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Abstract

Hibridon is a program package to solve the close-coupled equations which occur in the time independent quantum treatment of
inelastic atomic and molecular collisions. Gas-phase scattering, photodissociation, collisions of atoms and/or molecules with flat
surfaces, and bound states of weakly-bound complexes can be treated. From calculation of the S matrix, integral and differential
cross sections, stereodynamic (alignment and steric asymmetry) cross sections, as well as more specialized quantities, such as
transport and tensor cross sections and cross sections between hyperfine levels, and photodissociation amplitudes can be obtained.
The program is capable of treating closed-shell systems where the nuclear motion takes place on a single Born-Oppenheimer
potential as well as open-shell systems for which the nuclear motion can evolve on several coupled electronic (Born-Oppenheimer)
potentials.
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the other. The Schrödinger equation for the nuclear motion is solved by determining the expansion coefficients as a function of the
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1. Introduction

Molecular collisions are an important mechanism by which energy is exchanged between the translational and
internal molecular degrees of freedom. This process governs the equilibration of a gaseous system toward thermody-
namic equilibrium. In the low-pressure interstellar medium, collisions in combination with radiative processes govern
the distribution of rotational populations of astrophysical molecules [1, 2].

Within the Born-Oppenheimer approximation for the separation of electronic and nuclear motion, the interaction
between atomic and molecular species is governed by one (or more) electronic potential energy surfaces (PES). These
PES(s) are independent of the masses and spins of the nuclei. Treatment of molecular collisions, photodissociation,
and/or the bound states of molecular complexes involves solution of the quantum mechanical Schrödinger equation
for the nuclear motion on this PES(s). The most rigorous approach is the time-independent close-coupling (CC)
formalism, developed originally by Arthurs and Dalgarno [3] for inelastic atom-molecule scattering.

From a knowledge of the PES for a given system, the Hibridon package provides the means to solve these close-
coupled equations to obtain dynamical quantities of interest. Section 2 provides a brief description of the underlying
scattering theory and the subsequent calculation of cross sections. Sections 3 and 4 describe the treatment of bound
states and photodissociation, respectively. Section 5 discusses in more detail the types of collision systems that can
be handled by Hibridon. Sections 6–9 provide information on the installation and use of Hibridon.

The name Hibridon arises from the use of the hybrid integration scheme described in more detail below. The
original program package was first referenced in 1987 [4]. Over the years, many enhancements have been added,
including the addition of a number of basis routines. In addition to the determination of integral and differential cross
sections, the code treats photodissociation and allows the calculation of tensor, transport, and pressure broadening
cross sections. Cross sections calculated by Hibridon have been successfully compared with those obtained using the
widely employed Molscat program [5]. This includes calculations on the CO–He and CO–H2 systems for which the
cross sections calculations by the two program suites differ by ∼ 1%. A recent check in Google Scholar revealed that
since its introduction Hibridon has been referenced in over 350 scientific publications and in 10 review articles.

The Hibridon package has been utilized in the past successfully to guide and interpret experimental results. For
example, in the case of the open-shell molecule of 2Π character, Nizamov et al. [6] studied experimentally and
theoretically using Hibridon collisions of CN(A2Π) radical with He. Later, de Lange et al [7] used Hibridon to
compute Λ-doublet propensities and steric asymmetry cross sections that compared well to the experiment.

2. Scattering Theory

In the close-coupled treatment the overall scattering wavefunction is expanded as a direct product of (ideally) a
complete set of wavefunctions describing the internal states of one (or both) collision partners and angular functions
describing the rotation of the collision partners about each other. These angular functions are vector coupled to give
eigenfunctions of the total angular momentum J. The orthogonal set of these product states can be designated as a
column vector φ(R̂, r), where r denotes the internal coordinates and R̂ = (θ, φ) describes the orientation of R, the
separation of the centers of mass of the collision partners.

Following Arthurs and Dalgarno [3], we express the internal coordinates of the complex in the space frame. The
full scattering wavefunction can be written as

Φ(R, r) = R−1
∑

F(R)φ(R̂, r). (1)

Each column of the F(R) matrix defines the expansion coefficients for collisions in which the collision partners start
out in the particular initial state whose index is that of the selected column.

Substitution of Eq. 1 into the Schrödinger equation, premultiplication by one of the internal states, and integration
over r gives rise to a set of coupled ordinary differential equations for the expansion coefficients F(R). These coupled
second-order ordinary differential equations in R (the so-called ”closed-coupled” equations) can be written succinctly
as the matrix equation

[I
d2

dR2
+W(R) F(R)] = 0. (2)

2
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Here I denotes the identity matrix and the matrix W(R) is given by

W(R) = k2 − l2 −
2µ
~2

V(R), (3)

where ~ is Planck’s constant divided by 2π, µ is the reduced mass of the collision system, and k and l are the (diagonal)
matrices of the wavevector and the relative orbital momentum of the collision partners. Here, also V(R) is the total
quasi-diabatic potential matrix, which for the case of closed-shell system described by a single Born-Oppenheimer
potential operator is equivalent to the adiabatic potential. The diagonal matrix elements of k2 and l2 matrices are

(k)2
ii =

2m

~2
(E − εi), (4)

where E is the total energy, εi is the internal energy of the ith channel and

(l)ii
2 =

~
2

2mR2
li(li + 1). (5)

Here, li is the relative orbital angular momentum of the ith channel. Note that we assume that the potential matrix
vanishes as the particles separate, namely

lim
R→∞

V(R) = 0. (6)

Because of the importance of inelastic collisons in a wide variety of physical phenomena, a number of techniques
have been developed to solve the close-coupled equations (Eq. 2) [8]. The Hibridon package incorporates a hybrid
integration scheme [9]. At short range (small R) a solution-following method [10] is used, based on the log-derivative
algorithm of Johnson [11], as modified by Manolopoulos [12]. In the Hibridon package, this propagator is designated
LOGD. At long range, a potential-following method [10] is used, based on the linear-reference potential algorithm
of Gordon [13, 14], as modified by Alexander and Manolopoulos [9, 15]. This propagator is designated AIRY. The
Hibridon code combines these two propagators (LOGD and AIRY), which are both numerically stable ond computa-
tionally fast. The numerical stability is achieved by propagation of the logarithmic derivative of the solution matrix
F(R), namely

Y(R) = F′(R) F(R)−1, (7)

rather than the solution matrix F(R) itself. The speed arises from the ability of the AIRY propagator to take increas-
ingly larger steps at long range. A demonstration of this is the study of long-range charge-dipole scattering, where the
potential varies at long range as R−2 [15].

Initially, at a value of R (R = Rstart) which lies well within the innermost classical turning point, we assume that in
a locally adiabatic basis, defined by diagonalization of the matrix W(R = Rstart) of Eq. 3, the matrix of solutions F(R)
is an increasing exponential in all channels. Note that the eigenvectors of W(Rstart) are all negative. As a consequence,
in this locally adiabatic basis the log-derivative matrix is a diagonal matrix with elements equal to the square roots
of the negative of these eigenvectors. The initial log-derivative matrix Y(Rstart) is obtained by a back orthogonal
transformation to the asymptotic basis.

The log-derivative matrix is propagated from Rstart out to a value of R (R = Rend) which is so large that the
potential V(Rend) is negligible compared to the wavevectors k2. At that point, all the scattering information can be
obtained by matching the numerically propagated Y(Rend) to an asymptotic form imposed by the scattering boundary
conditions. This latter can be obtained from the asymptotic form of the solution matrix F(Rend) and its derivative,
which correspond to the imposition of the usual scattering boundary conditions. For F(R) we have

lim
R→∞

F(R) = ĥ
(2)

(R) − S ĥ
(1)

(R). (8)

Here, we have introduced the scattering matrix S. It is convenient to define also the transition matrix T = I – S.
In Eq. 8 ĥ

(1)
and ĥ

(2)
are diagonal matrices with elements

ĥ
(1,2)
ii

(R) = k
−1/2
i

h
(1,2)
li

(kiR), (9)
3
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and hli
(1,2) are complex spherical Hankel functions [16]

h
(1,2)
li

(x) = jl(x) ± iyl(x). (10)

In Eq. 10, the plus and minus signs correspond to the Hankel functions of the first and second kind, respectively. The
functions jl(x) and yl(x) are spherical Bessel functions and are defined in terms of Bessel functions of half-integral
order as follows [16]

jn(x) = (π/2x)1/2Jn+ 1
2
(x), (11)

kn(x) = (π/2x)1/2Yn+ 1
2
(x). (12)

The spherical Hankel functions with a superscript carat [Eq. 8] are denoted Ricatti-Hankel functions.[16] To obtain
the asymptotic expression for Y(R) we also need the asymptotic expression for the first derivative of F(R). This can
be easily obtained from Eqs. 8–10. From the S and T matrices, cross sections can be computed, as will be described
below.

2.1. Integral Cross Sections

The integral cross section (which can be calculated with the command INTCRS) for transition from initial level i to
final level f , with rotational angular momenta j and j′, respectively, in the collision of a molecule with a structureless
target is given by

σi→ f =
π

[ j] ki
2

∑

Jpll′

(2J + 1) |T J,p

il, f l′
| 2, (13)

where [x] = 2x + 1, ki is the wavevector of the initial level, p is the parity, which equals ±1, and l and l′ are the initial
and final orbital angular momenta, respectively. The sums run over all values of the total angular momentum J for
which the S -matrix elements differ from a magnitude of unity. The last term in Eq. 13 is an element of the T matrix.
The total angular momentum J and parity p are conserved in the collision. As a consequence the individual terms in
the sum in Eq. 13 can be calculated separately for each (J, p) partial wave.

In the case of a collision between two particles both with internal structure, the cross section for a state-to-state
transition j1 j2 → j′1 j′2 is given by

σi→ f =
π

[ j1][ j2] k2
i

∑

Jp j12l j′12l′

(2J + 1) |T J,p

i j12l, f j′12l′
| 2, (14)

where the intermediate angular momenta j12 and j′12 equal the vector sums j1 + j2 and j′1 + j′2, respectively.
Note that with flag CSFLAG set .TRUE. one can use the centrifugal decoupling (or coupled-states, CS) scheme [17,

18] to simplify (but at a potential loss in accuracy) calculations of integral cross sections.

2.2. Differential Cross Sections

Differential cross sections [19], and/or stereodynamic quantities (diagonal and off-diagonal alignment moments, [20,
21] steric asymmetry cross sections [22] and m-dependent cross sections) can be calculated with the Hibridon pack-
age. Collisions with both structureless targets and targets with internal structure can be treated. Differential cross
sections are obtained from the scattering amplitudes f that can be computed from the S matrix (or from the T matrix).
The stereodynamics quantities that can be computed are diagonal quadrupole and hexadecapole alignment moments
denoted A

(2)
0 and A

(4)
0 , respectively, defined as in Greene et al. [20]. The off-diagonal alignment moment A

(2+)
2 is also

computed following Zare et al. [23] and Kay et al. [24] as:

A
(2)+
2 ( j) = 2−1/2

[

A
(2)
2 ( j) +A(2)

−2( j)
]

, (15)

where

A(k)
q ( j) =

(−1)q c(k)

〈 jm| J2 | jm〉k/2
( j ‖ J(k) ‖ j)

[k]
ρ

(k)
−q( j). (16)

The spherical tensor components of the density matrix are defined as
4
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ρ(k)
q (J) =

∑

mm′

(−1) j−m′ [k]
(

j k j′

−m −q m′

)

ρm′m. (17)

In a collision experiment, the transition out of initial rotational level j into final rotational level j′ at scattering angle θ
is fully described by the m-resolved complex scattering amplitudes f jm→ j′m′ (θ). (We will suppress the scattering angle
unless explicitly needed). In terms of these, the {m,m′}th element of the density matrix for final rotational level J at
scattering angle θ is

ρm′m =
∑

m′′

f ∗j′′m′′→ jm′ f j′′m′′→ jm

/

∑

m′′,m′

∣

∣

∣ f j′′m′′→ jm′

∣

∣

∣

2
. (18)

The denominator is chosen so that Tr (ρm′m) =
∑

m ρmm = 1.
The differential cross section command (DIFCRS) control the calculation of the above quantities with the additional

capability of printing m-dependent cross sections and steric (oriented) asymmetry cross sections [22].

2.3. Hyperfine cross sections

Since nuclear hyperfine splittings are usually much smaller than rotational energy spacings, it is sufficient to
compute cross sections between nuclear hyperfine levels using the recoupling method [25, 26]. Here, the T matrix is
obtained from the nuclear-spin-free T matrix. Hyperfine cross sections can be computed for both atom-molecule [25]
and molecule-molecule [26] collisions. Hyperfine cross sections can also be calculated when both collision partners
have nonzero nuclear spins, provided that one of the collision partners has no internal structure (e.g. an atom-molecule
collision).

The hyperfine cross section command (HYPXSC) controls the calculation of cross sections for transitions between
hyperfine levels.

2.4. Tensor cross sections

The tensor cross section of order K for a transition from state i to state f in collisions with a structureless target
and for an isotropic velocity distribution is given by [27, 28, 29, 30]

σK
i→ f =

π

k2
i

∑

JJ′ll′

[J] [J′] (−1)l+l′− j− j′+2J

{

j j K

J J′ l

}{

j′ j′ K

J J′ l′

}

T J
i jl, f j′l′

(

T J′

i jl, f j′l′

)∗
.

Here, {:::} is a 6 j symbol.[31] Several choices of the quantization axis are possible in Hibridon. Subsequently, m,m′

resolved cross sections can be computed from the tensor cross sections.
The tensor cross section command (TENXSC) controls the calculation of tensor cross sections.

2.5. Pressure broadening cross sections

The cross section for pressure broadening of an isolated line, from an initial level i with total angular momentum j

to a final level f with angular momentum j′, induced by collisions with a structureless target can be written as [32, 33]

σK
i→ f =

π

k2
i

∑

JJ′ll′

[J] [J′](−1)l−l′
{

j K j′

J′ l J

}{

j K j′

J′ l′ J

}

(

δll′ − S J′∗
f l′,il(Etot) S J

f l′,il(E
′
tot)

)

. (19)

In Eq. 19, K is the tensor order (K=1 for dipole transitions and K=0 or 2 for Raman transitions). The first and second
set of S -matrix elements in Eq. 19 are computed for the initial and final levels, respectively, in close-coupling scatter-
ing calculations at total energies Etot and E′tot corresponding to the same collision energy. The real and imaginary parts
of the pressure broadening cross section in Eq. 19 contribute to the broadening and shifting of the line, respectively.

The command PRSBR controls calculation of pressure broadening cross sections. Note that for pressure-broadening
cross sections the user should use the log-derivative propagator LOGD to solve the close-coupled equations over the
full range of R.

5
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2.6. Transport cross sections

Transport properties can be calculated through the use of collision integrals, which are defined as a Boltzmann
average over state-dependent collision integrals [34, 35]

Ω(n,s)(T ) =
1
qR

∑

j

(2 j + 1) exp (−εi/kBT ) Ω(n,s)
j

(T ). (20)

Here, again, εi is the energy of the ith rotational level, qR is the rotational partition function, and kB is the Boltzmann
constant. The state-dependent collision integrals are defined by [34, 36]

Ω
(n,s)
j

(T ) =
1
2

(

kBT

2πµ

)1/2 1
kBT s+2

∫ ∞

0
E s+1 exp (−E/kBT ) Q

(n)
j

(E) dE. (21)

The state-dependent effective cross section Q
(n)
ji

(E) is a sum over final levels j f of state-to-state effective cross
sections [36]

Q
(n)
j

(E) =
∑

j′

Q
(n)
j→ j′

(E), (22)

where the later quantities are weighted angle averages of the j→ j′ differential cross sections:

Q
(n)
j→ j′

(E) =
∫ (

dσ

dΩ

)

j→ j′

Φn(E) dR̂. (23)

The weighting factors in Eq. 23 have been given previously [34]. The cross sections can be expressed as a weighted
sum of several low-order Legendre moments [37] of the differential cross section. Determination of the effective cross
sections Q

(1)
ji→ j f

(E) are controlled by the command TRNPRT in Hibridon.

3. Determination of Bound States

In an entirely equivalent manner to the description of molecular collisions, one can use a close-coupled (CC) or
coupled-stated (CS) expansion to determine wavefunctions of bound states of weakly bound complexes. For more
detail we refer the reader to an excellent review by Hutson [38]. As described above in Sec. 2, the wavefunction
of the complex is similarly expanded in a complete set of internal states of the system, usually constructed as direct
products of the internal states of one (or both) fragments, multiplied by angular functions which describe the rotation
of one collision partner about the other. As in the earlier description of scattering we designate these internal states as
φ(r), where r designates the internal coordinates. Each internal state is called a channel. The full wavefunction of the
complex is written as expressed in Eq. 1. The n-th column of the F(R) matrix defines the expansion coefficients for
the nth bound state.

Diagonalization of the W(R) matrix shown in Eq. 3 yields the diagonal matrix of adiabatic wavevectors k(R). The
eigenvectors define the locally adiabatic states, which are transformations of the internal states used to expand the
scattering wavefunction, Φ(R, r). If C(R) designates the matrix of eigenvectors, column ordered, then the diagonal
matrix of adiabatic energies, sometimes referred to as the ”adiabatic bender” energies, is defined as [39]

e(R) = C(R)T V(R)C(R). (24)

3.1. Bound State Energies and Wavefunctions

The Hibridon package uses a variational method based on the distributed Gaussian basis approach of Hamilton
and Light [40] to determine energies and wavefunctions of bound states. Each element of the solution matrix, Fi j(R),
is expanded in terms of a set of functions in the separation coordinate R

Fi j(R) =
M
∑

m=1

C
( j)
mi
χm(R). (25)

6
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As in any standard linear variational technique, the energy and eigenfunction of the nth bound state is obtained by
diagonalization of the matrix of the full Hamiltonian H(R) = T(R) +W(R), where T(R) is a radial kinetic energy
operator, in the χ(R) basis. The dimensions of this Hamiltonian matrix are M × Nch, where M is the dimensionality of
the χ(R) basis and Nch is the number of internal states (channels). In the Hibridon package, the uniformly distributed
Gaussian basis suggested by Hamilton and Light [40] is used, in which

χm(R) = e−α(R−Rm)2
, (26)

where Rm is the midpoint of the the mth Gaussian function. The Hibridon code will calculate bound-state energies if
the flag BOUNDC is set .TRUE.

This set of χ(R) functions is defined by several input parameters, as follows:
1. R1: smallest value of Rm

2. R2: largest value of Rm

3. SPAC: spacing between successive values of Rm

4. C: parameter which determines the exponential scale factor of the distributed Gaussian functions, with α= (C/SPAC)2.
5. EIGMIN: lower limit on the minimum allowed eigenvalue of the overlap matrix. If the minimum eigenvalue is

less than this value, the parameter C should be increased.
6. DELR, HSIMP: The matrix elements of W(R) are evaluated by a Simpson’s rule integration extending from

R1-DELR to R2+DELR in steps of HSIMP.

4. Photodissociation

The Hibridon code can also treat photodissociation, in a time-independent manner. The homogeneous set of
close-coupling scattering equations [Eq. 2] are replaced by a similar set of inhomogeneous equations [41, 42, 43]:

[I
d2

dR2
+W(R)F(R)] = χ(R), (27)

which are solved subject to the boundary conditions

lim
R→0

F(R) = 0, (28)

and
lim

R→∞
F(R) = O(R) τ. (29)

Here O(R) is a diagonal matrix of flux normalized outgoing wave components in each fragment channel, the elements
of which are related to the outgoing Ricatti-Hankel functions defined in Eq. 10, by [42]

Oii(R) = (~ki/m) ĥ
(1)
li

(R). (30)

The ith row of the column vector τ gives the amplitude for dissociative excitation into internal state i of the fragments.
In the case of photodissocation Eq. 29 is the analogue of Eq. 8.

Finally, in Eq. 27 the ith element of the column vector χ(R) is proportional to the vibrational wavefunction of the
electronic ground state multiplied by the bound-dissociative transition dipole moment projected onto the same channel
basis (indexed here by i) used to expand the photofragment wavefunction. In the case of photodissociation, the user
must provide a separate subroutine GROUND which, at each value of R returns the elements of the χ column vector.

The Hibridon flag PHOTOF should be set .FALSE. if the standard inelastic scattering boundary conditions of Eq. 8
are assumed, but set.TRUE. if the photodissociation boundary conditions of Eq. 29 are assumed.

5. Systems Handled

The subsections below list the collision systems handled by Hibridon. Note that the code can treat collisions
between collision partners with many different spatial, electronic and spin symmetries. The Hamiltonian for each
system is defined by the spectroscopic parameters employed. This is explained in more detail in the Github Hibridon
repository in the help section related to the basis subroutines. [44].

∗These bases are covered and validated by automatic testing (see Section 7)

7



/ Computer Physics Communications 00 (2023) 1–19 8

5.1. Basis 1: (ba1sg)∗

This subroutine treats the collision of a linear molecule in a 1Σ electronic state with a structureless atom/ion in a
1S electronic state [45].

5.2. Basis 2: (ba2sg)∗

This subroutine treats the collision of an open-shell linear molecule in a 2Σ electronic state with a structureless
atom/ion in a 1S electronic state [46].

5.3. Basis 3: (ba2pi)∗

This subroutine treats the collision of an open-shell linear molecule in a 2Π electronic state with a structureless
atom/ion in a 1S electronic state [47, 48, 49].

5.4. Basis 4: (basgpi)

This subroutine treats the collisional mixing of a 2Π state, in an intermediate coupling basis, and a 2Σ electronic
state of a linear molecule induced by a structureless atom/ion in a 1S electronic state [50, 51].

5.5. Basis 5: (bapi)

This subroutine treats the collision of an open-shell linear molecule in a 1Π electronic state in a Hund’s case (a)
basis or a 2,3Π state in an intermediate coupling basis with a structureless atom/ion in a 1S electronic state. Stark
mixing of the Λ-doublet levels by an external electric field can also be included [47, 48, 49, 52].

5.6. Basis 6: (bastp)∗

This subroutine treats the collision of a closed-shell symmetric top molecule possessing inversion doubling (e.g.
NH3) with a structureless atom/ion in a 1S electronic state [53, 54].

5.7. Basis 7: (ba13p)∗

This subroutine treats the collision of an atom in a 1P and/or a 3P electronic state with a structureless atom/ion in
a 1S electronic state [55, 56, 57].

5.8. Basis 8: (ba2mol)

This subroutine treats the collision between two closed-shell identical heteronuclear diatomic molecules in 1Σ

electronic states [58, 59, 60]. This legacy subroutine was designed for HF–HF collisions and is not currently working.

5.9. Basis 9: (bastpln)
∗ This subroutine treats the collision of a rigid closed-shell symmetric top molecule, whose rotational levels show

inversion doubling, with a closed-shell diatomic molecule in a 1Σ electronic state [61].

5.10. Basis 10: (ba22p)

This subroutine treats the collision of an atom in a 2P electronic state with an atom in a 2S electronic state [62].

5.11. Basis 11: (ba1del)

This subroutine treats the collision a linear molecule in a 1∆ electronic state with a structureless atom/ion in a 1S

electronic state [63].

5.12. Basis 12: (bah2p)∗

This subroutine treats the collision of an open-shell atom in a 2P electronic state with a homonuclear diatomic
molecule in a 1Σ+g electronic state [64].
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5.13. Basis 13: (bah3p)∗

This subroutine treats the collision of an open-shell atom in a 3P electronic state with a homonuclear diatomic
molecule in a 1Σ+g electronic state [65].

5.14. Basis 14: (ba2del)

This subroutine treats the collision a linear molecule in a 2∆ electronic state with a structureless atom/ion in a 1S

electronic state [66].

5.15. Basis 15: (badiat2p)

This subroutine treats the collision of an open-shell atom in a 2P electronic state with a heteronuclear diatomic
molecule in a 1Σ+ electronic state. This subroutine has not been tested in scattering calculations.

5.16. Basis 16: (baastp)∗

This subroutine treats the collision of a closed-shell asymmetric top molecule with a structureless atom/ion in a
1S electronic state [67].

5.17. Basis 17: (bach2x)∗

This subroutine treats the collision of a CH2(X̃3B1) in the (0,v2,0) bender vibrational level with a structureless
atom/ion in a 1S electronic state [68, 69]. The CH2(X̃3B1) molecule has a low barrier to linearity, and its rotational
energies are not at all well described by the standard rotational energy formulas. Hence, the rovibrational energies
were taken from Morse oscillator-rotating bender internal dynamics (MORBID) calculations by Jensen, Bunker, and
so-workers [70, 71].

5.18. Basis 18: (bastp1)∗

This subroutine treats the collision of a closed-shell symmetric top molecule with no inversion doubling and
a spherically symmetric atom/ion in a 1S electronic state [53, 72]. This version has the capability of setting up
calculations for all 3 nuclear spin modifications of CD3.

5.19. Basis 19: (basgpi1)

This subroutine treats the collisional mixing of 2Π and 2Σ electronic states of a linear molecule induced by a
structureless atom/ion in a 1S electronic state [50, 51]. It is assumed that there is no isolated-molecule mixing of the
Σ and Π states.

5.20. Basis 20: (ba2pi1sg)∗

This subroutine treats the collision of an open-shell linear molecule in a 2Π electronic state with a diatomic
molecule in a 1Σ electronic state [73].

5.21. Basis 21: (bastp1sg)∗

This subroutine treats the collision between a closed-shell symmetric top molecule and a diatomic molecule in a
1Σ electronic state [61, 74]. A coupled representation of the PES is employed. Unlike basis 9, the symmetric top is
assumed here to have no inversion doubling.

5.22. Basis 22: (ba1d3p)

This subroutine treats the collision of an atom in a 1D and/or 3P electronic state with a structureless atom/ion in a
1S electronic state [75]. Both electrostatic and spin-orbit coupling of the atomic states is considered.

5.23. Basis 23: (ba3p2s)

This subroutine treats the collision of an atom in a 3P electronic state with another atom in a 2S electronic
state [76]. Both electrostatic and spin-orbit interactions are included.

9
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5.24. Basis 24: (basphtp)∗

This subroutine treats the collision of a closed-shell spherical top molecule with a structureless atom/ion in a 1S

electronic state [77].

5.25. Basis 25: (ba1sg1sg)∗

This subroutine treats the collision of a closed-shell diatomic molecule in 1Σ electronic state with a different
closed-shell diatomic molecule in a 1Σ electronic state [58]. The second molecule can be homonuclear.

5.26. Basis 26: (ba2sg1sg)∗

This subroutine treats the collision of a diatomic molecule in 2Σ electronic state with a closed-shell diatomic
molecule in a 1Σ electronic state [78]. The second molecule can be homonuclear.

5.27. Basis 27: (baastp1)

This subroutine treats the collision of a closed-shell asymmetric top molecule possessing C2v symmetry and having
the quantization axis along the C2 axis with a structureless atom/ion in a 1S electronic state. The body-frame z-axis
of the system is taken to lie along the C2 symmetry axis of the molecule, following Green’s convention [79, 80].

5.28. Basis 28: (ba3sg1sg)∗

This subroutine treats the collision of a diatomic molecule in 3Σ− electronic state with a closed-shell diatomic
molecule in a 1Σ electronic state [81]. The second molecule can be homonuclear.

5.29. Basis 29: (baastp2)

This subroutine treats the collision of a chiral asymmetric top molecule, i.e. a molecule having no symmetry
elements, with a structureless atom/ion in a 1S electronic state [82].

5.30. Basis 30: (baastp3)

This subroutine treats the collision of an asymmetric top molecule possessing either C2v or Cs symmetry with a
linear molecule in a 1Σ electronic state. For a molecule with the C2v symmetry, the body-frame z-axis lies along the
C2 symmetry axis of the molecule, following Green’s convention [79, 80]. For a molecule with only Cs symmetry, the
molecule-frame z-axis lies along the inertial A-axis of the asymmetric top [83].

5.31. Basis 99 and higher (user-defined basis) (bausr)∗

Basis 99 treats the collision of a molecule with a structureless particle, while basis 100 treats the collision of
a molecule with a particle having internal structure. The user must provide the angular coupling potential and a
calculation of the energy levels.

6. Main Parameters

6.1. Integral cross sections: INTCRS command

The command INTCRS allows you to determine (and print out) integral cross sections (in units of Å2) from a
previously calculated set of S matrices which have been written to file {jobname}n.smt. The command line syntax is

INTCRS,{jobname},ienerg

where

• {jobname}: the jobname under which the S matrices have been stored as {jobname}n.smt. Here n denotes
the value of the parameter ienerg (see below). S -matrix (.smt) files can be generated by setting the flag
WRSMAT = .TRUE.. The default value of {jobname} is the value of the jobname you have set with the command
JOB = {jobname}
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Note that for full close-coupling determinations of integral cross sections the previous calculations of the S matrices
must have been done for both values of the parity index JLPAR (this is ensured by setting JLPAR = 0; see the JLPAR
frame for more information)

If no value has been set, the default value of {jobname} is JOB

• ienerg: The cardinal value of the energy for which the integral cross sections are to be computed. i.e. if
ienerg = 2, then the second energy S matrix file {jobname}2.smt is used. The default value of ienerg is 1

The calculated integral cross sections are printed out in file {jobname}{ienerg}.xsc

6.2. Differential cross sections: DIFCRS command

The command DIFCRS allows you to compute from previously determined S -matrix elements (moments are di-
mensionless; cross sections are in Å2/sr):

1. differential cross sections
2. diagonal quadrupole and octupole alignment moments
3. off-diagonal alignment moments
4. m-dependent cross sections
5. steric (oriented) cross sections

DIFCRS,{jobname},j1,in1,j2,in2,ang1,ang2,dang,ienerg,jtotend,ipr,mflag,stflag,alpha,beta

where {jobname} designates the jobname under which the S matrices have been stored {jobname}n.smt. Here n
denotes the value of the parameter ienerg (see below). These S matrices must have been previously generated using

• JLPAR = 0 (this generates S matrices for both parities)

• JTOT1 = 1 (ensuring the determination of S matrices at every partial wave)

• WRSMAT = .TRUE. (ensuring that the S matrices are written to the file jobname.smt).

The default value of {jobname} is the value you have set with the command JOB, or, if no value has been set,
{jobname} = JOB

• j1,in1: rotational quantum number and additional index for the initial state

• j2,in2: rotational quantum number and additional index for the final state

• ang1,ang2: initial and final angle (in degrees)

• dang: step size (in degrees) in scanning through angles.

• ienerg: the cardinal value of the energy for which the differential cross section is computed. i.e. if ienerg =

2, then the second energy S matrices {jobname}2.smt are used

• jtotend: the maximum value of Jtot included in determining the scattering amplitude. The value of jtotend
can not be larger than the variable JTOT2 used in the initial calculation

• ipr: If ipr = 0 (default) the degeneracy-averaged differential cross sections and product rotational alignment
and hexadecapole moments are NOT printed to the normal output file but only to the file {jobnam}n.dcs. If
ipr , 0, the differential cross sections and the alignment (A(2)

0 ) and hexadxecapole moments (A(4)
0 ) of the

products are also printed to the normal output file and to stdout.

• mflag: If mflag = 0 (default) only the degeneracy-averaged differential cross section and the alignment (A(2)
0 )

and hexadecapole moments (A(4)
0 ) of the products are calculated. If mflag , 0, then

1. All m → m′ differential cross sections are calculated and printed. Quantization is in the collision frame,
where the initial relative velocity vector defines the z axis.

11
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2. The integral m→ m′ cross sections are determined, by integration from ang1 to ang2 in steps of dang.
3. The diagonal (ρm,m) and the real part of the 2nd supra-diagonal (ρm,m+2) elements of the rotational density

matrix of the scattered products are output into file {jobnam}n.rho. These quantities are defined here in
terms of the scattering amplitudes.

• stflag: stflag = 0 is the default. If stflag , 0, then ”heads” and ”tails” steric cross sections are calcu-
lated (see [21]). This is only allowed if flaghf = .TRUE. and ibasty = 3 (doublet pi). If stflag , 0,
then the following two parameters must be defined:

• alpha,beta: parameters which define the mixture of e and f λ-doublet states in the ”heads” or ”tails” orienta-
tion.

NB: the ”heads” state for m-initial negative is defined as:

|heads〉 = α | jme〉 − β | jm f 〉 (31)

and for m-initial positive as
|heads〉 = α | jme〉 + β | jm f 〉 . (32)

6.3. Hyperfine-resolved integral cross sections: HYPXSC command

The command HYPXSC allows you to calculate hyperfine-resolved integral cross These integral cross sections are
printed in the terminal output and outputted to the file jobnamen.hfx, where n is the cardinal value of the energy (see
below). The hyperfine-resolved cross sections are tabulated in columns as

E ji Ii Fi jf If Ff σ, (33)

where I designates the nuclear spin.
The command line syntax is

HYPXSC,{jobname},ienerg,nucspin,j1min,j2max

where {jobname}: the jobname under which the S matrices have been stored as jobnamen.smt. Here n denotes
the value of the parameter ienerg (see below). The S -matrix files can be generated by setting the flag WRSMAT =

.TRUE. The default value of {jobname} is set by the instruction JOB ={jobname} Note that for full close-coupling
calculations it is necessary to carry out calculations for both values of the parity (this is ensured by setting JLPAR =

0; see the instructions for the JLPAR command for more information)
If no value of {jobnam} has been set, the default value of {jobname} is Job

• ienerg: The cardinal value of the energy for which the integral cross sections are to be computed. i. e. if
ienerg = 2, then the second energy S matrix file jobname2.smt or second energy integral cross section file
jobname2.ics are used. The default value of ienerg is 1

• nucspin: The value denoting the total nuclear spin I of the diatomic, NUCSPIN=2*I (0 for I = 0, 1 for I = 1
2 ,

2 for I = 1, etc).

• j1min: Minimum value of the rotational angular momentum for which hyperfine cross sections will be calcu-
lated.

• j2max: Maximum value of the rotational angular momentum for which hyperfine cross sections will be calcu-
lated.

12
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6.4. Tensor cross sections: TENXSC command

The command TENXSC allows you to calculate the tensor cross sections defined by Eqs. (30) and (31) of Follmeg
et al. [29]. The command line is

TENXSC,job,ienerg,iframe,lammax,kmax,in1,in2,jtotmx,jmin,jmax

where the input parameters are:

• job,ienerg: The program searches for an S matrix in the file Jobienerg.smt, where ienerg is an integer
(ienerg = 1, 2, ... etc.) The default values of job is JOB and of ienerg is 1.

• iframe: This parameter defines the quantization frame employed in the tensor cross section calculations (angle-
integrated cross sections, except where indicated otherwise below).

• iframe = 0: The quantization axis is defined as the laboratory Z-axis, with an isotropic relative velocity
distribution.

• iframe = 1: The quantization axis lies along the initial relative velocity vector (collision frame).

• iframe = 2: The initial level has quantization axis along the initial relative velocity vector, and the final level
has quantization axis along the final velocity vector (helicity frame). In this case, m-resolved differential cross
sections are computed over a grid of scattering angles (0.5 deg spacing) for the (J1MIN, IN1) -¿ J1MIN, IN1)
elastic transition, and then differential tensor cross sections are computed. The differential tensor cross sections
are numerically integrated to determine integral tensor cross sections.

• lammax: The maximum value of the anisotropic term in the velocity distribution (lower case lambda in the
above article). Tensor cross sections for all even values of lambda from 0 to LAMMAX are calculated. At present
only LAMMAX = 0 is operational!

• kmax: The maximum value of the multipole order for which tensor cross sections are calculated. Cross sections
for all values of Ki and Kf .le. KMAX are calculated.

• in1,in2: The initial and final values of the additional index

• jtotmx: The maximum value included in the summation over total angular momentum (upper case J in Eqs.
30 and 31 of the above article)

• jmin,jmax: Tensor cross sections are computed for all values of the molecular rotational quantum number
(lower case ji and jf in Eqs. 30 and 31 of the Follmeg et al. [29]) ranging from jmin to jmax.

To determine the S -matrix elements required by the command TENXSC, you must carry out a prior calculation with

• the flag WRSMAT = .TRUE.

• jmin ... jmax included in the array JOUT

• in1 and in2 included in the array INDOUT

7. Computational Considerations

Matrix operations (inversion, multiplication, solution of linear equations) impose the primary computational bot-
tleneck to solution of the CC equations. Consequently, the total CPU time will be proportional to the operational
count for this type of operation, namely Nch

3, Nch being the number of channels (both open and closed) used. In
practice, calculations are feasible for Nch ranging up to several thousand, depending on the speed of the computer
and the amount of memory available. The CPU time also depends linearly on the number of sectors (radial steps)
required to integrate from Rstart out to Rend (value of R such that the potential (exclusive of centrifugal barriers)
becomes negligibly small). Typically, 5–10 sectors are necessary per deBroglie wavelength. As discussed in Sec. 2,
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the hybrid (LOGD + AIRY) propagation scheme [9] makes use of a potential-following method at larger R, which
allows a dramatic increase in sector width.

The determination of cross sections (and, subsequently, rate constants) requires integration of the coupled equa-
tions at many different values of the total angular momentum J and energy. This allows for straightforward paralleli-
sation.

Hibridon can be run interactively, setting parameters in terminal mode and running short jobs. Alternatively, the
program can be run in batch mode with a job script file. In either case, it is convenient to enter the parameters through
an input file (*.inp); an example of an input file is given in Appendix A.2.

8. Incorporating a PES

Hibridon is designed to be used as a library with a user-supplied PES. Notwithstanding, for test purposes and
to help in incorporating a user’s PES, several PESs are included in the Hibridon package. The coordinates used to
describe the geometry of the PES of the collision complex should be appropriate for the calculation of matrix elements
of the vibration-rotation scattering basis functions. Usually, only the radial coefficients of the expansion of the PES
are required and should be carefully implemented in the code.

For each PES, the user is expected to provide three subroutines:

loapot: Called only once, this subroutine’s purpose is to initialize the PES data, possibly involving loading data
from a file,

pot: Computes the radial coefficients for a given interparticle separation distance R,

driver: this subroutine is used upon the summoning of the TESTPOT command and provides an interactive prompt
that prints the value of the radial coefficients for a given interparticle separation distance R.

For the collision of Ar with N2, examples of these three subroutines are given in Appendix A. Note that the
simplistic Ar–N2 PES used here is provided only as a template and is used only to benchmark the Hibridon code.

9. Distribution of the Code

The Hibridon package is fully available as a Github repository [44] under the GPLv3 license [84]. The compilation
of the source files is cross-platform, compiler independent and automated using the cmake open-source software. Full
instructions on how to build the Hibridon package can be found in the README.md file distributed along the source
code. The proper building of Hibridon can be checked through automated testing using the ctest tool from the
cmake software. Those tests cover most of Hibridon’s source code and ensure that a given installation behaves as
intended. Each of these tests also represent fully working examples of PES implementations, input files, and expected
output files that are accessible in the tests subfolder at the root of Hibridon’s source code. A comprehensive user
documentation, which extends and supplements the description given here, as well as adding more information and
examples, is available as a wiki on Hibridon’s Github repository webpage [44].
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Appendix A. Example: the Ar–N2 collisional system

The implementation of scattering calculations based on the Ar–N2 PES of Pattengill et al. [85] is presented below.
An sample input file and the resulting output file are also shown.

Appendix A.1. Implementation of the PES

1 ! declare dummy subroutines syusr , bausr and ground. This is mandatory when the user does

not provide his own basis (basis 99 and higher)

2 #include "common/syusr.F90"

3 #include "common/bausr.F90"

4 #include "common/ground.F90"

5

6 ! -----------------------------------------------------------------------

7 ! subroutine called by testpot to interactively provide potential values

8 ! -----------------------------------------------------------------------

9 subroutine driver

10 use mod_covvl , only: vvl

11 use mod_parpot , only: potnam=>pot_name

12 implicit none

13 integer :: ios

14 real (8) :: r, vv0

15 write(6, *) potnam

16 do while(.true.)

17 write (6,*) ’ r (bohr)’

18 read (5, *, iostat=ios) r

19 if (ios /= 0) exit

20 call pot(vv0 , r) ! values of the potential are returned in vv0 and vvl

21 write (6, "(’ vsum ’, /, 7(1 pe16 .8))") vv0 , vvl

22 end do

23 end subroutine driver

24

25 ! -----------------------------------------------------------------------

26 ! subroutine to initialize the potential

27 ! -----------------------------------------------------------------------

28 subroutine loapot(iunit , filnam)

29 use mod_parbas , only: ntv , ivcol , ivrow , lammin , lammax , mproj

30 use mod_parpot , only: potnam=>pot_name

31 implicit none

32 integer , intent(in) :: iunit ! if a data file is used , this subroutine is expected to

use this unit to open it in read mode (not used here)

33 character *(*), intent(in) :: filnam ! if a data file is used , the file name of the

data file (not used here)

34 integer , parameter :: l1i = 1 ! lambda1 index

35 potnam = ’PATTENGILL -LABUDDE -BERNSTEIN AR -N2’

36 lammin(l1i) = 2 ; lammax(l1i) = 2 ! lambda1 ’s range is [2, 2]

37 mproj(l1i) = 0

38 ntv(l1i) = 1

39 ivcol(l1i , l1i) = 0 ; ivrow(l1i , l1i) = 0

40 return

41 end subroutine loapot

42

43 ! -----------------------------------------------------------------------

44 ! calculates the r-dependent coefficients in the collision of Ar with N2

45 !

46 ! on return:

47 ! vv0

48 ! contains the isotropic term (n=0) in the potential.

49 ! vvl

50 ! the coefficients for each angular term in the coupling potential

51 ! [ vvl(i) for i = 1, nlam ] are returned in module mod_covvl

52 ! vvl(1) contains the anisotropic (n=2) term in the potential

53 ! -----------------------------------------------------------------------

54 subroutine pot (vv0 , r)
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55 use mod_covvl , only: vvl

56 use mod_conlam , only: nlam

57 implicit none

58 real (8), intent(out) :: vv0

59 real (8), intent(in) :: r

60 real (8) :: eps , a6 , a12 , r0 , eps_au , rat , w(6), rr0

61 data eps , a6 , a12 , r0 / 83.05d0 , 0.13d0, 0.5d0 , 3.929d0/ ! from reference paper above

62 w = (/ 1.0d0 , 0.2d0 , 0.1d0 , 0.0d0 , 0.025d0 , 0.02d0/) ! weights

63

64 rr0 = r0 / 0.52917715 d0 ! convert distance r0 to bohr

65 eps_au = eps / 219474.6 d0 ! convert energy eps to hartree

66

67 rat = rr0 / r

68 vv0 = eps_au * (rat **12 - 2.d0 * rat **6)

69 vvl(1) = eps_au * (a12 * rat **12 - 2.d0 * a6 * rat **6)

70 vvl(1: nlam) = vvl(1) * w(1: nlam)

71 return

72 end subroutine pot

Listing 1. Example of PES implementation for the Ar–N2 collisional system. This source file is used for testing purposes by Hibridon and can be
found at hibridon/tests/arn2/pot arn2.F90.

Appendix A.2. Input file

1 N2 -Ar CC PATTENGILL POTENTIAL

2 1 ibasty

3 T T F F logdfl , airyfl , readpt , bastst

4 5.6000 8.0000 .1500 rstart , rendld , spac

5 F prairy

6 1.150 3.00 25.0 15.00 tolai , rincr , rendai , fstfac

7 1 nerg

8 500.0

9 16.47000 xmu

10 30.0000 rcut

11 20 20 5 1 0 0 1 jtot1 ,jtot2 ,jtotd ,jlpar ,numin ,numax ,nud

12 48 0 lscreen , iprint

13 4 1 nnout ,niout

14 0 2 4 6

15 0

16 T T T F F prlogd , prsmat , prt2 , t2test , wrsmat

17 F F F F F wrpart , prpart , prxsec , wrxsec , wavefl

18 F T F F F noprin , chlist , ipos , nucros , photof

19 F F F T F flaghf , csflag , flagsu , ihomo , twomol

20 F F rsflag , boundc

21 1 0 0 nvib , vmin ,vmax

22 0 0 4 iv ,jmin ,jmax

23 2.01000 .000000E+00 .000000E+00 brot ,drot ,hrot

24 0.00000000 evib

Listing 2. Example input file for the Ar–N2 collisional system. This input file is used for testing purposes by Hibridon and can be found at
hibridon/tests/arn2/Arn2 test.inp.

Appendix A.3. Output file

1 Jan 20 15:31:43 2011

2 CC INTEGRAL AND PARTIAL TESTS

3 PATTENGILL -LABUDDE -BERNSTEIN AR -N2

4 500.000 16.47000000000

5 F F F F T

6 0 20 5 0 0 1 1 0

7 6 6

8 0 0 2 0 4 0 6 0 8 0 10 0

9 0.00000000E+00 5.49494110E-05 1.83164703E-04 3.84645877E-04 6.59392932E-04 1.00740587E-03

10 2.67327978E+00 1.15913251E-01 1.31726776E-02 7.07522265E-02 8.64761274E-02 1.64014777E-02

11 5.65587118E-01 1.60330543E+00 2.20464398E-01 1.59154052E-01 2.17193851E-01 6.60399047E-02

12 1.09022349E-01 3.73949982E-01 2.06368973E+00 3.14756214E-01 2.98168618E-01 1.57533017E-01
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13 7.64483467E-01 3.52435191E-01 4.10923357E-01 2.16095716E+00 3.25244646E-01 2.92131612E-01

14 1.04459011E+00 5.37688541E-01 4.35181213E-01 3.63606675E-01 2.60890434E+00 5.37612771E-01

15 1.92123630E-01 1.58539623E-01 2.22960496E-01 3.16700226E-01 5.21335986E-01 4.04890105E+00

Listing 3. Output file for the Ar–N2 collisional system. This output file is used for testing purposes by Hibridon and can be found at
hibridon/tests/arn2/Cctest1.ics.
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134 (2011) 154307.
[69] L. Ma, P. J. Dagdigian, M. H. Alexander, Theoretical investigation of rotationally inelastic collisions of CH2(X̃) with helium, J. Chem. Phys

136 (2012) 224306.
[70] P. R. Bunker, P. Jensen, W. P. Kraemer, R. Beardworth, The potential surface of X̃3B1 methylene (CH2) and the singlet-triplet splitting, J.

Chem. Phys. 85 (1986) 3724–3731.

18



/ Computer Physics Communications 00 (2023) 1–19 19

[71] P. Jensen, P. R. Bunker, The potential surface and frequencies of X̃3B1 methylene (CH2) determined from experiment using the Morse
oscillator-rigid bender internal dynamics Hamiltonian, J. Chem. Phys. 89 (1988) 1327–1332.

[72] M. H. Alexander, Propensity rules for rotationally inelastic collisions of symmetric top molecules or linear polyatomic molecules with
structureless atoms, J. Chem. Phys. 77 (1982) 1855–1865.

[73] Q. Ma, J. Kłos, M. H. Alexander, A. van der Avoird, P. J. Dagdigian, The interaction of OH(X2Π) with H2: Ab initio potential energy surfaces
and bound states, J. Chem. Phys 141 (2014) 174309.

[74] O. Tkác̆, Q. Ma, C. A. Rusher, S. J. Greaves, A. J. Orr-Ewing, P. J. Dagdigian, Differential and integral cross sections for the rotationally
inelastic scattering of methyl radicals with H2 and D2, J. Chem. Phys 140 (2014) 204318.

[75] P. Dagdigian, M. H. Alexander, J. Kłos, Theoretical investigation of the dynamics of O(1D→3 P) electronic quenching by collision with Xe,
J. Chem. Phys 143 (2015) 054306.

[76] P. J. Dagdigian, J. Kłos, M. R. Warehime, M. H. Alexander, Accurate transport properties for O(3P)–H and O(3P)–H2, J. Chem. Phys. 145
(2016) 164309.

[77] T. G. A. Heijmen, T. Korona, R. Moszynski, P. E. B. Wormer, A. van der Avoird, Ab initio potential-energy surfaces and rotationally inelastic
cross sections of the Ar–CH4 complex, J. Chem. Phys. 145 (1997) 902–913.

[78] P. J. Dagdigian, Interaction of C2H with molecular hydrogen: Ab initio potential energy surface and scattering calculations, J. Chem. Phys
148 (2018) 024304.

[79] T. R. Phillips, S. Maluendes, S. Green, Anisotropic rigid rotor potential-energy surface for H2O–H2, J. Chem. Phys 101 (1994) 5824–5830.
[80] P. Valiron, M. Wernli, A. Faure, L. Wiesenfeld, C. Rist, S. Kedz̆ch, J. Noga, R12-calibrated H2O–H2 interaction: Full dimensional and

vibrationally averaged potential energy surfaces, J. Chem. Phys 129 (2018) 134306.
[81] P. J. Dagdigian, Interaction of SH+ with molecular hydrogen: Ab initio potential energy surface and scattering calculations, J. Chem. Phys

150 (2019) 0843308.
[82] A. Faure, P. J. Dagdigian, C. Rist, R. Dawes, E. Quintas-Sánchez, F. Lique, M. Hochlaf, Interaction of chiral propylene oxide (CH3CHCH2O)

with helium: Potential energy surface and scattering calculations, ACS Earth Space Chem. 3 (2019) 964–972.
[83] P. J. Dagdigian, Interaction of the HCO radical with molecular hydrogen: Ab initio potential energy surface and scattering calculations, J.

Chem. Phys 152 (2020) 224304.
[84] GNU general public license, version 3, http://www.gnu.org/licenses/gpl.html, last retrieved 2020-01-01 (June 2007).
[85] M. D. Pattengill, R. A. La Budde, R. B. Bernstein, C. F. Curtiss, Molecular collisions. XVI. Comparison of GPS with classical trajectory

calculations of rotational inelasticity for the Ar–N2 system, J. Chem. Phys. 55 (1971) 5517–5522.

19



Declaration of interests 

  

☒ The authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

  

☐ The authors declare the following financial interests/personal relationships which may be considered 

as potential competing interests: 

 

 

  

  

  

 


