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Introduction

A yield criterion defining a set of admissible stresses is an essential part of elastoplastic problems. In engineering practice, there is a broad class of yield criteria that are formulated in terms of principal stresses (i.e., in terms of eigenvalues of stress tensors). We mention the Mohr-Coulomb, the Tresca, the Rankine, the Hoek-Brown or the unified strength ones [START_REF] Clausen | Robust and efficient handling of yield surface discontinuities in elasto-plastic finite element calculations[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF][START_REF] Larsson | Implicit integration and consistent linearization for yield criteria of the Mohr-Coulomb type[END_REF][START_REF] Lin | A return mapping algorithm for unified strength theory model[END_REF], for example. Such criteria usually have a multisurface representation leading to nonsmooth yield surfaces with relatively complex structures of singular points. Therefore, the corresponding constitutive solution schemes (including stress-strain relations and eventually also their derivatives) are technically very complicated and still challenging.

The main aim of this paper is to simplify the handling such criteria by using a specific form of the subdifferential of the eigenvalue yield function. A similar idea was introduced in the recent paper [START_REF] Sysala | Subdifferential-based implicit return-mapping operators in computational plasticity[END_REF] for yield criteria containing one or two singular points (apices) on the yield surface (e.g., the Drucker-Prager or the Menétrey-Willam ones). It led to simpler and more correct implicit constitutive solution schemes, and it enabled a deeper analysis of the stress-strain operator. So this paper approaches the subdifferential-based treatment to a broader class of yield functions and it also demonstrates other advantages of this technique.

Due to the technical complexity of implicit solution schemes for models with eigenvalue yield functions, we focus only on a particular but representative yield criterion: the Mohr-Coulomb one. This criterion is broadly exploited in soil and rock mechanics and its surface is a hexagonal pyramid aligned with the hydrostatic axis (see, e.g., [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]). We consider the model described in [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]Sect. 8.2], which can optionally contain a nonassociative flow rule and nonlinear isotropic hardening. The nonassociative flow rule enables to capture the dilatant behavior of a material. Further, due to the presence of the nonlinear hardening, one cannot find a constitutive solution in a closed form, and thus the problem is more challenging. We let a hardening function be in an abstract form as in [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. We refer to [START_REF] Borja | On the numerical integration of three-invariant elastoplastic constitutive models[END_REF] for a particular example of nonlinear hardening in soil mechanics.

In literature, there are many various concepts of constitutive solution schemes for models containing yield criteria in terms of principal stresses. We refer to the recent papers [START_REF] Clausen | Robust and efficient handling of yield surface discontinuities in elasto-plastic finite element calculations[END_REF] and [START_REF] Karaoulanis | Implicit numerical integration of nonsmooth multisurface yield criteria in the principal stress space[END_REF] for their detailed overview and historical development, respectively. It is worth mentioning that the solution schemes depend mainly on the formulation of the plastic flow rule, its discretization and eventual other approximations. Let us now briefly discuss these aspects.

The plastic flow rule is usually formulated by using the so-called Koiter rule in engineering practice. This rule was introduced for associative models with multisurface yield criteria in [START_REF] Koiter | Stress-strain relations, uniqueness and variational theorems for elastic-plastic materials with a singular yield surface[END_REF] and consequently extended to nonassociative models, see, e.g., [START_REF] De Borst | Integration of plasticity equations for singular yield functions[END_REF]. It consists of several formulas that depend on a position of the unknown stress tensor on the yield surface. These formulas have a different number of plastic multipliers. Within the Mohr-Coulomb pyramid, one plastic multiplier is used for the smooth portions, two multipliers at the edge points, and six multipliers at the apex. Therefore, the resulting solution schemes are different for each Koiter's formula. However, only one of them usually leads to the correct stress tensor. Moreover, handling different numbers of plastic multipliers is not suitable for analyzing the stressstrain operator even if the solution can be found in a closed form. If the elastoplastic model contains a convex plastic potential as the Mohr-Coulomb one, then it is possible to replace the Koiter rule with a subdifferential of the potential (see, e.g., [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]). Such a formulation is independent of the unknown stress position, contains just one plastic multiplier, and thus it is more convenient for mathematical analysis of the constitutive operators. In [START_REF] Sysala | Subdifferential-based implicit return-mapping operators in computational plasticity[END_REF], it was shown that this formulation is also convenient for solution of some constitutive problems. Finally, in some special cases, the constitutive problem can also be defined by using the principle of maximum plastic dissipation [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF][START_REF] Han | Plasticity: Mathematical Theory and Numerical Analysis[END_REF] or the theory of bipotentials [START_REF] Berga | Mathematical and numerical modeling of the non-associated plasticity of soils-part 1: The boundary value problem[END_REF][START_REF] Zouain | Plastic collapse in non-associated hardening materials with application to Cam-Clay[END_REF] and solved by techniques based on mathematical programming.

The (fully) implicit Euler discretization of the flow rule is frequently used in elastoplasticity. Then the solution is searched by the elastic predictor -plastic corrector method. Within the plastic correction, the so-called (implicit) returnmapping scheme is constructed. It is worth mentioning that plastic correction problems can be reduced to problems formulated only in terms of principal stresses [START_REF] Clausen | Efficient return algorithms for associated plasticity with multiple yield planes[END_REF][START_REF] Clausen | Robust and efficient handling of yield surface discontinuities in elasto-plastic finite element calculations[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. Beside other Euler-type methods (see, e.g., [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF][START_REF] Simo | Computational inelasticity[END_REF]), the cutting plane methods are also popular. We refer to [START_REF] Starman | Consistent tangent operator for cutting-plane algorithm of elasto-plasticity[END_REF] for a literature survey and recent development of these methods.

Many other approximative techniques have been suggested for simplifying solution schemes for multisurface yield criteria. These techniques are based on local or global smoothing of yield surfaces or plastic potentials. We refer to [START_REF] Clausen | Robust and efficient handling of yield surface discontinuities in elasto-plastic finite element calculations[END_REF]Sect. 1.2] or [START_REF] Abbo | A C2 continuous approximation to the Mohr-Coulomb yield surface[END_REF][START_REF] Borja | Plasticity[END_REF][START_REF] Borja | On the numerical integration of three-invariant elastoplastic constitutive models[END_REF] for literature surveys. However, such an approach is out of the scope of this paper.

From the discrete constitutive solution scheme, we obtain an implicit stress-strain operator for a fixed time step. Inserting this operator into the balance equation and using a strain-displacement relation, we arrive at an incremental boundary-value elastoplastic problem in terms of displacements. This problem is solved mostly by nonsmooth variants of the Newton method [START_REF] Čermák | A TFETI domain decomposition solver for elastoplastic problems[END_REF][START_REF] Gruber | Solution of one-time-step problems in elastoplasticity by a slant Newton method[END_REF][START_REF] Sauter | On the superlinear convergence in computational elasto-plasticity[END_REF][START_REF] Sysala | Application of a modified semismooth Newton method to some elasto-plastic problems[END_REF][START_REF] Sysala | Properties and simplifications of constitutive time-discretized elastoplastic operators[END_REF] in each time step. Then, it is useful to construct the so-called consistent tangent operator representing a (generalized) derivative of the stress-strain operator. Here, we use the framework based on the eigenprojections of symmetric second order tensors, see, e.g., [START_REF] Carlson | The derivative of a tensor-valued function of a tensor[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. A similar approach is also used in the recent book [START_REF] Borja | Plasticity[END_REF] with a slightly different terminology like the spectral directions or the spin of a tensor. Another approach is introduced, e.g., in [START_REF] Clausen | Efficient return algorithms for associated plasticity with multiple yield planes[END_REF][START_REF] Clausen | Robust and efficient handling of yield surface discontinuities in elasto-plastic finite element calculations[END_REF][START_REF] De Borst | Non-Linear Finite Element Analysis of Solids and Structures[END_REF], where the consistent tangent operator is determined by the tangent operator representing the relation between the stress and strain rates.

Further, this paper is devoted to a limit load problem, which is frequently combined with the Mohr-Coulomb model. It is an additional problem to the elastoplastic one, where a load history is prescribed by a fixed external force, which is multiplied by an enlarging load parameter with an unknown limit value. It is well known that the investigated body collapses when this critical value is exceeded [START_REF] Christiansen | Limit analysis of collapse states[END_REF][START_REF] Temam | Mathematical Problems in Plasticity[END_REF][START_REF] Zouain | Plastic collapse in non-associated hardening materials with application to Cam-Clay[END_REF]. Therefore, this value is an important safety parameter and no solution exists beyond it. Strip-footing collapse or slope stability are traditional applications of this problem (see, e.g., [START_REF] Chen | Limit analysis in soil mechanics[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF][START_REF] Sloan | Geotechnical stability analysis[END_REF]). The simplest computational technique is based on the so-called incremental limit analysis, where the load parameter is enlarged up to its limit value. Then, the boundary-value elastoplastic problem is solved for enlarging values of this parameter. Beside the conventional direct method of incremental limit analysis, we also introduce an indirect method and describe its advantages based on recent results from [START_REF] Cermak | Discretization and numerical realization of contact problems for elasticperfectly plastic bodies. PART II -numerical realization, limit analysis[END_REF][START_REF] Haslinger | Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals[END_REF][START_REF] Haslinger | A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting[END_REF][START_REF] Sysala | Truncation and indirect incremental methods in Hencky's perfect plasticity[END_REF][START_REF] Sysala | Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies. PART I -discretization, limit analysis[END_REF].

The rest of the paper is organized as follows. In Sect. 2, a particular form of the subdifferential of a specific eigenvalue function is derived. In Sect. 3, the constitutive initial value problem with the Mohr-Coulomb yield criterion is formulated by using the subdifferential of the plastic potential and discretized by the implicit Euler method. In Sect. 4, the existence and uniqueness of a solution to the discretized problem is proven and an improved solution scheme is derived. In Sect. 5, the stress-strain and the consistent tangent operators are constructed. In Sect. 6, the direct and indirect method of incremental limit analysis are introduced. Both methods are combined with the semismooth Newton method. In Sect. 7, 2D and 3D numerical experiments related to slope stability are described. In Sect. 8, some concluding remarks are mentioned. The paper also contains Appendix, where the solution scheme is simplified under the plane strain assumptions.

In this paper, the second order tensors, matrices, and vectors are denoted by bold letters. We also use the following notation: R + := {z ∈ R; z ≥ 0} and R 3×3 sym stands for the space of symmetric, second order tensors. The standard scalar product in R 3 and the biscalar product in R 3×3 sym are denoted by • and :, respectively. The symbol ⊗ means the tensor product. Further, the fourth order tensors are denoted by capital blackboard letters, e.g., C, and used for representation of linear mappings from R 3×3 sym to R 3×3 sym . In particular, we consider 36 independent components C ijkl of C satisfying the following symmetries:

C ijkl = C ijlk = C jikl = C jilk , i, j, k, l = 1, 2, 3.
(1.1)

Subdifferential of an eigenvalue function

In this section, we derive a particular form of the subdifferential of a specific eigenvalue function. This auxiliary result will be crucial for an efficient construction of the constitutive and consistent tangent operators in Mohr-Coulomb plasticity. Let

η = 3 i=1 η i e i ⊗ e i , η 1 ≥ η 2 ≥ η 3 , (2.1) 
be the spectral decomposition of a tensor η ∈ R 3×3 sym . Here, η i ∈ R, e i ∈ R 3 , i = 1, 2, 3, denote the eigenvalues, and the eigenvectors of η, respectively. The eigenvalues η 1 , η 2 , η 3 can be computed by using the Haigh-Westargaard coordinates (see, e.g., [17, Appendix A]), and they are uniquely determined with respect to the prescribed ordering. Let ω 1 , ω 2 , ω 3 denote the corresponding eigenvalue functions, i.e. η i := ω i (η), i = 1, 2, 3. Further, we define the following set of admissible eigenvectors of η:

V (η) = {(e 1 , e 2 , e 3 ) ∈ R 3 × R 3 × R 3 | e i • e j = δ ij ; ηe i = η i e i , i, j = 1, 2, 3; η 1 ≥ η 2 ≥ η 3 }.
The Mohr-Coulomb yield function or the plastic potential corresponds to the following eigenvalue function:

g(η) = aω 1 (η) -bω 3 (η), η ∈ R 3×3 sym , (2.2) 
where the parameters a, b ≥ 0 are chosen appropriately. Notice that the convexity of the eigenvalue function g can be derived from: η : (e ⊗ e).

ω 1 (η) = max
(2.3)

A particular form of the subdifferential ∂g(η) can be found by using a framework introduced in [26, Chapter 2]. We derive another form of ∂g(η), which is more convenient for the purposes of this paper. Lemma 2.1 Let g : R 3×3 sym → R be defined by (2.2). Then for any η ∈ R 3×3 sym , it holds:

∂g(η) = ν = 3 i=1 ν i e i ⊗ e i ∈ R 3×3 sym (e 1 , e 2 , e 3 ) ∈ V (η); a ≥ ν 1 ≥ ν 2 ≥ ν 3 ≥ -b; 3 i=1 ν i = a -b; (ν 1 -a)[ω 1 (η) -ω 2 (η)] = 0; (ν 3 + b)[ω 2 (η) -ω 3 (η)] = 0 . (2.4) 
P r o o f. Since g(0) = 0 and g(2η) = 2g(η), the standard definition of ∂g(η) is equivalent to:

∂g(η) = {ν ∈ R 3×3 sym | g(η) = ν : η; g(τ ) ≥ ν : τ ∀τ ∈ R 3×3 sym }. (2.5)
First, we derive necessary and sufficient conditions on ν ∈ R 3×3 sym ensuring

g(τ ) ≥ ν : τ ∀τ ∈ R 3×3 sym . (2.6)
To this end, consider the following spectral decomposition of ν:

ν = 3 i=1 ν i f i ⊗ f i , ν 1 ≥ ν 2 ≥ ν 3 , (f 1 , f 2 , f 3 ) ∈ V (ν). (2.7) 
Choose τ = ±I, where I is the unit tensor in R 3×3 sym . Then we have from (2.6), (2.7):

ν 1 + ν 2 + ν 3 = a -b. (2.8) Choose τ = f 1 ⊗ f 1 and τ = -f 3 ⊗ f 3 .
Then we derive from (2.6), (2.7), respectively:

ν 1 ≤ a, ν 3 ≥ -b.
(2.9)

Conversely, let τ ∈ R 3×3 sym be arbitrarily chosen and denote ξ i := τ : (f i ⊗ f i ), i = 1, 2, 3, where f 1 , f 2 , f 3 are from (2.7). Then,

ξ 1 + ξ 2 + ξ 3 = τ : I = ω 1 (τ ) + ω 2 (τ ) + ω 3 (τ ), ω 1 (τ ) ≥ ξ i ≥ ω 3 (τ ), ∀i = 1, 2, 3, (2.10 
)

follow from I = 3 i=1 f i ⊗ f i and (2.
3), respectively. Consequently,

ν : τ = 3 i=1 ν i ξ i = ξ 1 (ν 1 -ν 2 ) + (ξ 1 + ξ 2 )(ν 2 -ν 3 ) + (ξ 1 + ξ 2 + ξ 3 )ν 3 (2.10) = ξ 1 (ν 1 -ν 2 ) + (τ : I -ξ 3 )(ν 2 -ν 3 ) + ν 3 τ : I (2.10) ≤ ω 1 (τ )(ν 1 -ν 2 ) + [τ : I -ω 3 (τ )](ν 2 -ν 3 ) + ν 3 τ : I = 3 i=1 ν i ω i (τ ) = ν 1 [ω 1 (τ ) -ω 2 (τ )] + (ν 1 + ν 2 )[ω 2 (τ ) -ω 3 (τ )] + (ν 1 + ν 2 + ν 3 )ω 3 (τ ) (2.8) = ν 1 [ω 1 (τ ) -ω 2 (τ )] + (a -b -ν 3 )[ω 2 (τ ) -ω 3 (τ )] + (a -b)ω 3 (τ ) (2.9) ≤ a[ω 1 (τ ) -ω 2 (τ )] + a[ω 2 (τ ) -ω 3 (τ )] + (a -b)ω 3 (τ ) = aω 1 (τ ) -bω 3 (τ ) = g(τ ) ∀τ ∈ R 3×3 sym . (2.11) 
Thus the conditions (2.7)-(2.9) are necessary and sufficient for (2.6).

Secondly, assume that ν belongs to ∂g(η). Then (2.7)-(2.9) hold. Since g(η)

(

= ν : η, equalities must hold for τ = η within the derivation of (2.11), i.e., we have:

(ξ 1 -ω 1 (η))(ν 1 -ν 2 ) = 0, (ξ 3 -ω 3 (η))(ν 2 -ν 3 ) = 0,
(2.12)

(ν 1 -a)[ω 1 (η) -ω 2 (η)] = 0, (ν 3 + b)[ω 2 (η) -ω 3 (η)] = 0. (2.13)
On the one hand, it is easy to show that if ξ i = ω i (η) then f i is an eigenvector of η related to ω i (η) for i = 1 or i = 3. On the other hand, if ν i = ν i+1 for some i ∈ {1, 2} then the eigenvectors f i , f i+1 can be replaced with any e i , e i+1 ∈ span{f i , f i+1 } satisfying |e i | = |e i+1 | = 1 and e i • e i+1 = 0 in (2.7). From these facts, it is easy to see that the equalities in (2.12) imply:

∃(e 1 , e 2 , e 3 ) ∈ V (η) : ν = 3 i=1 ν i e i ⊗ e i , ν 1 ≥ ν 2 ≥ ν 3 . (2.14)
To summarize, any element ν ∈ ∂g(η) admits a spectral decomposition in the form of (2.14) with ν 1 , ν 2 , ν 3 satisfying (2.8), (2.9) and (2.13). Therefore,

∂g(η) ⊂ ν = 3 i=1 ν i e i ⊗ e i ∈ R 3×3 sym (e 1 , e 2 , e 3 ) ∈ V (η); a ≥ ν 1 ≥ ν 2 ≥ ν 3 ≥ -b; 3 i=1 ν i = a -b; (ν 1 -a)[ω 1 (η) -ω 2 (η)] = 0; (ν 3 + b)[ω 2 (η) -ω 3 (η)] = 0 . (2.15)
Conversely, using (2.5) and (2.11), one can easily check that any element from the set on the right hand side of (2.15) belongs to ∂g(η).

Remark 2.2 One can easily specify the eigenvalues ν 1 , ν 2 , and ν 3 in (2.4) if all eigenvalues of η are not the same. If η 1 > η 2 > η 3 then ν 1 = a, ν 2 = 0, and

ν 3 = -b. If η 1 = η 2 > η 3 then a ≥ ν 1 ≥ ν 2 ≥ 0, ν 1 + ν 2 = a, and ν 3 = -b. If η 1 > η 2 = η 3 then ν 1 = a, 0 ≥ ν 2 ≥ ν 3 ≥ -b, and ν 2 + ν 3 = -b.
3 The constitutive problem with the Mohr-Coulomb yield criterion An initial value (evolution) constitutive problem studied at an arbitrary material point is an ingredient of the overall elastoplastic problem. Nevertheless, the analysis of this auxiliary problem is nontrivial and crucial for the analysis of the overall elastoplastic problem. The solvability analysis of evolution constitutive problems can be found, e.g., in [START_REF] Maso | Quasistatic evolution for Cam-Clay plasticity: examples of spatially homogeneous solutions[END_REF]. We refer to [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF][START_REF] Han | Plasticity: Mathematical Theory and Numerical Analysis[END_REF][START_REF] Simo | Computational inelasticity[END_REF] for a complete formulation of the initial boundary-value elastoplastic problem.

In this section, we introduce the infinitesimal constitutive initial value problem and its implicit Euler discretization for a model containing the Mohr-Coulomb yield criterion, a nonassociative plastic flow rule, and nonlinear isotropic hardening [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF].

The initial value constitutive problem

Unlike [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF], we formulate the initial value constitutive problem by using the subdifferential of the plastic potential:

Given the history of the infinitesimal strain tensor ε = ε(t), t ∈ [0, t max ], and the initial values

ε p (0) = ε p 0 , εp (0) = εp 0 ≥ 0, find (σ(t), ε p (t), εp (t), λ(t)) such that σ = D e : (ε -ε p ), κ = H(ε p ), εp ∈ λ∂g(σ), εp = -λ ∂f (σ,κ) ∂κ , λ ≥ 0, f (σ, κ) ≤ 0, λf (σ, κ) = 0      (3.1) hold for each instant t ∈ [0, t max ].
Here, σ, ε p , εp , λ denote the Cauchy stress tensor, the plastic strain, the hardening variable, and the plastic multiplier, respectively. The dot symbol means the pseudo-time derivative of a quantity. The fourth order tensor D e represents the linear isotropic elastic law:

σ = D e : ε e = 1 3 (3K -2G)(I : ε e )I + 2Gε e , D e = 1 3 (3K -2G)I ⊗ I + 2GI, (3.2) 
where ε e = εε p is the elastic part of the strain tensor, K, G > 0, 3K > 2G, denote the bulk, and shear moduli, respectively, and Iη = η for any η ∈ R 3×3 sym , i.e., [I] ijkl = 1 2 (δ ik δ jl + δ il δ jk ), employing the symmetries (1.1). Further, we let the function H represent the non-linear isotropic hardening in an abstract form and assume that it is a nondecreasing, continuous, and piecewise smooth function satisfying H(0) = 0. Finally, the functions f and g represent the yield function and the plastic potential for the Mohr-Coulomb model, respectively. They are defined as follows:

f (σ, κ) = (1 + sin ϕ)ω 1 (σ) -(1 -sin ϕ)ω 3 (σ) -2(c 0 + κ) cos ϕ, (3.3) g(σ) = (1 + sin ψ)ω 1 (σ) -(1 -sin ψ)ω 3 (σ), (3.4) 
where ω 1 and ω 3 are the maximal and minimal eigenvalue functions introduced in Sect. 2, and the material parameters c 0 > 0, ϕ, ψ ∈ (0, π/2) represent the initial cohesion, the friction angle, and the dilatancy angle, respectively. Notice that f, g are convex functions with respect to the stress variable. Recall that the function g is a special case of the function considered in Sect. 2 for the choice

a := 1 + sin ψ, b := 1 -sin ψ (3.5)
and thus ∂g(σ) is given by Lemma 2.1. Clearly, ∂f (σ, κ)/∂κ = -2 cos ϕ.

It is worth mentioning that the value of t max need not be always known, see Sect. 6.

The implicit discretization of the constitutive problem

Let 0 = t 0 < t 1 < . . . < t k < . . . < t N = t max be a partition of the interval [0, t max ] and denote

σ k := σ(t k ), ε k := ε(t k ), ε p k := ε p (t k ), εp k := εp (t k ), εp,tr k := εp (t k-1 ), ε tr k := ε(t k ) -ε p (t k-1
), and σ tr k := D e : ε tr k . Here, the superscript tr is the standard notation for the so-called trial variables (see, e.g., [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]), which are known. If it is clear that the step k is fixed then we shall omit the subscript k and write σ, ε, ε p , εp , εp,tr , ε tr , and σ tr to simplify the notation. The k-th step of the incremental constitutive problem discretized by the implicit Euler method reads as: Given σ tr and εp,tr , find σ, εp , and △λ satisfying:

σ = σ tr -△λD e : ν, ν ∈ ∂g(σ), εp = εp,tr + △λ(2 cos ϕ), △λ ≥ 0, f (σ, H(ε p )) ≤ 0, △λf (σ, H(ε p )) = 0.      (3.6)
Unlike problem (3.1), the unknown ε p is not introduced in (3.6). It can simply be computed from the formula ε

p (t k ) = ε(t k ) -D -1
e : σ(t k ) and used as the input parameter for the next step.

Solution of the incremental constitutive problem

The aim of this section is to derive an improved solution scheme to problem (3.6). The solution scheme builds on the standard elastic predictor -plastic corrector method and its improvement is based on the form of ∂g(σ) introduced in Lemma 2.1. Within the elastic prediction, we assume △λ = 0. Then, it is readily seen that the triple

σ = σ tr , εp = εp,tr , △λ = 0 (4.1)
is a solution to (3.6) under the condition

f (σ tr , H(ε p,tr )) ≤ 0. (4.2)
The plastic correction happens when △λ > 0. Then the unknown generalized stress (σ, H(ε p )) lies on the yield surface and thus the corresponding plastic correction problem reads as:

Given σ tr and εp,tr , find σ, εp , and △λ satisfying:

σ = σ tr -△λD e : ν, ν ∈ ∂g(σ), εp = εp,tr + △λ(2 cos ϕ), △λ > 0, f (σ, H(ε p )) = 0.      (4.3)
A solution scheme to problem (4.3) is usually called an implicit return-mapping scheme. Since its derivation is technically complicated, we divide the rest of this section into several subsections for easier orientation in the text. In Sect. 4.1, problem (4.3) is reduced and written in terms of principal stresses. In parallel Sects. 4.2-4.5, we derive the return mappings to: the smooth portion, the "left" edge, the "right" edge, and the apex of the pyramidal yield surface, respectively, and the corresponding a priori decision criteria. In Sect. 4.6, we prove: the existence and uniqueness of solutions of problems (3.6) and (4.3), the continuous dependence of the solutions on the trial variables, and other useful results.

Plastic correction problem in terms of principal stresses

First, we reduce problem (4.3) by using the spectral decomposition of σ (see Sect. 2):

σ = 3 i=1 σ i e i ⊗ e i , σ 1 ≥ σ 2 ≥ σ 3 , (e 1 , e 2 , e 3 ) ∈ V (σ), σ i = ω i (σ), i = 1, 2, 3. (4.4) 
From the definition of f introduced in Sect. 3, it is easy to see that (4.3) 3 can be written only in terms of the principal stresses σ 1 , σ 3 instead of the whole stress tensor σ. To re-formulate (4.3) 1 , we use Lemma 2.1 and (3.5): there exists

(e 1 , e 2 , e 3 ) ∈ V (σ) such that ν = 3 i=1 ν i e i ⊗ e i , where 
1 + sin ψ ≥ ν 1 ≥ ν 2 ≥ ν 3 ≥ -1 + sin ψ, ν 1 + ν 2 + ν 3 = 2 sin ψ, (ν 1 -1 -sin ψ)(σ 1 -σ 2 ) = 0, (ν 3 + 1 -sin ψ)(σ 2 -σ 3 ) = 0. (4.5) Since I = 3 i=1 e i ⊗ e i , (3.2) implies D e : ν = 3 i=1 2 3 (3K -2G) sin ψ + 2Gν i e i ⊗ e i . (4.6) 
Then one can substitute (4.4) and (4.6) into (4.3) 1 :

σ tr = σ + △λD e : ν = 3 i=1 σ tr i e i ⊗ e i , where σ tr i = σ i + △λ 2 3 (3K -2G) sin ψ + 2Gν i . (4.7) 
Notice that (4.7) 1 defines the spectral decomposition of σ tr . Since σ 1 ≥ σ 2 ≥ σ 3 and ν 1 ≥ ν 2 ≥ ν 3 , we have:

(i) σ tr 1 ≥ σ tr 2 ≥ σ tr 3 ; (ii) if σ tr i = σ tr j then σ i = σ j , ν i = ν j . From (i)
, it follows that the eigenvalues σ tr 1 , σ tr 2 , σ tr 3 are ordered and thus determined uniquely by using the eigenvalue functions:

σ tr i = ω i (σ tr ), i = 1, 2, 3. From (ii), we conclude that σ = 3 i=1 σ i e tr i ⊗ e tr i , ν = 3 i=1
ν i e tr i ⊗ e tr i for any (e tr 1 , e tr 2 , e tr 3 ) ∈ V (σ tr ). The following lemma summarizes the proven results. Lemma 4.1 Let σ tr and εp,tr be given, satisfy f (σ tr , H(ε p,tr )) > 0 and σ tr = 3 i=1 σ tr i e tr i ⊗ e tr i , σ tr 1 ≥ σ tr 2 ≥ σ tr 3 , (e tr 1 , e tr 2 , e tr 3 ) ∈ V (σ tr ), be the spectral decomposition of σ tr . If (σ, εp , △λ) is a solution to (4.3) and σ i are the ordered eigenvalues of σ then (σ 1 , σ 2 , σ 3 , εp , △λ) is a solution to:

σ i = σ tr i -△λ 2 3 (3K -2G) sin ψ + 2Gν i , i = 1, 2, 3, εp = εp,tr + △λ(2 cos ϕ), (1 + sin ϕ)σ 1 -(1 -sin ϕ)σ 3 -2(c 0 + H(ε p )) cos ϕ = 0, σ 1 ≥ σ 2 ≥ σ 3 , △λ > 0, ν 1 , ν 2 , ν 3 satisfy (4.5).                (4.8) Conversely, if (σ 1 , σ 2 , σ 3 , εp , △λ) is a solution to (4.8) then (σ, εp , △λ), σ = 3 i=1 σ i e tr i ⊗ e tr i , solves (4.
3). To be in accordance with problems (3.6) and (4.3), we do not include ν 1 , ν 2 , ν 3 in the list of unknowns. From (4.5), it follows that the values of ν 1 , ν 2 , ν 3 can be specified depending on the multiplicities of σ 1 , σ 2 , σ 3 as in Remark 2.2. Therefore, we shall distinguish four types of the return mapping to the yield surface: the return mapping to the smooth portion (σ 1 > σ 2 > σ 3 ), the return mapping to the left edge (σ 1 = σ 2 > σ 3 ), the return mapping to the right edge (σ 1 > σ 2 = σ 3 ), and the return mapping to the apex (σ 1 = σ 2 = σ 3 ). These cases will be studied separately in parallel Sects. 4.2-4.5. The terminology follows from [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF], another one is used, e.g., in [START_REF] Larsson | Implicit integration and consistent linearization for yield criteria of the Mohr-Coulomb type[END_REF].

Within the notation introduced below, we shall use the subscripts s, l, r, a to distinguish the return type and the superscript "tr" to emphasize a known quantity depending only on trial variables. Further, we shall consider that σ tr with σ tr 1 ≥ σ tr 2 ≥ σ tr 3 and εp,tr are given.

Return mapping to the smooth portion

(σ 1 > σ 2 > σ 3 )
To derive the return mapping to the smooth portion of the yield surface, we introduce the auxiliary values γ tr s,l :=

σ tr 1 -σ tr 2 2G(1 + sin ψ) ≥ 0, γ tr s,r := σ tr 2 -σ tr 3 2G(1 -sin ψ) ≥ 0, (4.9) 
and a function q tr s : R + → R, q tr s (γ

) := (1 + sin ϕ)σ tr 1 -(1 -sin ϕ)σ tr 3 -2 c 0 + H εp,tr + γ(2 cos ϕ) cos ϕ -γ 4 3 (3K -2G) sin ψ sin ϕ + 4G(1 + sin ψ sin ϕ) . (4.10) 
One can observe that the function q tr s is continuous, piecewise smooth and decreasing in R + , making use of the properties of the function H. In addition, q tr s (0) = f (σ tr , H(ε p,tr )). Theorem 4.2 Problem (4.8) has a solution (σ 1 , σ 2 , σ 3 , εp , △λ) satisfying σ 1 > σ 2 > σ 3 if and only if the following conditions hold:

f (σ tr , H(ε p,tr )) > 0, q tr s (min{γ tr s,l , γ tr s,r }) < 0. (4.11)
If such a solution exists then its components are uniquely determined by the following equations:

q tr s (△λ) = 0, △λ ∈ (0, min{γ tr s,l , γ tr s,r }), (4.12)

σ 1 = σ tr 1 -△λ 2 3 (3K -2G) sin ψ + 2G(1 + sin ψ) , (4.13) 
σ 2 = σ tr 2 -△λ 2 3 (3K -2G) sin ψ , (4.14) 
σ 3 = σ tr 3 -△λ 2 3 (3K -2G) sin ψ -2G(1 -sin ψ) , (4.15) 
εp = εp,tr + △λ(2 cos ϕ). (4.16) P r o o f. Assume that there exists a solution (σ 1 , σ 2 , σ 3 , εp , △λ) to (4.8) satisfying σ 1 > σ 2 > σ 3 . Then ν 1 = 1 + sin ψ, ν 2 = 0, ν 3 = -(1 -sin ψ) as it follows from (4.5). Inserting ν 1 , ν 2 , ν 3 into (4.8) 1 , we obtain (4.13)-(4.15). Inserting (4.13), (4.15), and (4.8) 2 into (4.8) 3 , we find that △λ solves q tr s (△λ) = 0. From (4.13)-(4.15), one can also derive

σ 1 -σ 2 = σ tr 1 -σ tr 2 -2G(1 + sin ψ)△λ, (4.17) σ 2 -σ 3 = σ tr 2 -σ tr 3 -2G(1 -sin ψ)△λ, (4.18) 
which together with σ 1 > σ 2 > σ 3 yields △λ ∈ (0, min{γ tr s,l , γ tr s,r }). Since the function q tr s is continuous and decreasing in R + , the solution (σ 1 , σ 2 , σ 3 , εp , △λ) is uniquely determined by (4.12)-(4.16). Moreover, the conditions (4.11) must hold due to q tr s (0) = f (σ tr , H(ε p,tr )). Conversely, assume that (4.11) holds. Then there exists a unique solution △λ ∈ (0, min{γ tr s,l , γ tr s,r }) to the equation q tr s (△λ) = 0. Define σ 1 , σ 2 , σ 3 and εp by (4.13)-(4.16), respectively. As in the first part of the proof, (4.17)-(4.18) hold. From (4.17), (4.18), and △λ ∈ (0, min{γ tr s,l , γ tr s,r }), we have σ 1 > σ 2 > σ 3 . Finally, it is easy to see that the quintet

(σ 1 , σ 2 , σ 3 , εp , △λ) is a solution to (4.8) for ν 1 = 1 + sin ψ, ν 2 = 0, ν 3 = -(1 -sin ψ).
Remark 4.3 It is important to note that (4.11) implies min{γ tr s,l , γ tr s,r } > 0 and consequently σ tr 1 > σ tr 2 > σ tr 3 .

Return mapping to the left edge

(σ 1 = σ 2 > σ 3 )
To derive the return mapping to the left edge of the yield surface, we use γ tr s,l from (4.9) and define another value γ tr l,a :=

σ tr 1 + σ tr 2 -2σ tr 3 2G(3 -sin ψ) (4.19) 
and an auxiliary function q tr l : R + → R,

q tr l (γ) := 1 2 (1 + sin ϕ)(σ tr 1 + σ tr 2 ) -(1 -sin ϕ)σ tr 3 -2 c 0 + H εp,tr + γ(2 cos ϕ) cos ϕ -γ 4 3 (3K -2G) sin ψ sin ϕ + G(1 + sin ψ)(1 + sin ϕ) + 2G(1 -sin ψ)(1 -sin ϕ) . (4.20)
Notice that the function q tr l is continuous, piecewise smooth and decreasing in R + . From the assumption σ tr 1 ≥ σ tr 2 ≥ σ tr 3 , we have γ tr l,a ≥ 0 and q tr l (0) ≤ f (σ tr , H(ε p,tr )). Theorem 4.4 Problem (4.8) has a solution (σ 1 , σ 2 , σ 3 , εp , △λ) satisfying σ 1 = σ 2 > σ 3 if and only if the following conditions hold: f (σ tr , H(ε p,tr )) > 0, q tr l (γ tr s,l ) ≥ 0, q tr l (γ tr l,a ) < 0.

(4.21)
If such a solution exists then its components are uniquely determined by the following equations:

q tr l (△λ) = 0, △λ ∈ [γ tr s,l , γ tr l,a ), (4.22 
)

σ 1 = σ 2 = 1 2 (σ tr 1 + σ tr 2 ) -△λ 2 3 (3K -2G) sin ψ + G(1 + sin ψ) , (4.23 
) 

σ 3 = σ tr 3 -△λ 2 3 (3K -2G) sin ψ -2G(1 -sin ψ) , (4.24 
ν 3 = -(1 -sin ψ), ν 1 + ν 2 = 1 + sin ψ and 1 + sin ψ ≥ ν 1 ≥ ν 2 ≥ 0. ( 4 
-σ 2 = σ tr 1 -σ tr 2 -2G(ν 1 -ν 2 )△λ, (4.27 
)

σ 1 -σ 3 = 1 2 (σ tr 1 + σ tr 2 ) -σ tr 3 -G(3 -sin ψ)△λ. (4.28) 
Equations (4.27) and (4.28) imply △λ ∈ [γ tr s,l , γ tr l,a ) making use of σ 1 = σ 2 > σ 3 and ν 1 -ν 2 ≤ 1 + sin ψ (see (4.26) 3 ). Since the function q tr l is continuous and decreasing in R + , the solution (σ 1 , σ 2 , σ 3 , εp , △λ) is uniquely determined by (4.22)-(4.25). Moreover, the conditions (4.21) must hold as it follows from △λ > 0 and f (σ tr , H(ε p,tr )) ≥ q tr l (0) > q tr l (△λ) = 0. Conversely, assume that (4.21) holds. Then there exists a unique solution △λ ∈ [γ tr s,l , γ tr l,a ) to the equation q tr l (△λ) = 0. It holds that △λ > 0. Indeed, if △λ = γ tr s,l = 0 then σ tr 1 = σ tr 2 and f (σ tr , H(ε p,tr )) = q tr l (0) = q tr l (△λ) = 0. This contradicts (4.21 

ν 1 = 1 4G△λ (σ tr 1 -σ tr 2 ) + 1 2 (1 + sin ψ), ν 2 = - 1 4G△λ (σ tr 1 -σ tr 2 ) + 1 2 (1 + sin ψ).
Hence, one can easily see that (4.26) and consequently (4.5) hold making use of △λ ≥ γ tr s,l . Therefore, (σ 1 , σ 2 , σ 3 , εp , △λ) is the solution to (4.8).

Remark 4.5 It is important to note that (4.21) implies 0 ≤ γ tr s,l < γ tr l,a and consequently σ tr 1 ≥ σ tr 2 > σ tr 3 . Further, the solution components σ 1 = σ 2 , σ 3 , εp , and △λ depend on σ tr 1 , σ tr 2 only through σ tr 1 + σ tr 2 .

4.4 Return mapping to the right edge (σ

1 > σ 2 = σ 3 )
To derive the return mapping to the right edge of the yield surface, we use γ tr s,r from (4.9) and define another value and an auxiliary function q tr r : R + → R,

q tr r (γ) := (1 + sin ϕ)σ tr 1 - 1 2 (1 -sin ϕ)(σ tr 2 + σ tr 3 ) -2 c 0 + H εp,tr + γ(2 cos ϕ) cos ϕ -γ 4 3 (3K -2G) sin ψ sin ϕ + 2G(1 + sin ψ)(1 + sin ϕ) + G(1 -sin ψ)(1 -sin ϕ) . (4.30)
Notice that the function q tr r is continuous, piecewise smooth and decreasing in R + . From the assumption σ tr 1 ≥ σ tr 2 ≥ σ tr 3 , we have γ tr r,a ≥ 0 and q tr r (0) ≤ f (σ tr , H(ε p,tr )). Theorem 4.6 Problem (4.8) has a solution (σ 1 , σ 2 , σ 3 , εp , △λ) satisfying σ 1 > σ 2 = σ 3 if and only if the following conditions hold: f (σ tr , H(ε p,tr )) > 0, q tr r (γ tr s,r ) ≥ 0, q tr r (γ tr r,a ) < 0.

(4.31)
If such a solution exists then its components are uniquely determined by the following equations:

q tr r (△λ) = 0, △λ ∈ [γ tr s,r , γ tr r,a ), (4.32 
)

σ 1 = σ tr 1 -△λ 2 3 (3K -2G) sin ψ + 2G(1 + sin ψ) , (4.33 
) For the sake of brevity, we skip the proof of Theorem 4.6 since it is quite analogous to the proof of Theorem 4.4. Remark 4.7 It is important to note that (4.31) implies 0 ≤ γ tr s,r < γ tr r,a and consequently σ tr 1 > σ tr 2 ≥ σ tr 3 . Further, the solution components σ 1 , σ 2 = σ 3 , εp , and △λ depend on σ tr 2 , σ tr 3 only through σ tr 2 + σ tr 3 .

σ 3 = 1 2 (σ tr 2 + σ tr 3 ) -△λ 2 3 (3K -2G) sin ψ -G(1 -sin ψ) , (4.34 

Return mapping to the apex (σ

1 = σ 2 = σ 3 )
Define an auxiliary function q tr a : R + → R,

q tr a (γ) := 2 3 (σ tr 1 + σ tr 2 + σ tr 3 ) sin ϕ -2 c 0 + H εp,tr + γ(2 cos ϕ) cos ϕ -γ[4K sin ψ sin ϕ], (4.36) 
which is continuous, piecewise smooth, decreasing and unbounded from below in R + . From the assumption σ tr 1 ≥ σ tr 2 ≥ σ tr 3 , we have q tr a (0) ≤ f (σ tr , H(ε p,tr )). Further, we shall use the values γ tr l,a ≥ 0 and γ tr r,a ≥ 0 defined by (4. [START_REF] Han | Plasticity: Mathematical Theory and Numerical Analysis[END_REF]) and (4.29), respectively.

Theorem 4.8 Problem (4.8) has a solution (σ 1 , σ 2 , σ 3 , εp , △λ) satisfying σ 1 = σ 2 = σ 3 if and only if the following conditions hold: f (σ tr , H(ε p,tr )) > 0, q tr a (max{γ tr l,a , γ tr r,a }) ≥ 0.

(4.37)

If such a solution exists then its components are uniquely determined by the following equations:

q tr a (△λ) = 0, △λ ≥ max{γ tr l,a , γ tr r,a }, (4.38) 

σ 1 = σ 2 = σ 3 = 1 3 (σ tr 1 + σ tr 2 + σ tr 3 ) -△λ[2K sin ψ], (4.39 
ν 1 ≥ ν 2 ≥ ν 3 , ν 1 + ν 2 + ν 3 = 2 sin ψ, 2ν 1 -ν 2 -ν 3 ≤ 3 + sin ψ, ν 1 + ν 2 -2ν 3 ≤ 3 -sin ψ. (4.41)
Since σ 1 = (σ 1 + σ 2 + σ 3 )/3, we obtain (4.39) from (4.8) 1 and (4.41) 2 . Inserting (4.39) and (4.8) 2 into (4.8) 3 , we find that △λ solves q tr a (△λ) = 0. Further, from (4.8) 1 , we obtain

0 = 2σ 1 -σ 2 -σ 3 = 2σ tr 1 -σ tr 2 -σ tr 3 -△λ[2G(2ν 1 -ν 2 -ν 3 )], (4.42 
)

0 = σ 1 + σ 2 -2σ 3 = σ tr 1 + σ tr 2 -2σ tr 3 -△λ[2G(ν 1 + ν 2 -2ν 3 )]. (4.43) 
This and (4.41) yield △λ ≥ max{γ tr l,a , γ tr r,a }. Since the function q tr a is continuous and decreasing in R + , the solution (σ 1 , σ 2 , σ 3 , εp , △λ) is uniquely determined by (4.38)-(4.40). Moreover, the conditions (4.37) must hold as it follows from △λ > 0 and f (σ tr , H(ε p,tr )) ≥ q tr a (0) > q tr a (△λ) = 0. Conversely, assume that (4.37) holds. Owing to the fact that q tr a is unbounded from below in R + , there exists a unique solution △λ ≥ max{γ tr l,a , γ tr r,a } to the equation q tr a (△λ) = 0. It holds that △λ > 0. Indeed, if △λ = γ tr l,a = γ tr r,a = 0 then σ tr 1 = σ tr 2 = σ tr 3 and f (σ tr , H(ε p,tr )) = q tr a (0) = q tr a (△λ) = 0. However, this contradicts (4.37) 1 . Further, define σ 1 = σ 2 = σ 3 and εp by (4.39) and (4.40), respectively. (4.39) coincides with (4.8) 1 if and only if

ν i = 1 6G△λ 2σ tr i -σ tr j -σ tr k + 2 3 sin ψ, i, j, k = 1, 2, 3, i ̸ = j ̸ = k ̸ = i.
From here and △λ ≥ max{γ tr l,a , γ tr r,a }, it is easy to see that ν 1 , ν 2 , ν 3 satisfy (4.5). Therefore, (σ 1 , σ 2 , σ 3 , εp , △λ) is the solution to (4.8). Remark 4.9 It is important to note that the solution components σ 1 = σ 2 = σ 3 , εp , and △λ depend on σ tr 1 , σ tr 2 , σ tr 3 only through σ tr 1 + σ tr 2 + σ tr 3 when (4.37) holds.

Existence and uniqueness of a solution to the plastic correction problem

In parallel Sects. Since (1 + sin ψ)/(3 -sin ψ) ∈ (0, 1), γ tr l,a lies between γ tr s,l and γ tr s,r . Similarly, γ tr r,a lies between γ tr s,l and γ tr l,a . Therefore, only three orderings are possible: γ tr s,l < γ tr r,a < γ tr l,a < γ tr s,r , γ tr s,r < γ tr l,a < γ tr r,a < γ tr s,l or γ tr s,l = γ tr r,a = γ tr l,a = γ tr s,r . (4.44)

For these three cases, we obtain

C tr s = (0, γ tr s,l ), C tr l = [γ tr s,l , γ tr l,a ), C tr r = ∅, C tr a = [γ tr l,a , +∞), C tr s = (0, γ tr s,r ), C tr l = ∅, C tr r = [γ tr s,r , γ tr r,a ), C tr a = [γ tr r,a , +∞), C tr s = (0, γ tr s,l ), C tr l = ∅, C tr r = ∅, C tr a = [γ tr s,l , +∞),
respectively. Hence, we see that C tr s , C tr l , C tr r , C tr a are mutually disjoint and their union is equal to (0, +∞) in all cases. Further, the functions q tr s , q tr l , q tr r , and q tr a have been defined by (4.10), (4.20), (4.30), and (4.36), respectively. It holds that q tr s (0) = f (σ tr , H(ε p,tr )) and q tr s (γ tr s,l ) = q tr l (γ tr s,l ), q tr s (γ tr s,r ) = q tr r (γ tr s,r ), q tr l (γ tr l,a ) = q tr a (γ tr l,a ), q tr r (γ tr r,a ) = q tr a (γ tr r,a ). (4.45) Therefore, we arrive at the following result. Lemma 4.10 There exists a unique function q tr : R + → R satisfying:

q tr | C tr s = q tr s , q tr | C tr l = q tr l , q tr | C tr r = q tr r , q tr | C tr a = q tr a , q tr (0) = f (σ tr , H(ε p,tr )), q tr is continuous, piecewise smooth, decreasing and unbounded from below in R + .

Using the function q tr , one can equivalently rewrite the criteria (4.11), (4.21), (4.31), and (4.37) as follows:

(smooth portion) q tr (0) > 0, q tr (min{γ tr s,l , γ tr s,r }) < 0, (left edge) q tr (0) > 0, q tr (γ tr s,l ) ≥ 0, q tr (γ tr l,a ) < 0, γ tr s,l < γ tr s,r , (right edge) q tr (0) > 0, q tr (γ tr s,r ) ≥ 0, q tr (γ tr r,a ) < 0, γ tr s,r < γ tr s,l , (apex) q tr (0) > 0, q tr (max{γ tr l,a , γ tr r,a }) ≥ 0, respectively. From the properties of q tr and (4.44), it follows that for any given data σ tr and εp,tr , just one of these criteria is satisfied. Therefore, Theorems 4. Remark 4. [START_REF] Clausen | Robust and efficient handling of yield surface discontinuities in elasto-plastic finite element calculations[END_REF] The existence and uniqueness of a solution to the constitutive problem is an expected result, which is not usually discussed in literature. In addition, the criteria (4.11), (4.21), (4.31), and (4.37) have been derived for each return type without the knowledge of the solution. They eliminate blind guesswork from the solution schemes introduced in parallel Sects. 4.2-4.5. Similar criteria were known only for a linear function H (see, e.g., [START_REF] Larsson | Implicit integration and consistent linearization for yield criteria of the Mohr-Coulomb type[END_REF]), for which the solution components can be found in closed forms.

It follows from Theorem 4.12 that there exists a unique function S : R 3×3 sym × R + → R 3×3 sym such that the stress tensor σ sought in problem (3.6) satisfies σ = S(σ tr , εp,tr ).

(4.46)

The implicit function S can be constructed by using Lemma 4.1 and the return-mapping solution schemes introduced in Theorems 4.2, 4.4, 4.6, and 4.8. Theorem 4.14 The function S is continuous in R 3×3 sym × R + .

P r o o f. For the sake of brevity, we only sketch the proof. The functions ω i : σ tr → σ tr i , i = 1, 2, 3, are continuous and piecewise smooth in R 3×3 sym [START_REF] Carlson | The derivative of a tensor-valued function of a tensor[END_REF]. From (4.10), (4.20), (4.30), (4.36), and (4.45), it follows that the function q(γ, σ tr , εp,tr ) := q tr (γ) is also continuous and piecewise smooth, hence locally Lipschitz continuous. Since it is easy to see that q tr has also negative one-sided derivatives, the implicit function theorem [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]Sect. 7.1] implies the continuity of the function (σ tr , εp,tr ) → △λ, where △λ is the unique solution of q(△λ, σ tr , εp,tr ) = 0. Further, it is possible to show the following statements:

• If △λ = 0 then formulas (4.13)-(4.15) yield σ i = σ tr i , i = 1, 2, 3. This corresponds with the elastic solution (4.1). Hence, the function (σ tr , εp,tr ) → (σ 1 , σ 2 , σ 3 ) is also continuous. Finally, we conclude that the function S is continuous since the tensors σ and σ tr are coaxial (see Lemma 4.1).

Stress-strain and consistent tangent operators

Recalling (4.46) and the relations εp,tr = εp (t k-1 ), ε tr = ε(t k ) -ε p (t k-1 ), σ tr = D e : ε tr from Sect. 3.2, one can define functions S : R 3×3 sym × R + → R 3×3 sym and T : R 3×3 sym × R 3×3 sym × R + → R 3×3 sym as follows:

S ε tr , εp,tr := S D e : ε tr , εp,tr , (5.1) T (ε, ε p (t k-1 ), εp (t k-1 )) := S(εε p (t k-1 ), εp (t k-1 )).

(5.2)

Obviously, the function T represents a relation between the stress σ = σ(t k ) and the strain ε = ε(t k ). A (generalized) derivative of T with respect to ε is known as the consistent tangent operator in literature. We use the notation T (ε, ε p (t k-1 ), εp (t k-1 )) for this operator. In order to derive T, we shall find the Fréchet derivative of S with respect to ε tr for εp,tr fixed at the points where it exists. This derivative will be denoted by DS (ε tr , εp,tr ). The symbol D will also be used for partial derivatives of other functions with respect to ε tr . According to (3.2), the tensors σ tr and ε tr have the same eigenvectors and their eigenvalues are related as follows:

σ tr i = 1 3 (3K -2G)(ε tr 1 + ε tr 2 + ε tr 3 ) + 2Gε tr i , i = 1, 2, 3. (5.3)
Hence, one can easily evaluate S (ε tr , εp,tr ) by using (5.1). The derivative DS (ε tr , εp,tr ) can be found in the following open sets:

M tr e = {ε tr ∈ R 3×3 sym | q tr s (0) = f σ tr , H(ε p,tr ) < 0}, M tr s = {ε tr ∈ R 3×3 sym | q tr s (0) > 0, q tr s (min{γ tr s,l , γ tr s,r }) < 0}, M tr l = {ε tr ∈ R 3×3 sym | q tr l (γ tr s,l ) > 0, q tr l (γ tr l,a ) < 0}, M tr r = {ε tr ∈ R 3×3
sym | q tr r (γ tr s,r ) > 0, q tr r (γ tr r,a ) < 0}, M tr a = {ε tr ∈ R 3×3 sym | q tr a (max{γ tr l,a , γ tr r,a }) > 0},

It follows from Sect. 4 that the stress σ = S (ε tr , εp,tr ) lies in the elastic domain, at the smooth portion, on the left edge, on the right edge and at the apex of the yield surface if ε tr ∈ M tr e , ε tr ∈ M tr s , ε tr ∈ M tr l , ε tr ∈ M tr r , ε tr ∈ M tr a , respectively. Therefore, these sets are mutually disjoint. One can also see that the union of their closures is equal to R 3×3 sym .

If ε tr ∈ M tr e then the elastic response happens and we simply arrive at S ε tr , εp,tr = D e : ε tr , DS ε tr , εp,tr = D e .

(5.4)

The remaining cases are studied separately in parallel Sects. 5.1-5.4. We shall use the eigenprojections of a second order tensor instead of the eigenvectors similarly as in [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. The derivatives of the eigenprojections are derived in [START_REF] Carlson | The derivative of a tensor-valued function of a tensor[END_REF] and summarized in [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. For the sake of simplicity, we shall assume that H is differentiable at εp,tr k + △λ(2 cos ϕ) and denote

H 1 := H ′ (ε p,tr k + △λ(2 cos ϕ)).
5.1 Return operators to the smooth portion (ε tr ∈ M tr s ) From Remark 4.3 and (5.3), we have ε tr 1 > ε tr 2 > ε tr 3 . This implies the differentiability of ω 1 , ω 2 , ω 3 at ε tr [START_REF] Carlson | The derivative of a tensor-valued function of a tensor[END_REF]. Moreover, one can introduce the eigenprojections E tr i := E i (ε tr ) of ε tr , i = 1, 2, 3 [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

E tr i := (ε tr -ε tr j I)(ε tr -ε tr k I) (ε tr i -ε tr j )(ε tr i -ε tr k ) . (5.5) 
It holds:

E tr i = e tr i ⊗ e tr i = Dω i (ε tr ), i = 1, 2, 3, (5.6) 
and the derivatives

E tr i := DE i (ε tr ), i = 1, 2, 3, satisfy: 
E tr i = D((ε tr ) 2 ) -(ε tr j + ε tr k )I -(2ε tr i -ε tr j -ε tr k )E tr i ⊗ E tr i -(ε tr j -ε tr k )[E tr j ⊗ E tr j -E tr k ⊗ E tr k ] (ε tr i -ε tr j )(ε tr i -ε tr k ) , (5.7) 
for any i = 1, 2, 3, i ̸ = j ̸ = k ̸ = i, where the components of the fourth order tensors D((ε tr ) 2 ) and

I satisfy [D((ε tr ) 2 )] ijkl = 1 2 (δ ik [ε tr ] jl + δ jl [ε tr ] ik + δ jk [ε tr ] il + δ il [ε tr ] jk ) and [I] ijkl = 1 2 (δ ik δ jl + δ il δ jk )
, respectively. From here and Lemma 4.1, we have

S ε tr , εp,tr = 3 i=1 σ i E tr i , DS ε tr , εp,tr = 3 i=1 σ i E tr i + E tr i ⊗ Dσ i , (5.8) 
where σ 1 , σ 2 , σ 3 satisfy (4.13)-(4.15). From (4.10), (4.12)-(4.16), and (5.3), we derive

Dσ 1 = 1 3 (3K -2G)I + 2GE tr 1 -D(△λ) 2 3 (3K -2G) sin ψ + 2G(1 + sin ψ) , Dσ 2 = 1 3 (3K -2G)I + 2GE tr 2 -D(△λ) 2 3 (3K -2G) sin ψ , Dσ 3 = 1 3 (3K -2G)I + 2GE tr 3 -D(△λ) 2 3 (3K -2G) sin ψ -2G(1 -sin ψ) , D(△λ) = 2G(1 + sin ϕ)E tr 1 -2G(1 -sin ϕ)E tr 3 + 2 3 (3K -2G) sin ϕI 4 3 (3K -2G) sin ψ sin ϕ + 4G(1 + sin ψ sin ϕ) + 4H 1 cos 2 ϕ .
Inserting Dσ i , i = 1, 2, 3, into (5.8), we arrive at

DS ε tr , εp,tr = 3 i=1 σ i E tr i + 2GE tr i ⊗ E tr i + 1 3 (3K -2G)I ⊗ I -2G(1 + sin ψ)E tr 1 -2G(1 -sin ψ)E tr 3 + 2 3 (3K -2G) sin ψI ⊗ D(△λ). (5.9) 
This formula can be extended continuously to the boundary of M tr s as it follows from [START_REF] Carlson | The derivative of a tensor-valued function of a tensor[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF].

Notice that if ε tr 1 > ε tr 2 = ε tr 3 then ε tr has only two eigenprojections: E tr 1 and E tr 23 , and

ε tr = ε tr 1 E tr 1 + ε tr 3 E tr 23 . Conversely, if ε tr 1 > ε tr 2 > ε tr 3 , then E tr 23 = E tr 2 + E tr 3 . From the equality σ 1 = σ 2 , we arrive at S ε tr , εp,tr = σ 1 E tr 1 + σ 3 E tr 23 , DS ε tr , εp,tr = (σ 1 -σ 3 )E tr 1 + E tr 1 ⊗ Dσ 1 + E tr 23 ⊗ Dσ 3 . (5.16) 
From (4.30), (4.32)-(4.35), and (5.3), we derive

Dσ 1 = 1 3 (3K -2G)I + 2GE tr 1 -D(△λ) 2 3 (3K -2G) sin ψ + 2G(1 + sin ψ) , Dσ 3 = 1 3 (3K -2G)I + GE tr 23 -D(△λ) 2 3 (3K -2G) sin ψ -G(1 -sin ψ) , D(△λ) = 2G(1 + sin ϕ)E tr 1 -G(1 -sin ϕ)E tr 23 + 2 3 (3K -2G) sin ϕI 4 3 (3K -2G) sin ψ sin ϕ + 2G(1 + sin ψ)(1 + sin ϕ) + G(1 -sin ψ)(1 -sin ϕ) + 4H 1 cos 2 ϕ .
Hence,

DS ε tr , εp,tr = (σ 1 -σ 3 )E tr 1 + 2GE tr 1 ⊗ E tr 1 + GE tr 23 ⊗ E tr 23 + 1 3 (3K -2G)I ⊗ I -2G(1 + sin ψ)E tr 1 -G(1 -sin ψ)E tr 23 + 2 3 (3K -2G) sin ψI ⊗ D(△λ). (5.17) 
This formula can be extended continuously to the boundary of M tr r as it follows from [START_REF] Carlson | The derivative of a tensor-valued function of a tensor[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. In particular, if ε tr is such that q tr r (γ tr s,r ) = 0 and q tr r (γ tr r,a ) < 0 then ε tr 1 > ε tr 2 ≥ ε tr 3 still holds (see Remark 4.7) and the form (5.17) remains valid.

5.4 Return operators to the apex (ε tr ∈ M tr a ) From Sect. 4.5, it follows that σ 1 = σ 2 = σ 3 =: p. Moreover, p and △λ depend on ε tr only through From the implicit equation q tr a (△λ) = 0, we obtain ∂△λ ∂p tr

p tr := 1 3 (σ tr 1 + σ tr 2 + σ tr 3 ) = K(ε tr 1 + ε tr 2 + ε tr 3 ).
(4.36) = sin ϕ 2K sin ψ sin ϕ + 2H 1 cos 2 ϕ .
Hence,

DS ε tr , εp,tr = K 1 - K sin ψ sin ϕ K sin ψ sin ϕ + H 1 cos 2 ϕ I ⊗ I. (5.19) 
This formula is also well-defined on the boundary of M tr a .

Comments

For each return type, we have derived just one innovative formula for DS without any other branching that depends on the multiplicities of ε tr 1 , ε tr 2 , ε tr 3 . This has been achieved due to deeper analysis of dependencies within the constitutive solution, see Remarks 4.3, 4.5, 4.7, and 4.9. An additional branching for DS is introduced, e.g., in [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]Appendix A]. In many other references, DS is correctly derived only under the assumption ε tr 1 > ε tr 2 > ε tr 3 . However, such formulas can cause significant rounding errors in vicinity of multiple eigenvalues of ε tr .

It is readily seen that formulas (5.4), (5.9), (5.13), (5.17), and (5.19) for DS (ε tr , εp,tr ) are symmetric if ψ = ϕ, i.e., the plastic flow rule is associative. Moreover, it has been mentioned that these formulas can be extended continuously to the boundaries of the sets M tr e , M tr s , M tr l , M tr r , and M tr a , respectively. This enables to define the consistent tangent operator T (ε, ε p (t k-1 ), εp (t k-1 )) in the sense of the Clarke generalized derivative in R 3×3 sym × R 3×3 sym × R + . Further, it follows from Theorem 4.14 that the stress-strain operator T is a continuous function. One can also expect the semismoothness of T (• , ε p (t k-1 ), εp (t k-1 )) in R 3×3 sym on the basis of results from this section. One can use implicit function and inverse theorems for semismooth functions and the fact that the piecewise smooth functions are semismooth, for example. However, this investigation seems to be more involved and we shall not go into details here. The semismoothness of elastoplastic constitutive operators has been analyzed, e.g., in [START_REF] Čermák | A TFETI domain decomposition solver for elastoplastic problems[END_REF][START_REF] Gruber | Solution of one-time-step problems in elastoplasticity by a slant Newton method[END_REF][START_REF] Sauter | On the superlinear convergence in computational elasto-plasticity[END_REF][START_REF] Sysala | Application of a modified semismooth Newton method to some elasto-plastic problems[END_REF][START_REF] Sysala | Properties and simplifications of constitutive time-discretized elastoplastic operators[END_REF][START_REF] Sysala | Subdifferential-based implicit return-mapping operators in computational plasticity[END_REF].

A direct and indirect method of incremental limit analysis

Up to now, we have studied only the constitutive elastoplastic problem and its implicit Euler discretization. To complete the elastoplastic problem, one must standardly add the balance equation, the initial and boundary conditions and the straindisplacement relation. In particular, inserting T ε(u k ) , ε p (t k-1 ), εp (t k-1 ) , ε(u k ) = 1 2 (∇u k +∇ T u k ), into the principle of virtual work, we receive an incremental boundary-value elastoplastic problem formulated in terms of displacements [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF][START_REF] Simo | Computational inelasticity[END_REF][START_REF] Sysala | Subdifferential-based implicit return-mapping operators in computational plasticity[END_REF]. In Mohr-Coulomb plasticity, an additional problem of limit analysis is often considered for a load that depends linearly on t, see [START_REF] Chen | Limit analysis in soil mechanics[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF][START_REF] Sloan | Geotechnical stability analysis[END_REF].

The presence of a limit value t lim > 0 of t, which can be viewed as a load parameter in this context, is a feature of perfectly plastic problems. But it also appears when the hardening function H is bounded from above as in Sect. 7.1. The limit value t lim is an important safety parameter and no solution exists beyond it. It determines the collapse state of the elastoplastic body and can be defined by using a special convex minimization problem formulated either in terms of displacements or stresses [START_REF] Christiansen | Limit analysis of collapse states[END_REF][START_REF] Temam | Mathematical Problems in Plasticity[END_REF][START_REF] Zouain | Plastic collapse in non-associated hardening materials with application to Cam-Clay[END_REF]. From the analysis of this problem, it follows that t lim is independent of the time discretization and the elastic tensor D e , but its dependence on a space discretization parameter h can be significant, mainly for the simplest finite elements.

In this section, we introduce a direct and indirect method of incremental limit analysis. For the sake of brevity, we focus only on an algebraic formulation of the problem. To this end, we consider a finite element approximation of the incremental boundary-value problem. We refer to [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]Appendix D] for the standard algebraic representation of the second and fourth order tensors.

The vector of internal forces and the consistent tangent stiffness matrix at the k-th step are represented by functions F k : R n → R n and K k : R n → R n×n , respectively. It is worth mentioning that F k and K k are assembled by using the operators T and T at each integration point and depend on the solution from the previous step t k-1 , see [START_REF] Sysala | Subdifferential-based implicit return-mapping operators in computational plasticity[END_REF]. Further, we consider a load vector in the form t k l at step k, where l ∈ R n is fixed, and the corresponding problem reads as:

(P k ) t Given t k ∈ R + , find u k ∈ R n : F k (u k ) = t k l,
where u k is the displacement vector. Within incremental limit load analysis, we adaptively construct an increasing sequence 0 < t 1 < t 2 < . . . < t k < . . . < t lim depending on the solvability of (P k ) t in order to estimate the unknown limit value t lim := t lim (h). In practice, the increment of t k decreases when a chosen numerical method does not converge at step k. Such a blind determination of t k is an evident drawback of this direct incremental method.

A more sophisticated adaptive strategy is based on a local and/or global material response of the body to the prescribed load history. To this end, we compute the values α k = b T u k , k = 1, 2, . . ., where u k is a solution to (P k ) t and b is suitably chosen so that the sequence {α k } is increasing and unbounded. There are many ways how to do it. One can detect a point on the investigated body where it is expected that a selected displacement is the most sensitive to the applied forces, for example. Then b T u k is the restriction of the displacement vector to the corresponding component. More universally, one can also set b = l. This choice represents the work of the external forces, is meaningful even for continuous setting of the problem and was analyzed for generalized Hencky's plasticity in [START_REF] Cermak | Discretization and numerical realization of contact problems for elasticperfectly plastic bodies. PART II -numerical realization, limit analysis[END_REF][START_REF] Haslinger | Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals[END_REF][START_REF] Haslinger | A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting[END_REF][START_REF] Sysala | Truncation and indirect incremental methods in Hencky's perfect plasticity[END_REF][START_REF] Sysala | Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies. PART I -discretization, limit analysis[END_REF]. Clearly, if the increment α k -α k-1 enlarges significantly with increasing k, then it is convenient to reduce the increment of t for the next step.

The knowledge of a suitable b also enables to introduce the indirect method of incremental limit analysis, where the sequences {t k } and {u k } are computed by using the following auxiliary problem:

(P k ) α Given (b, α k ) ∈ R n × R + , find (u k , t k ) ∈ R n × R + : F k (u k ) = t k l, b T u k = α k .
Clearly, if (u k , t k ) is a solution to (P k ) α , then u k also solves (P k ) t for t k and t k ≤ t lim . Usually, one can expect that problem (P k ) α has a solution for any α k . In such a case, α k can be chosen arbitrarily large and the indirect method does not include any blind guesswork unlike the direct one. This is the main advantage of the indirect method. One can expect that t k → t lim as α k → +∞ for the associative Mohr-Coulomb model. This is proven for b = l and generalized Hencky's plasticity in [START_REF] Cermak | Discretization and numerical realization of contact problems for elasticperfectly plastic bodies. PART II -numerical realization, limit analysis[END_REF][START_REF] Haslinger | A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting[END_REF]. For the nonassociative Mohr-Coulomb model with ψ ≪ ϕ, we can observe that t k ≈ t lim for some finite k and the sequence {t k } is nonincreasing for k > k. In such a case, the material exhibits softening behavior and the indirect method is more convenient. It is also worth mentioning that the indirect method is similar to the arc-length method introduced, e.g., in [START_REF] De Borst | Non-Linear Finite Element Analysis of Solids and Structures[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. We solve problems (P k ) t and (P k ) α by the semismooth Newton method: Algorithm 1 (ALG-t) 

find δu i ∈ R n : K k (u i k )δu i = t k l -F k (u i k ) 4: compute u i+1 k = u i k + δu i 5: if ∥δu i ∥/(∥u i+1 k ∥ + ∥u i k ∥) ≤ ϵ Newton then stop 6: end for 7: set u k = u i+1 k . Algorithm 2 (ALG-α) 1: initialization: u 0 k , t 0 k 2: for i = 0, 1, 2, . . . do 3: find v i , w i ∈ R n : K k (u i k )v i = t i k l -F k (u i k ), K k (u i k )w i = l 4: compute δt i = [α k -b T (u i k + v i )]/b T w i 5: compute δu i = v i + δt i w i 6: set u i+1 k = u i k + δu i , t i+1 k = t i k + δt i 7: if ∥δu i ∥/(∥u i+1 k ∥ + ∥u i k ∥) ≤ ϵ Newton then stop 8: end for 9: set u k = u i+1 k , t k = t i+1 k . If T (• , ε p (t k-1 ), εp (t k-1 )) is semismooth in R 3×3 sym , then one can easily show that F k is semismooth in R n .
The semismoothness is an essential assumption ensuring the local superlinear convergence of both algorithms above (see, e.g., [START_REF] Cermak | Discretization and numerical realization of contact problems for elasticperfectly plastic bodies. PART II -numerical realization, limit analysis[END_REF]). We use a linear extrapolation of the solutions from two previous steps for their initialization. In particular, we prescribe the following values of u 0 k in ALG-t and u 0 k , t 0 k in ALG-α, k ≥ 2:

u 0 k = u k-1 + α k -α k-1 α k-1 -α k-2 (u k-1 -u k-2 ), t 0 k = t k-1 + α k -α k-1 α k-1 -α k-2 (t k-1 -t k-2 ).
We have observed that this initialization is more convenient than u 0 k = u k-1 , t 0 k = t k-1 . The direct and indirect method of incremental limit analysis are compared in Sect. 7.1, where specific heuristics for the construction of the sequences {t k } and {α k } for problems (P k ) t and (P k ) α are also described. Let us mention that an adaptive construction of {α k } is not necessary but it makes the computations more effective.

Numerical experiments -slope stability

We have implemented the direct and indirect method of incremental limit analysis for a 3D slope stability problem and its plane strain reduction in Matlab. The experimental codes named SS-MC-NP-3D, SS-MC-NH, and SS-MC-NH-Acontrol are publicly available [START_REF] Sysala | Experimental Matlab code for the slope stability benchmark -SS-MC-NP-3D[END_REF]. The codes are vectorized and include our improved return-mapping scheme for the Mohr-Coulomb model in combination with ALG-t or ALG-α. One can choose: a) several types of finite elements with appropriate numerical quadratures; b) locally refined meshes with various densities. We consider the benchmark plane strain problem introduced in [17, Page 351] and its 3D extension. The 2D crosssection of the body with the coarsest mesh considered in [33, SS-MC-NH] is depicted in Fig. 1. The 3D geometry and the corresponding hexahedral mesh arise from 2D by extruding. The height of the slope is 10 m and the inclination 45 • . We assume that the body is fixed at the bottom and zero normal displacements are prescribed on the lateral sides. The body is subjected to the self-weight. We set the specific weight ρg = 20 kN/m 3 with ρ being the mass density and g the gravitational acceleration. The resulting volume force is multiplied by the load factor t. In accordance with [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF], the sequence {α k } is the settlement at the corner point of the top of the slope here. Further, we set E = 20 000 kPa and ν = 0.49, hence, G = 67 114 kPa and K = 3 333 333 kPa. We consider only associative Mohr-Coulomb models with ϕ = ψ = 20 • . The hardening function H and the initial cohesion c 0 will be introduced for particular experiments below.

We shall present one experiment for the plane strain (2D) problem and another one for the 3D problem. The primary aim of these experiments is to illustrate numerically that the formulas derived in Sects. 4, 5, and Appendix work well. This can be confirmed by observing superlinear convergence of ALG-t and ALG-α and their stability in vicinity of the limit load. We prescribe a high precision to these algorithms by setting ϵ Newton = 10 -12 in both experiments. Other aims will be specified below.

Comparison of the direct and indirect method in 2D

We shall compare the direct method (code SS-MC-NH) and the indirect one (code SS-MC-NH-Acontrol) of incremental limit analysis on the slope stability benchmark in 2D. We consider the associative Mohr-Coulomb model with c 0 = 40 kPa and nonlinear isotropic hardening defined as in [START_REF] Sysala | Subdifferential-based implicit return-mapping operators in computational plasticity[END_REF]:

H(ε p ) = H εp - H2 4(c-c0) (ε p ) 2 if εp ≤ 2(c -c 0 )/ H, c -c 0 otherwise,
where c = 50 kPa and H = 10 000 kPa. Here, H represents the initial slope of H and the material response is perfectly plastic for sufficiently large values of εp . The function H is smooth. We use the eight-noded quadrilaterals (Q ′ 2 elements) with the 3 × 3 quadrature formula [2, Table 5.7] and a mesh with 37 265 finite-element nodes (including the centers of the edges) and 110 592 integration points. The mesh has a similar scheme as the coarser one in Fig. 1. At each integration point with a plastic response, we solve the corresponding nonlinear equation q tr (△λ) = 0 by the Newton method with the a priori known lower bounds on △λ as the initial choice. Since the Matlab code is vectorized, we use a fixed number of 10 of these inner Newton's iterations at these points. We have observed that this choice is sufficient even in vicinity of the limit load since the nonlinear function H is almost constant there.

Recall that we solve problem (P k ) t with ALG-t in each step of the direct method. We set △t 0 = 0.5 (the initial load increment). If ALG-t converges within 50 iterations for step k ≥ 1 and if the computed increment of the settlement satisfies α k -α k-1 < 0.5 m, then we set △t k+1 = △t k , where △t k = t k -t k-1 . Otherwise, the increment is divided by two. Within the indirect method, where problems (P k ) α are solved by ALG-α, we set △α 0 = 0.0414 m as the initial increment of the settlement to have comparable results with the direct method. If the computed load increment satisfies |t k -t k-1 | > 5 × 10 -3 , then we set △α k+1 = △α k , otherwise, △α k+1 = 2△α k , △α k = α k -α k-1 . In both methods, the loading process is terminated when the computed settlement exceeds 4 meters. The direct and indirect method are compared in Figs. 234567. In Figs. 2 and3, successful load steps of the methods are depicted by circular points. The obtained loading paths coincide practically and they are in accordance with [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF][START_REF] Haslinger | Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals[END_REF][START_REF] Sysala | Subdifferential-based implicit return-mapping operators in computational plasticity[END_REF]. The computed limit value is equal to 4.057 in both cases, which is close to the estimate 4.045 from [START_REF] Chen | Limit analysis in soil mechanics[END_REF]. However, other comparisons turn out that the indirect method behaves better than the direct one. First, both methods need 18 load steps, but the direct one requires 8 additional load steps without successful convergence, whereas convergence is achieved in each step of the indirect one. One can also see that the positions of the circular points are more convenient with respect to the curvature of the loading path in Fig. 3 than in Fig. 2. Second, the rates of convergence of ALG-t and ALG-α are similar only up to step 11 of the respective methods. The number of iterations between steps 12 and 18 is smaller within the indirect method, where the convergence is superlinear in each step (see Fig. 7). On the other hand, Fig. 6 shows that the convergence is superlinear only up to a relative error of 10 -10 in steps 11 and 16 of the direct method, and then the error oscillates. This can also be observed in a few other steps (e.g., steps 14 and 15). Finally, the computational time of the direct and indirect method was approximately 9 and 7 minutes, respectively, on a current laptop.

Associative perfectly plastic 3D problem

Within the 3D slope stability experiment (code SS-MC-NP-3D), we set c 0 = 50 kPa and H = 0 kPa, which yields the perfectly plastic model. For this one, we shall compare loading paths for the Q 1 and Q ′ 2 hexahedral elements with 8 and 20 nodes, respectively. We use the 2 × 2 × 2 and 3 × 3 × 3 noded quadrature formulas [2, Table 5.7] for these elements, respectively. Two hexahedral meshes have been prepared for this experiment. For the Q 1 elements, the meshes contain 5103 and 37 597 finite-element nodes, 34 560 and 276 480 integration points, respectively. For the Q ′ 2 elements, the meshes contain 19 581 and 147 257 finite-element nodes, 116 640 and 933 120 integration points, respectively. We use the direct method of incremental limit analysis terminated when the computed settlement exceeds 5 meters. The obtained loading paths are depicted in Fig. 8. One can observe that the estimated limit values of t are close to the expected value 4.045 for the Q ′ 2 elements but not for the Q 1 elements. It would be necessary to use much finer meshes for estimating t lim with these elements. Figs. 9 and 10 illustrate failure at the end of the loading process for the Q ′ 2 elements on the finer mesh.

Fig. 9 The total displacement and the deformed shape at the end of the loading process (in meters). Fig. 10 The plastic multipliers at the end of the loading process (dimensionless).

Conclusion

This paper has extended the subdifferential-based constitutive solution technique from [START_REF] Sysala | Subdifferential-based implicit return-mapping operators in computational plasticity[END_REF] to elastoplastic models containing the Mohr-Coulomb yield criterion. It has enabled a deeper analysis of the constitutive problem discretized by the implicit Euler method and consequently has led to several improvements within solution schemes. For example, a priori decision criteria characterizing each type of the return mapping have been derived even when the solution cannot be found in a closed form. Construction of the consistent tangent operator has also been simplified.

The improved constitutive solution schemes have been implemented within slope stability problems in 2D and 3D. To this end, the direct and also the indirect method of incremental limit analysis have been used in combination with the semismooth Newton method. Its local superlinear convergence has been observed within both methods. Further, it has been illustrated that the indirect method leads to a more stable control of the loading process or that higher order finite elements reduce strong dependence on the mesh.
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  ) εp = εp,tr + △λ(2 cos ϕ).(4.25) P r o o f. Assume that there exists a solution (σ 1 , σ 2 , σ 3 , εp , △λ) to (4.8) satisfying σ 1 = σ 2 > σ 3 . Then from (4.5), we have
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 1 Further, define σ 1 = σ 2 , σ 3 and εp by (4.23)-(4.25), respectively. As in the first part of the proof, (4.28) holds. From △λ < γ tr l,a and (4.28), we have σ 1 = σ 2 > σ 3 . The equations (4.23)-(4.24) coincide with (4.8) 1 if and only if ν 3 = -(1 -sin ψ) and

  ) εp = εp,tr + △λ(2 cos ϕ).(4.35) 

  ) εp = εp,tr + △λ(2 cos ϕ). (4.40) P r o o f. Assume that there exists a solution (σ 1 , σ 2 , σ 3 , εp , △λ) to (4.8) satisfying σ 1 = σ 2 = σ 3 . Then from (4.5), we have
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 2444648 Lemma 4.1, and the elastic condition (4.2) yield the following solvability results. Theorem 4.11 Let q tr (0) = f (σ tr , H(ε p,tr )) > 0. Then problems (4.3) and (4.8) have unique solutions. In particular, if the criterion (4.11), (4.21), (4.31), or (4.37) holds, then the solution (σ 1 , σ 2 , σ 3 , εp , △λ) to problem (4.8) is uniquely determined by (4.12)-(4.16), (4.22)-(4.25), (4.32)-(4.35), or (4.38)-(4.40), respectively. Moreover, the solution component △λ > 0 is uniquely defined by the equation q tr (△λ) = 0. Theorem 4.12 The discretized constitutive problem (3.6) has a unique solution.

  Hence, S ε tr , εp,tr = pI, p(4.39) = p tr -(2K sin ψ)△λ, (5.18) DS ε tr , εp,tr = ∂p ∂p tr KI ⊗ I = 1 -2K sin ψ ∂△λ ∂p tr KI ⊗ I.

Fig. 1

 1 Fig.1Cross section of the body with the coarsest mesh for quadrilateral elements (in meters).

Fig. 2

 2 Fig. 2 Load path of the direct method. Fig. 3 Load path of the indirect method.

Fig. 3

 3 Fig. 2 Load path of the direct method. Fig. 3 Load path of the indirect method.

Fig. 4

 4 Fig. 4 Number of iterations of ALG-t within the direct method. Fig. 5 Number of iterations of ALG-α within the indirect method.

Fig. 6

 6 Fig.6Convergence of ALG-t in selected steps.Fig.7Convergence of ALG-α in selected steps.

Fig. 8

 8 Fig. 8 Comparison of the loading paths for the Q1 and Q ′ 2 elements.

  .26) From here, (4.8) 1 and σ 1 = (σ 1 + σ 2 )/2, we obtain (4.23) and(4.24). Inserting (4.23), (4.24), and (4.8) 2 into (4.8) 3 , we find that △λ solves q tr l (△λ) = 0. Further, from (4.8) 1 , (4.23) and (4.24), we obtain σ 1

  for any σ tr , εp,tr , f (σ tr , εp,tr ) > 0, implying the existence and the uniqueness of solutions of problems (4.8), (4.3), and(3.6). We shall also discuss the continuous dependence of the solutions on σ tr and εp,tr .Recall that the auxiliary values γ tr s,l , γ tr s,r , γ tr l,a , γ tr r,a have been defined by (4.9), (4.19), and (4.29) and that the intervals

	C tr s := (0, min{γ tr s,l , γ tr s,r }), C tr l := [γ tr s,l , γ tr l,a ), C tr r := [γ tr s,r , γ tr r,a ), C tr a := [max{γ tr l,a , γ tr r,a }, +∞)
	have appeared in Theorems 4.2, 4.4, 4.6, and 4.8, respectively. Further, one can arrange (4.19) and (4.29) to the following
	forms:									
	γ tr l,a =	1 + sin ψ 3 -sin ψ	γ tr s,l + 1 -	1 + sin ψ 3 -sin ψ	γ tr s,r	and γ tr r,a =	3 + 3 sin ψ 6 + 2 sin ψ	γ tr s,l + 1 -	3 + 3 sin ψ 6 + 2 sin ψ	γ tr l,a .

4.2-4.5, we have derived separate decision criteria for each return type -the necessary and sufficient conditions (4.11), (4.21),

(4.31)

, and (4.37). From Theorems 4.2, 4.4, 4.6, and 4.8, it follows that if one of these conditions is satisfied for given trial variables σ tr and εp,tr , then there exists a unique solution (σ 1 , σ 2 , σ 3 , εp , △λ) to problem (4.8) belonging to the corresponding part of the pyramidal yield surface. The aim of this section is to show that just one of these conditions happens
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5.2 Return operators to the left edge (ε tr ∈ M tr l ) From Remark 4.5 and (5.3), it follows that ε tr 1 ≥ ε tr 2 > ε tr 3 and σ 1 = σ 2 , σ 3 , εp , and △λ depend on ε tr 1 , ε tr 2 only through ε tr 1 + ε tr 2 . Therefore, it is sufficient to consider only the functions ω 3 and ω 12 := ω 1 + ω 2 at ε tr and their derivatives. Notice that the derivatives of ω 1 and ω 2 need not be well-defined at ε tr due to the possible equality ε tr 1 = ε tr 2 . From the identity ε tr 1 + ε tr 2 + ε tr 3 = ε tr : I, we obtain:

where the function E 3 is the same as in Sect. 5.1. Further, we use the equality

in order to continuously extend the function E tr 3 := DE 3 (ε tr ) = -DE 12 (ε tr ) defined by (5.7) for i = 3 to ε tr 1 = ε tr 2 . We obtain

.

(5.11)

Notice that if ε tr 1 = ε tr 2 > ε tr 3 then ε tr has only two eigenprojections: E tr 12 and E tr 3 , and

From the equality σ 1 = σ 2 and Lemma 4.1, we arrive at

From (4.20), (4.22)-(4.25), and (5.3), we derive

This formula can be extended continuously to the boundary of M tr l as it follows from [START_REF] Carlson | The derivative of a tensor-valued function of a tensor[END_REF][START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. In particular, if ε tr is such that q tr l (γ tr s,l ) = 0 and q tr l (γ tr l,a ) < 0 then ε tr 1 ≥ ε tr 2 > ε tr 3 still holds (see Remark 4.5) and the form (5.13) remains valid.

5.3

Return operators to the right edge (ε tr ∈ M tr r ) From Remark 4.7 and (5.3), it follows that ε tr 1 > ε tr 2 ≥ ε tr 3 and σ 1 , σ 2 = σ 3 , εp , and △λ depend on ε tr 2 , ε tr 3 only through ε tr 2 + ε tr 3 . Therefore, it is sufficient to consider only the functions ω 1 and ω 23 := ω 2 + ω 3 at ε tr and their derivatives. Similarly as in Sect. 5.2, one can derive:

.

(5.15)

Appendix: Simplified constitutive handling of the plane strain problem

The results of Sects. 4 and 5 are, of course, also valid for the plane strain problem. Nevertheless, one can simplify the forms of the eigenprojections and their derivatives in this case since it suffices to consider only the subspace R 3×3 ps of R 3×3 sym containing trial tensors in the form

We use the symbol D for the Fréchet derivatives of functions defined in R 3×3 ps . Define the functions where O denotes the zero fourth order tensor and

It is worth mentioning that these formulas need not hold in R 3×3 sym in general. Similar formulas are also introduced in [17, Appendix A]. Now, it is necessary to reorder the eigenvalues of η ∈ R 3×3 ps . Denote the ordered eigenvalues as η 1 , η 2 , η 3 , i.e., η 1 := max{η 1 , η3 } and η 3 := min{η 2 , η3 }. Correspondingly, define functions ω i , E i , E i , i = 1, 2, 3, as reordered functions ωi , Ẽi , Ẽi , i = 1, 2, 3. To complete the notation, one can easily set

ps .

Finally, one can choose η = ε tr and straightforwardly use ε tr i := ω i (ε tr ), E tr i := E i (ε tr ), E tr i := E i (ε tr ), i = 1, 2, 3, E tr 12 := E 12 (ε tr ), and E tr 23 := E 23 (ε tr ) within Sect. 5 when the plane strain assumptions are considered.