using the
selected heuristic, with an accuracy greater than ϵml × sum(d)

Ψk+1 ← (Wk + Pλk
)−1

θk+1 ← Ψk+1Wkzk

lk+1 ← ℓP (θk+1|λk), condℓ ← lk+1 − lk ≥ ϵℓ × sum(d)
k ← k + 1

λ̂← λk; Use Algorithm 1 to obtain the values of θ̂λ̂ and Var(θ̂λ̂) corresponding to
the parameter λ̂

40



References

Akaike, Hirotsugu. 1973. “Information Theory and an Extension of the Maximum Likelihood
Principle.” In 2nd International Symposium on Information Theory, 1973.

Anderssen, RS, and Peter Bloomfield. 1974. “A Time Series Approach to Numerical Differenti-
ation.” Technometrics 16 (1): 69–75.

Brent, Richard P. 1973. “Algorithms for Minimization Without Derivatives, Chap. 4.” Prentice-
Hall, Englewood Cliffs, NJ.

Brooks, RJ, M Stone, FY Chan, and LK Chan. 1988. “Cross-Validatory Graduation.” Insurance:
Mathematics and Economics 7 (1): 59–66.

Carballo, Alba, Maria Durban, Göran Kauermann, and Dae-Jin Lee. 2021. “A General
Framework for Prediction in Penalized Regression.” Statistical Modelling 21 (4): 293–312.

Carballo, Alba, Maria Durban, and Dae-Jin Lee. 2021. “Out-of-Sample Prediction in Multidi-
mensional p-Spline Models.” Mathematics 9 (15): 1761.

Currie, Iain D, Maria Durban, and Paul HC Eilers. 2004. “Smoothing and Forecasting Mortality
Rates.” Statistical Modelling 4 (4): 279–98.

Eilers, Paul H. C., and Brian D. Marx. 1996. “Flexible Smoothing with B-Splines and Penalties.”
Statistical Science 11 (2): 89–102.

Giesecke, Lee, and Defense Manpower Data Center. 1981. “Use of the Chi-Square Statistic to
Set Whittaker-Henderson Smoothing Coefficients.” Smoothing.

Gilks, Walter R, Sylvia Richardson, and David Spiegelhalter. 1995. Markov Chain Monte
Carlo in Practice. CRC press.

Gschlössl, Susanne, Pascal Schoenmaekers, and Michel Denuit. 2011. “Risk Classification in
Life Insurance: Methodology and Case Study.” European Actuarial Journal 1: 23–41.

Gu, Chong. 1992. “Cross-Validating Non-Gaussian Data.” Journal of Computational and
Graphical Statistics 1 (2): 169–79.

———. 2013. Smoothing Spline ANOVA Models. Vol. 297. Springer.
Hastie, Trevor J, and Robert J Tibshirani. 1990. Generalized Additive Models. Vol. 43. CRC

press.
Henderson, Robert. 1924. “A New Method of Graduation.” Transactions of the Actuarial

Society of America 25: 29–40.
Hoem, Jan M. 1971. “Point Estimation of Forces of Transition in Demographic Models.”

Journal of the Royal Statistical Society: Series B (Methodological) 33 (2): 275–89.
Kauermann, Göran. 2005. “A Note on Smoothing Parameter Selection for Penalized Spline

Smoothing.” Journal of Statistical Planning and Inference 127 (1-2): 53–69.
Kimeldorf, GS, and Donald A Jones. 1967. “Bayesian Graduation.” Transactions of the Society

of Actuaries 19 (54 part 1): 66–112.
Lee, Dae-Jin, and Maria Durban. 2011. “P-Spline ANOVA-Type Interaction Models for

Spatio-Temporal Smoothing.” Statistical Modelling 11 (1): 49–69.
Marra, Giampiero, and Simon N Wood. 2012. “Coverage Properties of Confidence Intervals

for Generalized Additive Model Components.” Scandinavian Journal of Statistics 39 (1):
53–74.

41



Nelder, John A, and Roger Mead. 1965. “A Simplex Method for Function Minimization.” The
Computer Journal 7 (4): 308–13.

Nelder, John Ashworth, and Robert WM Wedderburn. 1972. “Generalized Linear Models.”
Journal of the Royal Statistical Society: Series A (General) 135 (3): 370–84.

Patterson H. D., Thompson R. 1971. “Recovery of Inter-Block Information When Block Sizes
Are Unequal.” Biometrika 58: 545–54.

Reinsch, Christian H. 1967. “Smoothing by Spline Functions.” Numerische Mathematik 10 (3):
177–83.

Reiss, Philip T, and R Todd Ogden. 2009. “Smoothing Parameter Selection for a Class
of Semiparametric Linear Models.” Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 71 (2): 505–23.

Taylor, Greg. 1992. “A Bayesian Interpretation of Whittaker—Henderson Graduation.” Insur-
ance: Mathematics and Economics 11 (1): 7–16.

Wahba, Grace. 1980. Spline Bases, Regularization, and Generalized Cross Validation for Solving
Approximation Problems with Large Quantities of Noisy Data. University of Wisconsin.

———. 1985. “A Comparison of GCV and GML for Choosing the Smoothing Parameter in
the Generalized Spline Smoothing Problem.” The Annals of Statistics, 1378–1402.

Whittaker, Edmund Taylor. 1922. “On a New Method of Graduation.” Proceedings of the
Edinburgh Mathematical Society 41: 63–75.

Whittaker, Edmund Taylor, and George Robinson. 1924. The Calculus of Observations: A
Treatise on Numerical Mathematics. Blackie; Son limited.

Wood, Simon N. 2006. Generalized Additive Models: An Introduction with r. chapman;
hall/CRC.

———. 2011. “Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation
of Semiparametric Generalized Linear Models.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 73 (1): 3–36.

———. 2017. “P-Splines with Derivative Based Penalties and Tensor Product Smoothing of
Unevenly Distributed Data.” Statistics and Computing 27: 985–89.

———. 2020. “Inference and Computation with Generalized Additive Models and Their
Extensions.” Test 29 (2): 307–39.

42


	Notations
	Introduction
	A brief reminder of Whittaker-Henderson mathematical formulation
	The one-dimensional case
	The two-dimensional case
	An explicit solution

	Plan for the paper
	How to measure uncertainty in smoothing results?
	Which observation and weight vectors to use?
	How to improve the accuracy of smoothing with limited data volume?
	How to choose the smoothing parameter(s)?
	How to improve smoothing performance with a large number of data points?
	How to extrapolate smoothing results?


	How to measure uncertainty in smoothing results?
	Maximum a posteriori estimate
	Posterior distribution of \boldsymbol{\theta} | \mathbf{y}
	Consequence for Whittaker-Henderson smoothing

	Which observation and weight vectors to use?
	Duration models framework: one-dimensional case
	Extension to the two-dimensional case
	Likelihood equations

	How to improve the accuracy of smoothing with limited data volume?
	Generalized Whittaker-Henderson smoothing
	Impact of the normal approximation made by the original Whittaker-Henderson smoothing

	How to choose the smoothing parameter(s)?
	Impact of the smoothing parameter(s)
	Statistical criteria for parameter selection
	Selection in the context of the original smoothing
	Selection in the generalized smoothing framework: outer iteration approach
	Selection in the generalized smoothing framework: performance iteration approach
	Comparison of outer iteration and performance iteration approaches

	How to improve smoothing performances with a large number of data points?
	Motivation
	Smoothing and eigendecomposition
	Extension to the two-dimensional case
	Eigendecomposition and rank reduction
	Impact of rank reduction method

	How to extrapolate the smoothing?
	Defining the (unconstrained) extrapolation of the smoothing
	Unconstrained solution for the one-dimensional case
	Constrained solution for the two-dimensional case

	Discussion
	Appendix A : Algorithms
	References

