
HAL Id: hal-04123516
https://hal.science/hal-04123516

Submitted on 9 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Normalization-Equivariant Neural Networks with
Application to Image Denoising

Sébastien Herbreteau, Emmanuel Moebel, Charles Kervrann

To cite this version:
Sébastien Herbreteau, Emmanuel Moebel, Charles Kervrann. Normalization-Equivariant Neural Net-
works with Application to Image Denoising. Conference on Neural Information Processing Systems
(NeurIPS), Dec 2023, New-Orleans, United States. �10.48550/arXiv.2306.05037�. �hal-04123516�

https://hal.science/hal-04123516
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

NORMALIZATION-EQUIVARIANT NEURAL NETWORKS WITH
APPLICATION TO IMAGE DENOISING

Sébastien Herbreteau Emmanuel Moebel

Charles Kervrann

Centre Inria de l’Université de Rennes, France
{sebastien.herbreteau, emmanuel.moebel, charles.kervrann}@inria.fr

ABSTRACT

In many information processing systems, it may be desirable to ensure that any change of the input,
whether by shifting or scaling, results in a corresponding change in the system response. While
deep neural networks are gradually replacing all traditional automatic processing methods, they sur-
prisingly do not guarantee such normalization-equivariance (scale + shift) property, which can be
detrimental in many applications. To address this issue, we propose a methodology for adapting
existing neural networks so that normalization-equivariance holds by design. Our main claim is
that not only ordinary convolutional layers, but also all activation functions, including the ReLU
(rectified linear unit), which are applied element-wise to the pre-activated neurons, should be com-
pletely removed from neural networks and replaced by better conditioned alternatives. To this end,
we introduce affine-constrained convolutions and channel-wise sort pooling layers as surrogates and
show that these two architectural modifications do preserve normalization-equivariance without loss
of performance. Experimental results in image denoising show that normalization-equivariant neu-
ral networks, in addition to their better conditioning, also provide much better generalization across
noise levels.

1 Introduction

Sometimes wrongly confused with the invariance property which designates the characteristic of a function f not to
be affected by a specific transformation T applied beforehand, the equivariance property, on the other hand, means
that f reacts in accordance with T . Formally, invariance is f ◦ T = f whereas equivariance reads f ◦ T = T ◦ f ,
where ◦ denotes the function composition operator. Both invariance and equivariance play a crucial role in many areas
of study, including physics, computer vision, signal processing and have recently been studied in various settings for
deep-learning-based models [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

In this paper, we focus on the equivariance of neural networks fθ to a specific transformation T , namely normalization.
Although highly desirable in many applications and in spite of its omnipresence in machine learning, current neural
network architectures do not equivary to normalization. With application to image denoising, for which normalization-
equivariance is generally guaranteed for a lot of conventional methods [18, 20, 27, 22], we propose a methodology
for adapting existing neural networks, and in particular denoising CNNs [30, 32, 31, 34, 33], so that normalization-
equivariance holds by design. In short, the proposed adaptation is based on two innovations:

1. affine convolutions: the weights from one layer to each neuron from the next layer, i.e. the convolution
kernels in a CNN, are constrained to encode affine combinations of neurons (the sum of the weights is equal
to 1).

2. channel-wise sort pooling: all activation functions that apply element-wise, such as the ReLU, are substituted
with higher-dimensional nonlinearities, namely two by two sorting along channels that constitutes a fast and
efficient normalization-equivariant alternative.

Despite strong architectural constraints, we show that these simple modifications do not degrade performance and,
even better, increase robustness to noise levels in image denoising both in practice and in theory.

2 Related Work

A non-exhaustive list of application fields where equivariant neural networks were studied includes graph theory,
point cloud analysis and image processing. Indeed, graph neural networks are usually expected to equivary, in the
sense that a permutation of the nodes of the input graph should permute the output nodes accordingly. Several specific
architectures were investigated to guarantee such a property [5, 6, 7]. In parallel, rotation and translation-equivariant
networks for dealing with point cloud data were proposed in a recent line of research [12, 13, 14]. A typical application
is the ability for these networks to produce direction vectors consistent with the arbitrary orientation of the input point
clouds, thus eliminating the need for data augmentation. Finally, in the domain of image processing, it may be desirable
that neural networks produce outputs that equivary with regard to rotations of the input image, whether these outputs
are vector fields [8], segmentation maps [9, 10], labels for image classification [9] or even bounding boxes for object
tracking [11].

In addition to their better conditioning, equivariant neural networks by design are expected to be more robust to
outliers. A spectacular example has been revealed by S. Mohan et al. [1] in the field of image denoising. By simply
removing the additive constant (“bias”) terms in neural networks with ReLU activation functions, they showed that a
much better generalization at noise levels outside the training range was ensured. Although they do not fully elucidate
why biases prevent generalization, and their removal allows it, the authors establish some clues that the answer is
probably linked to the scale-equivariant property of the resulting encoded function: rescaling the input image by a
positive constant value rescales the output by the same amount.

3 Overview of normalization equivariance

3.1 Definitions and properties of three types of fundamental equivariances

We start with formal definitions of the different types of equivariances studied in this paper.
Definition 1 A function f : Rn 7→ Rm is said to be:

• scale-equivariant if ∀x ∈ Rn,∀λ ∈ R+
∗ , f(λx) = λf(x) ,

• shift-equivariant if ∀x ∈ Rn,∀µ ∈ R, f(x+ µ) = f(x) + µ ,
• normalization-equivariant if it is both scale-equivariant and shift-equivariant:

∀x ∈ Rn,∀λ ∈ R+
∗ ,∀µ ∈ R, f(λx+ µ) = λf(x) + µ ,

where addition with the scalar shift µ is applied element-wise.

Note that the scale-equivariance property is more often referred to as positive homogeneity in pure mathematics. Like
linear maps that are completely determined by their values on a basis, the above described equivariant functions are
actually entirely characterized by the values their take on specific subset of Rn, as stated by the following proposition
(see proof in Appendix D.1).
Proposition 1 (Characterizations) f : Rn 7→ Rm is entirely determined by its values on the:

• unit sphere S of Rn if it is scale-equivariant,
• orthogonal complement of Span(1n), i.e. Span(1n)

⊥, if it is shift-equivariant,
• intersection S ∩ Span(1n)

⊥ if it is normalization-equivariant,
where 1n denotes the all-ones vector of Rn.

Finally, Proposition 2 highlights three basic equivariance-preserving mathematical operations that can be used as
building blocks for designing neural network architectures.
Proposition 2 (Operations preserving equivariance) Let f and g be two equivariant functions of the same type
(either in scale, shift or normalization). Then, subject to dimensional compatibility, all of the following functions are
still equivariant:

• f ◦ g (f composed with g),
• x 7→ (f(x)⊤ g(x)⊤)⊤ (concatenation of f and g),
• (1− t)f + tg for all t ∈ R (affine combination of f and g).

2

3.2 Examples of normalization-equivariant conventional denoisers

A (“blind”) denoiser is basically a function f : Rn 7→ Rn which, given a noisy image y ∈ Rn, tries to map the
corresponding noise-free image x ∈ Rn. Since scaling up an image by a positive factor λ or adding it up a constant
shift µ does not change its contents, it is natural to expect scale and shift equivariance, i.e. normalization equivariance,
from the denoising procedure emulated by f . In image denoising, a majority of methods usually assume an additive
white Gaussian noise model with variance σ2. The corruption model then reads y ∼ N (x, σ2In), where In denotes
the identity matrix of size n, and the noise standard deviation σ > 0 is generally passed as an additional argument
to the denoiser (“non-blind” denoising). In this case, the augmented function f : (y, σ) ∈ Rn × R+

∗ 7→ Rn is said
normalization-equivariant if:

∀(y, σ) ∈ Rn × R+
∗ ,∀λ ∈ R+

∗ ,∀µ ∈ R, f(λy + µ, λσ) = λf(y, σ) + µ , (1)

as, according to the laws of statistics, λy + µ ∼ N (λx + µ, (λσ)2In). In what follows, we give some well-known
examples of traditional denoisers that are normalization-equivariant (see proofs in Appendix D.2).

Noise-reduction filters: The most rudimentary methods for image denoising are the smoothing filters, among which
we can mention the averaging filter or the Gaussian filter for the linear filters and the median filter which is nonlinear.
These elementary “blind” denoisers all implement a normalization-equivariant function. More generally, one can
prove that a linear filter is normalization-equivariant if and only if its coefficients add up to 1. In others words,
normalization-equivariant linear filters process images by affine combinations of pixels.

Patch-based denoising: The popular N(on)-L(ocal) M(eans) algorithm [20] and its variants [22, 23, 25] consist in
computing, for each pixel, an average of its neighboring noisy pixels, weighted by the degree of similarity of patches
they belong to. In other words, they processes images by convex combinations of pixels. More precisely, NLM can be
defined as:

fNLM(y, σ)i =
1

Wi

∑
yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥

2
2

h2 yj with Wi =
∑

yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥

2
2

h2 (2)

where yi denotes the ith component of vector y, p(yi) represents the vectorized patch centered at yi, Ω(yi) the set of
its neighboring pixels and the smoothing parameter h is proportional to σ as proposed by several authors [21, 24, 25].
Defined as such, fNLM is a normalization-equivariant function. More recently, NL-Ridge [27] and LIChI [28] propose
to process images by linear combinations of similar patches and achieves state-of-the-art performance in unsupervised
denoising. When restricting the coefficients of the combinations to sum to 1, that is imposing affine combination
constraints, the resulting algorithms encode normalization-equivariant functions as well.

TV denoising: Total variation (TV) denoising [18] is finally one of the most famous image denoising algorithm,
appreciated for its edge-preserving properties. In its original form [18], a TV denoiser is defined as a function f :
Rn × R+

∗ 7→ Rn that solves the following equality-constrained problem:

fTV(y, σ) = argmin
x∈Rn

∥x∥TV s.t. ∥y − x∥22 = nσ2 (3)

where ∥x∥TV := ∥∇x∥2 is the total variation of x ∈ Rn. Defined as such, fTV is a normalization-equivariant
function.

3.3 The case of neural networks

Deep learning hides a subtlety about normalization equivariance that deserves to be highlighted. Usually, the weights
of neural networks are learned on a training set containing data all normalized to the same arbitrary interval [a0, b0].
This training procedure improves the performance and allows for more stable optimization of the model. At inference,
unseen data are processed within the interval [a0, b0] via a a-b linear normalization with a0 ≤ a < b ≤ b0 denoted
Ta,b and defined by:

Ta,b : y 7→ (b− a)
y −min(y)

max(y)−min(y)
+ a . (4)

Note that this transform is actually the unique linear one with positive slope that exactly bounds the output to [a, b].
The data is then passed to the trained network and its response is finally returned to the original range via the inverse
operator T −1

a,b . This proven pipeline is actually relevant in light of the following proposition (see proof in Appendix
D.1).

3

Denoising with “blind” DnCNN
PSNR: 36.89 DB PSNR: 31.47 DB

Ground truth (a) (b)
PSNR: 32.04 DB PSNR: 35.22 DB PSNR: 37.93 DB

Noisy (c) (d)

Figure 1: Influence of normalization for deep-learning-based image denoising. The raw input data is a publicly
available real noisy image of the Convallaria dataset [17]. “Blind” DnCNN [30] with official pre-trained weights
is used for denoising and is applied on four different normalization intervals displayed in red, each of which being
included in [0, 1] over which it was learned. PSNR is calculated with the average of 100 independent noisy static
acquisitions of the same sample (called ground truth). Interestingly, the straightforward interval [0, 1] does not give
the best results. Normalization intervals are (a) [0, 1], (b) [0.08, 0.12], (c) [0.48, 0, 52] and (d) [0.64, 0.96]. In the light
of the denoising results (b)-(c) and (c)-(d), DnCNN is neither shift-equivariant, nor scale-equivariant.

Table 1: Equivariance properties of several image denoisers (left: traditional, right: learning-based)

TV NLM NL-Ridge LIChI DCT BM3D WNNM DnCNN NLRN SwinIR DRUNet

Scale ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓
Shift ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Proposition 3 ∀ a < b ∈ R,∀ f : Rn 7→ Rm, T −1
a,b ◦ f ◦ Ta,b is a normalization-equivariant function.

While normalization-equivariance appears to be solved, a question is still remaining: how to choose the hyperparam-
eters a and b for a given function f ? Obviously, a natural choice for neural networks is to take the same parameters a
and b as in the learning phase whatever the input image is, i.e. a = a0 and b = b0, but are they really optimal? The
answer to this question is generally negative. Figure 1 depicts an example of the phenomenon in image denoising,
taken from a real-world application. In this example, the straightforward choice is largely sub-optimal. This suggests
that there are always inherent performance leaks for deep neural networks due to the two degrees of freedom induced
by the normalization (i.e., choice of a and choice of b). In addition, this poor conditioning can be a source of confusion
and misinterpretation in critical applications.

3.4 Categorizing image denoisers

Table 1 summarizes the equivariance properties of several popular denoisers, either conventional [18, 20, 27, 28, 19, 26,
29] or deep-learning-based [30, 32, 35, 36]. Interestingly, if scale-equivariance is generally guaranteed for traditional
denoisers, not all of them are equivariant to shifts. In particular, the widely used algorithms DCT [19] and BM3D [26]
are sensitive to offsets, mainly because the hard thresholding function at their core is not shift-equivariant. Regarding
the deep-learning-based networks, only DRUNet [32] is insensitive to scale because it is a bias-free convolutional
neural network with only ReLU activation functions [1]. In the next section, we show how to adapt existing neural
architectures to guarantee normalization-equivariance without loss of performance and study the resulting class of
parameterized functions (fθ).

4 Design of Normalization-Equivariant Networks

4.1 Affine convolutions

To justify the introduction of a new type of convolutional layers, let us study one of the most basic neural network,
namely the linear (parameterized) function fΘ : x ∈ Rn 7→ Θx, where parameters Θ are a matrix of Rm×n. Indeed,
fΘ can be interpreted as a dense neural network with no bias, no hidden layer and no activation function. Obviously,
fΘ is always scale-equivariant, whatever the weights Θ. As for the shift-equivariance, a simple calculation shows

4

Figure 2: Illustration of the proposed alternative for replacing the traditional scheme “convolution + element-wise
activation function” in convolutional neural networks: affine convolutions supersede ordinary ones by restricting the
coefficients of each kernel to sum to one and the proposed sort pooling patterns introduce nonlinearities by sorting two
by two the pre-activated neurons along the channels.

that:
x 7→ Θx is shift-equivariant ⇔ ∀x ∈ Rn,∀µ ∈ R,Θ(x+ µ1n) = Θx+ µ1m ⇔ Θ1n = 1m . (5)

Therefore, fΘ is normalization-equivariant if and only if each row of matrix Θ sums to 1. In other words, for the
normalization-equivariance to hold, the rows of Θ must encode weights of affine combinations. Transposing the
demonstration to any convolutional neural network, a convolutional layer preserves the normalization-equivariance if
and only if the weights of the each convolutional kernel sums to 1. In the following, we call such convolutional layers
“affine convolutions”.

As a consequence, since normalization-equivariance is preserved through function composition, concatenation and
affine combination (see Prop. 2), a (linear) convolutional neural network composed of only affine convolutions with
no bias and possibly skip or affine residual connections (trainable affine combination of two layers), is guaranteed to
be normalization-equivariant, provided that padding is performed with existing features (reflect, replicate or circular
padding for example). Obviously, in their current state, these neural networks are of little interest, as linear functions do
not encode best-performing functions for many applications, image denoising being no exception. Nevertheless, based
on such networks, we show in the next subsection how to introduce nonlinearities without breaking the normalization-
equivariance.

4.2 Channel-wise sort pooling as a normalization-equivariant alternative to ReLU

The first idea that comes to mind is to apply a nonlinear activation function φ : R 7→ R preserving normalization-
equivariance after each affine convolution. In other words, we look for a nonlinear solution φ of the characteristic
functional equation of normalization-equivariant functions (see Def. 1) for n = 1. Unfortunately, the unique solution
is the identity function which is linear (see Prop. 1: S ∩ Span(1n)

⊥ = ∅ for n = 1). Therefore, activation functions
that apply element-wise are to be excluded.

To find interesting nonlinear functions, one needs to examine multi-dimensional activation functions, i.e. ones of the
form φ : Rn 7→ Rm with n ≥ 2. In order to preserve the dimensions of the neural layers and to limit the computational
costs, we focus on the case n = m = 2, meaning that φ processes pre-activated neurons by pairs. According to Prop.
1, normalization-equivariant functions are completely determined by their values on S ∩ Span(1n)

⊥, which reduces
to the characteristic set C = {−u, u}, where u = (−1/

√
2, 1/

√
2), when considering the Euclidean distance of R2.

By arbitrarily setting φ(−u) = φ(u) = u, the resulting function simply reads:

φ : (x, y) ∈ R2 7→
(
min(x, y)
max(x, y)

)
, (6)

which is nothing else that the sorting function in R2. More generally, it is easy to show that all the sorting functions of
Rn are normalization-equivariant. The good news is that these functions are nonlinear as soon as n ≥ 2. Therefore,
they are candidates to replace the conventional activation functions such as the popular ReLU (rectified linear unit)
function.

Since the sorting function (6) is to be applied on non-overlapping pairs of neurons, the partitioning of layers needs to
be determined. In order not to mix unrelated neurons, we propose to apply this two-dimensional activation function

5

...... NOISY SCALE-EQUIVARIANT NORMALIZATION-EQUIVARIANT

Denoised Adaptive filters Denoised Adaptive filters
σ
=

2
5

Pixel 1

Pixel 2

PSNR:
20.17 DB

PSNR:
32.38 DB

Σ = 0.99

Σ = 1.00

PSNR:
32.36 DB

Σ = 1

Σ = 1

σ
=

5

PSNR:
34.15 DB

PSNR:
30.56 DB

Σ = 0.94

Σ = 0.99

PSNR:
36.72 DB

Σ = 1

Σ = 1

Figure 3: Visual comparisons of the generalization capabilities of a scale-equivariant neural network (left) and its
normalization-equivariant counterpart (right) for Gaussian noise. Both networks were trained for Gaussian noise at
noise level σ = 25 exclusively. The adaptive filters (rows of Ayr

θ in Prop. 4) are indicated for two particular pixels
as well as the sum of their coefficients (note that some weights are negative, indicated in red). The scale-equivariant
network tends to excessively smooth out the image when evaluated at a lower noise level, whereas the normalization-
equivariant network is more adaptable and considers the underlying texture to a greater extent.

channel-wisely across layers and call this operation “sort pooling” in reference to the max pooling operation, widely
used for downsampling, and from which it can be effectively implemented. Figure 2 illustrates the sequence of the
two proposed innovations, namely affine convolution followed by channel-wise sort pooling, to replace the traditional
scheme “conv+ReLU”, while guaranteeing normalization-equivariance.

4.3 Encoding adaptive affine filters

Based on Prop. 2, we can formulate the following proposition which tells more about the class of parameterized
functions (fθ) encoded by the proposed networks (see proof in Appendix D.1).

Proposition 4 Let fNE
θ : Rn 7→ Rm be a CNN composed of only:

• affine convolution kernels with no bias and where padding is made of existing features,
• sort pooling nonlinearities,
• possibly skip or affine residual connections.

Then, fNE
θ is a normalization-equivariant continuous piecewise-linear function with finitely many pieces. Moreover,

on each piece represented by the vector yr,

fNE
θ (y) = Ayr

θ y, with Ayr

θ ∈ Rm×n such that Ayr

θ 1n = 1m .

In Prop. 4, the subscripts on Ayr

θ serve as a reminder that this matrix depends on the sort pooling activation patterns,
which in turn depend on both the input vector y and the weights θ. As already revealed for bias-free networks with
ReLU [1], Ayr

θ is the Jacobian matrix of fNE
θ taken at any point y in the interior of the piece represented by vector

yr. Moreover, as Ayr

θ 1n = 1m, the output vector of such networks are locally made of fixed affine combinations
of the entries of the input vector. And since a CNN has a limited receptive field centered on each pixel, fNE

θ can be
thought of as an adaptive filter that produces an estimate of each pixel through a custom affine combination of pixels.
By examining these filters in the case of image denoising (see Fig. 3), it becomes apparent that they vary in their
characteristics and are intricately linked to the contents of the underlying images. Indeed, these filters are specifically
designed to cater to the specific local features of the noisy image: averaging is done over uniform areas without
affecting the sharpness of edges. Note that this behavior has already been extensively studied by [1] for unconstrained
filters.

The total number of fixed adaptive affine filters depends on the weights θ of the network fNE
θ and is bounded by 2S

where S represents the total number of sort pooling patterns traversed to get from the receptive filed to its final pixel.
Obviously, this upper bound grows exponentially with S, suggesting that a limited number of sort pooling operations

6

may generate an extremely large number of filters. Interestingly, if ReLU activation functions where used instead, the
upper bound would reach 22S .

5 Experimental results

We demonstrate the effectiveness and versatility of the proposed methodology in the case of image denoising. To
this end, we modify two well-established neural network architectures for image denoising, chosen for both their
simplicity and efficiency, namely DRUNet [32]: a state-of-the-art U-Net with residual connections [2]; and FDnCNN,
the unpublished flexible variant of the popular DnCNN [30]: a simple feedforward CNN that chains “conv+ReLU”
layers with no downsampling, no residual connections and no batch normalization during training [3], and with a
tunable noise level map as additional input [31]. We show that adapting these networks to become normalization-
equivariant does not adversely affect performance and, better yet, increases their generalization capabilities. For each
scenario, we train three variants of the original Gaussian denoising network for grayscale images: ordinary (original
network with additive bias), scale-equivariant (bias-free variation with ReLU [1]) and our normalization-equivariant
architecture (see Fig. 2). Details about training and implementations can be found in Appendix A and B; the code
is available at https://github.com/sherbret/normalization_equivariant_nn/. Unless otherwise noted, all
results presented in this paper are obtained with DRUNet [32]; similar outcomes can be achieved with FDnCNN [30]
architecture (see Appendix C).

Finally, note that both DRUNet [32] and FDnCNN [30] can be trained as “blind” but also as “non-blind” denoisers
and thus achieve increased performance, by passing an additional noisemap as input. In the case of additive white
Gaussian noise of variance σ2, the noisemap is constant equal to σ1n and the resulting parameterized functions can
then be put mathematically under the form fθ : (y, σ) ∈ Rn × R+

∗ 7→ Rn. In order to integrate this feature to
normalization-equivariant networks as well, a slight modification of the first affine convolutional layer must be made.
Indeed, by adapting the proof (5) to the case (1), we can show that the first convolutional layer must be affine with
respect to the input image y only – the coefficients of the kernels acting on the image pixels add up to 1 – while the
other coefficients of the kernels need not be constrained.

5.1 The proposed architectural modifications do not degrade performance

The performance, assessed in terms of PSNR values, of our normalization-equivariant alternative (see Fig. 2) and of
its scale-equivariant and ordinary counterparts is compared in Table 2 for “non-blind” architectures on two popular
datasets [37]. We can notice that the performance gap between two different variants is less than 0.05 dB at most for
all noise levels, which is not significant. This result suggests that the class of parameterized functions (fθ) currently
used in image denoising can drastically be reduced at no cost. Moreover, it shows that it is possible to dispense with
activation functions, such as the popular ReLU: nonlinearities can simply brought by sort pooling patterns. In terms
of subjective visual evaluation, we can draw the same conclusion since images produced by two architectural variants
inside the training range are hardly distinguishable (see Fig. 3 at σ = 25).

Table 2: The PSNR (dB) results of “non-blind” deep-learning-based methods applied to popular grayscale datasets
corrupted by synthetic white Gaussian noise with σ = 15, 25 and 50.

Dataset Set12 BSD68

Noise level σ 15 / 25 / 50 15 / 25 / 50

DRUNet [32]
ordinary 33.23 / 30.92 / 27.87 31.89 / 29.44 / 26.54

scale-equiv 33.25 / 30.94 / 27.90 31.91 / 29.48 / 26.59
norm-equiv 33.20 / 30.90 / 27.85 31.88 / 29.45 / 26.55

FDnCNN [30]
ordinary 32.87 / 30.49 / 27.28 31.69 / 29.22 / 26.27

scale-equiv 32.85 / 30.49 / 27.29 31.67 / 29.20 / 26.25
norm-equiv 32.85 / 30.50 / 27.27 31.69 / 29.22 / 26.25

5.2 Increased robustness across noise levels

S. Mohan et al. [1] revealed that bias-free neural networks with ReLU, which are scale-equivariant, could much
better generalize when evaluated at new noise levels beyond their training range, than their counterparts with bias that
systematically overfit. Even if they do not fully elucidate how such networks achieve this remarkable generalization,
they suggest that scale-equivariance certainly plays a major role. What about normalization-equivariance then? We

7

https://github.com/sherbret/normalization_equivariant_nn/

8 12 16 20 24 28 32

8

12

16

20

24

28

32

Input PSNR

O
ut

pu
tP

SN
R

ordinary
scale-equiv
norm-equiv
identity

8 12 16 20 24 28 32

8

12

16

20

24

28

32

36

Input PSNR
8 12 16 20 24 28 32

8

12

16

20

24

28

32

36

Input PSNR

Figure 4: Comparison of the performance of our normalization-equivariant alternative with its scale-equivariant and
ordinary counterparts for Gaussian denoising with the same architecture on Set12 dataset. The vertical blue line
indicates the unique noise level on which the networks were trained exclusively (from left to right: σ = 50, σ = 25
and σ = 10). In all cases, normalization-equivariant networks generalize much more robustly beyond the training
noise level.

PSNR: 10.63 DB
(λ = 3)

(a)

PSNR: 12.32 DB PSNR: 25.28 DB PSNR: 25.20 DB

input y f∅
θ (y) 3f∅

θ (y/3) fNE
θ (y)

PSNR: 22.67 DB
(λ = 0.75)

(b)

PSNR: 31.68 DB PSNR: 32.46 DB PSNR: 32.45 DB

inputy (x ∈ [0.3, 1]n) fSE
θ (y) fSE

θ (y − 0.3) + 0.3 fNE
θ (y)

Figure 5: Denoising results for example images of the form y = x + λε (see notations of subsection 5.2) with
σ = 25/255 and x ∈ [0, 1]n, by CNNs specialized for noise level σ only. f∅

θ , fSE
θ and fNE

θ denote the ordinary, scale-
equivariant and normalization-equivariant variants, respectively. In order to get the best results with f∅

θ and fSE
θ , it

is necessary know the renormalization parameters (λ, µ) such that (x − µ)/λ belongs to D ⊂ [0, 1]n (see subsection
5.2). Note that for fSE

θ , it is however sufficient to know only µ as λ is implicit by construction. In contrast, fNE
θ can be

applied directly.

have compared the robustness faculties of the three variants of networks when trained at a fixed noise level σ for
Gaussian noise. Figure 4 summarizes the explicit results obtained: normalization-equivariance pushes generalization
capabilities of neural networks one step further. While performance is identical to their scale-equivariant counterparts
when evaluated at higher noise levels, the normalization-equivariant networks are, however, much more robust at
lower noise levels. This phenomenon is also illustrated in Fig. 3.

Demystifying robustness Let x be a clean patch of size n, representative of the training set on which a CNN fθ
was optimized to denoise its noisy realizations y = x + ε with ε ∼ N (0, σ2In) (denoising at a fixed noise level σ
exclusively). Formally, we note x ∈ D ⊂ Rn, where D is the space of representative clean patches of size n on which
fθ was trained. We are interested in the output of fθ when it is evaluated at x+ λε (denoising at noise level λσ) with
λ > 0. Assuming that fθ encodes a normalization-equivariant function, we have:

∀λ ∈ R+
∗ ,∀µ ∈ R, fθ(x+ λε) = λfθ((x− µ)/λ+ ε) + µ . (7)

8

The above equality shows how such networks can deal with noise levels λσ different from σ: normalization-
equivariance simply brings the problem back to the denoising of an implicitly renormalized image patch with fixed
noise level σ. Note that this artificial change of noise level does not make this problem any easier to solve as the
signal-to-noise ratio is preserved by normalization. Obviously, the denoising result of x + λε will be all the more
accurate as (x− µ)/λ is a representative patch of the training set. In other words, if (x− µ)/λ can still be considered
to be in D, then fθ should output a consistent denoised image patch. For a majority of methods [30, 32, 31], training
is performed within the interval [0, 1] and therefore x/λ still belongs generally to D for 1 < λ < 10 (contraction), but
this is much less true for λ < 1 (stretching) for the reason that it may exceed the bounds of the interval [0, 1]. This
explains why scale-equivariant functions do not generalize well to noise levels lower than their training one. In con-
trast, normalization-equivariant functions can benefit from the implicit extra adjustment parameter µ. Indeed, there
exists some cases where the stretched patch x/λ is not in D but (x−µ)/λ is (see Fig. 5b). This is why normalization-
equivariant networks are more able to generalize at low noise levels. Note that, based on this argument, ordinary
neural networks trained at a fixed noise level σ can also be used to denoise images at noise level λσ, provided that a
correct normalization is done beforehand. However, this time the normalization is explicit: the exact scale factor λ,
and possibly the shift µ, must be known (see Fig. 5a).

6 Conclusion and perspectives

In this work, we presented an original approach to adapt the architecture of existing neural networks so that they
become normalization-equivariant, a property highly desirable and expected in many applications such that image
denoising. We argue that the classical pattern “conv+ReLU” can be favorably replaced by the two proposed innova-
tions: affine convolutions that ensure that all coefficients of the convolutional kernels sum to one; and channel-wise
sort pooling nonlinearities as a substitute for all activation functions that apply element-wise, including ReLU or sig-
moid functions. Despite these two important architectural changes, we show that the performance of these alternative
networks is not affected in any way. On the contrary, thanks to their better-conditioning, they benefit, in the context of
image denoising, from an increased interpretability and especially robustness to variable noise levels both in practice
and in theory.

More generally, the proposed channel-wise sort pooling nonlinearities may potentially change the way we commonly
understand neural networks: the usual paradigm that neurons are either active (“fired”) or inactive, is indeed somewhat
shaken. With sort pooling nonlinearities, neurons are no longer static but they “wiggle and mingle” according to the
received signal. We believe that this discovery may help building new neural architectures, potentially with stronger
theoretical guarantees, and more broadly, may also open the doors for novel perspectives in deep learning.

Acknowledgments

This work was supported by Bpifrance agency (funding) through the LiChIE contract. Computations were performed
on the Inria Rennes computing grid facilities partly funded by France-BioImaging infrastructure (French National
Research Agency - ANR-10-INBS-04-07, “Investments for the future”). We would like to thank R. Fraisse (Airbus)
for fruitful discussions.

References

[1] S. Mohan, Z. Kadkhodaie, E.P. Simoncelli and C. Fernandez-Granda, “Robust and interpretable blind image denoising via
bias-free convolutional neural networks,” ICLR 2020.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770-778, 2016.

[3] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in
International conference on machine learning, pmlr, pp. 448-456, 2015.

[4] T. S. Cohen, M. Welling, “Group equivariant convolutional networks,” in International Conference on Machine Learning, pp.
2990–2999, 2016.

[5] N. Keriven and G. Peyré, “Universal invariant and equivariant graph neural networks,” in Advances in Neural Information
Processing Systems, vol. 32, 2019.

[6] V. G. Satorras, E. Hoogeboom, and M. Welling, “E (n) equivariant graph neural networks,” in International conference on
machine learning PMLR, pp. 9323-9332, 2021.

[7] S. Batzner, A. Musaelian, L. Sun, et al., “E (3)-equivariant graph neural networks for data-efficient and accurate interatomic
potentials,” in Nature communications, vol. 13, no. 1, p. 2453, 2022.

9

[8] D. Marcos, M. Volpi, N. Komodakis, and D. Tuia, “Rotation equivariant vector field networks,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 5048-5057, 2017.

[9] M. Weiler, F. A. Hamprecht, and M. Storath, “Learning steerable filters for rotation equivariant cnns,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 849-858, 2018.

[10] B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling, “Rotation equivariant CNNs for digital pathology,” in
Medical Image Computing and Computer Assisted Intervention–MICCAI: 21st International Conference, Granada, Spain,
Proceedings, Part II 11. Springer International Publishing, pp. 210-218, 2018.

[11] D. K. Gupta, D. Arya, and E. Gavves, “Rotation equivariant siamese networks for tracking,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12362-12371, 2021.

[12] N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, and P. Riley, “Tensor field networks: Rotation- and translation-
equivariant neural networks for 3D point clouds,” arXiv preprint arXiv:1802.08219, 2018.

[13] F. Fuchs, D. Worrall, V. Fischer, and M. Welling, (2020). “Se (3)-transformers: 3d roto-translation equivariant attention
networks,” in Advances in Neural Information Processing Systems, vol. 33, pp. 1970-1981, 2020.

[14] G. Bökman, F. Kahl, and A. Flinth, “Zz-net: A universal rotation equivariant architecture for 2d point clouds,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10976-10985, 2022.

[15] K. Fukushima, Neocognitron: “A self-organizing neural network model for a mechanism of pattern recognition unaffected by
shift in position,” in Biol. Cybernetics, vol.36, pp. 193–202, 1980.

[16] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation applied to
handwritten zip code recognition,” in Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

[17] M. Prakash, M. Lalit, P. Tomancak, A. Krul, and F. Jug, “Fully unsupervised probabilistic noise2void” in IEEE 17th Interna-
tional Symposium on Biomedical Imaging (ISBI), pp. 154-158, 2020.

[18] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” in Physica D: nonlinear
phenomena, vol. 60, pp. 259-268, 1992.

[19] G. Yu and G. Sapiro, “DCT image denoising: a simple and effective image denoising algorithm,” in Image Processing On
Line, vol. 1, pp. 292–296, 2011.

[20] A. Buades, B. Coll, and J.-M. Morel, “A review of image denoising algorithms, with a new one,” in SIAM Journal on
Multiscale Modeling and Simulation, vol. 4, no. 2, pp. 490-530, 2005.

[21] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., San Diego, CA, USA, pp. 60–65, 2005.

[22] Q. Jin, I. Grama, C. Kervrann, and Q. Liu, “Non-local means and optimal weights for noise removal,” in SIAM Journal on
Imaging Sciences, vol. 10, no. 4, pp. 1878-1920, 2017.

[23] C. Louchet and L. Moisan, “Total variation as a local filter,” SIAM Journal on Imaging Sciences, vol. 4, no. 2, pp. 651-694,
2011.

[24] J. V. Manjon, J. C. Caballero, J. J. Lull, G. G. Marti, L. M. Bonmati, and M. Robles, “MRI denoising using non local means,”
in Med. Image. Anal., vol. 12, no. 4, pp. 514-523, 2008.

[25] V. Duval, J. F. Aujol, and Y. Gousseau, “On the parameter choice for the non-local means,” Tech. Rep. HAL-00468856, 2010.

[26] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,”
in IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007.

[27] S. Herbreteau and C. Kervrann, “Towards a Unified View of Unsupervised Non-Local Methods for Image Denoising: The
NL-Ridge Approach,” in 2022 IEEE International Conference on Image Processing (ICIP), pp. 3376-3380, Bordeaux, France,
2022.

[28] S. Herbreteau and C. Kervrann, “Unsupervised Linear and Iterative Combinations of Patches for Image Denoising”, arXiv
preprint arXiv:2212.00422, 2022.

[29] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted Nuclear Norm Minimization with Application to Image Denoising,” in
IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014, pp. 2862-2869.

[30] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser: residual learning of deep CNN for image
denoising,” in IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[31] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising,” in IEEE
Transactions on Image Processing, vol. 27, no. 9, pp. 4608–4622, 2018.

[32] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-play image restoration with deep denoiser prior,”
in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[33] X. Mao, C. Shen, and Y. Yang. “Image restoration using very deep convolutional encoder-decoder networks with symmetric
skip connections,” in Advances in Neural Information Processing Systems, pp. 2802–2810, 2016.

[34] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration,”
in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1256–1272, 2017.

10

[35] Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, and Thomas S Huang, “Non-local recurrent network for image restora-
tion,” in Advances in Neural Information Processing Systems, pp. 1673–1682, 2018.

[36] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte. ”Swinir: Image restoration using swin transformer,” in IEEE
International Conference on Computer Vision Workshops, pp. 1833–1844, 2021.

[37] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistics,” in International Conference on Computer Vision, vol. 2, pp.
416–423, 2001.

[38] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistics,” in International Conference on Computer Vision, vol. 2, pp.
416–423, 2001.

[39] K. Ma, Z. Duanmu, Q. Wu, Z. Wang, H. Yong, H. Li, and L. Zhang, “Waterloo exploration database: New challenges for
image quality assessment models,” in IEEE Transactions on Image Processing, vol. 26, no. 2, pp. 1004–1016, 2017.

[40] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution: Dataset and study,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, Jul. 2017.

[41] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual networks for single image super-resolution,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, pp. 1132–1140.

[42] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International Conference for Learning Representa-
tions, 2015.

[43] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert and Z. Wang, “Real-time single image and
video super-resolution using an efficient sub-pixel convolutional neural network,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1874-1883, 2016.

11

A Description of the denoising architectures and implementation

A.1 Description of models

DRUNet: DRUNet [32] is a U-Net architecture, and as such has an encoder-decoder type pathway, with residual
connections [2]. Spatial downsampling is performed using 2× 2 convolutions with stride 2, while spatial upsampling
leverages 2× 2 transposed convolutions with stride 2 (which is equivalent to a 1× 1 sub-pixel convolution [43]). The
number of channels in each layer from the first scale to the fourth scale are 64, 128, 256 and 512, respectively. Each
scale is composed of 4 successive residual blocks “3× 3 conv + ReLU + 3× 3 conv”.

FDnCNN: FDnCNN [30] is the unpublished flexible variant of the popular DnCNN [30]. It consists of 20 successive
3 × 3 convolutional layers with 64 channels each and ReLU nonlinearities. As opposed to DnCNN, FDnCNN does
not use neither batch normalization [3] for training, nor residual connections [2] and can handle an optional noisemap
(concatenated with the input noisy image). Note that this architecture does not use downsampling or upsampling.
Finally, the authors [30] recommend to train it by minimizing the ℓ1 loss instead of the mean squared error (MSE).

A.2 Description of variants

Ordinary: The ordinary variant is built by appending additive constant (“bias”) terms after each convolution of the
original architecture. Note that the original FDnCNN [30] model is already in the ordinary mode.

Scale-equivariant: Since both models (DRUNet and FDnCNN) use only ReLU activation functions, removing all
additive constant (“bias”) terms is sufficient to ensure scale-equivariance [1]. Note that the original DRUNet [32]
model is already in the scale-equivariant mode.

Normalization-equivariant: All convolutions are replaced by the proposed affine-constrained convolutions without
“bias” and with reflect padding, and the proposed channel-wise sort pooling patterns supersede ReLU nonlinearities.
Moreover, classical residual connections are replaced by affine residual connections (the sum of two layers l1 and l2 is
replaced by their affine combination (1− t)l1 + tl2 where t is a trainable scalar parameter).

A.3 Practical implementation of normalization-equivariant networks

The channel-wise sort pooling operations can be efficiently implemented by concatenating the sub-layer obtained with
channel-wise one-dimensional max pooling with kernel size 2 and its counterpart obtained with min pooling. Note
that intertwining these two sub-layers to comply with the original definition is not necessary in practice (although
performed anyway in our implementation), since the order of the channels in a CNN is arbitrary.

Regarding the implementation of affine convolutions for training, each unconstrained kernel can be in practice “tele-
scoped” with its circular shifted version (this way, the sum of the resulting trainable coefficients cancels out) and then
the inverse of the kernel size is added element-wise as a non-trainable offset. Despite this over-parameterized form
(involving an extra degree of freedom), we found this solution to be more easy to use in practice. Moreover, it ensures
that all coefficients of the affine kernels follow the same law at initialization. Another possibility is to set an arbitrary
coefficient of the kernel (the last one for instance) equal to one minus the sum of all the other coefficients. Note that the
solution consisting in dividing each kernel coefficient by the sum of all the other coefficients does not work because it
generates numerical instabilities as the divisor may zero, or close to zero.

All our implementations are written in Python and are based on the PyTorch library. The code is available at https:
//github.com/sherbret/normalization_equivariant_nn/.

12

https://github.com/sherbret/normalization_equivariant_nn/
https://github.com/sherbret/normalization_equivariant_nn/

B Description of datasets and training details

We use the same large training set as in [32] for all the models and all the experiments, composed of 8, 694 images,
including 400 images from the Berkeley Segmentation Dataset BSD400 [38], 4, 744 images from the Waterloo Explo-
ration Database [39], 900 images from the DIV2K dataset [40], and 2, 750 images from the Flickr2K dataset [41]. This
training set is augmented via random vertical and horizontal flips and random 90◦ rotations. The dataset BSD32 [38],
composed of the 32 images, is used as validation set to control training and select the best model at the end. Finally,
the two datasets Set12 and BSD68 [38], strictly disjoint from the training and validation sets, are used for testing.

All the models fθ are optimized by minimizing the average reconstruction error between the denoised images x̂ =
fθ(x + ε), where ε ∼ N (0, σ2In), and ground-truths x with Adam algorithm [42]. For “non-blind” models, the
noise level σ is randomly chosen from [1, 50] during training. The training parameters, specific to each model and its
variants, are guided by the instructions of the original papers [32, 30], to the extent possible, and are summarized in
Table 3. Note that each training iteration consists in a gradient pass on a batch composed of patches randomly cropped
from training images. Normalization-equivariant variants need a longer training and always use a constant learning
rate (speed improvements are however certainly possible by adapting the learning rate throughout optimization, but
we did not investigated much about it). Furthermore, contrary to [32] where the ℓ1 loss function is recommended
to achieve better performance, supposedly due to its outlier robustness properties, we obtained slightly better results
with the usual mean squared error (MSE) loss when dealing with normalization-equivariant networks. Training was
performed with a Quadro RTX 6000 GPU.

Table 3: Training parameters. * indicates that it is divided by half every 100, 000 iterations.

Model Batch
size

Patch
size

Loss
function

Learning
rate

Number of
iterations

DRUNet [32]
ordinary 16 128× 128 ℓ1 1e-4* 800, 000

scale-equiv 16 128× 128 ℓ1 1e-4* 800, 000
norm-equiv 16 128× 128 MSE 1e-4 1, 800, 000

FDnCNN [30]
ordinary 128 70× 70 ℓ1 1e-4 500, 000

scale-equiv 128 70× 70 ℓ1 1e-4 500, 000
norm-equiv 128 70× 70 MSE 1e-4 900, 000

13

C Additional results

...... NOISY SCALE-EQUIVARIANT NORMALIZATION-EQUIVARIANT

Denoised Adaptive filters Denoised Adaptive filters

σ
=

7
5

PSNR:
10.63 DB

PSNR:
27.53 DB

Σ = 0.98

Σ = 1.00

PSNR:
27.54 DB

Σ = 1

Σ = 1

σ
=

2
5

Pixel 1

Pixel 2

PSNR:
20.17 DB

PSNR:
32.18 DB

Σ = 1.04

Σ = 0.99

PSNR:
32.14 DB

Σ = 1

Σ = 1

σ
=

5

PSNR:
34.15 DB

PSNR:
33.67 DB

Σ = 0.99

Σ = 0.99

PSNR:
36.63 DB

Σ = 1

Σ = 1

Figure 6: Visual comparisons of the generalization capabilities of a scale-equivariant FDnCNN [30] (left) and its
normalization-equivariant counterpart (right) for Gaussian noise. Both networks were trained for Gaussian noise at
noise level σ = 25 exclusively. The adaptive filters (rows of Ayr

θ in Prop. 4) are indicated for two particular pixels
as well as the sum of their coefficients (note that some weights are negative, indicated in red). The scale-equivariant
network tends to excessively smooth out the image when evaluated at a lower noise level, whereas the normalization-
equivariant network is more adaptable and considers the underlying texture to a greater extent.

8 12 16 20 24 28 32

8

12

16

20

24

28

32

Input PSNR

O
ut

pu
tP

SN
R

ordinary
scale-equiv
norm-equiv
identity

8 12 16 20 24 28 32

8

12

16

20

24

28

32

36

Input PSNR
8 12 16 20 24 28 32

8

12

16

20

24

28

32

36

Input PSNR

Figure 7: Comparison of the performance of our normalization-equivariant FDnCNN [30] with its scale-equivariant
and ordinary counterparts for Gaussian denoising on the Set12 dataset. The vertical blue line indicates the unique
noise level on which the networks were trained exclusively (from left to right: σ = 50, σ = 25 and σ = 10). In all
cases, normalization-equivariant networks generalize much more robustly beyond the training noise level.

14

PSNR: 10.63 DB
(λ = 3)

(a)

PSNR: 12.34 DB PSNR: 24.45 DB PSNR: 24.34 DB

input y f∅
θ (y) 3f∅

θ (y/3) fNE
θ (y)

PSNR: 22.67 DB
(λ = 0.75)

(b)

PSNR: 31.69 DB PSNR: 32.14 DB PSNR: 32.07 DB

inputy (x ∈ [0.3, 1]n) fSE
θ (y) fSE

θ (y − 0.3) + 0.3 fNE
θ (y)

Figure 8: Denoising results for example images of the form y = x + λε with σ = 25/255 and x ∈ [0, 1]n, by
FDnCNN [30] specialized for noise level σ only. Here, f∅

θ , fSE
θ and fNE

θ denote the ordinary, scale-equivariant and
normalization-equivariant variants, respectively.

Noisy Ordinary Scale-equiv Normalization-equiv

σ
=

1
0

PSNR: 36.11 DB PSNR: 36.20 DB PSNR: 36.12 DB

PSNR: 35.64 DB PSNR: 35.68 DB PSNR: 35.65 DB

D
R

U
N

et
FD

nC
N

N
σ
=

2
0

PSNR: 30.09 DB PSNR: 30.16 DB PSNR: 30.13 DB

PSNR: 29.57 DB PSNR: 29.45 DB PSNR: 29.65 DB

D
R

U
N

et
FD

nC
N

N
σ
=

3
0

PSNR: 28.79 DB PSNR: 28.82 DB PSNR: 28.85 DB

PSNR: 27.83 DB PSNR: 27.81 DB PSNR: 27.96 DB

D
R

U
N

et
FD

nC
N

N

Figure 9: Qualitative comparison of image denoising results with synthetic white Gaussian noise for “non-blind”
models. Regardless of the variant of a model, the denoising results are visually similar.

15

D Mathematical proofs

D.1 Proofs of Propositions

Proposition 1 (Characterizations)
Proof: For each type of equivariance, both existence and uniqueness of f must be proven. Let 0n be the zero vector
of Rn and (yx)x∈C the values that f takes on its characteristic set C.

Scale-equivariance:
• Uniqueness: Let f and g two scale-equivariant functions such that ∀x ∈ S, f(x) = g(x). First of all, for

any scale-equivariant function h, h(0n) = h(2 · 0n) = 2h(0n), hence h(0n) = 0m. Therefore, f(0n) =
g(0n) = 0m.

Let x ∈ Rn \ {0n}. As x
∥x∥ ∈ S, we have f(x

∥x∥) = g(x
∥x∥) ⇒ 1

∥x∥f(x) = 1
∥x∥g(x) ⇒ f(x) = g(x).

Finally, f = g.

• Existence: Let f : x ∈ Rn 7→
{

∥x∥ · y x
∥x∥

if x ̸= 0n

0m otherwise
. Note that ∀x ∈ S, f(x) = yx. Let x ∈ Rn and

λ ∈ R+
∗ . If x ̸= 0n, f(λx) = ∥λx∥ · y λx

∥λx∥
= λ∥x∥ · y x

∥x∥
= λf(x) and if x = 0n f(λx) = 0m = λf(x),

hence f is scale-equivariant.

Shift-equivariance:

• Uniqueness: Let f and g two shift-equivariant functions such that ∀x ∈ Span(1n)
⊥, f(x) = g(x). Let

x ∈ Rn. By orthogonal decomposition of Rn into Span(1n)
⊥ and Span(1n):

∃! (x1, x2) ∈ Span(1n)
⊥ × Span(1n), x = x1 + x2 .

Then, f(x) = f(x1 + x2) = f(x1) + x2 = g(x1) + x2 = g(x1 + x2) = g(x).

• Existence: Let f : x ∈ Rn 7→ yx1 + x2, where x = x1 + x2 is the unique decomposition such that
x1 ∈ Span(1n)

⊥ and x2 ∈ Span(1n). Note that ∀x ∈ Span(1n)
⊥, f(x) = yx. Let x ∈ Rn and µ ∈ R.

f(x+µ) = yx1
+x2+µ1m = f(x)+µ as if x orthogonally decomposes into x1+x2 with x1 ∈ Span(1n)

⊥

and x2 ∈ Span(1n), then x+µ orthogonally decomposes into x1 +(x2 +µ1m). f is then shift-equivariant.

Normalization-equivariance:

• Uniqueness: Let f and g two normalization-equivariant functions such that ∀x ∈ S ∩ Span(1n)
⊥, f(x) =

g(x). First, as f and g are a fortiori scale-equivariant, f(0n) = g(0n) = 0m. Let x ∈ Rn \ {0n}. By
orthogonal decomposition of Rn into Span(1n)

⊥ and Span(1n):

∃! (x1, x2) ∈ Span(1n)
⊥ × Span(1n), x = x1 + x2 .

If x1 = 0n, f(x) = f(0n + x2) = f(0n) + x2 = 0m + x2 = x2. Likewise, g(x) = x2, hence f(x) = g(x).
Else, if x1 ̸= 0n, f(x) = f(x1 + x2) = f(x1) + x2 = ∥x1∥f(x1

∥x1∥) + x2 = ∥x1∥g(x1

∥x1∥) + x2 =

g(x1) + x2 = g(x1 + x2) = g(x), as x1

∥x1∥ ∈ S ∩ Span(1n)
⊥. Finally, f = g.

• Existence: Let f : x ∈ Rn 7→
{ ∥x1∥ · y x1

∥x1∥
+ x2 if x1 ̸= 0n

x2 otherwise
, where x = x1 + x2 is the unique

decomposition such that x1 ∈ Span(1n)
⊥ and x2 ∈ Span(1n). Note that ∀x ∈ S ∩ Span(1n)

⊥, f(x) = yx.
Let x ∈ Rn, λ ∈ R+

∗ and µ ∈ R. x decomposes orthogonally into x1 + x2 with x1 ∈ Span(1n)
⊥ and

x2 ∈ Span(1n), and we have f(λx+ µ) = f(λx1 + (λx2 + µ)), where λx1 + (λx2 + µ) is the orthogonal
decomposition of λx+ µ into Span(1n)

⊥ and Span(1n).

If x1 = 0n, then λx1 = 0n and f(λx+ µ) = λx2 + µ = λf(x) + µ.

Else, if x1 ̸= 0n, then λx1 ̸= 0n, and f(λx+µ) = ∥λx1∥·y λx1
∥λx1∥

+(λx2+µ) = λ(∥x1∥·y x1
∥x1∥

+x2)+µ =

λf(x) + µ. Finally, f is normalization-equivariant.

Proposition 2 (Operations preserving equivariance)
Proof: Let x ∈ Rn, λ ∈ R+

∗ and µ ∈ R.

16

• If f and g are both scale-equivariant, (f ◦g)(λx) = f(g(λx)) = f(λg(x)) = λf(g(x)) = λ(f ◦g)(x) and if
they are both shift-equivariant, (f ◦g)(x+µ) = f(g(x+µ)) = f(g(x)+µ) = f(g(x))+µ = (f ◦g)(x)+µ.

• Let h : x 7→ (f(x)⊤ g(x)⊤)⊤. If f and g are both scale-equivariant, h(λx) = (f(λx)⊤ g(λx)⊤)⊤ =
(λf(x)⊤ λg(x)⊤)⊤ = λh(x) and if they are both shift-equivariant, h(x+µ) = (f(x+µ)⊤ g(x+µ)⊤)⊤ =
(f(x)⊤ + µ g(x)⊤ + µ)⊤ = h(x) + µ.

• Let t ∈ R and h : x 7→ (1−t)f+tg. If f and g are both scale-equivariant, h(λx) = (1−t)f(λx)+tg(λx) =
(1− t)λf(x)+ tλg(x) = λ((1− t)f(x)+ tg(x)) = λh(x) and if they are both shift-equivariant, h(x+µ) =
(1−t)f(x+µ)+tg(x+µ) = (1−t)(f(x)+µ)+t(g(x)+µ) = (1−t)f(x)+tg(x)+(1−t)µ+tµ = h(x)+µ.

Proposition 3
Proof: Let a < b ∈ R, f : Rn 7→ Rm, x ∈ Rn, λ ∈ R+

∗ and µ ∈ R.

We have Ta,b(λx + µ) = (b − a) λx+µ−min(λx+µ)
max(λx+µ)−min(λx+µ) + a = (b − a) x−min(x)

max(x)−min(x) + a = Ta,b(x) (Ta,b is
normalization-invariant). T −1

a,b denotes the inverse transformation intricately linked to the input x of Ta,b (note
that this is an improper notation as Ta,b is not bijective). Thus, if x is the input of Ta,b, then T −1

a,b : y 7→
(max(x)−min(x))y−a

b−a +min(x).

(T −1
a,b ◦ f ◦ Ta,b)(λx+ µ) =

max(λx+ µ)−min(λx+ µ)

b− a
((f ◦ Ta,b)(λx+ µ)− a) + min(λx+ µ) ,

= λ
max(x)−min(x)

b− a
((f ◦ Ta,b)(λx+ µ)− a) + λmin(x) + µ ,

= λ

(
max(x)−min(x)

b− a
((f ◦ Ta,b)(x)− a) + min(x)

)
+ µ ,

= λ(T −1
a,b ◦ f ◦ Ta,b)(x) + µ .

Finally, T −1
a,b ◦ f ◦ Ta,b is normalization-equivariant.

Proposition 4
Proof: fNE

θ is composed of two types of building blocks of the following form:
• affine convolutions: aΘ : x ∈ Rn 7→ Θx with Θ ∈ Rm×n subject to Θ1n = 1m ,
• sort pooling nonlinearities: sortpool : Rn 7→ Rn ,

which are assembled using:
• function compositions: comp(f, g) 7→ f ◦ g ,
• skip connections: skip(f, g) 7→ (x 7→ (f(x)⊤ g(x)⊤)⊤) ,
• affine residual connections: arest(f, g) 7→ (1− t)f + tg with t ∈ R .

Note that the rows of Θ in aΘ encode the convolution kernels in a CNN and the trainable parameters, denoted by θ,
are only composed of matrices Θ and scalars t.

Since aΘ and sortpool are normalization-equivariant functions, Prop. 2 states that the resulting function fNE
θ is also

normalization-equivariant. Moreover, since they are continuous and the assembling operators preserve continuity,
fNE
θ is continuous. Then, for a given input x ∈ Rn, we have (sortpool ◦ aΘ)(x) = aπ(Θ)(x) = π(Θ)x, where π

an operator acting on matrix Θ by permuting its rows (note that the permutation π is both dependent on x and Θ).
Therefore, applying a pattern “conv affine + sortpool” simply amounts locally to a linear transformation. Thus, as the
nonlinearities of fNE

θ are exclusively brought by sort pooling patterns, fNE
θ is actually locally linear. In other words,

fNE
θ is piecewise-linear. Moreover, as there is a finite number (although high) of possible permutations of the rows

of all matrices Θ, fNE
θ has finitely many pieces. Finally, on each piece represented by the vector yr, fNE

θ (y) = Ayr

θ y.
It remains to prove that Ayr

θ 1n = 1m. But this property is easily obtained by noticing that, subject to dimensional
compatibility on matrices Θ:

• Θ1n = 1m ⇒ π(Θ)1n = 1m (“conv affine + sortpool”) ,
• Θ11n = 1m and Θ21m = 1l ⇒ Θ2Θ11n = 1l (composition) ,

• Θ11n1 = 1m1 and Θ21n2 = 1m2 ⇒
(
Θ1

Θ2

)
1n1+n2 = 1m1+m2 (skip connection) ,

• Θ11n = 1m and Θ21n = 1m ⇒ (1− t)Θ11n + tΘ21n = 1m (affine residual connection) .

17

Thus, the affine combinations are preserved all along the layers of fNE
θ . In the end,

fNE
θ (y) = Ayr

θ y, with Ayr

θ ∈ Rm×n such that Ayr

θ 1n = 1m .

D.2 Examples of normalization-equivariant conventional denoisers

Noise-reduction filters: All linear smoothing filters can be put under the form fΘ : x ∈ Rn 7→ Θx with Θ ∈ Rn×n

(the rows of Θ encode the convolution kernel). Obviously, fΘ is always scale-equivariant, whatever the filter Θ. As
for the shift-equivariance, a simple calculation shows that:

x 7→ Θx is shift-equivariant ⇔ ∀x ∈ Rn,∀µ ∈ R,Θ(x+ µ1n) = Θx+ µ1m ⇔ Θ1n = 1m .

Since the sum of the coefficients of a Gaussian kernel and an averaging kernel is one, we have Θ1n = 1m, hence these
linear filters are normalization-equivariant. The median filter is also normalization-equivariant because median(λx+
µ) = λmedian(x) + µ for λ ∈ R+

∗ and µ ∈ R.

Patch-based denoising: -

− NLM [20]: Assuming that the smoothing parameter h is proportional to σ, i.e. h = ασ, we have

e
−

∥p(λyi+µ)−p(λyj+µ)∥22
(αλσ)2 = e

−
λ2∥p(yi)−p(yj)∥

2
2

λ2(ασ)2 = e−
∥p(yi)−p(yj)∥

2
2

h2 , hence the aggregation weights are normalization-
invariant. Then,

fNLM(λy + µ, λσ)i =
1

Wi

∑
yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥

2
2

h2 (λyj + µ) withWi =
∑

yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥

2
2

h2 ,

=
1

Wi

∑
yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥

2
2

h2 λyj +
1

Wi

∑
yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥

2
2

h2 µ ,

= λ

 1

Wi

∑
yj∈Ω(yi)

e−
∥p(yi)−p(yj)∥

2
2

h2 yj

+ µ ,

= λfNLM(y, σ)i + µ .

Finally, fNLM is a normalization-equivariant function.

− NL-Ridge [27]: The block-matching procedure at the heart of NL-Ridge is normalization-invariant as it is based
on comparisons of the ℓ2 norm of the difference of image patches. For each noisy patch group, a.k.a. similarity
matrix, Y ∈ Rn×k composed of k vectorized similar patches of size n, the optimal weights Θ∗ ∈ Rk×k, in the ℓ2 risk
sense, are computed such that YΘ∗ is as close as possible to the (unknown) clean patch group X ∈ Rn×k. The two
successive minimization problems approximating Θ under affine constraints C = {Θ ∈ Rk×k,Θ⊤1k = 1k} can be
put under the form:

Θ∗ = argmin
Θ∈C

tr

(
1

2
Θ⊤QΘ+ CΘ

)
= Ik − nσ2

[
Q−1 − Q−11k(Q

−11⊤
k)

1⊤
k Q

−11k

]
.

with Q = Y ⊤Y or Q = X̂⊤X̂ + nσ2Ik for the first and second step, respectively (X̂ is the patch group estimate
obtained after the first step), C = nσ2Ik − Q and where tr denotes the trace operator. Depending on the step, we
have:

2 tr

(
1

2
Θ⊤QΘ+ CΘ

)
=

 ∥YΘ− Y ∥2F + 2nσ2 tr (Θ) + const
or
∥X̂Θ− X̂∥2F + nσ2∥Θ∥2F + const

where ∥.∥F is the Frobenius norm. But, for any Z ∈ Rn×k and any function h : Θ ∈ Rk×k 7→ R,

∥(λZ + µ)Θ− (λZ + µ)∥2F + n(λσ)2h(Θ) = λ2
(
∥ZΘ− Z∥2F + nσ2h(Θ)

)
,

assuming that Θ⊤1k = 1k. Therefore, the aggregation weights Θ∗ are normalization-invariant and (λY + µ)Θ∗ =
λYΘ∗ + µ. Finally, NL-Ridge with affine constraints encodes a normalization-equivariant function.

18

TV denoising: Let y ∈ Rn, λ ∈ R+
∗ and µ ∈ R. Let x∗ = argmin

x∈Rn
∥x∥TV s.t. ∥y − x∥22 = nσ2 be the solution

of TV [18].
fTV(λy + µ, λσ) = argmin

x∈Rn
∥x∥TV s.t. ∥λy + µ− x∥22 = n(λσ)2 ,

= argmin
x∈Rn

λ

∥∥∥∥x− µ

λ

∥∥∥∥
TV

s.t. λ2

∥∥∥∥y − x− µ

λ

∥∥∥∥2
2

= λ2nσ2 ,

= argmin
x∈Rn

∥∥∥∥x− µ

λ

∥∥∥∥
TV

s.t.
∥∥∥∥y − x− µ

λ

∥∥∥∥2
2

= nσ2 ,

= λx∗ + µ ,

= λfTV(y, σ) + µ .

Finally, fTV is a normalization-equivariant function.

19

	Introduction
	Related Work
	Overview of normalization equivariance
	Definitions and properties of three types of fundamental equivariances
	Examples of normalization-equivariant conventional denoisers
	The case of neural networks
	Categorizing image denoisers

	Design of Normalization-Equivariant Networks
	Affine convolutions
	Channel-wise sort pooling as a normalization-equivariant alternative to ReLU
	Encoding adaptive affine filters

	Experimental results
	The proposed architectural modifications do not degrade performance
	Increased robustness across noise levels

	Conclusion and perspectives
	Description of the denoising architectures and implementation
	Description of models
	Description of variants
	Practical implementation of normalization-equivariant networks

	Description of datasets and training details
	Additional results
	Mathematical proofs
	Proofs of Propositions
	Examples of normalization-equivariant conventional denoisers

