

Fungal pre-treatment in bioenergy production from macroalgal biomass

Nesrine Ben Yahmed, Hélène Carrère, M Nejib Marzouki, Issam Smaali

▶ To cite this version:

Nesrine Ben Yahmed, Hélène Carrère, M
 Nejib Marzouki, Issam Smaali. Fungal pre-treatment in bioenergy production from macroalgal biomass. he World Sustainable Energy Days (WSED), Mar 2020, Wels, Austria. hal-04123959

HAL Id: hal-04123959

https://hal.science/hal-04123959

Submitted on 9 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

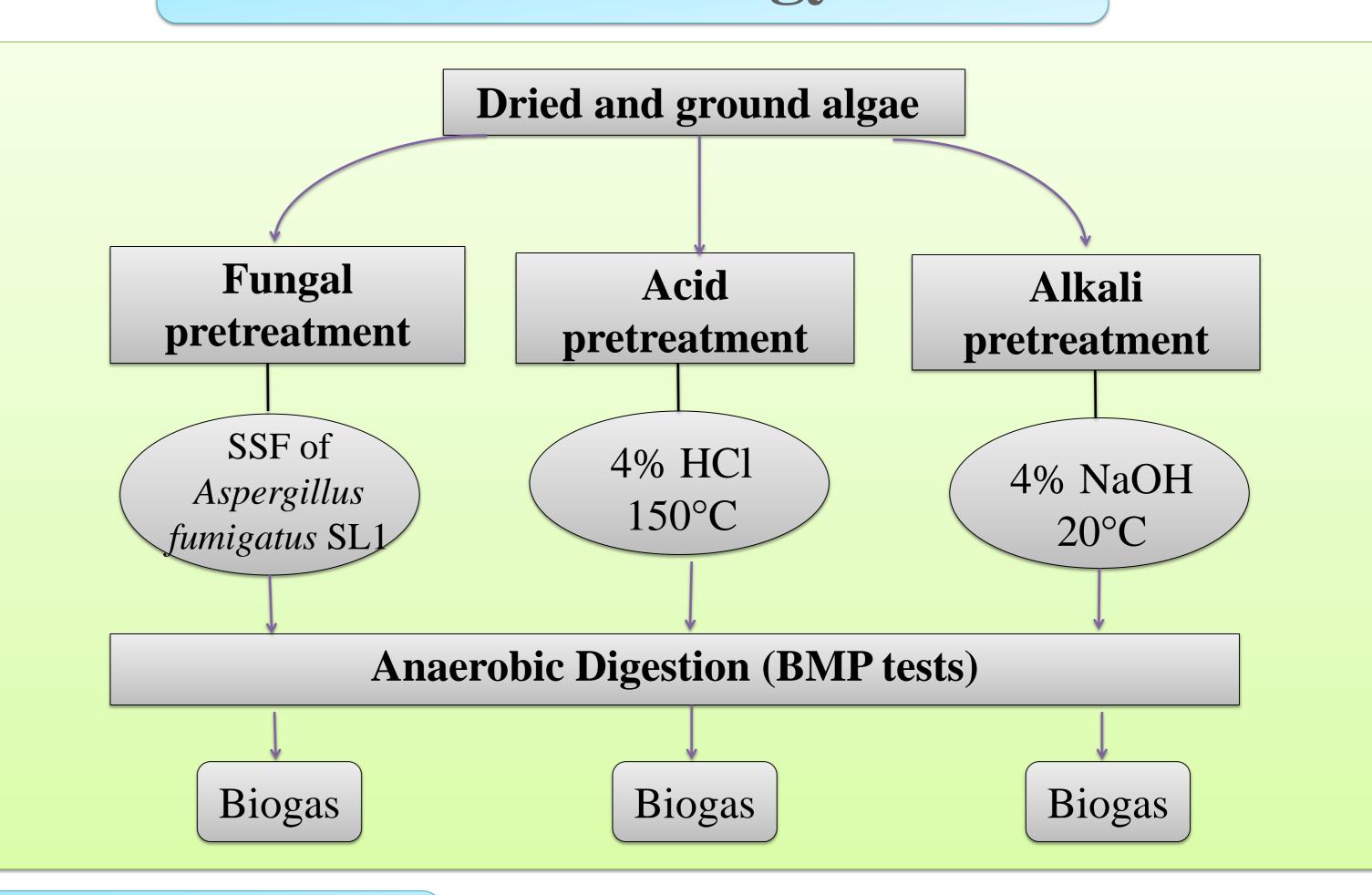
L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Fungal pre-treatment in bioenergy production from macroalgal biomass

Nesrine Ben Yahmed a, Hélène Carrere b, M.Nejib Marzouki a, Issam Smaali a

^a Laboratoire LIP-MB INSAT, LR11ES26, Université de Carthage, INSAT-BP 676, Centre urbain nord, 1080 Carthage Cedex, Tunisie

b LBE, INRA, Avenue des Etangs, 11100 Narbonne, France

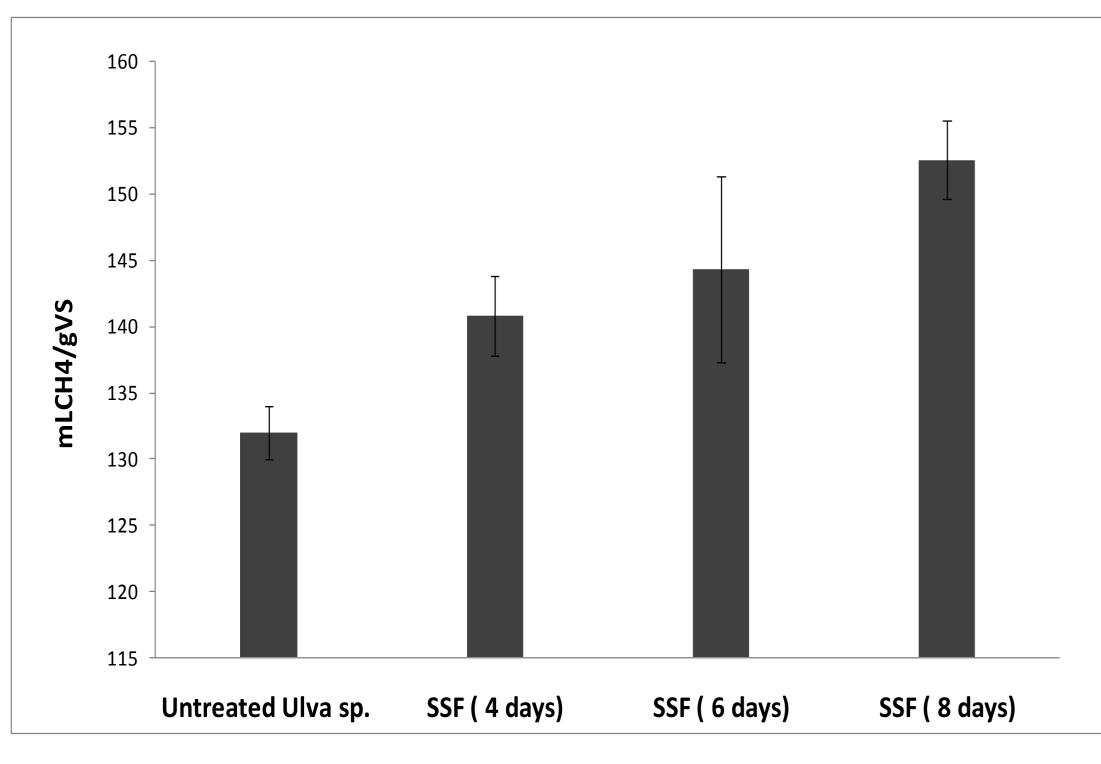

Introduction

The utilization of biomass as renewable source for energy production represents a promising alternative for the substitution, at least in part, of fossil fuels consumption. Macroalgal biomass received a considerable attention as a third-generation biofuel feedstock due to its prolific growth in eutrophic coastal, water fouling beaches and coastal waterways.

Objectives

- Evaluation of the biogas production enhancement from *Ulva* sp. biomass after fungal Solid State Fermentation (SSF) pretreatment using locally isolated fungus from algae
- > Comparison with conventional acid/alkali chemical pretreatments

Methodology



Results

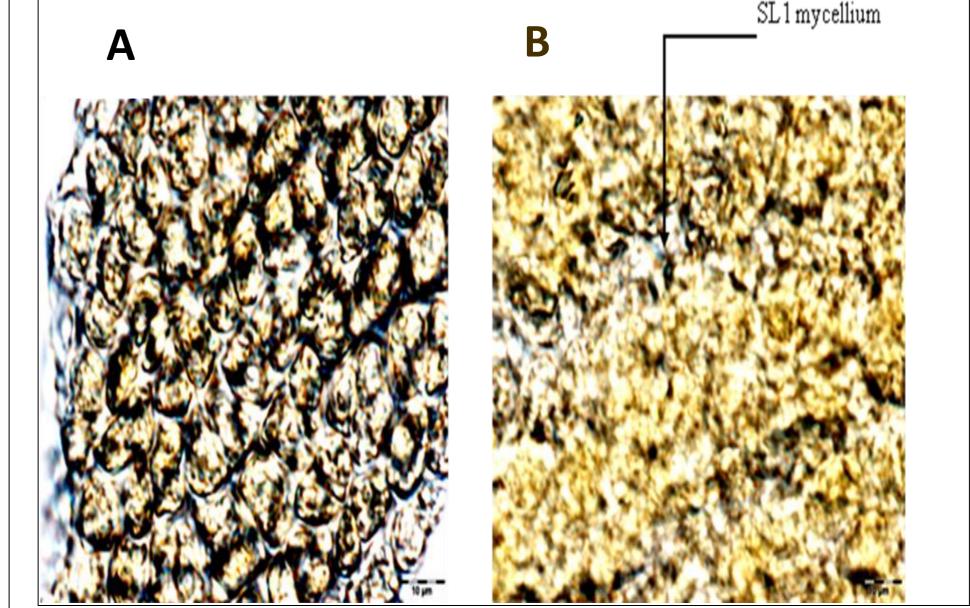
Chemical composition of *Ulva* **sp. after drying and grinding**

Characteristics	Mean \pm S.D
TS (%wet weight)	84.1 ± 0.1
VS (%TS)	67.8 ± 0.1
Total carbohydrates (%TS) ^a	33.2 ± 0.8
Glucose (%TS)	12.4 ± 0.2
Xylose (%TS)	3.9 ± 0.1
Rhamnose (%TS)	9.8 ± 0.8
Arabinose (%TS)	7.1 ± 0.4
Uronic acids (%TS)	5.7 ± 0.1
Proteins (%TS) ^b	11.4 ± 0.5
Lipids (%TS)	1.8 ± 0.05

Ulva sp. collected from Tunis lagoon was rich on volatile solids, carbohydrates and proteins with absence of ligninGood substrate for biogas production.

Effect of SSF pretreatment time on BMP of *Ulva* sp. (All values are significantly different (p<.0001))

After 8 days of SSF \longrightarrow Significant increase (p<0.05) in BMP which reached 153 \pm 3 mL CH4/gVS


Effect of *Aspergillus fumigat*us SL1 based SSF pretreatment on *Ulva* sp. structure and methane potential

FTIR spectra (400–4000 cm-1) of untreated (A) and fungal pretreated *Ulva* sp. by SSF with *Aspergillus fumigatus* SL1 (B)

Untreated macroalgae have strong stretching vibration peaks corresponding to the O-H and N-H groups, but those transmittances decrease in the pretreated macroalgae

Decomposition of carbohydrates and proteins after SSF fungal pretreatment.

Scanning Electron Microscopy picture of *Ulva* sp. without pretreatment (A) and with fungal pretreatment (B)

Penetration of *Aspergillus fumigatus* SL1 mycelium:

- Increasing pore sizes and surface areas
 Facilitating the accessibility to enzymatic attacks
- Transforming the algae and making it more digestible (improving BMP)

Comparison of fungal and conventional chemical pretreatments

Pretreatment conditions	BMP (mL CH ₄ g ⁻¹ VS)	Increase BMP (%)	BD (%)
Untreated	132 ± 2	_	49
Acid pretreatment (4% HCl at 150°C)	77 ± 5	- 55	29
Alkali pretreatment (4% NaOH at 20°C)	148 ± 11	16	55
Fungal pretreatment (SSF	153 ± 3	21	57
with Aspergillus fumigatus SL1)	133 ± 3	41	JI

Acid pret: Negative effect:
loss of organic matter (High
Temperature)
Alkali pret: BMP
Destructuration of algae
thallus by NaOH; the
solubilization of cell wall
sugars.
Fungal pret: BMP
Decomposition of algae
thallus with an increase of
biomass degradability; the
bioconversion of nutrients
molecules related to the
growth of mycelium.

Conclusion and perspectives

- > The study demonstrated the proof of using fungal SSF as effective biological pretreatment method for enhancing biogas production from green macroalgae.
- > Performing SSF with a specific fungal strain, isolated from the same algal biomass, and growing on it as the sole carbon source allowed to benefit from all the advantages of SSF, notably the large biomass loading, the low chemical risk related to the strong alkali and its high cost, facilitating therefore the scale-up and the design of eco-friendly processes.
- > The utilization of this latter still quite recent and needs further investigations to assess an optimal biomethane yield, related to the both origin and composition of the algal biomass.