
HAL Id: hal-04123758
https://hal.science/hal-04123758v1

Submitted on 27 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Behavioral Theory For Crash Failures and
Erlang-style Recoveries In Distributed Systems

Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

To cite this version:
Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani. A Behavioral Theory For Crash Failures and
Erlang-style Recoveries In Distributed Systems. RR-9511, Inria. 2023. �hal-04123758�

https://hal.science/hal-04123758v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
95

11
--

FR
+E

N
G

RESEARCH
REPORT
N° 9511
May 2023

Project-Teams Spades and Focus

A Behavioral Theory For
Crash Failures and
Erlang-style Recoveries
In Distributed Systems
Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

A Behavioral Theory For Crash Failures and
Erlang-style Recoveries In Distributed Systems

Giovanni Fabbretti ∗, Ivan Lanese†, Jean-Bernard Stefani∗

Project-Teams Spades and Focus

Research Report n° 9511 — May 2023 — 50 pages

Abstract: Distributed systems can be subject to various kinds of partial failures, and building
fault-tolerance or failure mitigation mechanisms for distributed systems remains an important
domain of research. In this paper, we present a calculus to formally model distributed systems
subject to crash failures, and in which one can encode recovery mechanisms by leveraging a small
set of lightweight (in terms of implementation cost) primitives. To the best of our knowledge,
our calculus is the first one with support for all the following characteristics: i) asynchronous
communication; ii) unique location for receivers; iii) dynamic nodes and links; iv) crash failures with
recovery; v) nodes with imperfect knowledge of their context. We define a contextual equivalence
for our calculus in the classical form of a barbed congruence, and a notion of bisimilarity which
we prove fully abstract with respect to our barbed congruence. In addition, we show by means
of examples that our calculus can support Erlang-style fault management and recovery, and that
our behavioral theory agrees on key instances without recovery with previous work by Francalanza
and Hennessy. This paper can be understood as a complete reworking and an extension to tackle
recovery of Francalanza and Hennessy’s work.

Key-words: formal calculi, distributed systems, concurrency, failures, recoveries

∗ Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, France
† Focus Team, Univ. of Bologna/INRIA, Italy

Une théorie comportementale des défaillances et des reprise
en style Erlang dans les systèmes distribués.

Résumé : Les systèmes distribués peuvent être soumis à différents types de défaillances par-
tielles, et l’élaboration de mécanismes de tolérance aux pannes ou d’atténuation des défaillances
pour les systèmes distribués reste un domaine de recherche important. Dans cet article, nous
présentons un calcul permettant de modéliser formellement les systèmes distribués soumis à des
défaillances accidentelles, et dans lequel il est possible d’encoder des mécanismes de récupération
en tirant parti d’un petit ensemble de primitives légères (en termes de coût d’implémentation).
À notre connaissance, notre calcul est le premier à prendre en charge toutes les caractéristiques
suivantes : i) communication asynchrone ; ii) emplacement unique pour les récepteurs ; iii) nœuds
et liens dynamiques ; iv) pannes avec récupération ; v) nœuds ayant une connaissance impar-
faite de leur contexte. Nous définissons une équivalence contextuelle pour notre calcul sous la
forme classique d’une congruence barrée, ainsi qu’une notion de bisimilarité que nous prouvons
totalement abstraite par rapport à notre congruence barrée. En outre, nous montrons à l’aide
d’exemples que notre calcul peut prendre en charge la gestion et la récupération des fautes à la
manière d’Erlang, et que notre théorie comportementale est en accord avec les travaux antérieurs
de Francalanza et Hennessy en ce qui concerne les instances clés sans récupération. Cet article
peut être considéré comme un remaniement complet et une extension du travail de Francalanza
et Hennessy pour aborder la récupération.

Mots-clés : calcul formel, systèmes distribués, concurrence, défaillances, reprises

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 3

Contents
1 Introduction 3

2 Crash and Recovery: Motivating Example 5

3 The Calculus 7
3.1 Names and notations . 7
3.2 Syntax . 7
3.3 Reduction Semantics . 9
3.4 Discussion . 12

4 Behavioral Theory 13
4.1 Weak Barbed Congruence . 13
4.2 A Labeled Transition Semantics . 13
4.3 Full Abstraction . 15

5 Examples 15
5.1 Deriving Erlang’s Like Constructs . 15
5.2 Behavioral Theory In Action . 16

6 Related work and conclusion 18

A Notations and rules 23
A.1 Notations . 23
A.2 Calculus syntax and alpha-conversion on systems 23
A.3 Reduction semantics . 25
A.4 LTS semantics . 26

B Erlang 30
B.1 Experiments on Erlang’s Semantics . 30
B.2 Running Example in Erlang . 31

C Modifying networks 33

D Barb alternative 34

E Full Abstraction 35
E.1 Soundness . 35
E.2 Completeness . 44

F Bisimulation Of Running Example 48

RR n° 9511

4 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

1 Introduction

A key characteristic of distributed computer systems is the occurrence of partial failures, which
can affect part of a system, e.g. failures of the system nodes (computers and the processes they
support) or failures of the connections between them. The model of crash failures with recovery,
where a node can fail by ceasing to operate entirely, and later on recover its operation (typically,
after some administrator intervention) is an important model of failure to consider because of
its relevance in practice. However the correct design of systems in this model is far from trivial,
as the recent study on bugs affecting crash recovery in distributed systems demonstrates [17].

Developing a process calculus analysis of the behavior of distributed systems with crash
failures and recovery can help in this respect for it can reveal subtle phenomena in the behavior
of such systems, and it can be leveraged for the development of analysis tools, such as verifiers
and debuggers. Unfortunately, to the best of our knowledge, the literature contains precious
few examples of process calculi accounting for crash failures with recovery, notably [15, 1, 3, 4],
and none account simultaneously for the following features which we deem essential to faithfully
model actual distributed systems:

1. Asynchronous communication: interaction between processes proceeds not by rendez-vous
but by an asynchronous exchange of messages, which can possibly be lost or reordered
while transiting to their destination.

2. Unique location for receivers: each communication targets a single location, either local
or remote. This would not be the case, e.g., if communication were via channels, and re-
ceivers for a same channel could reside on different locations. This feature ensures that the
complexity of message exchange is commensurate with that of simple asynchronous com-
munication used in the Internet, and that no hidden cost, due for instance to leader election
or routing protocols, is implied for the implementation of a simple message exchange (see
e.g. [14] for a discussion).

3. Dynamic nodes and links: the number of nodes in a system, and of communication links
between them, is not fixed and may vary. During execution, new nodes and links can be
established, existing nodes and links can be removed, either because of failures or by design.
This feature is necessary to account for actual distributed systems whose configurations may
vary at run-time, notably because of failure management and of performance management
(e.g. scaling decisions in cloud systems). The explicit presence of links is important because
partial connections often affect large distributed systems and because introducing link
failures leads to a different behavioral theory than dealing with node failures only, as noted
in [16].

4. Crash failures: when a node or a link fails, it does so silently, by ceasing execution. This is
a simplifying assumption on the failure model of actual distributed systems, but one which,
barring malicious faults, can be relatively well approximated in practice, as with the let it
fail policy in Erlang.

5. Recovery : when a node or link has failed, it can be revived to resume its execution or
function. This may imply external intervention (e.g. by a human administrator) and may
not be under the control of the running system. Note that we place no strong requirement
on the resume operation, just that a recovered node be able to perform some computation:
e.g. it need not guarantee that a recovered node operates exactly as prior to its crash. This
weak recovery model is consistent e.g. with node recovery in Erlang, or the node failure
model adopted in the Verdi framework for distributed systems verification [29].

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 5

6. Imperfect knowledge: in general, in a distributed system, a node has only a partial and
imperfect knowledge of the overall state of the system. We call local view the belief a node
entertains of the status of its neighbors (nodes it assumes it is connected to). Local views
are explicitly maintained by distributed programming language runtimes such as that of
Erlang [2] and Elixir [21]. They play an essential part of key distributed algorithms, such as
failure detection [19], membership management [7], checkpoint-rollback recovery schemes
[9], or gossip-based peer sampling [20].

The two works dealing with crash failures and recovery that come closest to meeting these
modeling requirements are [3] and the recent [4]. However, they only consider a fixed number
of nodes, and to model recovery they rely on timers and checkpointing constructs (their save
primitives). Checkpointing primitives are powerful mechanisms that do not match our weak
requirements to account for recovery. For instance, recovery in Erlang systems can take place
without relying on checkpointing, just by restarting failed nodes and processes in a predefined
state, possibly relying on persistence mechanisms for preserving data across node failures.

The goal of this paper, then, is to introduce a process calculus exhibiting all the above features,
with no recourse to timers, perfect failure detection or a built-in checkpointing primitive. We
have two additional requirements for this calculus. On the one hand, it has to stay close to the
behavior of Erlang; on the other hand it has to stay as close as possible to the work by Francalanza
and Hennessy [16]. The Erlang programming language and its environment are representative
of modern distributed programming facilities. It is a functional, concurrent and distributed
language based on the actor model, and it is used in several large distributed projects [12]. It is
well known for its “let it fail” policy, whereby a service that is not working as expected is killed
as soon as the faulty behavior is detected, if not dead already, and restarted by its supervisor.
Staying close to Erlang ensures our modeling remains faithful to actual distributed systems. The
work by Francalanza and Hennessy [16] constitutes a good benchmark for comparison. While
not tackling recovery and relying on perfect failure detection, it contains several of the features
mentioned above, and develops a behavioral theory with node and link failures. Staying close
to it allows us to compare our behavioral theory with an established one, when restricting our
attention to systems without recovery.

The rest of this paper is organized as follows. Section 2 introduces a motivating example,
which serves also as an introduction to our calculus. Section 3 presents the calculus, its reduction
semantics, and discusses key design choices. Section 4 equips our calculus with a notion of
barbed congruence and characterizes it by a notion of bisimilarity to obtain a proof technique
for checking system equivalence. Section 5 shows our calculus can encode constructs similar to
Erlang primitives to build systems with hierarchical failure management. Moreover, we show
that our behavioral theory agrees with the one in [16] on key examples withour recovery. Finally,
Section 6 discusses related work and concludes. Details of proofs and complementary material
are available in the Appendix.

2 Crash and Recovery: Motivating Example

Before presenting our calculus, we discuss a motivating example which serves as an informal
introduction (for the time being, we omit some details). An Erlang implementation of the
example is discussed in Appendix B. Consider the following system:

servD = ν nr, nb, r1, r2, b. ∆ .
(
[I]ni ‖ [R]nr ‖ [B]nb

)
RR n° 9511

6 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

where:

I = req(y, z).spawn nr.r1〈y, z〉 R = (r1(y, z).spawn nb.b〈y, z〉) | (r2(y, z).spawn ni.z〈y〉)
B = b(y, z).spawn nr.r2〈z, wy〉

System servD depicts a distributed server running on a network ∆. The network, ∆, whose
formal definition we omit for the moment, can be graphically represented as follows,

◦
ni

◦
nr

◦
nb

where ◦ represents an alive location and the
arrow represents a live bidirectional communication link between locations.

A location in our calculus represents a locus of computation. It can represent a hardware
node in a distributed system, or a virtual machine or a container running on a hardware node.
A location constitutes also a unit of crash failure: when a location fails, all processes inside the
location cease to function. Located processes take the form [P]n, where P denotes a process
and where n is the location name. There can be several processes located at the same location:
for instance, [P]n ‖ [Q]n denotes two processes P and Q running in parallel inside the same
location n.

The (admittedly simplistic) system servD behaves as follows. The interface process I, run-
ning on ni, awaits a single request from the environment on channel req. Once received, the
elements of the request (a parameter y, and a return channel z) are routed to location nb, which
runs the backend process B, through location nr, which hosts the router process R, as there is
no direct link between ni and nb. The router awaits for the elements of the request on a private
channel r1 and forwards them by spawning a message b〈y, z〉 on nb, where b is a private channel.
Message sending in our calculus can only occur locally. For two remote locations to communi-
cate, like for ni and nr, it is necessary for one to asynchronously spawn the message on the other
one. The backend handles the information y and returns the answer wy to the interface, again
by routing it through nr. Finally, the interface emits the answer on z for the client to consume
it.

The following is a possible client for servD

[spawn ni.(req〈h, z〉 | z(w).Q)]c

It sends a request to the interface ni by spawning it on ni. It also spawns a process on ni to
handle the response, which will take the form of a message on channel z located on ni.

Now, consider the following system:

servDF = ν nr, nb, nc, r1, r2, b, retry. ∆′ .
(

[J]ni ‖ [R]nr ‖ [kill]nr ‖ [!B]nb ‖ [!C]nc
)

where:
J = req(y, z).((spawn nr.r1〈y, z〉) | retry.spawn nr.r1〈y, z〉)
C = create nr.(R | spawn ni.retry)

Here, ∆′ could be graphically represented like ∆ only with an extra link between nr and
nc. System servDF represents a distributed server where location nr may be subject to one
failure, modeled by the primitive kill. The system has a recovery mechanism in place to deal
with that potential failure: the controller [!C]nc is a location that keeps trying, through the
apposite primitive create, to recreate nr (the ! operator is akin to the π-calculus operator for
replication), together with a message to restart the handling of the request. The interface is
more sophisticated as it can now send a second request when asked to retry if something goes
wrong with the first one. If nr fails, the controller can create another router with a message
retry for the interface which will start the second attempt.

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 7

At first glance, servDF seems to correctly handle the failure scenario, but that is not the
case. Indeed, consider an execution where the failure happens after the request has already been
handled. In such case, the request would be processed again and another response sent back
by the interface, a behavior that cannot be exhibited by servD. If one considers servD as the
specification to meet, servDF does not satisfy it.

The following system correctly handles recovery, in that it meets the servD specification:

servDFR = ν nr, nb, nc, r1, r2, b, c, retry. ∆′ .
(

[K]ni ‖ [R]nr ‖ [kill]nr ‖ [!B]nb ‖ [!C]nc
)

where:
K = req(y, z).((spawn nr.r1〈y, c〉) | c(w).z〈w〉 | retry.spawn nr.r1〈y, c〉)

In system servDFR the response from the backend is not directly sent to the client, but
goes through a private channel c on which the interface listens only once. This mechanism
prevents emitting the answer to the request twice. System servDFR can be understood as a
masking 1-fault tolerant system, equivalent to the ideal one servD. We develop in Section 4 a
behavioral theory able to tell apart servD from servDF, and able to prove equivalent servD
and servDFR.

3 The Calculus

3.1 Names and notations
We assume given mutually disjoint infinite denumerable sets C, N and I. C is the set of channel
names, N is the set of location names, and I is the set of incarnation variables. We use the set of
integers Z as the set of incarnation numbers. An incarnation number is paired with a location
name for recovery purposes, to distinguish the current instance of a location from its past failed
instances. We denote by N� the set N∪{�}, where � 6∈ N. As in the π-calculus, channel names
can be free or bound in terms. The same holds for location names. Incarnation variables can be
bound, but not incarnation numbers. We denote by ũ a finite (possibly empty) tuple of elements.
We write T{ṽ/ũ} for the usual capture-avoiding substitution of elements of ũ by elements of ṽ
in term T , assuming tuples ũ and ṽ have the same arity. We write u, ṽ or ṽ, u for the tuple
ṽ extended with element u as first or last element. Abusing notation, we sometimes identify a
tuple ũ with the set of its elements. We denote by N+ the set of strictly positive integers (by
definition 0 6∈ N+), and by N the set of positive integers (0 ∈ N). We denote by 0̂ the function
0̂ : N� → Z that maps any n ∈ N to 0 and � to 1.

3.2 Syntax
Systems in our calculus are defined through three levels of syntax, one for processes, one for
configurations, one for systems.

The syntax of processes is defined as follows:

P,Q ::= 0
∣∣ x〈ũ〉.P ∣∣ x(ṽ).P

∣∣ !x(ṽ).P
∣∣ ν w.P ∣∣ if r = s then P else Q

∣∣ P | Q
node(n, λ).P

∣∣ remove n.P
∣∣ spawn n.P ∣∣ kill ∣∣

create n.P
∣∣ link n.P ∣∣ unlink n.P

where: ũ, r, s ⊂ C ∪ N� ∪ I ∪ Z ṽ ⊂ C ∪ N ∪ I w ∈ C ∪ N x ∈ C n ∈ N λ ∈ I

Terms of the form x(ũ).P , ν w.P , and node(n, λ).P are binding constructs for their arguments
ũ, w and n, λ, respectively.

RR n° 9511

8 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

The syntax of processes is that of the π-calculus with matching [26] and replicated receivers
(first line of productions), extended with primitives for distributed computing inspired from
the Erlang programming language (second line of productions), and three primitives to activate
locations, establish and remove links (third line of productions).

0 is the null process which can take no action. Processes can communicate by emitting a
message x〈ṽ〉.P which can be received by some receiver process of the form x(ũ).Q residing on
the same location. We write x〈ũ〉 for x〈ṽ〉.0, and just x when ũ is empty. We assume the
calculus is well-sorted, so that the arity of receivers always matches that of received messages.
The construct !x(ũ).P is the replicated input construct, which replicates itself when receiving a
message on channel x. Note that we use in our examples (as we did in the previous Section) the
short-hand !P for ν c.(c | !c.(P | c)). The construct ν w.P is the standard restriction construct,
which creates a fresh location or channel name. If ũ is a (possibly empty) tuple of names, we
write ν ũ.P for ν u1. . . . ν un.P if ũ = (u1, . . . , un). If ũ is empty, ν ũ.P is just P . The construct
if r = s thenP else Q tests the equality of names r and s and continues as P if the names match
and as Q otherwise. The construct P | Q is the standard parallel composition for processes.
Primitive node(n, λ).P substitutes n with the name of the current location, λ with the current
incarnation number, and continues as P . Primitive remove n.P removes the location with name
n from the local view of the current location and continues as P . Primitive spawn n.P launches
process P at the location named n, if the latter is accessible. Primitive kill stops the current
location in its current incarnation: no process can execute on a killed location; kill also models
the crash of a location. Primitive create n.P creates a new location n, or reactivates a killed
location with a new incarnation number, and launches process P on it. Primitive linkn.P creates
a connection between the current location and n and continues as P , while, unlink n.P breaks
the link between the current location and n and continues as P ; unlink also models the failure of
a link.

The syntax of configurations is defined as follows:

L,M,N ::= 0
∣∣ [P]nλ

∣∣ N ‖M where: n ∈ N� λ ∈ Z

A configuration can be the empty configuration 0, a located process [P]nλ or a parallel
composition of configurations N ‖ M . A located process [P]nλ is a process P running on
location (n, λ), where n is the name of the location and λ is an incarnation number (used for
recovery). In examples, we may drop incarnation numbers of located processes if they are not
relevant. Note that the special name � identifies a well-known location which we will assume to
be un-killable. Location � is used merely for technical purposes to ensure we can simply build
appropriate contexts for running systems. Apart from being unkillable, location � behaves just
as any other locations. We denote by L the set of configurations.

The syntax of systems is defined as follows:

S,R ::= ∆ . N | ν w.S where: w ∈ N ∪ C

A system is the composition of a network ∆ with a configuration N , or a system under a
name (channel or location) restriction. We denote by S the set of systems. A network ∆, is a
tuple 〈A,L,V〉 where

• A is a function A : N� → Z such that A(�) = 1 and such that the set supp(A)
def
= {n ∈

N | A(n) 6= 0} is finite. Function A may record three types of information on locations.
If A(n) = λ ∈ N+, then location n is alive and its current incarnation number is λ. If
A(n) = −λ, λ ∈ N+ then location n has been killed and its last incarnation number while
alive was λ. If A(n) = 0, then there is no location n in the network, alive or not. Because

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 9

of the finiteness condition above, a network can only host a finite number of locations, alive
or dead.

• L ⊆ N� × N� is the set of links between locations. L is a finite symmetric binary relation
over location names such that dom(L)

def
= {n ∈ N� | ∃m, (n,m) ∈ L} is finite.

• V : N� → (N� → N) is a function that maps location names to their local view, which is
such that the set supp(V)

def
= {n ∈ N | V(n) 6= 0̂} is finite and supp(V) ⊆ supp(A). The local

view of a location n is a function V(n) : N� → N such that the set {m ∈ N | V(n)(m) 6= 0}
is finite. If V(n)(m) = κ ∈ N+, then location m in its incarnation κ is believed by n to be
alive. If V(n)(m) = 0, then location n holds no belief on the status of location m.

For convenience we use ∆A, ∆L, and ∆V to denote the individual components of a network
representation ∆, and we use the following notations for extracting information from ∆:

• ∆ ` nλ : alive if ∆A(n) = λ and λ ∈ N+.

• ∆ ` n : dead if ∆A(n) 6∈ N+

• ∆ ` n↔ m if (n,m) ∈ ∆L

• ∆ ` nλ! mκ if (n,m) ∈ ∆L, ∆ ` nλ : alive and ∆ ` mκ : alive

We now define update operations over a network ∆.

Definition 1 (Network updates). Network update operations are defined as follows:

• ∆⊕ n↔ m = 〈∆A,∆L ∪ {(n,m), (m,n)},∆V〉

• ∆	 n↔ m = 〈∆A,∆L \ {(n,m), (m,n)},∆V〉

• ∆⊕ (n, λ) = 〈∆A[n 7→ λ],∆L ∪ {(n, n)},∆V [n 7→ 0̂]〉

• ∆	 (n, λ) = 〈∆A[n 7→ −λ],∆L,∆V〉

• ∆⊕ n � (m,λ) = 〈∆A,∆L,∆V [n 7→ ∆V(n)[m 7→ λ]]〉, if n 6= m

• ∆	 n � m = 〈∆A,∆L,∆V [n 7→ ∆V(n)[m 7→ 0]]〉, if n 6= m

• ∆	 n � n = ∆⊕ n � (n, λ) = ∆

∆⊕n↔ m and ∆	n↔ m add and remove a link, respectively, between n and m. ∆⊕(n, λ)
activates location n with incarnation number λ, and sets its view to the empty one. ∆	 (n, λ)
kills a location in its incarnation λ. ∆⊕n � (m,λ) adds (m,λ) to the view of n, and ∆	n � m
removes any belief on location m from the view of n.

We use below the notion of closed systems. Closed systems are systems which do not have
free incarnation variables. The definition of free variables in systems and that of free names
in configurations is completely standard. The notion of free names in a system is slightly un-
conventional because of the presence of a network, but it can be defined straightforwardly (see
Appendix A for details).

RR n° 9511

10 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

[S.Par.C] N ‖M ≡M ‖ N [S.Par.A] (L ‖M) ‖ N ≡ L ‖ (M ‖ N) [S.Par.N] (N ‖ 0) ≡ N

[S.Res.C] ν u.ν v.S ≡ ν v.ν u.S
[S.Res.Nil]

ν u.S ≡ S
u /∈ fn(S) [S.α]

S =α R

S ≡ R

[S.Ctx]
N ≡M

C[N] ≡ C[M]

Figure 1: Structural Congruence Rules

Assuming ∆ ` nλ : alive

msg
∆ . [x〈ṽ〉.Q]nλ ‖ [x(ũ).P]nλ −→ ∆ . [Q]nλ ‖ [P{ṽ/ũ}]nλ

bang
∆ . [!x(ũ).P]nλ −→ ∆ . [x(ũ).(P | !x(ũ).P)]nλ

new
∆ . [ν u.P]nλ −→ ν u.∆ . [P]nλ

u /∈ fn(∆) ∪ {n, λ}
fork
∆ . [P | Q]nλ −→ ∆ . [P]nλ ‖ [Q]nλ

if-neq

∆ . [if r = s then P else Q]nλ −→ ∆ . [Q]nλ
r 6= s

node
∆ . [node(m,κ).P]nλ −→ ∆ . [P{n, λ/m, κ}]nλ

if-eq

∆ . [if r = r then P else Q]nλ −→ ∆ . [P]nλ

remove
∆ . [removem.P]nλ −→ ∆	 n � m . [P]nλ

Figure 2: Local Rules

3.3 Reduction Semantics
The operational semantics of our calculus is defined via a reduction semantics given by a binary
relation −→ ⊆ S×S between closed systems, and a structural congruence relation ≡ ⊆ S2∪L2,
that is a binary equivalence relation between systems and between configurations. Evaluation
contexts are “systems with a hole ·” defined by the following grammar:

C ::= ν w̃.∆ . E E ::= ·
∣∣ (N ‖ E) where: w̃ ⊂ N ∪ C

Relation ≡ is the smallest equivalence relation defined by the rules in Fig. 1, where =α stands
for equality up to alpha-conversion, M,N,L ∈ L, and S,R ∈ S. Most rules are mundane. Rule
S.Ctx turns ≡ into a congruence for the parallel and restriction operators. Alpha-conversion on
systems, which appears in Rule S.α, is slightly unusual but can be defined straightforwardly (see
Appendix A for details).

The reduction relation −→ is defined by the rules in Fig. 2, 3 and 4. Fig. 2 depicts the local
reduction rules, i.e., those rules that involve only a single location and that essentially do not
modify the network. Rule msg defines the receipt of a message by an input process. Rule bang
defines the expansion of a replicated input process. Rule new performs the scope extrusion of a
name from a process to a system. We introduced this rule as a computational step instead of a
structural congruence rule for it simplifies our proofs. Rule fork turns a parallel composition into
parallel threads in the same location. Rules if-eq, if-neq define the semantics of the branching
construct. Rule node gets hold of the current location name and its incarnation number for
further processing. Finally, rule remove deletes from the local view of the current location the
belief it may hold about a given location m.

Fig. 3 depicts the distributed rules, i.e., rules that involve several locations or modify the
network. Rule spawn-s defines a successful spawn, conditional upon the fact that a link exists

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 11

Assuming ∆ ` nλ : alive

spawn-s
∆ . [spawnm.P]nλ −→ ∆⊕m � (n, λ) . [P]mκ

∆n(m) = κ
∆ ` nλ ! mκ

spawn-f
∆ . [spawnm.P]nλ −→ ∆	 n � m . 0

∆n(m) = κ
∆ 6` nλ ! mκ

create-s
∆ . [createm.P]nλ −→ ∆⊕ (m,κ+ 1) . [P]mκ+1

∆ ` m : dead
∆A(m) = −κ

create-f
∆ . [createm.P]nλ −→ ∆ . 0

∆ 6` m : dead

kill
∆ . [kill]nλ −→ ∆	 (n, λ) . 0

n 6= �

link
∆ . [linkm.P]nλ −→ ∆⊕ n↔ m . [P]nλ

∆ 6` n↔ m

unlink
∆ . [unlinkm.P]nλ −→ ∆	 n↔ m . [P]nλ

∆ ` n↔ m

Figure 3: Distributed Rules

between the spawning and target locations, and that the spawning location rightly believes the
target location, with the incarnation recorded in its view, to be alive, or has no belief on the
target location in its local view. This last constraint is captured by the side condition ∆n(m) = κ,
which we formally define as follow:

∆n(m) =

κ if n = m and ∆A(n) = κ

κ if n 6= m and ∆V(n)(m) = κ

κ if n 6= m and ∆V(n)(m) = 0 and ∆A(m) = κ

0 otherwise

Note that a successful spawn updates the target local view with the belief that the spawning
location is alive with the incarnation number it had when it initiated the spawn. Rule spawn-
f defines a failed spawn, which may fail due to a wrong view, to a missing link between the
two locations, or because the remote location is not alive. The view of the sender is updated
by removing the belief on the target. This behavior is inspired by Erlang whose runtime, in
a manner transparent to the user, updates the view of the spawning location if it receives no
acknowledgement from the target as part of its distributed protocol.

Rules link and unlink define respectively the establishment of a link and the removal of a
link. Rule create-s defines the successful creation or reactivation of a location, provided it did
not already exist in the network or was crashed. The newly activated location has an incarnation
number that is the successor of the previous one (0 by convention if the location was not present
in the network). Note that we do not require the existence of an alive link between the current
location and the one to be activated since we want this operation to also model the possibility
of interventions external to the system, such as those performed by human administrators. Note
also that a location cannot be created anew each time, otherwise it would be impossible to resume
the execution of a service under a well-known name. The use of incarnation numbers provides
support for recovery schemes (see the discussion below in Section 3.4). Rule create-f defines

RR n° 9511

12 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

par
∆ . N −→ ν ũ.∆′ . N ′ ũ ∩ fn(M) = ∅

∆ . N ‖M −→ ν ũ.∆′ . N ′ ‖M

res
S −→ S′

ν u.S −→ ν u.S′

str
S ≡ S′ S′ −→ R′ R′ ≡ R

S −→ R

Figure 4: Contextual rules

the failure of a create operation, which can fail because the location to activate may already be
alive. Rule kill defines the killing of a location.

Fig. 4 shows the contextual rules of our calculus. Rules par, and res are the rules respectively
for parallel execution, and execution under restriction. Rule par is slightly unconventional in its
use of restriction. When we consider the case where ũ is empty in rule par, we obtain a more
standard-looking contextual rule for the parallel operator. However, we also have to consider
cases when the active branch in the composition promotes a restriction at system level (via an
application of rule new). In this case we have to avoid name capture by the idle branch in the
composition. This way of proceeeding, coupled with the systematic presence of the distinguished
location � in any network, spares us the need to introduce parallel composition between systems.
The intuition is that we can always extend a system with a process located on � (to ensure it
is alive) performing the desired changes on the public part of the network. This intuition is
formalized in Appendix C.

3.4 Discussion

Communication. In our calculus, communication is local. Remote communication is obtained
using the spawn operation (very similar to the go operation in [16]) to send to a target node a
process performing an output of a message. As a result remote communication is asynchronous
(since the spawn is so), and there is a single location where the receiver can reside (since such
location is specified in the spawn). This avoids the need of using a type system to ensure that
possible receivers are located on a same node, differently from calculi based on channel-based
remote communication such as [1].

Incarnation numbers. Incarnation numbers are called creation numbers in Erlang [11].
We introduce them in our calculus for two main reasons. On the one hand, this ensures we
are faithful to Erlang and to the behavior Erlang systems exhibit in presence of failures (more
details are provided in Appendix B). On the other hand, this ensures we have basic support in
place for encoding different recovery schemes. Incarnation numbers ensure that a message issued
by a previous incarnation of a location can safely be dropped, avoiding message duplication
across different incarnations of the same location. They are present, under various names such
as incarnation or epoch numbers, in several rollback-recovery schemes surveyed in [9], such
as optimistic recovery [28, 6] or causal logging schemes [10]. They are also used for scalable
distributed failure detection schemes [19] and in the SWIM protocol combining failure detection
and membership management [7].

Imperfect knowledge. In distributed systems, the only way for locations to know something
about the context that surrounds them is to communicate. If a location n receives a message
from a remote one then n learns something on the context, namely that at some point in time the
remote location was alive and working since it sent a message to n. Nonetheless, n cannot infer
anything on the current status of the remote location or the status of the connection. Indeed, it
could have stopped right after sending the message or the link could have broken right after the
message was received or both. Erlang systems, like many others, have an optimistic approach:
after a first two-way interaction two locations establish a mutual knowledge of their respective

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 13

incarnations, typically by means of a shared socket connection. From that point on, they keep
using that shared connection until their view changes, rather than setting up a new connection
for each message exchange. Reflecting this in our calculus plays a role in the semantics of our
spawn primitive whenever the view of the locality is not in sync with the real state of the system.
This in turn plays a role in our behavioral theory, as the following example illustrates.

Consider a variant servDFV of our running example where nc is linked to ni instead of nr,
the network is such that the router nr is in its incarnation κ and the local view of the interface
location ni contains nr 7→ κ. The controller process running on nc is defined as follows:

C = create nr.R | spawn ni.retry

Now, servDFV is not equivalent to servD due to the fact that, in case of failure of nr,
it is the controller informing the interface to restart the request and not the router nr, thus
failing to update ni’s local view with the knowledge of nr’s new incarnation. A message from the
interface at this point would fail as its local view contains the previous incarnation of nr. If not
for the imperfect knowledge of the context, servDFV would have been equivalent to servD. In
Appendix B we discuss an implementation of this system and we show that this behavior arises
in reality too.

4 Behavioral Theory

4.1 Weak Barbed Congruence

We define a standard notion of contextual equivalence called weak barbed congruence, originally
proposed in [24]. We denote by =⇒ the reflexive and transitive closure of the reduction relation
−→ . We rely on a notion of observables on systems, called barbs, formally defined as follows:

Definition 2 (Barb). A system S exhibits a barb on channel x at location n in its incarnation
λ, in symbols S↓x@nλ , iff S ≡ ν ũ.∆ . [x〈ṽ〉.P]nλ ‖ N , for some x, n, λ, ũ, ṽ, P,N , where x, n /∈ ũ,
and ∆ ` nλ : alive. Also, S⇓x@nλ iff S ⇒ S′ and S′↓x@nλ .

We now define standard properties expected for a contextual equivalence.

Definition 3 (System congruence). An equivalence relation R over closed systems is a system
congruence iff, whenever ν ũ.∆1 .N R ν ṽ.∆2 .M , for any names w̃ and for any configuration
L such that fn(L) ∩ ũ = fn(L) ∩ ṽ = ∅, we have:

ν w̃.ν ũ.∆1 . N ‖ L R ν w̃.ν ṽ.∆2 . M ‖ L

Definition 4 (Weak Barb-preserving relation). A relation R over closed systems is weak barb-
preserving iff whenever S R R and S↓x@n then R⇓x@n.

Definition 5 (Weak reduction-closed relation). A relation R over closed systems is weak
reduction-closed iff whenever S R R and S −→ S′ then R =⇒ R′ for some R′ such that
S′ R R′.

Definition 6 (Weak barbed congruence). Weak barbed congruence, noted ≈̇, is the largest weak
barb-preserving, reduction-closed, system congruence.

As a first result, we can check that structural congruence is included in weak barbed congru-
ence:

RR n° 9511

14 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

Assuming ∆ ` nλ : alive

l-in

∆ . [x(ṽ).P]nλ
x(ũ)@nλ−−−−−−−−→ ∆ . [P{ũ/ṽ}]nλ

l-out

∆ . [x〈ṽ〉.P]nλ
x〈ṽ〉@nλ−−−−−−−−→ ∆ . [P]nλ

Figure 5: Concurrent and distributed Rules

Proposition 1. Structural congruence ≡ is a weak barb-preserving reduction-closed system con-
gruence.

Proof. Structural congruence is a barb-preserving system-congruence by definition. The fact that
structural congruence is weak reduction-closed follows from propositions 5 and 6 in Appendix E.

Much as in [25], a simpler kind of barbs gives rise to the same barbed congruence. The
interested reader can find a discussion in Appendix D. We keep the more detailed observables
↓x@nλ for convenience, to simplify certain arguments in our proofs.

4.2 A Labeled Transition Semantics

In this section we present a labeled transition semantics for our calculus in order to have a co-
inductive characterization of weak barbed congruence. Labels α in our LTS semantics take the
following forms:

α ::= τ
∣∣ ν w̃.x〈ũ〉@nλ ∣∣ x(ũ)@nλ

∣∣ kill(n, λ)
∣∣ create(n, λ)

∣∣ ⊕ nλ 7→ m
∣∣ 	 nλ 7→ m

∣∣ nλ � m
The first three labels are classical: silent action, output action (possibly with restricted names),
and input action. Output and input action mention the name and incarnation of the location
performing the action. Labels kill(n, λ) and create(n, λ) indicate respectively the killing and
activation of location n in incarnation λ. Labels ⊕nλ 7→ m and 	nλ 7→ m signal respectively
the creation and destruction of a link between n and m, initiated by n at incarnation λ. Finally,
nλ � m signals that location n at incarnation λ holds the correct belief about location m.

The transition relation labeled by α is denoted α−−→ . We denote by τ
==⇒ the reflexive and

transitive closure of τ−−→ . For α 6= τ , we denote by α
==⇒ the relation τ

==⇒ α−−→ τ
==⇒ .

Transitions relations α−−→ in our LTS semantics are defined inductively by several sets of
inference rules. The first set of rules, not shown here, contains the equivalent of all the local
rules of the reduction relation in Figure 2, except for rule msg. Fig. 5 depicts part of the the
rules for concurrent and distributed primitives. Rules l-in and l-out are as in the standard early
instantation-style LTS for the π-calculus [26]. Rules which are not shown contain the equivalent
of local rules in Fig. 3. Rules which are not shown are derived from Figures 2 and 3 by replacing
−→ by τ−−→ (see Appendix A for the full list of rules).

Fig. 6 depicts the rules modeling the possible interactions of a context on the public part
of the network. In particular the creation of a new location (l-create-ext), the killing of a
location (l-kill-ext), the linking of two locations (l-link-ext) or the unlinking of two locations
(l-unlink-ext). Finally, rule l-view imposes equality of views of locations for two equivalent
systems.

Fig. 7 depicts composition rules for the labeled transition semantics. Rules l-parL and l-
syncL have symmetric rules l-parR and l-syncR, which are not shown. Most rules are mundane,
we only discuss the non standard ones. Rules l-parL is the standard rule for parallel composition
allowing independent evolution of one branch of the composition. The side condition on the idle

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 15

l-create-ext

∆ . N
create(n,κ+1)−−−−−−−−−−−→ ∆⊕ (n, κ+ 1) . N

∆ ` n : dead
∆A(n) = −κ

l-kill-ext

∆ . N
kill(n,λ)−−−−−−−→ ∆	 (n, λ) . N

∆ ` nλ : alive

l-unlink-ext

∆ . N
	nλ 7→m−−−−−−−−→ ∆	 n↔ m .N

∆ ` nλ : alive
∆ ` n↔ m

l-link-ext

∆ . N
⊕nλ 7→m−−−−−−−−→ ∆⊕ n↔ m .N

∆ ` nλ : alive
∆ 6` n↔ m

l-view

∆ . N
nλ�m−−−−−−→ ∆ . N

∆ ` nλ : alive
and (∆A(m) = ∆n(m) 6= 0
or ∆n(m) = 0)

Figure 6: Net Rules

l-parL

∆ . N
α−−−→ ν ũ.∆′ . N ′ ũ ∩ fn(M) = ∅

∆ . N ‖M α−−−→ ν ũ.∆′ . N ′ ‖M

l-syncL

∆ . N
x〈ũ〉@nλ−−−−−−−−→ ∆ . N ′ ∆ . M

x(ũ)@nλ−−−−−−−−→ ∆ . M ′

∆ . N ‖M τ−−−→ ∆ . N ′ ‖M ′

l-resO
S

ν ṽ.x〈ũ〉@nλ−−−−−−−−−−−→ S′ w ∈ ũ \ ṽ, x, n

ν w.S
ν w.ν ṽ.x〈ũ〉@nλ−−−−−−−−−−−−−→ S′

l-res
S

α−−−→ S′ u /∈ fn(α)

ν u.S
α−−−→ ν u.S′

Figure 7: Composition Rules

branch is required to avoid name capture when the other branch introduces a restriction. Rule
l-resO is analogous to the classical open rule in the π-calculus. What is unusual is that there is
no corresponding close rule in our LTS semantics, because rule l-resO operates at the system
level, and we have no operation for composing systems. Rule l-resO is a way to signal that
a system is ready to send a message at a given address, possibly bearing private names in its
payload.

4.3 Full Abstraction

Before presenting the main result of the paper we introduce the definition of weak bisimilarity.

Definition 7 (Weak Bisimilarity). A binary relation over closed systems S ⊆ S2 is a weak
simulation iff whenever (S,R) ∈ S and S

α−−→ S′, then R
α

==⇒ R′ for some R′ with
(S′, R′) ∈ S. A binary relation S over closed systems is a weak bisimulation if both S and S−1

are weak simulations. Weak bisimilarity, denoted by ≈, is the largest weak bisimulation.

RR n° 9511

16 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

Our main result states that weak bisimilarity fully characterizes weak barbed congruence.

Theorem 1 (Full Abstraction). S ≈̇R iff S ≈ R.

Proof. Details of the proof can be found in Appendix E.

A few comments are in order. A consequence of our result is that the public part of the
network (i.e. those nodes and links whose names are not restricted) of two weak barbed congruent
systems must coincide. This is visible directly from the rules in Fig.6. In particular, incarnation
numbers of public nodes must coincide. This may seem to be overly discriminative but in fact it
is warranted: recovery protocols or failure handling protocols such as SWIM [7], which rely on
incarnation numbers, would operate differently in dissimilar systems.

5 Examples

5.1 Deriving Erlang’s Like Constructs

This sub-section shows how to implement several Erlang primitives using the ones provided by
our calculus. Let us begin with the ping definition, which is used to test for accessibility of a
remote location (m) by the current one (n). If the ping succeeds the view of n is updated with the
knowledge of m and vice-versa, moreover the ping evaluates to an atom pong to signal success.
If it fails n removes any belief it may had about the m and evaluates to pang.

Since in our calculus we do not have atoms we encode a slight variation of the ping that
branches according to the result of the test. The successful one mimics the evaluation to pong
and the negative to pang.

ping m.P else Q
def
= ν x, t, f.node(u, λ).

(
x〈f〉 | spawnm.(spawn u.x〈t〉) |
x(y).if y = t thenP else removem.Q

)
Primitive monitor repeatedly tests for a remote location accessibility and continues as P when

the accessibility test fails. Since the ping can nondeterministically fail at any point the monitor
too can nondeterministically fail. We encode it as follows.

monitor(m).P
def
= ν x.(Q |!x.Q) where Q = ping m.x else P

Primitive start creates a new location l, provided that it does not exist already. Location l
is said a slave node and the creator location is said the master node. The slave dies when its
master dies, hence we need a monitoring process to implement this behavior. We encode it as
follows.

start(l)
def
= node(u, λ).create l.(monitor(u).kill)

Primitive stop halts the execution of node m. We encode it as follows.

stop(m)
def
= spawnm.kill

Primitive disconnect removes m from the view of n and vice-versa. We encode it as follows.

disconnect(m).P
def
= node(u, λ).removem.(spawnm.(remove u))

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 17

5.2 Behavioral Theory In Action
We begin this section by applying our behavioral theory to the motivating example in Section 2.

Example 1 (servD and servDFR are bisimilar.). To prove servD ≈ servDFR it suffices
to show a candidate bisimulation relation and then play the bisimulation game to its elements.
Consider relation R = {(servD, servDFR)} ∪ S0 ∪ S1 ∪ S2 where

S0 = {(servD, R0) | servDFR τ
==⇒ R0}

S1 = {(S1, R1) | (S0, R0) ∈ S0, S0
req(x,y)@ni

=========⇒ S1 ∧R0
req(x,y)@ni

=========⇒ R1}

S2 = {(S2, R2) | (S1, R1) ∈ S1, S1
z〈wλ〉@ni

========⇒ S1 ∧R1
z〈wλ〉@ni

========⇒ R2}

Intuitively, from an external perspective, servD only inputs the request and exhibits the answer;
hence, we need to prove that servDFR is able to match those two actions. The proof is available
in Appendix F. ♦

We now present two examples inspired from [16] to show that our behavioral theory agrees
with the one they present in absence of recovery.

Example 2 (Synchronous moves). This example declines [16, Example 10] into a version that
can nondeterministically fail w.r.t. the original one, due to the fact that we do not have a perfect
failure detector. Consider the construct move m.P else Q which attempts to migrate P to m from
the current location and if it fails, launches Q locally.

Assuming ∆ ` (n, λ) : alive, the behavior could be defined as

move

∆ . [move m.P else Q]nλ → ∆ . [P]mλ
∆n(m) = λ′

∆ ` nλ ! m′
λ

nmove

∆ . [move m.P else Q]nλ → ∆ . [Q]nλ

Now one could try to implement the move primitive through the following macro

mv m.P else Q
def
= ν a, b.node(u, λ).(spawnm.(b.P | spawn u.a.(spawnm.b)) | a | monitoram.Q)

The above code sends b.P to the target location and then goes back to signal the successful arrive
of b.P , by synchronizing on the private channel a and eventually goes back to release P . The
implementation uses mutual exclusion on a together with the macro monitoram.Q, which is a
slight variation of the one in Section 5.1. This macro acquires the resource a before testing and
releases it after the success of the test whereas it releases Q if n′ is not accessible. It can be
encoded as

monitoram.Q
def
= ν test.(test |!test.a.ping m.(test | a) else Q)

We now show that in our setting, as in [16], the primitive move is not observationally equiv-
alent to mv. To prove this we take advantage of the contextuality property of ≈̇ and show that

ν ũ.∆ . [move m.P else Q]nλ ‖ [unlink n]
m
κ 6≈̇ ν ũ.∆ . [mv m.P else Q]nλ ‖ [unlink n]

m
κ

where ∆ = 〈{n 7→ λ,m 7→ κ}, {n↔ m)}, {n 7→ 0̂,m 7→ 0̂}〉
The intuition is that the right-hand side system can reach a point where b.P reached success-

fully m while spawn u.a.(spawnm.b)) manages to go back to n and also synchronizes on a. Now,
if at this point the unlink reduces we get to a point where n and m cannot synchronize on b hence
the two locations are alive but both P and Q are blocked. Due to the atomicity of the move the
same state cannot be achieved on the left-hand side.

♦

RR n° 9511

18 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

Example 3 (Distributed Server). Here, we rephrase [16, Example 11], where Francalanza and
Hennessy show that the behavioral theory they present is able to distinguish a distributed server
only able to reach its backend by a direct connection and one that, in addition to the direct
connection, has also an indirect connection that goes through a third locality.

The two systems are the following.

servFHD⇐ ν data, wy.∆ B

(
[req(x, y).spawn n′.data〈x, y〉]n ‖
[data(x, y).spawn n.x〈wy〉]n

′

)

sFHD2Rt⇐ ν data, wy.∆ B

req(x, y).ν sync.

 spawn n′.data〈sync, x〉 |
spawn n′′.spawn n′.data〈sync, x〉 |
sync(x).y〈x〉

n ‖
[
data(x, y).

(
spawn n′.x〈f(y)〉 |
spawn n′′.spawn n.x〈wy〉

)]n′

Now, servD and sFHD2Rt, like in [16], can be distinguished by the following context

C ≡ · ‖ [unlink n]n
′
‖ [req〈z, h〉]n

as servD would stop working after the break reduces, while servD2Rt would keep working cor-
rectly since it could route the request through m.

♦

6 Related work and conclusion
We have presented in this paper a distributed π-calculus with location and link crash failures and
recoveries. The calculus basic constructs, including incarnation numbers to distinguish different
versions of the same location across recoveries and local imperfect knowledge, were inspired
mainly by the Erlang programing language and environment. To the best of our knowledge,
this is the first work that combines these different features, and the first to deal with recovery
without relying on some form of checkpointing (as in Erlang-style systems).

As mentioned in the Introduction, there are only a few works in the literature proposing a
process calculus analysis of distributed systems with crash failures and recoveries. We discussed
the work by Berger and Honda [3] and by Bocchi et al. [4] in the Introduction. The work by
Fournet et al. on the join calculus [15] shows how to extend the join calculus with primitives for
crash failures and recoveries but does not take into account links and link failures and does not
present a behavioral theory for these extensions of the join calculus. The work by Amadio [1]
on the π1l-calculus presents an asynchronous π-calculus with unique receivers, located processes,
and location failures. It develops a behavioral theory for this calculus by translation of the π1l-
calculus into the π1 calculus (an asynchronous π-calculus with unique receivers), but it relies
on perfect failure detectors, does not support links and link failures, and recovery just consists
in restarting a stopped process in its exact state at the moment of failure. In its discussion of
weaker failure detectors, it does indicate how an extension could support a local view (of failed
locations) but it does not elaborate the corresponding calculus and behavioral theory.

Our main inspiration for this paper was the work by Francalanza and Hennessy [16] for their
handling of node and link failures, and their behavioral theory. Apart from dealing with recovery,
which they do not consider, our development is markedly different from theirs. We have opted
for a simpler handling of scope extrusion, with simpler labels in our LTS semantics (just names
instead of complex information about the network, including links and liveness of locations),

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 19

and no need to make explicit the partial view of a network available to an observer. In effect,
we have opted for the alternative design choice they discussed when contrasting their work to
that of De Nicola et al. [25]: keep simple labels in the LTS and opt for a classical handling of
scope extrusion, possibly at the expense of larger bisimulation relations. We believe the gain
in simplicity of exposition and understanding, coupled with the simple handling of recovery our
approach allows, is well worth it. Also, we Introduce explicit local views, which correspond to
the belief that a location has of its neighbours and their current incarnation. Our local views
are handled similarly as in Erlang – in particular they may not reflect the current state of the
network –, and they have no equivalent in [16]. The notion of partial views for observers in [16]
is different: it is a way to filter out information contained in their complex labels so as to obtain
full abstraction, and it plays no role in the operational semantics of their model.

Formal models for distributed systems with failures can also be found in recent verification
tools for distributed algorithms and distributed systems such as Disel [27], Gobra [30], Perennial
[5], Psync [8], TLC [18], Verdi [29]. They can either rely on a specific language (such as Gobra,
for Go programs), or domain specific languages for formally specifying algorithms (such as PSync
or Disel), or be more general purpose, relying on a mixture of logic and more operational models
(such as Perennial, Verdi or TLC). Verdi in particular is interesting for it supports a variety of
failure models, including a model of crash failures and recoveries which is quite close to ours, and
makes use of simulation relations in its proof techniques. However, to the best of our knowledge,
they (Verdi included) do not provide as we do a compositional theory of system equivalence in
presence of crash failures and recoveries.

The calculus presented in this paper provides us with a basis for further studies. It would
certainly be interesting to further expand it to cater for other failure models, including the kinds
of grey failures tackled by Bocchi et al. [4], probably making it parametric in failure models
along the lines of Verdi [29]. In its current form, we think it is close enough to the behavior of
Erlang systems, and its primitives sufficient to account for a significant subset of Erlang failure
handling constructs, to allow us to study reversible debugging for distributed Erlang systems
with failures and recoveries, building on the substantial amount of work developed in the past
ten years around reversibility and reversible debugging in Erlang [22, 23].

RR n° 9511

20 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

References
[1] Roberto M. Amadio. An asynchronous model of locality, failure and process mobility. In

David Garlan and Daniel Le Métayer, editors, Coordination Languages and Models, Second
International Conference, COORDINATION ’97, Berlin, Germany, September 1-3, 1997,
Proceedings, volume 1282 of Lecture Notes in Computer Science, pages 374–391. Springer,
1997.

[2] Joe Armstrong. Programming Erlang – Software for a Concurrent World. The Pragmatic
Bookshelf, 2007.

[3] Martin Berger and Kohei Honda. The two-phase commitment protocol in an extended
pi-calculus. In Luca Aceto and Björn Victor, editors, 7th International Workshop on Ex-
pressiveness in Concurrency, EXPRESS 2000, Satellite Workshop of CONCUR 2000, State
College, PA, USA, August 21, 2000, volume 39 of Electronic Notes in Theoretical Computer
Science, pages 21–46. Elsevier, 2000.

[4] Laura Bocchi, Julien Lange, Simon Thompson, and A. Laura Voinea. A model of actors and
grey failures. In Maurice H. ter Beek and Marjan Sirjani, editors, Coordination Models and
Languages - 24th IFIP WG 6.1 International Conference, COORDINATION 2022, Held as
Part of the 17th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2022, Lucca, Italy, June 13-17, 2022, Proceedings, volume 13271 of Lecture Notes
in Computer Science, pages 140–158. Springer, 2022.

[5] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. Verifying con-
current, crash-safe systems with perennial. In Tim Brecht and Carey Williamson, editors,
Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP 2019,
Huntsville, ON, Canada, October 27-30, 2019, pages 243–258. ACM, 2019.

[6] Om P. Damani, Ashis Tarafdar, and Vijay K. Garg. Optimistic recovery in multi-threaded
distributed systems. In The Eighteenth Symposium on Reliable Distributed Systems, SRDS
1999, Lausanne, Switzerland, October 19-22, 1999, Proceedings, pages 234–243. IEEE Com-
puter Society, 1999.

[7] Abhinandan Das, Indranil Gupta, and Ashish Motivala. SWIM: scalable weakly-consistent
infection-style process group membership protocol. In 2002 International Conference on
Dependable Systems and Networks (DSN 2002), 23-26 June 2002, Bethesda, MD, USA,
Proceedings, pages 303–312. IEEE Computer Society, 2002.

[8] Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. Psync: a partially synchronous
language for fault-tolerant distributed algorithms. In Rastislav Bodík and Rupak Majumdar,
editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
pages 400–415. ACM, 2016.

[9] E. N. Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408, 2002.

[10] E. N. Elnozahy and Willy Zwaenepoel. Manetho: Transparent rollback-recovery with low
overhead, limited rollback, and fast output commit. IEEE Trans. Computers, 41(5):526–531,
1992.

[11] URL: https://www.erlang.org/doc/apps/erts/erl_ext_dist.html#NEW_PID_EXT.

Inria

https://www.erlang.org/doc/apps/erts/erl_ext_dist.html#NEW_PID_EXT

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 21

[12] URL: erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogstatus.
html, 2019.

[13] URL: https://github.com/gfabbretti8/erlang-experiments, 2023.

[14] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus. In Hans-
Juergen Boehm and Guy L. Steele Jr., editors, Conference Record of POPL’96: The 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers
Presented at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996,
pages 372–385. ACM Press, 1996.

[15] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier Rémy. A
calculus of mobile agents. In Ugo Montanari and Vladimiro Sassone, editors, CONCUR
’96, Concurrency Theory, 7th International Conference, Pisa, Italy, August 26-29, 1996,
Proceedings, volume 1119 of Lecture Notes in Computer Science, pages 406–421. Springer,
1996.

[16] Adrian Francalanza and Matthew Hennessy. A theory of system behaviour in the presence
of node and link failure. Inf. Comput., 206(6):711–759, 2008.

[17] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui Huang,
Li Zhou, and Yongming Wu. An empirical study on crash recovery bugs in large-scale
distributed systems. In Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu,
editors, Proceedings of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, pages 539–550. ACM, 2018.

[18] Jeremiah Griffin, Mohsen Lesani, Narges Shadab, and Xizhe Yin. TLC: temporal logic of
distributed components. Proc. ACM Program. Lang., 4(ICFP):123:1–123:30, 2020.

[19] Indranil Gupta, Tushar Deepak Chandra, and Germán S. Goldszmidt. On scalable and
efficient distributed failure detectors. In Ajay D. Kshemkalyani and Nir Shavit, editors,
Proceedings of the Twentieth Annual ACM Symposium on Principles of Distributed Com-
puting, PODC 2001, Newport, Rhode Island, USA, August 26-29, 2001, pages 170–179.
ACM, 2001.

[20] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten
van Steen. Gossip-based peer sampling. ACM Trans. Comput. Syst., 25(3):8, 2007.

[21] Sasa Juric. Elixir in Action. Manning, 2015.

[22] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. A theory of reversibility
for Erlang. Journal of Logical and Algebraic Methods in Programming, 100:71 – 97, 2018.

[23] Ivan Lanese, Adrián Palacios, and Germán Vidal. Causal-consistent replay reversible se-
mantics for message passing concurrent programs. Fundam. Informaticae, 178(3):229–266,
2021.

[24] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In Werner Kuich, editor, Au-
tomata, Languages and Programming, 19th International Colloquium, ICALP92, Vienna,
Austria, July 13-17, 1992, Proceedings, volume 623 of Lecture Notes in Computer Science,
pages 685–695. Springer, 1992.

RR n° 9511

erlang-solutions.com/blog/which-companies-are-using-erlang-and-why- mytopdogstatus.html
erlang-solutions.com/blog/which-companies-are-using-erlang-and-why- mytopdogstatus.html
https://github.com/gfabbretti8/erlang-experiments

22 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

[25] Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic observables for a calculus for
global computing. Inf. Comput., 205(10):1491–1525, 2007.

[26] Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile processes. Cam-
bridge University Press, 2001.

[27] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and proving with dis-
tributed protocols. Proc. ACM Program. Lang., 2(POPL):28:1–28:30, 2018.

[28] Robert E. Strom and Shaula Yemini. Optimistic recovery in distributed systems. ACM
Trans. Comput. Syst., 3(3):204–226, 1985.

[29] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.
Ernst, and Thomas E. Anderson. Verdi: a framework for implementing and formally veri-
fying distributed systems. In David Grove and Stephen M. Blackburn, editors, Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, Portland, OR, USA, June 15-17, 2015, pages 357–368. ACM, 2015.

[30] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João Carlos Pereira, and
Peter Müller. Gobra: Modular specification and verification of go programs. In Alexandra
Silva and K. Rustan M. Leino, editors, Computer Aided Verification - 33rd International
Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, volume 12759
of Lecture Notes in Computer Science, pages 367–379. Springer, 2021.

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 23

A Notations and rules
For ease of reference, we gather in this section all the notations and inference rules used in the
paper.

A.1 Notations
We assume given mutually disjoint infinite denumerable sets C, N and I. C is the set of channel
names, N is the set of location names, and I is the set of incarnation number variables. We use
the set of integers Z as the set of incarnation numbers. An incarnation number is paired with
a location name for recovery purposes, to distinguish the current instance of a location from its
past failed instances. We denote by N� the set N ∪ {�}, where � 6∈ N. As in the π-calculus,
channel names can be free or bound in terms. The same holds for location names. Incarnation
variables can be bound, but not incarnation numbers. We denote by ũ a finite (possibly empty)
tuple of elements. We write T{ṽ/ũ} for the usual capture-avoiding substitution of elements of ũ
by elements of ṽ in term T , assuming tuples ũ and ṽ have the same arity. We write u, ṽ or ṽ, u
for the tuple ṽ extended with element u as first or last element. Abusing notation, we sometimes
identify a tuple ũ with the set of its elements. We denote by N+ the set of strictly positive
integers (by definition 0 6∈ N+), and by N the set of positive integers (0 ∈ N). We denote by 0̂
the function 0̂ : N� → Z that maps any n ∈ N to 0 and � to 1.

A.2 Calculus syntax and alpha-conversion on systems

P,Q ::= 0
∣∣ x〈ũ〉.P ∣∣ x(ṽ).P

∣∣ !x(ṽ).P
∣∣ ν w.P ∣∣ if r = s then P else Q

∣∣ P | Q
node(n, λ).P

∣∣ remove n.P
∣∣ spawn n.P ∣∣ kill ∣∣

create n.P
∣∣ link n.P ∣∣ unlink n.P

L,M,N ::= 0
∣∣ [P]nλ

∣∣ N ‖M
S,R ::= ∆ . N | ν w.S

where: ũ, r, s ⊂ C ∪ N� ∪ I ∪ Z ṽ ⊂ C ∪ N ∪ I w ∈ C ∪ N x ∈ C n ∈ N λ ∈ I

Free names in processes and configurations are defined inductively as follows:

fn(0) = ∅
fn(x〈ũ〉.P) = ũ ∪ {x} ∪ fn(P)

fn(x(ṽ).P) = {x} ∪ fn(P) \ ṽ
fn(!x(ṽ).P) = {x} ∪ fn(P) \ ṽ
fn(ν w.P) = fn(P) \ {w}
fn(if r = s then P else Q) = fn(P) ∪ fn(Q) ∪ {r, s}
fn(P | Q) = fn(P) ∪ fn(Q)

fn(node(n, λ).P) = fn(P) \ {n}
fn(remove n.P) = fn(P) ∪ {n}
fn(spawn n.P) = fn(P) ∪ {n} fn(kill) = ∅
fn(create n.P) = fn(P) ∪ {n} fn(link n) = fn(unlink n) = {n}
fn([P]nλ) = fn(P) ∪ {n}
fn(N ‖M) = fn(N) ∪ fn(M)

RR n° 9511

24 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

L denotes the set of configurations. S denotes the set of systems. A network ∆ is a tuple
〈A,L,V〉 where:

• A is a function A : N� → Z such that A(�) = 1 and such that the set supp(A)
def
= {n ∈

N | A(n) 6= 0} is finite. Function A records three types of information on locations. If
A(n) = λ ∈ N+, then location n is alive and its current incarnation number is λ. If
A(n) = −λ, λ ∈ N+ then location n has been killed and its last incarnation number while
alive was λ. If A(n) = 0, then there is no location n in the network, alive or not.

• L ⊆ N� × N� is the set of links between locations. L is a finite symmetric binary relation
over location names such that dom(L)

def
= {n ∈ N� | ∃m, (n,m) ∈ L} is finite.

• V : N� → (N� → N) is a function that maps location names to their local view which is
such that the set supp(V)

def
= {n ∈ N | V(n) 6= 0̂} is finite and supp(V) ⊆ supp(A). The local

view of a location n is a function V(n) : N� → N such that the set {m ∈ N | V(n)(m) 6= 0}
is finite. If V(n)(m) = κ ∈ N+, then location m in its incarnation κ is believed by n to be
alive. If V(n)(m) = 0, then location n holds no belief on the status of location m.

∆A, ∆L, and ∆V denote the components of a network representation ∆. Notations for
extracting information from ∆:

• ∆ ` nλ : alive if ∆A(n) = λ and λ ∈ N+.

• ∆ ` n : dead if ∆A(n) 6∈ N+

• ∆ ` n↔ m if (n,m) ∈ ∆L

• ∆ ` nλ! mκ if (n,m) ∈ ∆L, ∆ ` nλ : alive and ∆ ` mκ : alive

Update operations over a network ∆:

• ∆⊕ n↔ m = 〈∆A,∆L ∪ {(n,m), (m,n)},∆V〉

• ∆	 n↔ m = 〈∆A,∆L \ {(n,m), (m,n)},∆V〉

• ∆⊕ (n, λ) = 〈∆A[n 7→ λ],∆L ∪ {(n, n)},∆V [n 7→ 0̂]〉

• ∆	 (n, λ) = 〈∆A[n 7→ −λ],∆L,∆V〉

• ∆⊕ n � (m,λ) = 〈∆A,∆L,∆V [n 7→ ∆V(n)[m 7→ λ]]〉, if n 6= m

• ∆	 n � m = 〈∆A,∆L,∆V [n 7→ ∆V(n)[m 7→ 0]]〉, if n 6= m

• ∆	 n � n = ∆⊕ n � (n, λ) = ∆

Free names of networks and systems are defined inductively as follows:

fn(∆) = supp(∆A) ∪ dom(∆L)

fn(∆ . N) = fn(∆) ∪ fn(N)

fn(ν ũ.S) = fn(S) \ ũ

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 25

To define alpha-conversion on systems, we define capture-avoiding substitution on networks. A
capture avoiding substitution {v/u} on network ∆ is defined as follows: if ∆ = (A,L,V), then
∆{v/u} = (A{v/u},L{v/u},V{v/u}) where:

A{v/u} =

{
A[v 7→ A(u)][u 7→ 0] if u, v ∈ N and v 6∈ supp(A)

A otherwise

L{v/u} =

{
(L \ L(u)) ∪ L(u){v/u} if u, v ∈ N and v 6∈ supp(A)

L otherwise

V{v/u} =

{
V[v 7→ V(u)][u 7→ 0̂] if u, v ∈ N and v 6∈ supp(A)

V otherwise

with:

L(n) = {(a, b) ∈ L | a = n or b = n}
L(n){m/n} = {(a{m/n}, b{m/n}) | (a, b) ∈ L(n)}

a{m/n} =

{
m if a = n

a otherwise

The effect of a capture avoiding substitution {v/u} on a system ∆ . N is defined inductively as
follows. We define the set occ of name occurrences of a system as follows:

(∆ . N){v/u} = ∆{v/u} . N{v/u}

(ν w.S){v/u} =

{
ν w.S{v/u} if u, v 6= w

⊥ otherwise

Equality modulo alpha-conversion =α on systems is now defined as the smallest equivalence
relation on systems defined by the following rules:

S{v/u} 6= ⊥
ν u.S =α ν v.S{v/u}

S =α T

ν u.S =α ν u.T

A.3 Reduction semantics
The operational semantics of our calculus is defined via a reduction semantics given by a binary
relation −→ ⊆ S×S between closed systems, and a structural congruence relation ≡ ⊆ S2∪L2,
that is a binary equivalence relation between systems and between configurations. Evaluation
contexts are “systems with a hole ·” defined by the following grammar:

C ::= ν w̃.∆ . E E ::= ·
∣∣ (N ‖ E) where: w̃ ⊂ N ∪ C

Relation ≡ is the smallest equivalence relation defined by the rules in Fig. 8, where =α stands
for equality up to alpha-conversion, M,N,L ∈ L, and S,R ∈ S.

Reduction relation −→ is defined by the rules in Fig. 9, where:

∆n(m) =

κ if n = m and ∆A(n) = κ

κ if n 6= m and ∆V(n)(m) = κ

κ if n 6= m and ∆V(n)(m) = 0 and ∆A(m) = κ

0 otherwise

RR n° 9511

26 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

[S.Par.C] N ‖M ≡M ‖ N [S.Par.A] (L ‖M) ‖ N ≡ L ‖ (M ‖ N) [S.Par.N] (N ‖ 0) ≡ N

[S.Res.C] ν u.ν v.S ≡ ν v.ν u.S
[S.Res.Nil]

ν u.S ≡ S
u /∈ fn(S) [S.α]

S =α R

S ≡ R

[S.Ctx]
N ≡M

C[N] ≡ C[M]

Figure 8: Structural Congruence Rules

A.4 LTS semantics
Labels α in our LTS semantics take the following forms:

α ::= τ
∣∣ ν w̃.x〈ũ〉@nλ ∣∣ x(ũ)@nλ

∣∣ kill(n, λ)
∣∣ create(n, λ)

∣∣ ⊕ nλ 7→ m
∣∣ 	 nλ 7→ m

∣∣ nλ � m
Free names in labels are defined as follows:

fn(τ) = ∅ fn(ν w̃.x〈ũ〉@nλ) = (ũ ∪ {x, n}) \ w̃ fn(x(ũ)@nλ) = ũ ∪ {x, n}
fn(kill(n, λ)) = {n} fn(create(n, λ)) = {n}
fn(⊕nλ 7→ m) = {n,m} fn(nλ 7→ m) = {n,m} fn(nλ � m) = {n,m}

Labelled transition relations α−−→ of our LTS semantics are defined by the rules in Fig. 10
and 11.

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 27

Assuming ∆ ` nλ : alive

msg
∆ . [x〈ṽ〉.Q]nλ ‖ [x(ũ).P]nλ −→ ∆ . [P{ṽ/ũ}]nλ ‖ [Q]nλ

bang
∆ . [!x(ũ).P]nλ −→ ∆ . [x(ũ).(P | !x(ũ).P)]nλ

new
∆ . [ν u.P]nλ −→ ν u.∆ . [P]nλ

u /∈ fn(∆) ∪ {n, λ}
fork
∆ . [P | Q]nλ −→ ∆ . [P]nλ ‖ [Q]nλ

if-neq

∆ . [if r = s then P else Q]nλ −→ ∆ . [Q]nλ
r 6= s

node
∆ . [node(m,κ).P]nλ −→ ∆ . [P{m,κ/n, λ}]nλ

if-eq

∆ . [if r = r then P else Q]nλ −→ ∆ . [P]nλ

remove
∆ . [removem.P]nλ −→ ∆	 n � m . [P]nλ

spawn-s
∆n(m) = κ ∆ ` nλ! mκ

∆ . [spawnm.P]nλ −→ ∆⊕m � (n, λ) . [P]mκ

link
∆ 6` n↔ m

∆ . [linkm.P]nλ −→ ∆⊕ n↔ m . [P]nλ

spawn-f
∆n(m) = κ ∆ 6` nλ! mκ

∆ . [spawnm.P]nλ −→ ∆	 n � m . 0

unlink
∆ ` n↔ m

∆ . [unlinkm.P]nλ −→ ∆	 nλ ↔ m . [P]nλ

create-s
∆ ` m : dead ∆A(m) = −κ

∆ . [createm.P]nλ −→ ∆⊕ (m,κ+ 1) . [P]mκ+1

kill
n 6= �

∆ . [kill]nλ −→ ∆	 (n, λ) . 0

create-f
∆ 6` m : dead

∆ . [createm.P]nλ −→ ∆ . 0

par
∆ . N −→ ν ũ.∆′ . N ′ ũ ∩ fn(M) = ∅

∆ . N ‖M −→ ν ũ.∆′ . N ′ ‖M

res
S −→ S′

ν u.S −→ ν u.S′

str
S ≡ S′ S′ −→ R′ R′ ≡ R

S −→ R

Figure 9: Reduction Rules

RR n° 9511

28 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

Assuming ∆ ` nλ : alive

l-bang

∆ . [!x(ũ).P]nλ
τ−−−→ ∆ . [x(ũ).(P | !x(ũ).P)]nλ

l-fork

∆ . [P | Q]nλ
τ−−−→ ∆ . [P]nλ ‖ [Q]nλ

l-new
u /∈ fn(∆) ∪ {n, λ}

∆ . [ν u.P]nλ
τ−−−→ ν u.∆ . [P]nλ

l-node

∆ . [node(m,κ).P]nλ
τ−−−→ ∆ . [P{m,κ/n, λ}]nλ

l-if-neq
r 6= s

∆ . [if r = s then P else Q]nλ
τ−−−→ ∆ . [Q]nλ

l-remove

∆ . [removem.P]nλ
τ−−−→ ∆	 n � m . [P]nλ

l-if-eq

∆ . [if r = r then P else Q]nλ
τ−−−→ ∆ . [P]nλ

kill
n 6= �

∆ . [kill]nλ
τ−−−→ ∆	 (n, λ) . 0

l-in

∆ . [x(ṽ).P]nλ
x(ũ)@nλ−−−−−−−−→ ∆ . [P{ũ/ṽ}]nλ

l-out

∆ . [x〈ṽ〉.P]nλ
x〈ṽ〉@nλ−−−−−−−−→ ∆ . [P]nλ

l-spawn-s
∆n(m) = κ ∆ ` nλ! mκ

∆ . [spawnm.P]nλ
τ−−−→ ∆⊕m � (n, λ) . [P]mκ

l-link
∆ 6` n↔ m

∆ . [linkm.P]nλ
τ−−−→ ∆⊕ n↔ m . [P]nλ

l-spawn-f
∆n(m) = κ ∆ 6` nλ! mκ

∆ . [spawnm.P]nλ
τ−−−→ ∆	 n � m . 0

l-unlink
∆ ` n↔ m

∆ . [unlinkm.P]nλ
τ−−−→ ∆	 n↔ m . [P]nλ

l-create-s
∆ ` m : dead ∆A(m) = −κ

∆ . [createm.P]nλ
τ−−−→ ∆⊕ (m,κ+ 1) . [P]mκ+1

l-create-f
∆ 6` m : dead

∆ . [createm.P]nλ
τ−−−→ ∆ . 0

Figure 10: LTS Rules (1)

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 29

l-create-ext
∆ ` n : dead ∆A(n) = −κ

∆ . N
create(n,κ+1)−−−−−−−−−−−→ ∆⊕ (n, κ+ 1) . N

l-kill-ext
∆ ` nλ : alive

∆ . N
kill(n,λ)−−−−−−−→ ∆	 (n, λ) . N

l-unlink-ext
∆ ` nλ : alive ∆ ` n↔ m

∆ . N
	nλ 7→m−−−−−−−−→ ∆	 n↔ m .N

l-link-ext
∆ ` nλ : alive ∆ 6` n↔ m

∆ . N
⊕nλ 7→m−−−−−−−−→ ∆⊕ n↔ m .N

l-view
∆ ` nλ : alive and (∆A(m) = ∆n(m) 6= 0 or ∆n(m) = 0)

∆ . N
nλ�m−−−−−−→ ∆ . N

l-res
S

α−−−→ S′ u /∈ fn(α)

ν u.S
α−−−→ ν u.S′

l-parL

∆ . N
α−−−→ ν ũ.∆′ . N ′ ũ ∩ fn(M) = ∅

∆ . N ‖M α−−−→ ν ũ.∆′ . N ′ ‖M

l-parR

∆ . N
α−−−→ ν ũ.∆′ . N ′ ũ ∩ fn(M) = ∅

∆ . M ‖ N α−−−→ ν ũ.∆′ . M ‖ N ′

l-syncL

∆ . N
x〈ũ〉@nλ−−−−−−−−→ ∆ . N ′ ∆ . M

x(ũ)@nλ−−−−−−−−→ ∆ . M ′

∆ . N ‖M τ−−−→ ∆ . N ′ ‖M ′

l-resO
S

ν ṽ.x〈ũ〉@nλ−−−−−−−−−−−→ S′ w ∈ ũ \ ṽ, x, n

ν w.S
ν w.ν ṽ.x〈ṽ〉@nλ−−−−−−−−−−−−−→ ν S.′

l-syncR

∆ . N
x〈ũ〉@nλ−−−−−−−−→ ∆ . N ′ ∆ . M

x(ũ)@nλ−−−−−−−−→ ∆ . M ′

∆ . M ‖ N τ−−−→ ∆ . M ′ ‖ N ′

l-α
S =α T T

α−−−→ T ′ T ′ =α S
′

S
α−−−→ S′

Figure 11: LTS Rules (2)

RR n° 9511

30 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

B Erlang

B.1 Experiments on Erlang’s Semantics

In this section we will show a typical distributed Erlang behaviors. To simulate a distributed
environment Erlang nodes will be running on dockers’ container connected through a network.
By using docker facilities we will simulate failure and changes in the network structure. The
code of this examples can be found at [13].

Pinging a reincarnation of a previous known location

Description. In this scenario l2 successfully contacts l1, thus establishing a connection. Then,
l1 fails and recovers. Finally, l2, before detecting that the incarnation of l1 to which it was
connected has failed, tests again its accessibility. Graphically, the network could be represented
as follow.

◦
l1

◦
l1

The following commands set up the configuration and attach a remote shell to l2.
gfabbret@ubuntu :~/$ docker -compose up -d
gfabbret@ubuntu :~/$ docker exec -it l2.com erl -name test@l2.com

-setcookie cookie -remsh app@l2.com -hidden

Then, to establish a connection between the two locations in the Erlang console we can ping
the remote location.

(app@l2.com)2> net_adm:ping(’app@l1.com ’).
pong

To induce the fault and make it seem like a genuine interruption of services, without third
parties being notified, we detach the container from all the networks, restart it, and reconnect
it to the networks it was connected to. The disconnection is required as otherwise the other
containers would be notified of the restart. Detaching and re-attaching the container to the
network takes few milliseconds, hence not enough for the Erlang system to detect it. To do so
we get the container and network ids through the docker commands and we feed them to the
restart script.
gfabbret@ubuntu :~/ scenario$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS NAMES
ba5915332d87 erlang :25.0.3 "erl ..." 49 seconds ago Up 49 seconds l2.com
76 c89a08761c erlang :25.0.3 "erl ..." 49 seconds ago Up 49 seconds l1.com
gfabbret@ubuntu :~/ scenario -4$ docker network ls
NETWORK ID NAME DRIVER SCOPE
fec145052743 bridge bridge local
1b349490c51c host host local
373 b2aa1c5e9 none null local
cfc05f57eeee scenario_net1 bridge local
gfabbret@ubuntu :~/ scenario$./ restart.sh cfc05f57eeee 76 c89a08761c
ba5915332d87
done

Finally we attempt to ping the remote location after the restarting.
...
(app@l2.com)3> spawn(’app@l1.com ’, fun() -> self() end).
<0.107.0>
(app@l2.com)4> =WARNING REPORT ==== 2-May -2023::15:16:02.174308 ===
** Can not start erlang:apply ,[#Fun <erl_eval .43.3316493 > ,[]] on ’app@l1.com ’ **

The test for spawn failed even if there is a live running instance of l1. The reason why is that
l2 attempted to spawn on the instance of l2 that it knew already (in terms of our calculus, location
l2 at incarnation λ), which was stored in its view, and not the one currently alive (location l2 at

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 31

incarnation λ+ 1). If we had given l2 enough time it would have detected that the incarnation
of l2 it knew was dead since it would not feel its heartbeat and in that case the spawn would have
succeeded since l1 would have initiated a new connection.

An example of the corresponding system in our calculus is the following one:

∆ . [ping l1]
l2
κ ‖ [spawn l1.t]

l2
κ ‖ [kill]

l1
λ ‖ [create l1.0]

�

where
∆ = 〈{l1 7→ λ, l2 7→ κ)}, {l1 ↔ n2}, {l2 7→ 0̂}〉

B.2 Running Example in Erlang

In this section we discuss how to reproduce the experiments showing the behaviors of the three
servers presented in Section 2. Actually, for simplicity as bugged behavior we show servDFV
from Section 3.4.

All the code of the examples can be found at [13] (including servDF).
We begin by servD.
The procedure to set up the three nodes is as above.
Then, we can connect to the interface.

gfabbret@ubuntu :~/$ docker exec -it interface.com erl -name test@interface.com
-setcookie cookie -remsh app@interface.com -hidden

Then, we can invoke the interface process which will send the request and observe the outcome.
(app@interface.com)1> servD:interface ().
Initiating request
Response received

As expected, everything went well.
Now, let us discuss the more interesting servDFV, where the misbehavior is due to a spawn

that fails because of a wrong view.
The procedure to set up the system is as before, nonetheless this time two remote consoles

are required: one on the interface to start the process and one on the controller to restart the
router. The commands to attach the remote consoles are as above, but for replacing the name
of the container.

Now, we can initiate the request from the interface.
(app@interface.com)1> servDFV:interface ().
Initiating request

The process gets stuck because the (bugged) router drops the message. Now, we can simulate
a failure of the router container by means of

gfabbret@ubuntu :~/$./ restart servdf_net1 router.com

Then, right after, before the interface node detects the absence of the router because of the
lack of its heartbeat we can restore the service from the controller console.

(app@controller.com)1> servDFV:controller ().
ok

and observe the following behavior on the interface
=WARNING REPORT ==== 3-May -2023::09:06:33.441402 ===
** Can not start erlang:apply ,[#Fun <servDF .1.93666681 > ,[]] on ’app@router.com ’
**

RR n° 9511

32 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

where the spawn has failed due to wrong view.
Finally, let us discuss servDFR.
To set up the scenario and attach consoles to the interface and the controller we proceed as

above.
Then we start the request

(app@interface.com)1> servDFR:interface ().
Initiating request

The process gets stuck like it did in servDFV. As in servDFV we restart the router and we
create a new router through the controller process. In this implementation though is the router
to send a retry message to the interface, hence its view is correctly updated and the following
expected behavior is shown.

Retrying request
Response received
ok

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 33

C Modifying networks
We formalize in this section the intuition that we can modify, in essentially arbitrary ways, the
observable part of networks in our systems.

Proposition 2. Consider a system S = ν ũ.∆.N , where ∆ = 〈A,L,V〉, a set of live locations A′,
such that ∀n ∈ supp(A)\supp(A′), n /∈ ũ and a set of live links L′ s.t. ∀n,m, (n,m) ∈ L\L′ =⇒
n,m /∈ ũ. Let ∆′ = 〈A′,L′,V〉, then, there exists a configuration L with fn(L)∩ ũ = ∅ such that

ν ũ.∆ . N ‖ L =⇒ ν ũ.∆′ . N

Proof. Assume to have ν ũ.∆ . N , where ∆ = 〈A,L,V〉, A′ and L′.
To transform A into A′ we need to remove all the elements that are in A but not in A′ and

we need to add all those elements that are in A′ but not in A. To remove the nodes it suffices
to build the following context

L−A =
∏

n∈supp(A)\supp(A′)

[kill]nλ

Then, to add the nodes it suffices to build the following context

L+
A =

∏
n∈supp(A′)\supp(A)

[create n.0]�

To change L in to L′ we need to perform the same operations as above. To remove the links
it suffices to build the following context

L−L =
∏

(n,m)∈L\L′

[unlinkm.0]n

Then, to add the links it suffices to build the following context

L+
L =

∏
(n,m)∈L′\L

[linkm.0]n

Finally, we obtain as L = L−A ‖ L
+
A ‖ L

−
L ‖ L

+
L .

Note that we did not mention incarnation numbers for new nodes in supp(A′) \ supp(A). If a
particular incarnation number λ > 1 is required for location n, it suffices to repeatedly kill and
(re-)create location n in L+

A until the correct incarnation number is reached.
In the above proposition views updates are not mentioned because there are some limits in

extending them. In particular consider the network ∆

〈{(�, 1), (n, λ), (n′, λ′)}, {n↔ n′}, {(n′, {(n, λo)})}〉 (1)

where n 6= n′, λo < λ and the following network ∆′

〈{(�, 1), (n, λ), (n′, λ′)}, {n↔ n′}, {(n′, {(n, λo)}), (n, {(n′, λ′)})}〉 (2)

Then ∆ cannot be modified by context into ∆′. The problem lies in the fact that any primitive
that adds a location to another location’s view requires for the remote location to be in its view.
In the above example, n′ view is not aligned with the reality, since n′ believes to be connected
to (n, λo) while (n, λo) is dead and now (n, λ), a newer incarnation, is up and running.

RR n° 9511

34 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

D Barb alternative
This section shows that it is possible to simplify our notion of barb, a result akin to that put
forward by De Nicola et al. in [25]. The alternate definition of barb we consider in this section
is one where a barb just displays the location of messages.

Definition 8 (Location Barb). We say that a system S exhibits a barb at location n, in symbols
S↓n, iff S ≡ ν ũ.∆ . [x〈ṽ〉.P]nλ ‖ N , for some x, n, λ, ũ, ṽ, P,N , where x, n /∈ ũ, and ∆ ` (n, λ) :
alive. Also, S⇓n if S ⇒ S′ and S′↓n. We denote by ≈̇l the weak barbed congruence obtained by
considering only barbs at locations.

Now the two weak barbed congruences ≈̇ and ≈̇l coincide

Proposition 3. ≈̇l = ≈̇

Proof. In what follows we use the following notation : if U ≡ ν ũ.∆ . N , and L is such that
fn(L) ∩ ũ = ∅, then U ‖ L denotes the system ν ũ.∆ . N ‖ L.

That ≈̇ ⊆ ≈̇l is clear. We show the converse. Let closed systems S and T be such that
S ≈̇l T and S↓x@nλ . By definition of full barbs, we have S ≡ ν ũ.∆ . [x〈ṽ〉.P]nλ ‖ N for some
x, n, λ, ũ, ṽ, P,N . By definition of location barbs, we have S↓n. Since S ≈̇l T , we must have
T =⇒ T1↓n for some T1. Assume for the sake of contradiction that ¬(T⇓x@nλ), and consider the
systems S ‖ L and T ‖ L, where:

L = [create k.link n.spawn n.(x(ỹ).spawn k.t)]�1 k, t /∈ fn(S) ∪ fn(T)

Since ≈̇l is a system congruence, we must have S ‖ L ≈̇l T ‖ L. Now, by construction, we have

S ‖ L =⇒ ν ũ.∆ . N ‖ [t]k1 and S↓k

But since ¬(T⇓x@nλ), and t, k are fresh for T , there can be no T ′ such that T ‖ L =⇒ T ′ and
T ′⇓k, contradicting the fact that S ≈̇l T .

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 35

E Full Abstraction

E.1 Soundness
Definition 9 (Strong Simulation). A binary relation S ⊆ S× S over closed systems is a strong
simulation iff whenever (P,Q) ∈ S,

• P
α−−→ P ′ implies Q α−−→ Q′ for some Q′ with (P ′, Q′) ∈ S

Definition 10 (Strong Bisimulation). A relation S is a strong bisimulation if both S and S−1

are strong simulations.

Definition 11 (Strong Bisimilarity). Strong bisimilarity, denoted by ∼, is the largest srong
bisimulation over systems.

The fact ∼ is an equivalence relation is a standard result for any labelled transition system.
We start with a simple lemma on the preservation of free names by labelled transitions. If α

is a label from our LTS semantics, we define pi(α) and po(α) as follows:

po(α) =

{
ũ \ w̃ if α = ν w̃.x〈ũ〉@nλ
∅ otherwise

pi(α) =

{
ũ if α = x(ũ)@nλ

∅ otherwise

Lemma 1. Let S, S′ be closed systems such that S α−−→ S′. Then fn(S′) ⊆ fn(S) ∪ pi(α).

Proof. By induction on the derivation of S α−−→ S′.

We now prove two lemmas relating labelled transitions in the calculus LTS semantics and the
structure of systems. In the remainder, we extend ≡ to output actions, and identify equivalent
output actions, setting:

ν v.ν w.x〈ũ〉@nλ ≡ ν w.ν v.x〈ũ〉@nλ ν w.α ≡ ν w.ω if α ≡ ω

Lemma 2 (Input/output actions and systems). Let S, S′ be closed systems such that S α−−→ S′.
The following properties hold:

1. if α = ν ṽ.x〈ũ〉@nλ then

S ≡ ν w̃.∆ . [x〈ũ〉.P]nλ ‖ N for some ∆, w̃, P,N with x, n /∈ w̃, ṽ ⊆ w̃, ∆ ` nλ : alive

2. if α = x(ũ)@nλ then

S ≡ ν w̃.∆ . [x(ũ).P]nλ ‖ N for some ∆, ṽ, w̃, P,N with ũ, x, n ∩ w̃ = ∅, ∆ ` nλ : alive

Proof. We show the first assertion, the second one is handled similarly. We reason by induction
on the derivation of S α−−→ S′, where α = ν ṽ.x〈ũ〉@nλ, considering the last rule used in the
proof tree:

• Rule l-out: in this case, we have S = ∆ . [x〈ũ〉.P]nλ, ∆ ` nλ : alive, as required.

• Rule l-parL: in this case, we have S = ∆.N ‖M , α = x〈ũ〉@nλ, with ∆.N
α−−→ ∆′.N ′.

By induction assumption, we have N ≡ [x〈ũ〉.P]nλ ‖ L for some L, with ∆ ` nλ : alive.
Hence S ≡ ∆ . [x〈ũ〉.P]nλ ‖ L ‖M , ∆ ` nλ : alive, as required.

RR n° 9511

36 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

• Rule l-parR: same as l-parL.

• Rule l-res: in this case we have S = ν z.S′ with S′
α−−→ S′′, for some S′, S′′, and

v /∈ fn(α). By induction assumption, we have S′ ≡ ν w̃.∆ . [x〈s̃〉.P]nλ ‖ N , with ∆ ` nλ :
alive, x, n /∈ w̃, ṽ ⊆ w̃. Thus S ≡ ν z, w̃.∆ . [x〈s̃〉.P]nλ ‖ N , with ∆ ` nλ : alive, and
x, n /∈ v, w̃, ṽ ⊆ z, w̃ as required.

• Rule l-resO: in this case, we have S = ν z.T with T ω−−→ T ′, z ∈ ũ \ x, n, α = ν z.ω. By
induction assumption, we have

T ≡ ν w̃.∆.[x〈r̃〉.P]nλ ‖ N for some ∆, ũ, w̃, P,N with x, n /∈ w̃, ṽ\{z} ⊆ w̃, ∆ ` nλ : alive

Hence, we have

S ≡ ν z, w̃.∆.[x〈r̃〉.P]nλ ‖ N for some ∆, ũ, w̃, P,N with x, n /∈ z, w̃, ṽ ⊆ z, w̃, ∆ ` nλ : alive

as required.

Lemma 3 (Silent actions and systems). Let S, S′ be closed systems such that S τ−−→ S′. Then
one of the following properties hold, for some ũ, w̃, u, n,m, λ, P,Q,N with ∆ ` (n, λ) : alive:

S ≡ ν w̃.∆ . [!x(ũ).P]nλ ‖ N (3)
S ≡ ν w̃.∆ . [ν u.P]nλ ‖ N (4)
S ≡ ν w̃.∆ . [if r = s then P else Q]nλ ‖ N (5)
S ≡ ν w̃.∆ . [P | Q]nλ ‖ N (6)
S ≡ ν w̃.∆ . [node(m,κ).P]nλ ‖ N (7)
S ≡ ν w̃.∆ . [remove n.P]nλ ‖ N (8)
S ≡ ν w̃.∆ . [kill]nλ ‖ N and n 6= � (9)
S ≡ ν w̃.∆ . [spawnm.P]nλ ‖ N (10)
S ≡ ν w̃.∆ . [createm.P]nλ ‖ N (11)
S ≡ ν w̃.∆ . [linkm.P]nλ ‖ N (12)
S ≡ ν w̃.∆ . [unlinkm.P]nλ ‖ N (13)
S ≡ ν w̃.∆ . [x〈ũ〉.P]nλ ‖ [x(ũ).Q]nλ ‖ N (14)

Proof. We reason by induction on the derivation of S τ−−→ S′, considering the last rule used in
the derivation.

• Rule l-res: In this case, we have S = ν u.T and S′ = ν u.T ′, with T τ−−→ T ′. Applying the
induction assumption, we have T ≡ ν w̃.∆ .L ‖ N , where L is one of the located processes
listed in the lemma assertions ([!x(ũ).P]nλ, [ν u.P]nλ, etc.). Hence S ≡ ν u, w̃.∆ . L ‖ N ,
as required.

• Rule l-syncL: In this case, we have S = ∆ . N ‖ M with ∆ . N
x〈ũ〉@nλ−−−−−−−→ ∆ . N ′

and ∆ . M
x(ũ)@nλ−−−−−−−→ ∆ . M ′. Applying Lemma2 we have N ≡ [x〈ũ〉.P]nλ ‖ U for

some P,U with ∆ ` nλ : alive, and M ≡ [x(ũ).Q]nλ ‖ V for some Q,V . Hence we have
S ≡ ∆ . [x〈ũ〉.P]nλ ‖ [x(ũ).Q]nλ ‖ U ‖ V , one of the possible forms required.

• Rule l-syncR is handled similarly as rule l-syncL.

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 37

• Rule l-parL: In this case we have S = ∆ . N ‖ M , with ∆ . N
τ−−→ ν ũ.∆′ . N ′, and

fn(M) ∩ ũ = ∅. By induction assumption, we have N ≡ L ‖ U , where L is one of the
located processes listed in the lemma assertions. Hence S ≡ ∆ . L ‖ U ‖M , as required.

• Rule l-parR is handled similarly as rule l-parL.

• Rules with τ−−→ conclusion in Fig.10: All these rules conclusion are of the form ∆.L
τ−−→

U , where L is one of the single located processes listed in the lemma assertions. In these
cases, we just have S = ∆ . L, as required.

Proposition 4 (Structural congruence is a strong bisimulation). We have ≡ ⊆ ∼.

Proof. Since ≡ is an equivalence relations, it suffices to prove that ≡ is a strong simulation,
namely that for any closed systems S,R, if S α−−→ S′ and S ≡ R, then there exists R′ such
that R α−−→ R′ and S′ ≡ R′. We reason by induction on the derivation of S ≡ R, considering
the last rule used in the proof tree:

Rule s.res.c: In this case, S = ν u.ν v.T and R = ν v.ν u.T . Since S α−−→ S′, this can only
have been obtained by applying rule l-res twice, rule l-resO twice, or a or a combination
of rule l-res and rule l-rresO. We consider the four cases:

Rule l-res applied twice: In this case, we have T ω−−→ T ′, for some T ′, u, v /∈ fn(α),
ω = α, and S′ = ν u.ν v.T ′. Now applying rule l-res twice we get R α−−→ ν v.ν u.T ′.
Applying rule l-res twice, we get R′ ≡ S′, as required.

Rule l-resO applied twice: In this case, we have T ω−−→ T ′ for some T ′, v ∈ πω,
u ∈ πω \ {v}, α = ν u.ν v.ω, and S′ = T ′. Applying rule l-resO twice we get:
R

α−−→ T ′, hence we have R′ ≡ S′, as required.
Rule l-resO followed by rule l-res: In this case we have T ω−−→ T ′ for some T ′,

v ∈ πω, u 6∈ πω \ {v}, α = ν v.ω, and S′ = ν u.T ′. Applying rule l-resO we get:
ν u.T

ω−−→ ν u.T ′. Applying l-resO we get: R = ν v.ν u.T
α−−→ ν u.T ′ = R′. Hence

we have R′ ≡ S′, as required.
Rule l-res followed by rule l-resO: Similar to the previous case.

Rule s.res.nil: In this case, S = ν u.R, u /∈ fn(R). Since S α−−→ S′, this can only have been
obtained by applying rule ress as the last rule. Hence, we have R ω−−→ R′, S′ = ν u.R′,
α = ω{∗/u}, u 6∈ fn(ω) \ po(ω). Now by Lemma 1, we have fn(R′) ⊆ fn(R) ∪ pi(ω). Since
po(ω) ⊆ fn(R) and u 6∈ fn(R), then u /∈ po(ω), hence α = ω. In addition, since u /∈ fn(ω),
then u /∈ pi(ω), hence u /∈ fn(R′). We can then apply rule s.res.nil to get S′ ≡ R′, as
required.

Rule s.α: In this case S =α R. By rule l-α we get directly R α−−→ S′. Hence we have found
R′ = S′, as required.

Rule s.ctx: In this case, we have S = ν ũ.∆ . L ‖ N and R = ν ũ.∆ . L ‖ M with N ≡ M .
We reason by induction on the structure of ũ:

ũ = ∅: In this case, S α−−→ S′ can only have been derived by an application of rule l-parL,
rule l-parR, rule l-syncR, or rule l-syncL. We consider the four cases:

RR n° 9511

38 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

Rule l-parL: In this case, we have ∆ . L
α−−→ ν ṽ.∆′ . L′ with ṽ ∩ fn(N), and

S′ = ν ṽ.∆′ . L′ ‖ N . Applying rule l-parL we get R α−−→ ν ṽ.∆′ . L′ ‖ N = R′,
and by applying rule S.ctx we have R′ ≡ S′, as required.

Rule l-parR: In this case we have ∆ . N
α−−→ ν ṽ.∆′ . N ′. We reason according to

the last rule used to derive N ≡M :
Rule s.par.n: In this case, we have N = (M ‖ 0). Now, ∆ .N

α−−→ ν ṽ.∆′ .N ′

can only have been obtained via an application of rule l-parL, with ∆ .
M

α−−→ ν ṽ.∆′ . M ′, and N ′ = M ′ ‖ 0. But then applying l-parR we get:
R

α−−→ ν ṽ.∆′ . L ‖ M ′ = R′. Since N ′ ≡ M ′ by rule s.par.n, we have by
rule s.ctx S′ ≡ R′, as required.

Rule s.par.c: In this case, we have N = U ‖ V and M = V ‖ U . Now the
derivation ∆ . N

α−−→ ν ṽ.∆′ . N ′ can only have been obtained by the ap-
plication of one of the rules l-parL, l-parR, l-syncL or l-syncR. We consider
the different cases.
Rule l-parL: In this case we have ∆ . U

α−−→ ν ṽ.∆′ . U ′, ṽ ∩ V = ∅ and
N ′ = U ′ ‖ V . Applying rule l-parR we obtain ∆ .M

α−−→ ν ṽ.∆′ .M ′ with
M ′ = V ‖ U ′. Applying rule l-parR we get R = ∆ .L ‖M α−−→ ν ṽ.∆′ .L ‖
(V ‖ U ′) = R′. Since we have S′ = ν ṽ.∆′ . L ‖ (U ′ ‖ V), and by rule s.par.c
V ‖ U ′ ≡ U ′ ‖ V , and since ≡ is a congruence, we have by rule s.ctx S′ ≡ R′,
as required.
The case of rule l-parR is handled similarly.
Rule l-syncL: In this case, we have α = τ , ~v = ∅, ∆ . U

ω−−→ ∆ . U ′,
∆ .V

ω−−→ ∆ .V ′, where ω is an output action and ω is the matching input
action. But then we can apply rule l-syncR to obtain ∆ . M

τ−−→ ∆ . M ′

where M ′ = V ′ ‖ U ′, and then apply rule l-parR to get R = ∆ . L ‖ (V ‖
U)

τ−−→ ∆ . L ‖ (V ′ ‖ U ′) Since we have S′ = ∆ . L ‖ (U ′ ‖ V ′),
U ′ ‖ V ′ ≡ V ′ ‖ U ′ by rule s.par.c, and since ≡ is a congruence, we obtain by
rule s.ctx S′ ≡ R′, as required.
The case of rule l-syncR is handled similarly.

Rule s.par.a: this case is handled similarly to the case of rule s.par.c above.
Rule l-syncL: In this case we have α = τ , ∆ . L

ω−−→ ∆ . L′, ∆ . N
ω−−→ ∆ . N ′,

and S′ = ∆.L′ ‖ N ′. We reason according to the last rule used to derive N ≡M :

• Rule s.par.n: In this case, we have N = (M | 0). The transition ∆ .N
ω−−→

∆ . N ′ can only have been obtained by an application of rule l-parL, with
∆.M

ω−−→ ∆.M ′ for someM ′. Thus we have S′ = ∆.L′ ‖ (M ′ ‖ 0). Now
by applying rule l-syncR we get R = ∆ . L ‖ M τ−−→ ∆ . L′ ‖ M ′ = R′.
By rule s.par.n, we have M ′ ‖ 0 ≡ M ′. Since ≡ is a congruence we have
L′ ‖ (M ′ ‖ 0) ≡ L′ ‖M ′, and by rule s.ctx we get S′ ≡ R′, as required.

• Rule s.par.c: we reason exactly as in the subcase s.par.c in the case of rule
l-parL above, except that the only rules to consider are l-parL and l-parR.

• Rule s.par.a: this case is handled similarly to the case of rule s.par.c above.
Rule l-syncR: this case is handled similarly to the case of rule l-syncL above.

~u = v, ~w: In this case R = ν v.U with T ≡ U and S = ν v.T
α−−→ S′. The latter can only

have been obtained by rule l-res or by rule l-resO. We consider the two cases:
Rule l-res: In this case, we have T α−−→ T ′, v 6∈ πα, S′ = ν v.T ′. By the induction

hypothesis, we have U α−−→ U ′ for some U ′ ≡ T ′. By rule l-res we get
R

α−−→ ν v.U ′ = R′ and since ≡ is a congruence, we have R′ ≡ S′, as required.

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 39

Rule l-resO: In this case, we have T ω−−→ T ′, v ∈ πω, α = ν v.ω, S′ = T ′. By the
induction hypothesis, we have U ω−−→ U ′ for some U ′ ≡ T ′. By rule l-resO we
get R α−−→ U ′ = R′. hence we have R′ ≡ S′, as required.

Proposition 5. If S −→ S′ then S τ−−→ ≡ S′.

Proof. We proceed by induction on the inference S −→ S′.

Case inferred by if-eq Then S is ∆ . [if u = u.P else Q]nλ, and the transition S
τ−−→ S′

follows by l-if-eq.

Case inferred by if-neq Then S is ∆ . [if u = v.P else Q]n, where u 6= v, and the transition
S

τ−−→ S′ follows by l-if-neq.

Case inferred by bang Then S is ∆ . [!x(ũ.P)]nλ, and the transition S
τ−−→ S′ follows by

l-bang.

Case inferred by node Then S is ∆ . [node(m,κ).P]n, and the transition S τ−−→ S′ follows
by l-node.

Case inferred by msg Then S is ∆ . [x〈y〉]nλ ‖ [x(z).P]nλ, and the transition S
τ−−→ S′

follows by l-out, l-in, and l-syncL.

Case inferred by new Then S is ∆.[ν x.P]nλ, and the transition S τ−−→ S′ follows by l-new.

Case inferred by spawn-s Then S is ∆ . [spawn n.P]n, and the transition S τ−−→ S′ follows
by l-spawn-s.

Case inferred by spawn-f Then S is ∆ . [spawn n.P]n, and the transition S τ−−→ S′ follows
by l-spawn-f.

Case inferred by unlink Then S is ∆ . [unlinkm.P]nλ, and the transition S τ−−→ S′ follows
by l-break.

Case inferred by link Then S is ∆ . [linkm.P]nλ, and the transition S τ−−→ S′ follows by
l-link.

Case inferred by kill Then S is ∆ . [kill]nλ, and the transition S τ−−→ S′ follows by l-kill.

Case inferred by remove Then S is ∆. [removem.P]nλ, and the transition S τ−−→ S′ follows
by l-remove.

Case inferred by create-s Then S is ∆. [createm.P]nλ, and the transition S τ−−→ S′ follows
by l-create-s.

Case inferred by create-f Then S is ∆. [createm.P]nλ, and the transition S τ−−→ S′ follows
by l-create-f.

Case inferred by par Then S is ν ũ.∆ . N ‖ M , and the transition S
τ−−→ S′ follows by

l-parL and the inductive hypothesis.

Case inferred by res Then S is ν u.∆ . N , and the transition S τ−−→ S′ follows by l-ress
and the inductive hypothesis.

RR n° 9511

40 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

Case inferred by str Then we have S ≡ T , T −→ T ′ and T ′ ≡ S′. By induction hypothesis,
we have T τ−−→ T ′. By Proposition 4 we have S τ−−→ S′′ with S′′ ≡ T ′. Hence
S

τ−−→ S′′ ≡ S′, as required.

Proposition 6. If S τ−−→ S′ then S −→ S′.

Proof. We proceed by induction on the inference S τ−−→ S′.

Case l-if-eq Then S is∆ . [if u = u thenP else Q]n, and the reduction S −→ S′ follows by
if-eq.

Case l-if-neq Then S is ∆.[if u = v thenP else Q]n, where u 6= v, and the reduction S −→ S′

follows by if-neq.

Case l-bang Then S is ∆ . [!x(ũ).P]nλ, and the reduction S −→ S′ follows by bang.

Case l-node Then S is ∆ . [node(m,κ).P]nλ, and the reduction S −→ S′ follows by node.

Case l-new Then S is ∆ . [ν x.P]nλ, and the reduction S −→ S′ follows by new.

Case l-spawn-s Then S is ∆ . [spawnm.P]nλ, and the reduction S −→ S′ follows by spawn-s.

Case l-spawn-f Then S is ∆ . [spawnm.P]nλ, and the reduction S −→ S′ follows by spawn-f.

Case l-unlink Then S is ∆ . [unlinkm.P]nλ, and the reduction S −→ S′ follows by break.

Case l-link Then S is ∆ . [linkm.P]nλ, and the reduction S −→ S′ follows by link.

Case l-kill Then S is ∆ . [kill]nλ, and the reduction S −→ S′ follows by kill.

Case l-create-s Then S is ∆. [createn.P]nλ, and the reduction S −→ S′ follows by create-s.

Case l-create-f Then S is ∆. [createn.P]nλ, and the reduction S −→ S′ follows by create-f.

Case l-syncL Then S is ∆ . N1 ‖ N2, and we have

∆ . N1
x〈ṽ〉@nλ−−−−−−−→ ∆ . N ′1 ∆ . N2

x(ṽ)@nλ−−−−−−−→ ∆ . N ′2

Now, by Lemma 2 we know the following:

∆ . N1 ≡ ∆ . [x〈v〉]nλ ‖M1 ∆ . N2 ≡ ∆ . [x(u).P]nλ ‖M2 S′ = ∆ . N ′1 ‖ N ′2

Hence S ≡ ∆.[x〈v〉]nλ ‖ [x(u).P]nλ ‖M1 ‖M2. Applying msg and str, we get S ≡ −→ S′.

Case l-syncR Similar to case l-syncL.

Case l-parL Then S is ∆.N1 ‖ N2, S′ is ν ṽ.∆′ .N ′1 ‖ N2, where ∆.N1
τ−−→ ν ṽ.∆′ .N ′1, and

ṽ ∩ fn(N2) = ∅. Now, by using the inductive hypothesis and par we have ∆ .N1 ‖ N2 −→
ν ṽ.∆′ . N ′1 ‖ N2.

Case l-parR Similar to case l-parL.

Case l-res Then S is ν u.T , S′ is ν u.T ′, where T τ−−→ T ′. Now by using the inductive
hypothesis and res we get S = ν u.T −→ ν u.T ′ = S′.

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 41

Lemma 4. Let S = ν s̃.∆ .N ‖ L be a closed system. If S α−−→ S′, where α is a silent action,
an output action or an input action, then one of the following assertions holds:

1. α = τ , ν s̃.∆ . N
τ−−→ ν w̃.ν s̃.∆ . N ′, and S′ ≡ ν w̃.ν s̃.∆ . N ′ ‖ L, with fn(L) ∩ w̃ = ∅,

and with rule l-parL the last rule used in the derivation of S α−−→ S′ before possible
applications of rule l-res.

2. α = τ , ν s̃.∆ . L
τ−−→ ν w̃.ν s̃.∆ . L′, and S′ ≡ ν w̃.ν s̃.∆ . N ‖ L′, with fn(N) ∩ w̃ = ∅,

and with rule l-parR the last rule used in the derivation of S α−−→ S′ before possible
applications of rules l-res.

3. α = τ , ν s̃.∆.N
ν w̃.x〈ũ〉@nλ−−−−−−−−−−→ ν r̃.∆.N ′, r̃ = s̃\w̃ and ũ∩r̃ = ∅, ∆.L

x(ũ)@nλ−−−−−−−→ ∆.L′,
and S′ ≡ ν s̃.∆.N ′ ‖ L′, with rule l-syncL the last rule used in the derivation of S α−−→ S′

before possible applications of rules l-res.

4. α = τ , ∆ . N
x(ũ)@nλ−−−−−−−→ ∆ . N ′, ν s̃.∆ . L

ν w̃.x〈ũ〉@nλ−−−−−−−−−−→ ν r̃.∆ . L′, r̃ = s̃ \ w̃ and
ũ∩r̃ = ∅, and S′ ≡ ν w̃.ν s̃.∆.N ′ ‖ L′, with rule l-syncR the last rule used in the derivation
of S α−−→ S′ before possible applications of rules l-res.

5. α = ν w̃.x〈ũ@nλ〉, ν s̃.∆ . N
ν w̃.x〈ũ〉@nλ−−−−−−−−−−→ ν r̃.∆ . N ′, r̃ = s̃ \ w̃, ũ ∩ r̃ = ∅, and

S′ ≡ ν s̃.∆ . N ′ ‖ L with rule l-parL the last rule used in the derivation of S α−−→ S′

before possible applications of rules l-res or l-resO.

6. α = ν w̃.x〈ũ@nλ〉, ν s̃.∆ . L
ν w̃.x〈ũ〉@nλ−−−−−−−−−−→ ν r̃.∆ . L′, r̃ = s̃ \ w̃, ũ ∩ r̃ = ∅, and

S′ ≡ ν s̃.∆ . N ‖ L′ with rule l-parR the last rule used in the derivation of S α−−→ S′

before possible applications of rules l-res or l-resO.

7. α = x(ũ)@nλ, ν s̃.∆ . N
x(ũ)@nλ−−−−−−−→ ν s̃.∆ . N ′, S′ ≡ ν s̃.∆ . N ′ ‖ L, and ũ ∩ s̃ = ∅, with

rule l-parL the last rule used in the derivation of S α−−→ S′ before possible applications
of rule l-res.

8. α = x(ũ)@nλ, ν s̃.∆ . L
x(ũ)@nλ−−−−−−−→ ν s̃.∆ . L′, S′ ≡ ν s̃.∆ . N ‖ L′, and ũ ∩ s̃ = ∅, with

rule l-parR the last rule used in the derivation of S α−−→ S′ before possible applications
of rule l-res.

Proof. By case analysis on α.

Case α = τ : in this case we reason by induction on the derivation of S τ−−→ S′, considering
the last rule used in the proof tree:

Case l-parL: In this case, we have S = ∆ . N ‖ L, ∆ . N
τ−−→ ν w̃.∆′ . N ′, and

S′ = ∆ . N
τ−−→ ν w̃.∆′ . N ′ ‖ L, with fn(L) ∩ w̃ = ∅, corresponding to assertion 1.

Case l-parR: In this case, we have S ≡ ∆ . N ‖ L, ∆ . L
τ−−→ ν w̃.∆′ . L′, and

S′ = ∆ . N
τ−−→ ν w̃.∆′ . N ‖ L′, with fn(N) ∩ w̃ = ∅, corresponding to assertion 2.

Case l-syncL: In this case, we have S = ∆ . N ‖ L, ∆ . N
x〈ũ〉@nλ−−−−−−−→ ∆ . N ′, ∆ .

L
x(ũ)@nλ−−−−−−−→ ∆ . L′, and S′ = ∆ . N ′ ‖ L′, corresponding to assertion 3.

RR n° 9511

42 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

Case l-syncR: In this case, we have S = ∆ . N ‖ L, ∆ . N
x(ũ)@nλ−−−−−−−→ ∆ . N ′, ∆ .

L
x〈ũ〉@nλ−−−−−−−→ ∆ . L′, and S′ = ∆ . N ′ ‖ L′, corresponding to assertion 4.

Case l-res: In this case, we have S = ν a.T , S′ = ν a.T ′, T τ−−→ T ′. By induction
hypothesis, we have for T one of the four cases 1 to 4 in the lemma. We consider only
the cases l-parL and l-syncL, the other ones are handled similarly.
Rule l-parL: In this case we have T = ν s̃.∆ . N ‖ L, T ′ ≡ ν w̃.ν s̃.∆ . N ′ ‖ L,

ν s̃.∆ . N
τ−−→ ν w̃.ν s̃.∆ . N ′, with fn(L) ∩ w̃ = ∅. Applying rule l-res, we

get S′ ≡ ν a.ν r̃.ν s̃.∆ . N ′ ‖ L ≡ ν a.ν r̃.ν s̃.∆ . N ′ ‖ L, ν a.ν s̃.∆ . N
τ−−→

ν w̃.ν a.ν s̃.∆ . N ′, with fn(L) ∩ w̃ = ∅, corresponding to assertion 1.
Rule l-syncL: In this case we have T = ν s̃.∆ . N ‖ L, T ′ ≡ ν s̃.∆ . N ′ ‖ L′, ν s̃.∆ .

N
ν w̃.x〈ũ〉@nλ−−−−−−−−−−→ ν r̃.∆.N ′, ∆.L

x(ũ)@nλ−−−−−−−→ ∆.L′, with r̃ = s̃\w̃ and ũ∩r̃ = ∅.
Applying rule l-res, we get S = ν w.ν s̃.∆.N ‖ L τ−−→ ν w.ν s̃.∆.N ′ ‖ L′ = S′.

If a ∈ ũ, then applying l-resO, we get ν a.ν s̃.∆ . N
ν a,w̃.x〈ũ〉@nλ−−−−−−−−−−−→ ν r̃.∆ . N ′,

with ũ∩ r̃ = ∅ and r̃ = a, s̃\a, w̃, as required. If a /∈ ũ, then applying l-res we get

ν a.ν s̃.∆ . N
ν w̃.x〈ũ〉@nλ−−−−−−−−−−→ ν a.ν r̃.∆ . N ′, with ũ ∩ a, r̃ = ∅ and a, r̃ = a, s̃ \ w̃,

as required.

Case α = ν w̃.x〈ũ〉@nλ: handled by induction on the derivation of S α−−→ S′ with cases similar
to the cases τ .l-parL, τ .l-parR and τ .l-res above.

Case α = x(ũ)@nλ: handled by induction on the derivation of S α−−→ S′ with cases similar to
the cases τ .l-parL, τ .l-parR and τ .l-res above.

Proposition 7 (Weak System Congruence). Weak bisimilarity is a weak system congruence;
that is, if ν ũ.∆.N ≈ ν ṽ.∆′ .M then for all w̃, L, with fn(L)∩ ũ, ṽ = ∅, we have ν w̃.ν ũ.∆.N ‖
L ≈ ν w̃.ν ṽ.∆′ . M ‖ L
Proof. We prove that the relation

S def
= { 〈ν w̃.ν s̃.∆S . NS ‖ L, ν w̃.ν r̃.∆R . NR ‖ L〉 | ν s̃.∆S . NS ≈ ν r̃.∆R . NR fn(L) ∩ (s̃ ∪ r̃) = ∅ }

is a weak bisimulation up to ≡. Since S is symmetric, it suffices to prove that S is a weak
bisimulation up to ≡. Define

S = ν s̃.∆S . NS R = ν r̃.∆R . NR SL = ν w̃.ν s̃.∆S . NS ‖ L RL = ν w̃.ν r̃.∆R . NR ‖ L

and consider a transition SL
α−−→ U . We proceed by induction on the structure of w̃:

Case w̃ = ∅: We proceed by case analysis on α:

Case τ We consider the different cases listed in Lemma 4 for SL = ν s̃.∆S . NS ‖ L and
SL

τ−−→ U :
Case l-syncL In this case, we have:

S = ν s̃.∆S . NS
ν ~a.x〈ũ〉@nλ−−−−−−−−−→ ν z̃s.∆S . N

′
S = S′

∆S . L
x(ũ)@nλ−−−−−−−→ ∆S . L

′

z̃s = s̃ \ ã ũ ∩ z̃s = ∅
U = ν s̃.∆S . N

′
S ‖ L′

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 43

Since S ≈ R, we have R
ν ã.x〈ũ〉@nλ

=========⇒ ν w̃r.ν z̃r.∆
′
R . N ′R = R′ for some

w̃r,∆
′
R, N

′
R, with z̃r = r̃ \ ã, and R′ ≈ S′. Now, since R τ

==⇒ R1
x〈ũ〉@nλ−−−−−−−→

R2
τ

==⇒ R′, where R1 = ν w̃1.ν z̃r.∆
1
R .N

1
R for some ∆1

R, N
1
R, we are guaranteed

that nλ is alive, and that ∆1
R . L

x(ũ)@nλ−−−−−−−→ ∆1
R . L

′. Also, we have ũ ∩ z̃r = ∅.
By repeated applications of rule l-parL and by one application of rule l-syncL,
we obtain RL

τ
==⇒ V , with V = ν w̃r.ν r̃.∆

′
R .N

′
R ‖ L′ and with fn(L′)∩ w̃r = ∅

because of the conditions of rule l-parL.
Summing up, we have:

U = ν ã.ν z̃s.∆S . N
′
S ‖ L′ = ν ã.S′

V ≡ ν ã.ν w̃r.ν z̃r.∆′R . N ′R ‖ L′ = ν ã.R′

S′ ≈ R′

fn(L′) ⊆ fn(L) ∪ ũ \ ã by Lemma 1
fn(L′) ∩ w̃r
ũ ∩ z̃s = ũ ∩ z̃r = ∅

Hence we have fn(L′)∩ z̃s = ∅ and fn(L′)∩ (w̃r∪ z̃r) = ∅, and S′ = ν z̃s.∆S .N
′
S ≈

ν w̃r.ν z̃r.∆
′
R . N

′
R = R′, which means that 〈U, V 〉 ∈ S, as required.

Case l-syncR Similar to the case l-syncL, but simpler.
Case l-parL In this case, we have SL

τ−−→ U , with SL = ∆S . NS ‖ L, U =

ν s̃.∆′S . N
′
S ‖ L, S

τ−−→ ν s̃.∆′S . N
′
S , with fn(L) ∩ s̃ = ∅. Since S ≈ R, we have

R
τ

==⇒ R′ with R′ ≈ S′ and R′ = ν r̃.∆′R . N
′
R. Now applying repeatedly rule

l-parL, we get RL
τ

==⇒ ν r̃.∆′R . N
′
R ‖ L = V , with fn(L)∩ r̃ = ∅ because of the

conditions of rules l-parL. Now we have 〈U, V 〉 ∈ S, as required.
Case l-parR Similar to the case l-parL, but simpler.

Case x(ũ)@nλ We consider the different cases listed in Lemma 4 for SL = ν s̃.∆S .NS ‖ L
and SL

x(ũ)@nλ−−−−−−−→ U :

Case l-parL In that case, we have S = ν s̃.∆S . NS , S
x(ũ)@nλ−−−−−−−→ S′ S′ = ν s̃.∆S .

N ′S . Since S ≈ R, we have R
x(ũ)@nλ

=======⇒ R′, where R′ = ν z̃.ν r̃.∆′R . N
′
R. Now,

by repeated application of rule l-parL, we get RL
x(ũ)@nλ

=======⇒ ν w̃.ν r̃.∆′R .N
′
R ‖

L = V , with fn(L) ∩ ν z̃. = ∅ because of the conditions of rule l-parL. Since we
also have fn(L) ∩ r̃ = ∅ by definition, we have 〈U, V 〉 ∈ S, as required.

Case l-parR Similar to the case l-parL, but simpler.

Case ν ã.x〈ũ〉@nλ We consider the different cases listed in Lemma 4 for SL = ν s̃.∆S.NS ‖
L and SL

ν ã.x〈ũ〉@nλ−−−−−−−−−→ U :

Case l-parL In that case, we have S = ν s̃.∆S . NS , S
ν ã.x〈ũ〉@nλ−−−−−−−−−→ S′ S′ =

ν s̃a.∆S . N
′
S , U = ν s̃a∆S . . N

′
S ‖ L, s̃a = s̃ \ ã. Since S ≈ R, we have

R
ν ã.x〈ũ〉@nλ

=========⇒ R′, where R′ ≡ ν w̃.ν r̃a.∆′R .N ′R, r̃a = r̃\ ã, and S′ ≈ R′. Now,
by repeated application of rule l-parL, we get RL

ν ã.x〈ũ〉@nλ
=========⇒ ν z̃.ν r̃a.∆

′
R .

N ′R ‖ L = V , with fn(L)∩ ν z̃. = ∅ because of the conditions of rule l-parL. Since
we also have fn(L) ∩ r̃ = ∅ by definition, we have 〈U, V 〉 ∈ S, as required.

Case l-parR Similar to the case l-parL, but simpler.

RR n° 9511

44 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

Case create(n, λ) Easy since SL and S have the same network.

Case kill(n, λ) Easy since SL and S have the same network.

Case ⊕n 7→ m Easy since SL and S have the same network.

Case 	n 7→ m Easy since SL and S have the same network.

Case n � m Easy since SL and S have the same network.

Case w̃ = w, z̃: Let 〈ν w., ν z̃.S, ν w., ν z̃.R ∈ S. Then we have by construction 〈ν z̃.S, ν z̃.R ∈
S. By induction hypothesis, if ν z̃.S α−−→ U , then ν z̃.R

α−−→ V for some V with
〈〈U, V 〉 ∈ S. Now using rule l-res or rule l-resO, we obtain either SL

α−−→ ν w.U or
SLν w.

ν w.α−−−−−→ U , which are matched respectively by RL
α−−→ ν w.V or RL

ν w.α−−−−−→ V .
In both cases, we have 〈U, V 〉 ∈ S and 〈ν w.U, ν w.V 〉 ∈ S (S is closed under restriction by
construction), as required.

Proposition 8 (Soudness of weak bisimilarity). Weak bisimilarity is sound with respect to weak
barbed congruence, i.e. ≈ ⊆ ≈̇.

Proof. Weak bisimilarity is weak barb-preserving thanks to Lemma 2. It is weak reduction-closed
thanks to Proposition 6. It is a system congruence thanks to Proposition 7. Thus ≈ ⊆ ≈̇ by
definition of weak barbed congruence as the largest of weak barb-preserving, reduction-closed,
system congruence.

E.2 Completeness
In the remainder of this section, we use the following notation: if S = ν s̃.∆ . N is a closed
system, we write S ‖M for the system . . ν s̃.∆N ‖M provided fn(M) ∩ s̃ = ∅.

Lemma 5 (Inducing Network Changes). • Suppose ∆ ` (n, λ) : alive

– S
kill(n,λ)−−−−−−→ S′ implies S ‖ [kill]nλ −→ S′

– S ‖ [kill]nλ −→ S′, where S′ ≡ ν ũ.∆ . N , ∆ 6` (n, λ) : alive implies S
kill(n,λ)−−−−−−→ S′

• Suppose ∆ ` (n, λ) : alive

– S
create(n,λ)−−−−−−−−→ S′ implies S ‖ [create n.P)]mκ −→ S′ ‖ [P]nλ

– S ‖ [create n.P]mκ −→ S′ ‖ [P]nλ, where S
′ ≡ ν ũ.∆ . N , ∆ ` nλ : alive implies

S
create(n,λ)−−−−−−−−→ S′

• Suppose S = ν ũ∆.N and ∆ ` n↔ m

– S
	nλ 7→m−−−−−−−→ S′, where S′ ≡ ν ũ.∆′ . N implies S ‖ [unlinkm.P]nλ −→ S′ ‖ [P]nλ

– S ‖ [unlink m.P]nλ −→ S′ ‖ [P]n, where S′ ≡ ν ũ.∆′ . N , ∆′ ` n ↔ m implies
S

	nλ 7→m−−−−−−−→ S′

• Suppose S = ν ũ∆.N and ∆ ` n↔ m

– S
⊕nλ 7→m−−−−−−−→ S′, where S′ ≡ ν ũ.∆′ . N implies S ‖ [linkm.P]nλ −→ S′ ‖ [P]nλ

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 45

– S ‖ [link m.P]nλ −→ S′ ‖ [P]nλ, where S′ ≡ ν ũ.∆′ . N , ∆′ ` n ↔ m implies
S

⊕nλ 7→m−−−−−−−→ S′

Proof. The first clause for the action kill(n, λ) is proved by induction on the derivation S =

ν ũ.∆ . N
kill(n,λ)−−−−−−→ ν ũ.∆′ . N = S′. The second clause uses induction on the derivation of

ν ũ.∆ . N ‖ [kill]nλ −→ ν ũ.∆′ . N ′. The proof for the other clauses is similar.

Given a system S ≡ ν ũ.∆ .N and l s.t. l /∈ fn(S)∪ bn(S) we define Sl as ν ũ.∆⊕ (l, 1) .N .

Proposition 9. If S is a closed system and l, x /∈ fn(S) then ν x, l.Sl ‖ [x]lλ ∼ S.

Proof. A direct proof that R = {〈ν x, l.Sl ‖ [x]lλ, S〉 | S ∈ S closed, x, l /∈ fn(S)} is a strong
bisimulation, noting that any transition ν x, l.Sl ‖ [x]lλ

α−−→ T l must have been obtained by
a derivation with Sl α−−→ U l as a premise, with T l = ν x, l.U l, x, n /∈ fn(α), and that for any
such transition we have S α−−→ T .

Proposition 10. If we have Sl ‖ [x]lλ ≈̇Rl ‖ [x]
l
λ with x, l fresh for S,R then S ≈̇R.

Proof. If Sl ‖ [x]lλ ≈̇Rl ‖ [x]
l
λ then by system congruence we also have

ν x, l.Sl ‖ [x]lλ ≈̇ ν x, l.R
l ‖ [x]lλ

and then by Proposition 9, Proposition 8, and transitivity of ≈̇ we have S ≈̇R as required.

Theorem 2 (Completeness of ≈ w.r.t. ≈̇). If S ≈̇R then S ≈ R.

Proof. To prove the statement it suffices to show that ≈̇ ∪ ≈ is a bisimulation up-to ≡. Take
S ≈̇R and suppose that S α−−→ S′; we reason by case analysis on α.

• Case α = τ . Thanks to Proposition 5 and Proposition 6, the thesis follow by the reduction
closure property.

• Case α = x〈ũ〉@nλ. Consider the context

L = [x(ỹ).if ỹ = ũ then create l.(fail | fail.succ)]nλ

with l, succ and fail fresh and the reduction S ‖ L =⇒ T1, where T1 ≡ S′l ‖ [succ]l. Now,
since S ≈̇R, T1↓succ@l and T1 6↓fail@l, we must have a transition R ‖ L =⇒ T2 s.t. T2↓succ@l
and T2 6↓fail@l. We remark here that we have T2↓succ@l, with a strong barb, because the
only way for R ‖ L to make disappear ↓fail@l is to have consumed it on the fresh location
l, thereby showing ↓succ@l.

The only way to obtain this is if R
x〈ũ〉@nλ

=======⇒ R′, hence T2 ≡ R′l ‖ [succ]l. Now, since
(S′l ‖ [succ]l, R′l ‖ [succ]l) ∈ ≈̇, by Proposition 10 we have (S′, R′) ∈ ≈̇ as required.

• Case α = x(ũ)@nλ. Consider the context

L = [x〈ũ〉.create l.(fail | fail.succ)]nλ

with l, fail, succ fresh and the reduction S ‖ L =⇒ T1, where T1 ≡ S′l ‖ [succ]l. Now,
since S ≈̇R, T1↓succ@l and T1 6↓fail@l, we must have a transition R ‖ L =⇒ T2 s.t. T2↓succ@l
and T2 6↓fail@l. The only way to obtain this is if R

x(ũ)@nλ
=======⇒ R′, hence T2 ≡ R′l ‖ [succ]l.

Now, since (S′l ‖ [succ]l, R′l ‖ [succ]l) ∈ ≈̇, by Proposition 10 we have (S′, R′) ∈ ≈̇ as
required.

RR n° 9511

46 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

• Case α = ⊕nλ 7→ m. By Lemma 5 we know that [linkm.P]nλ induces the desired labeled
action. Consider the context

L = [linkm.create l.(fail | fail.succ)]nλ

with l, fail, succ fresh and the reduction S ‖ L =⇒ T1, where T1 ≡ S′l ‖ [succ]l.
Now, since S ≈̇R, T1↓succ@l and T1 6↓fail@l, we must have a transition R ‖ L =⇒ T2 s.t.
T2↓succ@l and T2 6↓fail@l. The only way to obtain this is if R =⇒ R1 ‖ [linkm.create l.(fail |
fail.succ)]nλ −→ R1 ‖ [create l.(fail | fail.succ)]n =⇒ T2, where T2 ≡ R′l ‖ [succ]l.

Then, by Lemma 5 we know that R τ
==⇒ Ri

	nλ 7→m−−−−−−−→ Rj
τ

==⇒ R′.

Now, since (S′l ‖ [succ]l, R′l ‖ [succ]l) ∈ ≈̇, by Proposition 10 we have (S′, R′) ∈ ≈̇ as
required.

• Case α = 	nλ 7→ m. Consider the context

L = [unlinkm.create l.(fail | fail.succ)]nλ

with l, succ and fail fresh. The reasoning is similar to above.

• Case α = kill(n, λ). By Lemma 5 we know that [kill]nλ is the process that induces the
reduction we are looking for. Consider the context

L = [fail]nλ ‖ [kill]
n
λ

with fail fresh and reduction S ‖ L =⇒ T1.

Now, since S ≈̇R and T1 6↓fail@n there is a matching move R ‖ L =⇒ T2 s.t. T2 6↓fail. Since
fail is fresh the only way to have T2 6↓fail@n is to have R ‖ L =⇒ R1 ‖ [fail]nλ ‖ [kill]

n
λ −→

R′1 ‖ [fail]
n
λ =⇒ T2.

By Lemma 5 we know that R τ
==⇒ R1

kill(n,λ)
======⇒ R′1

τ
==⇒ R′.

Now, we know that T1 ≈̇T2, where T1 ≡ S′ ‖ [fail]nλ and T2 ≡ R′ ‖ [fail]nλ. We know
S′ ‖ [fail]nλ ∼ S′ since nλ is not alive in S′ hence S ‖ [fail]nλ ≈̇S and by transitivity of
≈̇ we get S ≈̇R ‖ [fail]nλ. By using a similar reasoning we get (S′, R′) ∈ ≈̇ as required.

• Case α = create(n, λ). Consider the context

L = [create n.(create l.(fail | fail.succ))]�

with l, fail and succ fresh; the reasoning is similar to above.

• Case α = nλ � m. Consider the context

L =

[
ν x.

(
x | x.linkm.(spawnm.(unlink n.create l.(fail | fail.succ1)) |

x.spawnm.(create l.(fail | fail.succ2))

)]n
λ

with l, fail, succ1 and succ2 fresh. Now, since S ≈̇R their public network must agree on
aliveness of localities, links, and views. There are two cases to be considered: when the
link n↔ m is alive is S and when it is not.

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 47

– Case n↔ m.
Consider the transition S ‖ L =⇒ T1 ≡ ν x.Sl ‖ [x.spawnm.createl.fail | fail.succ]nλ ‖
[succ1]

l. Now, since S ≈̇R and T1↓succ1@l and T1 6↓fail@l we have a matching tran-
sition R ‖ L =⇒ T2 s.t. T2↓succ1@l and T 6↓fail@l. Hence we have T2 ≡ ν x.R′l ‖
[x.spawn m.create l.fail | fail.succ]nλ ‖ [succ1]

l (x is fresh in R). This is possible
only if R nλ�m======⇒ R′.
Now, ν x.Sl ‖ [x.spawn m.create l.fail | fail.succ]nλ ‖ [succ1]

l ∼ Sl ‖ [succ1]
l,

because x /∈ fn(S).
By using a similar reasoning for T2 and transitivity of ≈̇ we have (S′l ‖ [succ1]lλ, R′l ‖
[succ1]

l
λ) ∈ ≈̇. Finally by Proposition 10 we have (S′, R′) ∈ ≈̇ as required.

– Case n 6↔ m.
Consider the transition S ‖ L =⇒ T1 ≡ Sl ‖ [x.linkm.(spawnm.(unlinkn.createl.(fail |
fail.succ1))]nλ ‖ [succ2]

l. Now, since S ≈̇R and T1↓succ2@l and T1 6↓fail@l we have
a matching transition R ‖ L =⇒ T2 s.t. T2↓succ2@l and T 6↓fail@l. Hence we have
T2 ≡ R′l ‖ [x.linkm.(spawnm.(unlink n.create l.(fail | fail.succ1))]nλ ‖ [succ2]

l. This
is possible only if R nλ�m======⇒ R′.
Now, ν x.Sl ‖ [succ2]l ‖ [x.linkm.(spawnm.(unlink n.create l.(fail | fail.succ1))]nλ ∼
Sl ‖ [succ2]l, because x /∈ fn(S).

By using a similar reasoning for T2 and transitivity of ≈̇ we have (S′l ‖ [succ2]l, R′l ‖
[succ2]

l
) ∈ ≈̇. Finally by Proposition 10 we have (S′, R′) ∈ ≈̇ as required.

RR n° 9511

48 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

F Bisimulation Of Running Example
In this section we show that a bisimulation relating the example without failure and the example
with recovery.

We recall briefly the two systems.

servD = ν nr, nb, r1, r2, b.∆ . [I]ni ‖ [R]nr ‖ [B]nb

servDFR = ν nr, nb, nc, r1, r2, b, c, retry. ∆′ .
(

[K]ni ‖ [R]nr ‖ [kill]nr ‖ [!B]nb ‖ [C]nc
)

where:

C = ν c.(c |!c.(create nr.(R | spawn ni.retry) | c)
I = req(y, z).spawn nr.r1〈y, z〉
R = (r1(y, z).spawn nb.b〈y, z〉) | (r2(y, z).spawn ni.z〈y〉)
B = b(y, z).spawn nr.r2〈z, wy〉
K = req(y, z).((spawn nr.r1〈y, c〉) | c(w).z〈w〉 | retry.spawn nr.r1〈y, c〉)

Proposition 11. servD ≈ servDFR

Proof. In the following, for simplicity reasons, we will omit in the action label the incarnation
number of the location doing the action.

Consider relation R = {(servD, servDFR)} ∪ S0 ∪ S1 ∪ S2 where

S0 = {(servD, R0) | servDFR τ
==⇒ R0}

S1 = {(S1, R1) | (S0, R0) ∈ S0, S0
req(x,y)@ni

=========⇒ S1 ∧R0
req(x,y)@ni

=========⇒ R1}

S2 = {(S2, R2) | (S1, R1) ∈ S1, S1
z〈w〉@n1

=======⇒ S1 ∧R1
z〈w〉@n1

=======⇒ R2}

Now we analyze the moves of the various pairs to show that indeed R is a bisimulation.

• Pair (servD, servDFR). Now we proceed by case analysis on the possible transitions.

– Case x(y, z)@ni.

∗ Case servD
x(y,z)@ni−−−−−−−−→ T1.

Consider transition

servD
x(y,z)@ni−−−−−−−−→ T1 ≡ ν nr, nb, r1, r2, b.∆.[spawnnr.r1〈y, z〉]ni ‖ [R]nr ‖ [B]nb

The move can then be matched by

servDFR
x(y,z)@ni

========⇒
T2 ≡ ν nr, nb, nc, r1, r2, b, c, retry. ∆′ B(

[(spawn nr.r1〈y, c〉) | c(w).z〈w〉 | retry.spawn nr.r1〈y, c〉]nc
‖ [R]nr ‖ [kill]nr ‖ [!B]nb ‖ [C]nc

)
and (T1, T2) ∈ R.

Inria

A Behavioral Theory For Crash Failures and Erlang-style Recoveries In Distributed Systems 49

∗ Case servDFR
x(y,z)@ni−−−−−−−−→ T1. Similar to above.

– Case τ .

∗ Consider transition

servDFR τ−−→
T1 ≡ ν nb, nr, b, s, retry, nc, c.∆ B
[K]ni ‖ [R]nr ‖ [kill]n2 ‖ [!B]nb ‖
[c |!c.(create nr.(R | spawn ni.retry) | c)]nc

Then, the move can be matched by the other system by doing nothing, indeed
(servD, T1) ∈ R

∗ Consider transition

servDFR τ−−→ T1 ≡ ν nr, nb, a, b, s, retry, nc.∆− (nb, λb) B

[K]ni ‖ [R]nr ‖ [!B]nb ‖ [C]nc

Then, the move can be matched by the other system by doing nothing, indeed
(servD, T1) ∈ R

• Pairs (S1, R1) ∈ S1

Case τ Here, any possible τ transition can be matched by the other system by doing
nothing.

Case z〈w〉@ni Here there is only one possible system S that can perform the step z〈w〉@ni,
that is

ν ũ.∆ . [z〈w〉]n1

Now, there are an unbounded number of different system R1 that can match the move,
according to the state of the recovery. We only show the following example. Consider
system

R1 ≡ ν nr, nb, nc, r1, r2, b, c, retry.∆
′′ B(

[c(w).z〈w〉]ni ‖ [retry.spawn nr.r1〈y, c〉]ni ‖
[retry | R]nr ‖ [kill]nr ‖ [!B]nb ‖ [C]nc

)

In R1 the failure has occurred (we omit dead locations) and the recovery process has

RR n° 9511

50 Giovanni Fabbretti, Ivan Lanese, Jean-Bernard Stefani

started already. By doing the following steps R can match the move.

R1
τ−−→

ν ũ.∆′′ .
[c(w).z〈w〉]ni ‖ [retry.spawn nr.r1〈y, c〉]ni ‖ [retry]nr ‖ [R]nr ‖
[kill]nr ‖ [!B]nb ‖ [C]nc

τ−−→

ν ũ.∆′′ . [c(w).z〈w〉]ni ‖ [spawn nr.r1〈y, c〉]ni ‖ [R]nr ‖ [kill]nr ‖ [!B]nb ‖ [C]nc τ−−→

ν ũ.∆′′ . [c(w).z〈w〉]ni ‖ [ri〈y, c〉]nr ‖ [R]nr ‖ [kill]nr ‖ [!B]nb ‖ [C]nc τ−−→

ν ũ.∆′′ M

(
[c(w).z〈w〉]ni ‖ [r1〈y, c〉]nr ‖ [r1(y, z).spawn nb.b〈y, z〉]nr ‖
[r2(y, z).spawn ni.z〈y〉]nr ‖ [kill]nr ‖ [!B]nb ‖ [C]nc

)
τ−−→

ν ũ.∆′′ B

(
[c(w).z〈w〉]ni ‖ [spawn nb.b〈y, c〉]nr ‖ [r2(y, z).spawn ni.z〈y〉]nr ‖
[kill]nr ‖ [!B]nb ‖ [C]nc

)
τ−−→

ν ũ.∆′′ B

(
[c(w).z〈w〉]ni ‖ [b〈y, c〉]nb ‖ [r2(y, z).spawn ni.z〈y〉]nr ‖
[kill]nr ‖ [!B]nb ‖ [C]nc

)
τ−−→

ν ũ.∆′′ B

(
[c(w).z〈w〉]ni ‖ [b〈y, c〉]nb ‖ [r2(y, z).spawn ni.z〈y〉]nr ‖
[kill]nr ‖ [b(y, z).(!B | spawn nr.r2〈z, wy〉)]nb ‖ [C]nc

)
τ−−→

ν ũ.∆′′ B

(
[c(w).z〈w〉]ni ‖ [r2(y, z).spawn ni.z〈y〉]nr ‖ [kill]nr ‖
[!B | spawn nr.r2〈c, wy〉)]nb ‖ [C]nc

)
τ−−→

ν ũ.∆′′ B

(
[c(w).z〈w〉]ni ‖ [r2(y, z).spawn ni.z〈y〉]nr ‖ [kill]nr ‖
[!B]nb ‖ [spawn nr.r2〈c, wy〉]nb ‖ [C]nc

)
τ−−→

ν ũ.∆′′ B

(
[c(w).z〈w〉]ni ‖ [r2(y, z).spawn ni.z〈y〉]nr ‖ [kill]nr ‖
[!B]nb ‖ [r2〈c, wy〉]nr ‖ [C]nc

)
τ−−→

ν ũ.∆′′ B ([c(w).z〈w〉]ni ‖ [spawn ni.c〈wy〉]nr ‖ [kill]nr ‖ [!B]nb ‖ [C]nc) τ−−→

ν ũ.∆′′ B ([c(w).z〈w〉]ni ‖ [c〈wy〉]ni ‖ [kill]nr ‖ [!B]nb ‖ [C]nc) τ−−→

ν ũ.∆′′ B ([z〈wy〉]ni ‖ [kill]nr ‖ [!B]nb ‖ [C]nc)
z〈wy〉@ni−−−−−−−−→

T2 ≡ ν ũ.∆′′ B ([kill]nr ‖ [!B]nb ‖ [C]nc)

with (T1, T2) ∈ R

• Pairs S2 ×R2

Case τ Here there exist infinite R2 that can perform a τ (the controller still attempting
to recreate the location), anyway all the moves can matched by S2 by doing nothing.

Inria

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Crash and Recovery: Motivating Example
	The Calculus
	Names and notations
	Syntax
	Reduction Semantics
	Discussion

	Behavioral Theory
	Weak Barbed Congruence
	A Labeled Transition Semantics
	Full Abstraction

	Examples
	Deriving Erlang's Like Constructs
	Behavioral Theory In Action

	Related work and conclusion
	Notations and rules
	Notations
	Calculus syntax and alpha-conversion on systems
	Reduction semantics
	LTS semantics

	Erlang
	Experiments on Erlang's Semantics
	Running Example in Erlang

	Modifying networks
	Barb alternative
	Full Abstraction
	Soundness
	Completeness

	Bisimulation Of Running Example

