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Abstract: Electric vehicles are able to provide immediate power through the vehicle-to-grid function 1

and adjust their charging power level when in grid-to-vehicle mode. This allows them to provide 2

ancillary services such as frequency control. Their batteries differ from conventional energy storage 3

systems in that the owner’s energy requirement constraint must be met when vehicles participate 4

in a frequency control system. An optimization problem has been defined considering both owner 5

satisfaction and frequency control performance. The main contribution of the proposed paper, 6

compared to the literature, are (1) to keep the total available energy stored in the batteries connected 7

to a charging station in an optimal region that favors the frequency regulation capability of the station 8

and the proposed QoS and (2) to consider the optimal region bounded by the efficiency thresholds 9

of the charger to allow for maximum regulation power. The problem is expressed as a multicriteria 10

optimization problem with time-dependent references. The paper presents an energy management 11

strategy for frequency control, describes a concept of optimal time-dependent state of charge for 12

electric vehicle charging demands, and considers the power dependence of the electric vehicle charger 13

efficiency. Finally, simulation results are presented using Matlab/Simulink to prove the effectiveness 14

of the proposed algorithm. 15

Keywords: electric vehicles, smart charging, frequency regulation, maximum regulation power 16

1. Introduction 17

Electric vehicles (EVs) can help improve the quality of the power grid by participating 18

in ancillary services such as valley filling, reactive power compensation, voltage drop, and 19

frequency regulation. The massive integration of vehicle-to-grid (V2G) functionality into 20

the EVs’ charger will make EVs flexible connected energy resources. In addition, the fast 21

response of EVs and the high power density of lithium batteries make EVs suitable for 22

frequency regulation [1], [2], [3]. 23

The problem of charging EVs with a frequency control service has been the subject of 24

several researches. EV charging problem, considering frequency regulation using control 25

theory has been for example addressed in [4–11]. Others, such as [1,12–16] use the opti- 26

mization approach to find the optimal charging power. Other methods based on fuzzy 27

logic, deep reinforcement learning and priority model, have been used in [17–20]. 28

To solve the problem of frequency-controlled EV charging, several considerations 29

must be taken into account. The objective of keeping the operational capacity limit in the 30

optimal region - where the up-regulation power is maximum and the down-regulation 31

power is maximum - is considered in [14,16], whereas [13,15] did not consider this aspect. 32

Furthermore, [14,15] considers a constant value for the upward power control as well as 33

for the downward power control of the EV. Therefore, it does not take into account the 34

dependence of the regulation capacity on the up and down state of charge of the battery 35

(SoC). In addition, addressing the expectations of EV owners’ is a major challenge in this 36
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area. In [13,14,16,21], user satisfaction was taken into account, while this point was totally 37

ignored in [22,23]. Ignoring this aspect could discourage the EVs’ owner from participating 38

in ancillary services. 39

Many studies consider a large number of EVs participating in ancillary services. In [14], 40

the study was conducted with a large number of EVs equal to 100,000, while [1] assumes 41

the use of 1,000 EVs in the simulation and [6] sets the total number of EVs involved in 42

the simulation of the frequency control algorithm to 500. The focus of this paper is to 43

investigate the feasibility of providing frequency control service with a small number of 44

EVs. Therefore, in all simulations, the maximum number of EVs is 20. In addition, [14,16] 45

uses an assigned symmetric disturbance signal that simplifies the problem of achieving 46

the SoC objective and the maintaining problem of the control capacity. Moreover, [6] and 47

[14] consider an equally likely distribution of the number of EVs in each SoC category (low, 48

medium and high). 49

Most research using the [14,16] optimization approach sets a strict equality constraint 50

in their optimization models. Equalities are harder to satisfy exactly and are not compatible 51

with all solvers. One modeling trick is to reformulate each equality as two inequalities, but 52

this increases the number of constraints and thus the size of the problem [24]. Accordingly, 53

only inequality constraints are used in the proposed optimization model. 54

In the control theory, the perturbation is distributed uniformly among the EVs. In 55

the case of a small disturbance and a high number of controlled EVs, each EV with small 56

power fluctuations will participate in frequency regulation to maintain the SoC without 57

considering the poor efficiency of the charger in low power regions. However, according to 58

[22], the charger is designed to operate more efficiently closer to the maximum power levels. 59

In the same context, [13] and [22] study the effect of charger efficiency on the tracking 60

accuracy of the spurious signal and assume that without considering the dependence of 61

charger efficiency on power, the tracking error increases. 62

Charger efficiency constraint : To our best knowledge, none of the existing work takes 63

into account the dependence of charger efficiency on power. Almost all studies assume 64

a constant charger efficiency in the range [0.8, 1]. Some of them do not use a discharge 65

efficiency or assume a perfect charger with unit efficiency. 66

In EV charging management, the available energy provides information about the 67

accumulation of energy to charge the EV. So the energy gives a kind of future energy 68

usage possibilities, such as the maximum charging and discharging rates and the energy 69

remaining to reach full capacity or full discharge. However, energy cannot convey long- 70

term knowledge about the state of the EV or its history, but it does provide short-term 71

information. Combining two heterogeneous physical quantities, such as energy and power, 72

in the same objective function provides a global vision of the charging management of the 73

EV fleet in both the long and short term, its past, present, and future. This model allows 74

solving the optimization planning problem as a moment problem. Thus, the scheduling 75

problem, whose solution is hard in terms of computational time and memory consumption, 76

will be replaced by an instantaneous dispatching problem whose solution is simple and 77

fast. The added value in this model allows us to reduce the execution time, thus we can 78

tackle real-time problems such as frequency regulation for coordinated charging of electric 79

vehicles, and reduce the time step as much as the desired accuracy. 80

The main contribution of this paper compared to the previous investigated literature, 81

is to propose an optimal EV Fleet charging management that takes into account the power 82

dependence of charger efficiency and extend our previous work [20], which is significantly 83

improved, to the case of bidirectional charging. In details, the contributions highlighting 84

the proposed strategy are to: 85

• Maximize the regulatory reserve by using an EV charging algorithm based on preven- 86

tive actions, replacing the planning problem with one on the fly. 87

• Avoid the use of hard constraints, reducing the number of decision variables and the 88

number of constraints to reduce computation time and memory usage. 89
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• Take into account the efficiency of the charger and its dependence on power and 90

therefore maximizing charging efficiency. 91

• Take into account the SoC and temperature dependence of regulation capacity and 92

keeping the total regulation capacity in the optimal zone. 93

• Control the bi-directional charging of EVs (V2G), taking into account both the power 94

demand of the grid operator and the satisfaction of the SoC target of the EVs’ users. 95

The paper remaining is structured as follows: the optimization problem modeling 96

is the subject of Section II. The simulation results of the control strategy are presented in 97

Section III. Finally, Section IV discusses the paper conclusion and the future work. 98

2. Optimization Problem Modeling 99

In this paper, we formulate the EV charging problem as a power dispatch problem 100

considering two distinct cases: 101

• Case 1 (namely P1): the standard power dispatch problem with frequency disturbance. 102

In this context, the main goal is to charge EVs but the idea is to keep a regulation 103

capability up and down, i.e. to keep EVs in an optimal region to be able to better face 104

the second case. 105

• Case 2 (namely P2): the frequency regulation problem with a power request from or to 106

the power grid. Then, the main goal becomes to answer this power demand emerging 107

from the power grid, while trying to consider EVs charging expectations. 108

In P1, the problem is expressed as a general quadratic optimization problem where 109

the objective function aggregates two criteria: 110

F1 = w1C2
1 + w2C2

2 (1)

The criterion C1 computes the sum of gaps between an energy target and the energy in 111

EV batteries at each time step. This target is determined by considering the optimal region 112

to get the best regulation capability (up and down) as depicted on Fig. 1. 113

C1 = (Ei−1 +
NEV

∑
j=1

Pj
i ∆t)− Ere f

i (2)

Where Ei is calculated by the given equation (3): 114

Ei =
NEV

∑
j=1

SoCj
i · Ej

batt · SoH j (3)

Ere f
i is tracked to maintain the regulation capacity at the maximal value and is com- 115

puted (considering Fig. 1 optimal region) as follows: 116

Ere f
i =

NEV

∑
j=1

SoCre f
i · Ej

batt · SoH j (4)

As shown by the example of Fig. 1, the best tradeoff between charging and discharging 117

capability is at SoC 0.5 with a maximal charging power of 80kW and a discharging power 118

of -80kW. The optimal region is defined between a SoC of 0.4 and a SoC of 0.6, where both 119

charging and discharging powers stay high. In these conditions, EVs can be managed in a 120

flexible way to: 1. charge their batteries, 2. answer a power demand from or to the grid. To 121

give a priority to the charging of EVs, the optimal SoC (SoCre f
i ) may be set over 0.5. In our 122

benchmark, we set SoCre f
i to 0.6. 123

At the global EV fleet level, the global strategy has to consider various subtleties to 124

deal with conflicting objectives, so that the SoC of EVs is maximized at the end of the 125

day. The total available energy stays in an optimal region and get the best response for a 126

frequency regulation demand as illustrated on Fig. 2. 127
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Figure 1. Optimal capability region for charging or discharging lithium-ion batteries, depending on
their SoC.

Figure 2. An illustration of two conflicting objectives

A frequency deviation is unpredictable as well as its duration, when considering a 128

planning horizon of a day. Then, the EV fleet must be able, at any moment, to face any 129

disturbances in the power grid, but taking into account two opposing criteria for each EV: 130

• To charge its battery in order to get a high SoC to meet the EV owner needs (>0.7). 131

• To keep the SoC within an optimal range to improve the capability of the fleet to 132

answer a frequency control request (>0.4 and <0.6). 133

This strategy allows a better power management of the EV fleet charging and a quick 134

response to the power request in case of a frequency deviation. 135

Then, the purpose of the criterion C2 is to keep the EV charging, so the total power 136

approaches to Pre f
i , thus the total available energy stored in the EVs increases gradually to 137

the maximal capacity of the EVs’ battery by the end of the day (cf. Fig. 3). The strategy 138

of increasing the EVs’ SoC at the end of the day is fully justified because of high power 139

demand during the peak period between 6 PM and 10 PM. Thus, the necessity to discharge 140

EVs for power grid’s relief. 141

C2 = (
NEV

∑
j=1

Pj
i )− Pre f

i (5)

The Pre f
i is defined as the average power that must be used to reach Esaturation at the 142

end of the day, with a total station opening time of top hours. The detailed expression of 143

Pre f
i is given in the following equations: 144
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Esaturation =
NEV

∑
j=1

SoClimit · Ej
batt · SoH j (6)

145

Eremain
i = Esaturation − Ei (7)

146

Pre f
i =

Eremain
i
top

(8)

Figure 3. Example of a reference energy and actual energy in the scope of a day.

P1 aims to prepare the EV fleet to respond to any power request by keeping the 147

average SoC of the EV fleet into the optimal region and charging the EVs with higher 148

priority. However, the main goal of P2 is to minimize the error between the requested 149

power and the used charging power, and to maximize the charging efficiency of the fleet. 150

When there is a power request, P2 is activated and the optimization problem is 151

expressed as a multi-criteria minimization: 152

F2 = w3C2
3 + w4C4 (9)

The purpose of the criterion C3 is to offer the best answer to the power request by 153

minimizing the tracking error, i.e. P − Prequest: 154

C3 = (
NEV

∑
j=1

Pj
i )− Prequest

i (10)

The criterion C4 take into account the chargers’ efficiency, to minimize the losses 155

related to this component. 156

C4 =
NEV

∑
j=1

Pj
i (1 − η(Pj

i )) (11)

P1 and P2 have a different objective function, but they are subjected to the same set of 157

constraints relating to physical limits or operational constraints. 158

The amount of power used to charge or discharge a battery is bounded as defined in 159

(12): 160

Pj
i ≤ Cj

i

Pj
i ≥ Dj

i

(12)

The definition of Cj
i and Dj

i is given by the following equations : 161

Cj
i = sj

i · α
j,ub
i · Pj,max+

i

Dj
i = sj

i · α
j,lb
i · Pj,max−

i

(13)
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Pj,max+
i = min(Pj

chpt+, Pj
Charger+, Pj

i,Bat+)

Pj,max−
i = max(Pj

chpt−, Pj
Charger−, Pj

i,Bat−)
(14)

sj
i , α

j,ub
i , and α

j,ub
i are defined in the equations (15), (16), and (17) as follows: 162

sj
i =

{
1, pluged-in
0, pluged-out

(15)

α
j,ub
i =

{
1, SoCj

i < 0.9

0, SoCj
i ≥ 0.9

(16)

α
j,lb
i =

{
1, SoCj

i ≥ 0.2

0, SoCj
i < 0.2

(17)

To avoid the overloading of the transformers, a maximal power limits the sum of 163

power that is dispatched to EVs for each time slot: 164

NEV

∑
j=1

Pj
i ≤ Ptotal (18)

The SoC of EVs is dynamically evaluated through the following equations: 165

In charging mode: Pj
i ≥ 0

SoCj
i+1 = SoCj

i +
η(Pj

i )Pj
i · ∆t

Ej
batt · SoH j

In discharging mode: Pj
i < 0

SoCj
i+1 = SoCj

i +
(Pj

i /η(Pj
i )) · ∆t

Ej
batt · SoH j

(19)

For the sake of simplicity, the joule heat generation is considered as evenly distributed. 166

As a consequence, the temperature in battery cells is considered well distributed too. Then, 167

the estimation of the temperature uses the first order equation: 168

T j
i+1 = T j

i +
1

mjCj
p
(Pj

joule,i + Pj
convective,i) (20)

To compute the joule power, a linear approximation is used: 169

Pj
joule,i = kj × Pj

i ∀i, ∀j (21)

The Newton law is applied for computation of the convective power: 170

Pj
convective,i =

T j
i − Tout

i

Rj
th_out

i = 1, ..., N (22)

The presented results were obtained with MATLAB optimization toolbox using 171

f mincon with an Intel Core i7 CPU @ 2.70GHz. 172

3. Simulations and results 173

The parameters used for the simulations are summarized in Table 1. The default full 174

rate power for the charging stations is 22 kW. 175
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Table 1. EV parameters used for simulations

Parameters Value
Sampling time 5min
Maximum number of EVs 20
Battery capacity 60kWh
Starting SoC [0.1, 0.6]
Desired SoC [0.3, 0.9]
Maximum/minimum SoC 0.9/0.2

3.1. Impacts of the charger efficiency 176

The charger efficiency can have a significant impact on the amount of energy put in 177

batteries. Approximating the efficiency with a constant value may lead to low accuracy 178

in results, as shown in Fig. 4, with variations from 0.72 to 0.96 percent. Fixed arrival and 179

departure times (see Table 2) with a constant number of EVs is used to focus on the tracking 180

error relating to the proposed strategy. 181

Figure 4. EV charger efficiency

Table 2. Simulation parameters of EVs in 3.1

Parameters
Arrival times 8h
Departure times 18h

The Fig. 5 shows the results obtained on a scenario with frequency regulation between 182

8:00 to 18:00. In this case, P2 is used and multiple charging and discharging decisions 183

are applied, thus increasing the energy transfers between the power grid and the EVs. 184

Using an efficiency as a function of power (see Fig. 4), the tracking error is much smaller 185

compared to a fixed efficiency (around the kilowatt). In the first case with a constant 186

efficiency, the tracking error is at the order of magnitude of kW compared to the varying 187

efficiency scenario where it falls down to the order of magnitude of W. 188

3.2. Impacts of the number of EVs 189

Fig. 6 shows the comparison of two scenarios for the same power request with param- 190

eters summarized in Table 3. In the first case (blue line), the number of EVs is constant, 191

whereas in a more realistic second case (yellow line), it varies with all arrivals between 8:00 192

to 10:00 and departures between 15:00 and 18:00. In the first case, tracking errors are low 193

whereas in the second case, it becomes more significant as the number of EVs is low. This is 194

due to the low regulation capacity when fewer EVs are available at the charging station. As 195

shown on Fig. 6 the tracking error is close to zero when the number of EVs is greater than 196

ten. Then, EVs offer a high regulation reserve. In such scenario, the charging station cannot 197

ensure regulation request with a low number of EVs and another energy storage solution 198

should be considered to compensate the lack of EVs in some periods of the day. 199
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Figure 5. Frequency regulation (FR) Signal, and impact of charger efficiency response error

Table 3. Simulation parameters of EVs in 3.2

Parameters
Arrival times N (9, 0.5)
Departure times N (17, 0.5)

Figure 6. FR Signal, response error, and EV availability

3.3. Impact of long frequency drops and maximum charging rate 200

A power plant shutdown or failure may lead to high frequency drops for a long period. 201

This critical situation may lead to a black-out on the power network. The simulation 202

detailed in this subsection shows how EVs can play a crucial role to support the power 203

grid. Two scenarios are investigated with a fixed number of available EVs. The first one 204

considers a full power rate of 22kW, whereas in the second scenario, each EV selects a 205

random maximal power rate from [3.2, 7.4, 11, 22]. In the charging station, the charging 206

points have the following ratios: [30%, 30%, 20%, 20%] respectively. 207

As shown on Fig. 7, EVs are charged until 14:00, where a high frequency drop occurs. 208

In both scenarios, the power request cannot be met until the end, but in both case the 209

support is offered for most of the duration. 210

The SoC evolution of EVs is illustrated in Fig. 8 for the first scenario and in Fig. 9 for 211

the second one. We can see that the constraints for the minimal SoC threshold are active at 212
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Figure 7. FR Signal, response error, and EV availability

the end of the two scenarios and the tracking errors increase from this moment, since no 213

more energy can be taken from EVs. 214

In the first scenario and before some EVs reached the minimal SoC threshold, the 215

discharge rate is homogeneously divided over all EVs. After that event, the slopes of the 216

remaining EVs change, i.e., it goes up to the maximal discharge power rate but only for a 217

short period after which all EVs reach the minimal SoC of 0.2. In the second scenario, the 218

maximal discharging power constraint act to limit the discharging rate. Some EVs are no 219

more able to supply the grid around 15:45 and the tracking error becomes sensitive sooner 220

than in the first scenario. However, the supply of the grid is provided until the end, even if 221

it is for a small amount and the decrease in the grid support is smoother. 222

Figure 8. The SoC evolution of every EV in the charging station for full power rate 22kW

3.4. Discussions about EV usage in the frequency regulation market 223

Previous results show the good behavior of fleets of EVs to participate in the frequency 224

regulation even with a relatively low number of EVs if a relevant charging strategy main- 225

tains their SoC in an optimal region. The ancillary services market is mainly divided into 226

a primary reserve and a secondary reserve, which require different condition to satisfy. 227

These conditions are in general specific to each country, but the most common conditions 228

are presented in the Table 4. 229

From the previous results and Table 4, the participation to the primary reserve can be 230

ensured by EVs. However, a station should better contain a limited number of charging 231
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Figure 9. The SoC evolution of each EV in the charging station for reduced power rate

points, but with a high charging rate to be able to attain the minimum limit of 1MW. 232

The uncertainties about the availability of EVs (arrival and departure times) and their 233

number are not the main issue, since the major constraint is the minimum contracted 234

reserve. The duration of the primary reserve activation is 15 minutes. Since EVs charge for 235

a longer period, the charging station can easily interrupt the charging to satisfy the primary 236

reserve requirements and resume the charging afterward. This short interruption may not 237

significantly reduce the satisfaction of EV owners to get the expected SoC when leaving at 238

the departure time. In the case of a V2G support, the action may retribute owners while 239

compensating the extra cycling of the battery. 240

Table 4. General condition of primary and secondary reserve [25]

Primary reserve Secondary reserve
Dynamic of activation 50% within 15s and

100% of the reserve
enabled within 30s

100% of the reserve
activated within
5min

Duration of activation maximum of 15
minutes

unlimited during
the duration of the
contract

Minimum power 1MW 5MW
Power direction Negative AND Pos-

itive
Negative OR Posi-
tive

The case of secondary reserve participation requires a greater capacity than for the 241

primary reserve, mainly because of the longer activation time. Then, it is better to consider 242

charging stations with a high number of charging points, high attendance rates with long 243

periods of EVs availability. Depending on the spatial organization of the power network, 244

small charging stations close enough can be grouped on the same aggregator to build a 245

virtual station that meet the requirements for the secondary reserve participation. In this 246

context, the mix of slow and fast charging points is not an issue, as demonstrated by our 247

results. 248

4. Conclusion 249

This work addresses the possibility of using EVs for ancillary services relating to 250

frequency regulation. This paper describes a strategy to manage EVs to be able to participate 251

in a frequency regulation as well as to meet EVs owner expectations. This strategy is 252

implemented as two optimization problems. The first one addresses the normal situation 253

without any frequency deviation and tries to enforce a maximum power availability. A SoC 254

target (0.6%) for regulation is defined for EVs, so that EVs in this region can better answer 255

any kind of frequency regulation. This criterion is combined with the SoC target defined 256
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by EVs owners to satisfy both criteria at the same time. The second optimization problem 257

is used when a frequency regulation request occurs. In this scenario, the objective is also 258

composed of two criteria to minimize at the same time the tracking error with the power 259

request and the losses relating to charger efficiencies. 260

Several simulations are presented to highlight the impact of the charger efficiency, 261

the number of available EVs and the duration of the frequency regulation request. Most 262

existing works focus on a high number of EVs, but we show in this paper, that even with as 263

low as 20 EVs a good behavior can be observed, in most cases. Then, the paper discusses on 264

the position of EVs charging stations for the primary and secondary reserve participation. 265
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Abbreviations 274

The following abbreviations are used in this manuscript: 275

276

w1, w2, w3, w4 Weighting factors
Ei Total available energy stored in the EVs
NEV Number of EVs
Pj

i Charging power of the j-th EV at the time i
∆t Sampling time
Ere f

i Energy reference at the time i
SoCj

i State of charge of the j-th EV in the time step i
Ej

batt Battery capacity of the j-th EV
SoH j State of health of the j-th EV’ battery
SoCre f

i SoC reference at the time i
Pre f

i Power reference at the time i
Esaturation Energy threshold of the charging station
SoClimit Maximum SoC limit
Eremain

i Remaining energy before reaching
Esaturation at the time i
top Station opening hours
Prequest

i Power request at the time i
η Charger efficiency
Cj

i , Dj
i Power upper/lower bound of the j-th EV during the time step i

sj
i] State of the j-th EV at the time i

α
j,ub
i , α

j,lb
i Binary variables depending on the SoC of the j-th EV at the time i

Pj,max+
i , Pj,max−

i Maximal authorized charging/discharging rate for j-th EV at time step i
Pj

chpt+, Pj
chpt− Maximum charging/discharging power of the charging point of j-th EV

Pj
charger+, Pj

charger− Maximum power of j-th charger in charging or discharging mode

Pj
Bat+,i, Pj

Bat−,i Maximum accepted/delivered battery’s power of j-th EV at time i
depending on the SoC and the battery’s temperature

Ptotal Maximum transformer power of the charging station
mj Mass of the j-th EV battery
Cj

p Specific heat coefficient of the j-th EV battery
T j

i Temperature of the j-th EV battery at the time i
Pj

joule,i Power dissipated by joule effect of the j-th EV battery at the time i

Pj
convective,i Power heat transfer between the battery and the outside of j-th EV battery

at time i
kj Thermal factor depending on the thermal inertia of the j-th EV battery
Tout

i Outside temperature in the time i
Rj

th_out Heat convection coefficient between the j-th EV battery and the outside
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