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Abstract: In order to investigate the coordination chemistry of O-alkyl N-aryl thiocarbamate lig-
ands toward coinage metals, CuBr was reacted with one equivalent of MeOC(=S)N(H)Ph L in
MeCN solution to afford the 1D-polymeric title compound [{Cu(µ2-Br)2Cu}{µ2-MeOC(=S)N(H)Ph}2]n

CP1. Compound 1 was characterized by IR spectroscopy and an elemental analysis. The forma-
tion of a polymeric 1D ribbon built upon µ2-bridging bromido and thione ligands via the C=S
bond was ascertained by a single-crystal X-ray diffraction study performed at 100 K. In the pres-
ence of PAr3 (Ar = Ph, p-Tol), the polymer chain was broken to yield the mononuclear complexes
[(Ar3P)2Cu{MeOC(=S)N(H)Ph}Br] C1 and C2.

Keywords: copper bromide; thiocarbamate; thione; crystal structure; hydrogen bonding;
aryl phosphine

1. Introduction

Thiocarbamates, also called thiocarbamides, with the general formula ROC(=S)N(H)R′

play not only a role in organic chemistry as building blocks for further transformations but
also in applications in various domains, such as biological and pharmacological activities
or catalysis [1–5]. Furthermore, they have attracted the attention of coordination chemists,
since the soft C=S thione function (according to Pearson’s HSAB principle) [6] readily
coordinates to a wide range of transition metal complexes, forming complexes with Cu(I),
Ag(I), Au(I), Hg(II), Ru(II), Rh(III), etc. [7–11]. Furthermore, they may act as potential
ditopic ligands capable of coordinating to a metal center both via their soft C=S function or
through the harder HNR2 group as demonstrated by the crystal structure determination of
the square-planar bis(O-methylphenylthiocarbamato)(triphenylphosphine)-palladium [11].
We have recently demonstrated that O-methyl-N-phenyl thiocarbamate L can even be
coordinated to p-block metal salts, such as BiI3 [12]. Some representative examples of
crystallographically characterized mono- and dinuclear complexes ligated by O-methyl-N-
phenyl thiocarbamate are presented in Scheme 1 [7,8,12].

With the aim to investigate putative arene-C–H···π(quasi-chelate ring) interactions
in copper(I) crystal structures, Tiekink et al. reported in 2014 on the synthesis of the
complex [(Ph3P)2Cu{MeOC(=S)N(H)Ph}Cl] by the reaction of CuCl with L in the presence
of two equivalents of PPh3. [7], shown as complex A in Scheme 1. In a continuation
of our investigations on the coordination chemistry of thione-type ligands on diverse
metal centers [13–16], our group extended the preparation of this type of Cu(I) complex
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to CuBr and CuI, systematically analyzed by crystal structure determinations a wide
series of complexes [(Ar3P)2Cu{ROC(=S)N(H)Ph}X)] (Ar = Ph, p-C6H4OMe; X = Br, I), and
investigated the biological activity of these compounds featuring intramolecular N-H···Hal
bonding, giving rise to six-membered cycles [17]. We also reported that the formation
of [(Ar3P)2Cu{ROC(=S)N(H)Ph}I)] is preceded in the initial phase of the reaction by the
formation of mono-dimensional coordination polymers of type [{Cu(µ2-I)2Cu}(µ2-L)2]n [17].
We now investigate in more detail the outcome of the reaction of CuBr with L, describing
herein the synthesis and crystal structure of the resulting coordination polymer [{Cu(µ2-
Br)2Cu}{µ2-MeOC(=S)N(H)Ph}2]n CP1 and reporting on its reactivity towards PAr3.
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2. Results and Discussion

The hitherto unknown coordination polymer [{Cu(µ2-Br)2Cu}{µ2-MeOC(=S)N(H)Ph}2]n
CP1 was obtained by the addition of one equivalent of O-methyl N-phenyl thiocarbamate
L to a solution of CuBr in MeCN (Scheme 2). After stirring for 20 min, the precipitation of a
colorless microcrystalline material occurred, which upon heating for 5 min almost redis-
solved. Upon cooling, colorless crystals started to grow. According to the elemental analysis
of this air-stable material, one L molecule is attached per CuBr motif. This polymeric mate-
rial, whose characterization is described below, reacts straightforwardly upon the addition
of two equivalents of PPh3 per CuBr unit to form by the splitting of the µ2-Br bridges of CP1
the mononuclear tetrahedral complex [(Ph3P)2Cu{MeOC(=S)N(H)Ph}Br] C1 (Scheme 2).
Since this complex has been recently fully characterized, we refer for its spectroscopic data
to ref. [17]. In an analogous manner, CP1 reacts with tris(p-tolyl)phosphine PTol3-p to yield
the derivative [(Tol3P)2Cu{MeOC(=S)N(H)Ph}Br] C2 with over an 85% yield as an air-stable
crystalline solid. Its 31P NMR spectrum in CDCl3 shows a single broadened resonance
at δ −6.34 with a ∆δ of 0.92 ppm with respect to free PTol3 [18]. The 1H NMR spectrum
displays a strong singlet at δ 2.33 ppm, attributed to the six equivalent methyl groups of the
p-tolyl rings. The characteristic signals of the thiocarbamate moiety at δ 4.06 and 10.54 ppm
are assigned to -OCH and the NH group while the aromatic protons are observed as a
multiplet between δ 7.03 and 7.39 ppm (Figure S2). In the proton-decoupled 13C NMR
spectrum, a single resonance at δ 21.4 ppm is seen for the six magnetically equivalent Me
substituents. The C-atom of the ligated thione function resonates at δ 187.3 ppm (Figure S3).
The ATR-IR spectrum features a broadened N-H vibration at 3160 cm−1, indicative of an in-
tramolecular N-H···Br interaction, as was crystallographically evidenced for C1 (Figure S4).
Upon the treatment of CP1 with an excess of PPh3, the dissociation of the coordinated
thione ligand occurs, yielding finally, among other non-identified products, the cluster
compounds [(PPh3)2Cu(µ2-Br)2CuPPh3] and [Cu4Br4(PPh3)4], which are already known in
the literature, as evidenced by X-ray diffraction [19].
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Since the compound CP1 is not soluble enough to be characterized by NMR spec-
troscopy, we examined the material crystallizing in the triclinic space group P1 by an
X-ray diffraction study performed at 100 K. As shown in Figure 1, a mono-dimensional
ribbon has formed, which is constituted of rhomboid-shaped dinuclear {Cu(µ2-Br)2Cu}
units that are interconnected through the bridging C=S groups of the L molecules. Each
Cu(I) center of CP1 has thus a tetrahedral coordination sphere (neglecting the Cu···Cu
interaction). The Cu–Cu contact within the {Cu(µ2-Br)2Cu} rhomboid of 2.8339(10) Å falls
within the limit of the Van der Waals radii of two Cu atoms (2.8 Å) and can be considered
as weakly bonding. However, without computation, it remains speculative to discuss the
contribution of metallophilic interactions, which can occur both in molecular compounds
or coordination polymers incorporating neighboring coinage metal centers [20–22].

Similar values have been reported for the 1D CPs [{Cu(µ2-Br)2Cu}{µ2-PhC(=S)NH2}]n
and [{Cu(µ2-Br)2Cu}(µ-PhS(CH2)3SPh)2]n, in which the metal centers within the rhom-
boid clusters are separated by 2.857(3) and 2.7851(12) Å, respectively [23,24]. For the
molecular compounds [{Cu(µ2-Br)2}(1-oxa-4,7-dithiacyclononane)2] (2.852(1) Å), [{Cu(µ2-
Br)2{dibenzo[e,m][1,4,8,11]dioxadithia-cyclotetradecine-S,S’}2] (2.919(7) Å), and the supra
molecular compound tetrakis(4,5-bis(methylsulfanyl)-1,3-dithiole-2-thione)-bis(µ2-bromo)
dicopper (2.893(1) Å), the Cu···Cu interaction lies in a similar range [16,25,26]. A further
example is the thione-bridged dinuclear complex [Cu2Br2(µ-S-mimzSH)2(η1-S-mimzSH)2]
(2.877(6) Å), obtained by the reaction of CuBr with 1-methyl-1,3-imidazoline-2-thione
(mimzSH) in a 1:2 molar ratio [27].

This is in contrast with the recently described iodido analog [{Cu(µ2-I)2Cu}{µ2-MeOC
(=S)N(H)Ph}2]n CP2, for which a much shorter Cu–Cu separation of only 2.6563(7) Å was
evidenced [17]. The C=S bond is slightly elongated with respect to that of non-ligated
MeOC(=S)N(H)Ph (1.711(5) vs. 1.6708(11) Å) [28].
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Figure 1. Crystal structure of the 1D ribbon of [{Cu(µ2-Br)2Cu}(µ2-L)2]n CP1 running along the a
axis. Selected bond lengths (Å) and angles (deg) of CP1: Cu···Cu1 2.8649(10), Cu–Cu2 2.8339(10),
Br–Cu 2.4620(7), Cu–S 2.2966(12), Cu–S2 2.4157(12), S–C1 1.711(5), O–C1 1.313(5), O–C2 1.453(5),
N–C1 1.335(5), N–C3 1.421(6); Cu2–Cu–Cu1 171.28(5), S–Cu–Br 117.68(4), S–Cu–Br1 107.64(4), S–Cu–S
106.11(4), Br–Cu–Br1 109.12(2), Br–Cu–Cu1 54.83(2), Br–Cu–Cu2 130.17(3), Br1–Cu–Cu2 120.12(3),
S–Cu–Cu1 131.40(4), S–Cu–Cu2 51.13(3), S–Cu–Cu1 131.30(4), N–C1–S 121.7(3), C8–C3–N 115.3(4),
and C7–C8–C3 120.4(3). Symmetry transformation used to generate equivalent atoms: 1 2-x, 1-y, 2-z;
2 1-x, 1-y, 2-z.

Noteworthy is also the occurrence of the secondary N-H···Br interaction of 2.62(6)
Å (dN ···Br 3.440(4) Å, indicated by the red dashed lines in Figure 1. This interaction
is noticeably shorter and in consequence stronger than the weak intramolecular N-H···I
contacts of 2.748 Å and 2.803 Å encountered for CP2 [17]. A similar systematic shortening
of the intramolecular N-H···X bonding occurring in [(Ph3P)2Cu{MeOC(=S)N(H)Ph}X]
(X = I, Br, Cl) and giving rise to six-member cycles has also been evidenced recently by us
(see Scheme 1) [17]. Note that in the latter case, this intramolecular hydrogen bonding is
even stronger for the molecular bromido complex C1 compared to CP1 (2.51(2) vs. 2.62(6)).
Furthermore, a loose intramolecular S···H contact of 2.672 Å occurs between the sulfur
atom and the H atom of the NH group.

In the packing, the ribbons of CP1 are aligned in a co-parallel arrangement and are
running along the a axis (Figure 2). There are also weak supramolecular interchain contacts
between Br and the H atom of C7 of the aryl cycle (C7-H7··· Br 2.919 Å).

To check the phase purity of this material, a grounded sample has been analyzed by
powder X-ray diffraction (PXRD). The experimental PXRD pattern matches well with the
simulated ones, confirming the homogeneity of the phases. A comparison of the PXRD
patterns of CP1 is illustrated in Figure 3.
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Figure 3. Comparison of the experimental PXRD pattern of CP1 with the simulated one (blue).

3. Experimental Section

Synthesis of CP1—We added 1 eq. of O-methyl N-phenylthiocarbamate L (334 mg,
2 mmol) to a solution of CuBr (286 mg, 2 mmol) in 12 mL of acetonitrile. A colorless
precipitation was immediately noticed. The mixture was stirred 20 min at room temperature
and then shortly heated till almost all of the precipitates had redissolved. After 1 d, pale
yellowish crystals of CP1 were formed and then collected by filtration. Yield: 79%. Anal.
Calc. for C8H9BrCuNOS (M.W = 310.67 g·mol−1). C, 33.09; H, 4.01; N, 4.29; S 9.81%.
Found: C, 32.95; H, 4.00; N, 4.15; S 9.75. IR-ATR: 1026 (C–O), 1215 (C=S), 1440 ν(C–N),
3199 ν(N–H···Br), 3276 ν(N–H) cm−1.

Synthesis of C1—We added two equivalents of PPh3 (52 mg, 0.2 mmol) to a suspension
of CP1 (31 mg, 0.1 mmol) in 4 mL of MeCN, prepared as described above. The mixture
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was then heated for 20 min to 60 ◦C till all of the product was dissolved. Upon cooling, C1
crystallized. The characterization data are identical to those described previously [18].

Synthesis of C2—We added two equivalents of PTol3 (608 mg, 2 mmol) in several
portions to an in situ prepared suspension of CP1 (1 mmol). The mixture was then heated
for 20 min to 60 ◦C till all product was dissolved. Upon cooling, C2 crystallized in form
of colorless plates and was isolated with 82% yield. Anal. Calc. for C50H51CuBrNOP2S
(M.W. = 919.43 g·mol−1): C, 65.32; H, 5.59; N, 1.52; S, 3.49%. Found C, 65.20; H, 5.53; N,
1.59; S, 3.42%. 1H NMR: δ 2.33 (s, 18H, CH3), 4.08 (s, 3H, OCH3), 7.04 (d, 12H, PC6H4,
3JHH = 7.9 Hz), 7.15–7.39 (m, 17H, Ph and PC6H4, 3JHH = 7.9, 3JPH = 9.7 Hz), 10.54 (s, br,
1H, NH). 13C{1H} NMR: δ 21.4 (CH3Ar), 58.4 (CH3O), 121.9 (CH, Ph, Cmeta), 125.3 (CH,
Ph, Cpara), 128.9 (CH, Ph, Cortho), 129.2 (d, CH, m-PC6H4, 3JCP = 9.2 Hz), 130.4 (d, Cq,
CipsoPC6H4, 1JCP = 27.7 Hz), 133.9 (d, CH, o-PC6H4, 2JCP = 14.9 Hz), 137.2 (s, Cq, Cipso),
139.4 (Cq, p-PC6H4), 187.3 (Cq, C=S). 31P{1H}: δ – 6.34. IR-ATR: 1093 ν(C–O), 1222 ν(C=S),
1444 ν(C–N), 3160, 3110 ν(N–H) cm−1.

Crystal data for C8H9BrCuNOS were as follows: M = 310.67 g·mol−1, pale yellow
crystals, crystal size 0.362 × 0.102 × 0.047 mm3, Triclinic, space group P1, a = 5.6823(2) Å,
b = 7.6782(4) Å, c = 11.4019(5) Å, α =97.689(2)◦, β = 91.877(2)◦, γ = 91.143(2)◦,V = 492.58(4)
Å3, Z = 2, Dcalc = 2.095 g/cm3, T = 100 K, R1 =0.0475, Rw2 = 0.0976 for 5163 reflections with
I = 2σ (I) and 2995 independent reflections. Largest diff. peak/hole e/Å−3 1.04/−1.34. Data
were collected on Bruker D8 Venture four-circle diffractometer equipped with a PHOTON II
CPAD detector by Bruker AXS GmbH, using graphite-monochromated MoKα radiation
l = 0.71073 Å and were deposited at the Cambridge Crystallographic Data Centre as CCDC
2252606 (Supplementary Materials). The data can be obtained free of charge from the
Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/getstructures,
accessed on 3 February 2023. The structure was solved by direct methods and refined by
full-matrix least-squares calculation against F2 (SHELXL, 2015) [29–31].

4. Conclusions

We have crystallographically evidenced that CuBr reacts like CuI with a stoichiometric
amount of O-methyl-N-phenylthiocarbamate to yield a halide-bridged mono-dimensional
coordination polymer. We are currently extending this facile preparation of polymeric
materials to other O-alkyl N-arylthiocarbamates, such as MeOC(=S)N(H)Cy, and are inves-
tigating the splitting of the polymer chain by other P and As donor ligands.

Supplementary Materials: The following supporting information can be downloaded online: CIF
file, Check-CIF report, and IR and NMR spectra.
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