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CONTROL OF A BOUSSINESQ SYSTEM OF KDV-KDV TYPE ON A

BOUNDED INTERVAL

ROBERTO A. CAPISTRANO–FILHO, ADEMIR F. PAZOTO, AND LIONEL ROSIER

Abstract. We consider a Boussinesq system of KdV-KdV type introduced by J. Bona, M.
Chen and J.-C. Saut as a model for the motion of small amplitude long waves on the surface
of an ideal fluid. This system of two equations can describe the propagation of waves in both
directions, while the single KdV equation is limited to unidirectional waves. We are concerned
here with the exact controllability of the Boussinesq system by using some boundary controls.
By reducing the controllability problem to a spectral problem which is solved by using the Paley-
Wiener method introduced by the third author for KdV, we determine explicitly all the critical
lengths for which the exact controllability fails for the linearized system, and give a complete
picture of the controllability results with one or two boundary controls of Dirichlet or Neumann
type. The extension of the exact controllability to the full Boussinesq system is derived in
the energy space in the case of a control of Neumann type. It is obtained by incorporating a
boundary feedback in the control in order to ensure a global Kato smoothing effect.

1. Introduction

J. L. Boussinesq introduced in [5, 6] several simple nonlinear systems of PDEs (including
the Korteweg-de Vries equation) to explain certain physical observations concerning the water
waves, e.g. the emergence and stability of solitons. Unfortunately, several systems derived by
Boussinesq proved to be ill-posed, so that there was a need to propose other systems similar to
Boussinesq’s ones but with better mathematical properties.

The four-parameter family of Boussinesq systems{
ηt + vx + (ηv)x + avxxx − bηxxt = 0,
vt + ηx + vvx + cηxxx − dvxxt = 0

(1.1)

was introduced by J. J. Bona, M. Chen and J.-C. Saut in [3] to describe the motion of small
amplitude long waves on the surface of an ideal fluid under the gravity force and in situations
when the motion is sensibly two-dimensional. In (1.1), η is the elevation of the fluid surface
from the equilibrium position, and v = vθ is the horizontal velocity in the flow at height θh,
where h is the undisturbed depth of the liquid. The parameters a, b, c, d are required to fulfill
the relations

a+ b =
1

2
(θ2 − 1

3
), c+ d =

1

2
(1− θ2) ≥ 0, 1 (1.2)

where θ ∈ [0, 1] specifies which horizontal velocity the variable v represents. As it has been
proved in [3], the initial value problem for the linear system associated with (1.1) is well posed
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on R if and only if the parameters a, b, c, d fall in one of the following cases

(C1) b, d ≥ 0, a ≤ 0, c ≤ 0;

(C2) b, d ≥ 0, a = c > 0.

The wellposedness of the full system (1.1) on the line (x ∈ R) was investigated in [4].
Recently, a rather complete picture of the control properties of (1.1) on a periodic domain

with a locally supported forcing term was given in [26]. According to the values of the four
parameters a, b, c, d, the linearized system may be either controllable in any positive time, or
solely in large time, or may not be controllable at all. These results were also extended in [26]
to the generic nonlinear system (1.1); that is, when all the parameters are different from 0.

When b = d = 0 and (C2) is satisfied, then necessarily a = c = 1/6. Nevertheless, the scaling
x→ x/

√
6, t→ t/

√
6 gives a system equivalent to (1.1) for which a = c = 1, namely{

ηt + vx + (ηv)x + vxxx = 0,
vt + ηx + vvx + ηxxx = 0.

(1.3)

The above system will be referred to as a Boussinesq system of KdV-KdV type, or as a
KdV-KdV system.

The KdV–KdV system is expected to admit global solutions on R [4], and it also possesses
good control properties on the torus [26].

The boundary stabilization of (1.3) on a bounded domain (0, L) was investigated by two of the
authors in [28]. They proved that if system (1.3) is supplemented with the following boundary
conditions 

v(t, 0) = vxx(t, 0) = 0 in (0, T ),
vx(t, 0) = α0ηx(t, 0) in (0, T ),
v(t, L) = α2η(t, L) in (0, T ),
vx(t, L) = −α1ηx(t, L) in (0, T ),
vxx(t, L) = −α2ηxx(t, L) in (0, T ),

(1.4)

and the initial conditions

η(0, x) = η0(x), v(0, x) = v0(x) in (0, L), (1.5)

then the system is locally exponentially stable in the energy space [L2(0, L)]2 whenever the
constants α0, α1 and α2 satisfy

α0 ≥ 0, α1 > 0, and α2 = 1.

To our best knowledge, the boundary control of the Boussinesq system of KdV-KdV type on
a bounded domain (0, L) is completely open. The aim of this paper is to investigate the control
properties of the following system{

ηt + vx + (ηv)x + vxxx = 0 in (0, T )× (0, L),
vt + ηx + vvx + ηxxx = 0 in (0, T )× (0, L),

(1.6)

with the boundary conditions{
η(t, 0) = h0(t), η(t, L) = h1(t), ηx(t, 0) = h2(t) in (0, T ),
v(t, 0) = g0(t), v(t, L) = g1(t), vx(t, L) = g2(t) in (0, T )

(1.7)
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and the initial conditions

η(0, x) = η0(x), v(0, x) = v0(x) in (0, L). (1.8)

It is of course desirable to obtain control results (or stabilization results) with a few number
of controls inputs. Here, we will provide a complete picture of the exact controllability of the
linearized system with one or two controls among h0, h1, h2, g0, g1, g2.

A similar study was performed for the Korteweg -de Vries (KdV) equation

yt + yxxx + yx + yyx = 0, (1.9)

with the boundary conditions

y(t, L) = h0(t), y(t, L) = h1(t), yx(t, L) = h2(t). (1.10)

More precisely, the exact controllability of (1.9)-(1.10) was established in [30] when h0 = h1 = 0
(h2 being the only effective control) for a length L which is not critical, in [8, 9, 13] for a length L
which is critical, and in [19] when h0 = h2 = 0 for a length L not critical. The null controllability
of (1.9)-(1.10) was proved in [31] (see also [18]) when h1 = h2 = 0 for any length L > 0. Note
that in that case there is no critical length, and that solely the null controllability holds (say in
L2(0, L)), because the terminal state y(·, T ) is C∞ smooth for x > 0.

A length L is said to be critical when the linearized equation

yt + yxxx + yx = 0, (1.11)

fails to be controllable. This phenomenon was first noticed in [30]. It is due to the influence of the
first order derivative ∂x on the spectrum of the operator ∂3x with the boundary conditions y(0) =
y(L) = yx(L) = 0. If the high frequencies are asymptotically preserved, the low frequencies may
be strongly modified, and some of the corresponding eigenfunctions may become uncontrollable
for (1.11) for certain values of L (the critical ones).

The set of critical lengths for the linear control system

yt + yxxx + yx = 0, (1.12)

y(t, 0) = y(t, L) = 0, yx(t, L) = h2(t) (1.13)

was found [30] to be

N := {2π
√
k2 + kl + l2

3
; k, l ∈ N∗}.

On the other hand, the set of critical lengths for the linear control system

yt + yxxx + yx = 0, (1.14)

y(t, 0) = yx(t, L) = 0, y(t, L) = h1(t) (1.15)

was proved in [19] to be discrete, countable and given by

Ñ := {L > 0;∃a ∈ C, b ∈ C with aea = beb = −(a+ b)e−a−b, L2 = −(a2 + ab+ b2)}.
The determination of the critical lengths for system (1.12)-(1.13) in [30] was based on a series

of reductions (as in [1]), first to a unique continuation property for the adjoint system, next to
a spectral problem with an extra condition:

− y′′′ − y′ = λy, y(0) = y(L) = y′(0) = 0 and y′(L) = 0. (1.16)
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This spectral problem was then solved by extending the function y by 0 outside (0, L), by taking
its Fourier transform and by using Paley-Wiener theorem. The length L is then critical if and
only if there exist some numbers p ∈ C and (α, β) ∈ C2 \ {(0, 0)} such that the function

f(ξ) =
α− βe−iLξ

ξ3 − ξ + p
(1.17)

is analytic on C; that is, the roots of ξ3 − ξ + p are also roots of α − βe−iLξ with at least the
same multiplicity. The determination of N follows then with some algebra.

By contrast, the critical lengths for (1.14)-(1.15), that is the elements of Ñ, are not explicitly
known. This is likely due to the lack of symmetries in the corresponding spectral problem

− y′′′ − y′ = λy, y(0) = y(L) = y′(0) = 0 and y′′(L) = 0. (1.18)

Note that the boundary conditions in (1.16) are preserved by the transformation x → L − x.
This symmetry yields a more tractable function f in (1.17).

Boussinesq system is more convenient than KdV as a model for the propagation of water
waves, for it is adapted to the propagation of waves in both directions, and it is still valid after
bounces of waves at the boundary. It is striking that the control theory for Boussinesq system
(exposed in this paper) is better understood than for KdV as far as the critical lengths are
concerned: indeed, the critical lengths for Boussinesq system are explicitly given for any set of
boundary controls (except in Case 3 where only g0 is used, and in Case 12 where h1 and g0 are
used, see below Table 1), which is not the case for KdV with a control as in (1.15). We believe
that this is due to the numerous symmetries of Boussinesq system: for instance, x = 0 and
x = L (resp. η and v) play a symmetric role for the linearized Boussinesq system. The price to
be paid is the lack of any Kato smoothing effect (the system being conservative), which makes
the extension of the control results to the nonlinear Boussinesq system more delicate than for
KdV. We refer the reader to [7, 8, 9, 10, 11, 12, 13, 16, 18, 19, 20, 21, 27, 29, 30, 31, 32, 33] for
the control and stabilization of KdV, and [14, 15, 17] for the critical lengths concerning some
other dispersive equations.

To investigate the control properties of the linearized system, we proceed as in [30]. To prove
the observability inequality, we use the reduction to a spectral problem with an extra condition
and the Paley-Wiener method. Here, we have to see for which value of L > 0 two functions are
entire for a set of parameters. For instance, in Case 1 where only g2 is used, the two functions
read

f(ξ) =
i

ξ3 − ξ + p
(α+ βiξ + γe−iLξ)

g(ξ) =
i

ξ3 − ξ + p
(α′ − βiξ + γ′eiLξ)

for some p ∈ C and (α, β, γ, α′, γ′) ∈ C5 \{0}. Using the symmetries of the system, we can prove
that the set of critical lengths is N.

In the reduction to the Unique Continuation Property (UCP), we use in most cases an identity
obtained by using Morawetz multiplier, namely (2.10) (see below). However, for Case 3 (see
below Table 1), the identity (2.10) proved to be useless. We replace the observability inequality
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by a weaker estimate

‖(η0, v0)‖2[H2(0,L)]2 ≤ C
(∫ T

0
|ηxx(t, L)|2dt+ ‖(η0, v0)‖2[L2(0,L)]2

)
, (1.19)

which in turn is established by performing a careful investigation of the spectral reduction of
the skewadjoint operator A(η, v) = (−vx − vxxx,−ηx − ηxxx) with domain

D(A) = {(η, v) ∈ [H3(0, L) ∩H1
0 (0, L)]2; ηx(0) = vx(L) = 0} ⊂ [L2(0, L)]2.

We show that the space [L2(0, L)]2 admits an orthonormal basis constituted of eigenfunctions
of A. To do that, we introduce the selfadjoint operator (By)(x) = −yxxx(L − x) − yx(L − x)
with domain

D(B) = {y ∈ H3(0, L) ∩H1
0 (0, L); yx(L) = 0} ⊂ L2(0, L).

Then the spectral reduction of B yields at once those for A.
We give in Table 1 (see below) a complete picture of the exact controllability results for the

linearized Boussinesq system. It is not difficult to extend those exact controllability results to the
nonlinear Boussinesq system in spaces of sufficiently regular functions (e.g. some subspaces of
[H2(0, L)]2), but here we will not do it for the sake of shortness. Rather, we shall explain how to
obtain exact controllability/stabilization results in the energy space [L2(0, L)]2 by incorporating
a feedback law in the control that yields a smoothing effect, as it was done in [22] for the
Benjamin-Ono equation. We shall limit ourserves to the case of a single Neumann boundary
control (Case 1), namely to the system

ηt + vx + (ηv)x + vxxx = 0, t ∈ (0, T ), x ∈ (0, L),
vt + ηx + vvx + ηxxx = 0, t ∈ (0, T ), x ∈ (0, L),
η(t, 0) = 0, η(t, L) = 0, ηx(t, 0) = 0, t ∈ (0, T ),
v(t, 0) = 0, v(t, L) = 0, vx(t, L) = g2(t), t ∈ (0, T ),
η(0, x) = η0(x), v(0, x) = v0(x), x ∈ (0, L),

(1.20)

The first main result in this paper is a local exact controllability result for (1.20).

Theorem 1.1. Let T > 0 and L ∈ (0,+∞) \ N where N := { 2π√
3

√
k2 + kl + l2; k, l ∈ N∗}.

Then there exists some δ > 0 such that for all states (η0, v0), (η1, v1) ∈ [L2(0, L)]2 with

‖(η0, v0)‖[L2(0,L)]2 ≤ δ and ‖(η1, v1)‖[L2(0,L)]2 ≤ δ,

one can find a control g2 ∈ L2(0, T ) and a solution (η, v) ∈ C([0, T ], [L2(0, L)]2)∩L2(0, T, [H1(0, L)]2)
of (1.20) such that

η(T, x) = η1(x), v(T, x) = v1(x), x ∈ (0, L).

The second main result is a local exponential stability result for (1.20).

Theorem 1.2. Let T > 0, L ∈ (0,+∞)\N, and α > 0. Then there exist some positive numbers
δ, µ, C such that for all initial data (η0, v0) ∈ [L2(0, L)]2 with ‖(η0, v0)‖[L2(0,L)]2 ≤ δ, the system
(1.20) with the boundary feedback law g2(t) = −αηx(t, L) admits for all T > 0 a unique solution

(η, v) ∈ C([0, T ], [L2(0, L)]2) ∩ L2(0, T, [H1(0, L)]2),
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and it holds

‖(η, v)(t)‖[L2(0,L)]2 ≤ Ce−µt‖(η0, v0)‖[L2(0,L)]2 , ∀t ≥ 0, (1.21)

‖(η, v)(t)‖[H1(0,L)]2 ≤ C
e−µt√
t
‖(η0, v0)‖[L2(0,L)]2 , ∀t > 0. (1.22)

The paper is outlined as follows. The wellposedness of the linearized Boussinesq system with
the boundary conditions (1.7) is studied in Section 2. Section 3 is concerned with the exact
controllability of the linearized Boussinesq system with one or two boundary control inputs.
The proof of the main results, namely Theorems 1.1 and 1.2, is provided in Section 4. Finally,
the proof of the weak observability estimate (1.19) based on some spectral reduction is given in
appendix.

2. Wellposedness

2.1. Wellposedness of the homogeneous problem. Let L > 0 be a fixed number. Introduce
the spaces

X0 := [L2(0, L)]2 = L2(0, L)× L2(0, L) (2.1)

X3 := {(η, v) ∈ [H3(0, L) ∩H1
0 (0, L)]2; ηx(0) = vx(L) = 0}, (2.2)

X3θ := [X0, X3][θ], for 0 < θ < 1, (2.3)

where [X0, X3][θ] denotes the Banach space obtained by the complex interpolation method (see
e.g. [2]). The space X0 (resp. X3) is endowed with the norm

‖(η, v)‖X0 :=

(∫ L

0
[η2(x) + v2(x)]dx

) 1
2

(resp. with the norm ‖(η, v)‖X3 := ‖(η, v)‖X0 + ‖(vx + vxxx, ηx + ηxxx)‖X0).
It is easily seen that

X1 = H1
0 (0, L)×H1

0 (0, L), (2.4)

X2 = {(η, v) ∈ [H2(0, L) ∩H1
0 (0, L)]2; ηx(0) = vx(L) = 0} (2.5)

and that in the space X1 (resp. X2), the norm ‖(η, v)‖X1 (resp. ‖(η, v)‖X2) is equivalent to(∫ L

0
[η2x(x) + v2x(x)]dx

) 1
2

(resp.

(∫ L

0
[η2xx(x) + v2xx(x)]dx

) 1
2

). We shall use at some place the

space

X4 := {(η, v) ∈ [H4(0, L) ∩H1
0 (0, L)]2; ηx(0) = vx(L) = ηxxx(0) = vxxx(L) = 0,

ηxxx(L) + ηx(L) = vxxx(0) + vx(0) = 0}

endowed with its natural norm, and for s ∈ {1, 2}, the space X−s = (Xs)
′ which is the dual of

Xs with respect to the pivot space X0 = [L2(0, L)]2. Note that

X−1 = H−1(0, L)×H−1(0, L).
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The bracket 〈·, ·〉X−s,Xs stands for the duality bracket. We first investigate the wellposedness of
the initial value problem

ηt + vx + vxxx = 0, t ≥ 0, x ∈ (0, L),
vt + ηx + ηxxx = 0, t ≥ 0, x ∈ (0, L),
η(t, 0) = η(t, L) = ηx(t, 0) = 0, t ≥ 0,
v(t, 0) = v(t, L) = vx(t, L) = 0, t ≥ 0,
η(0, x) = η0(x), v(0, x) = v0(x), x ∈ (0, L).

(2.6)

We introduce the operator

A(η, v) := (−vx − vxxx,−ηx − ηxxx)

with domain D(A) := X3 ⊂ X0.

Proposition 2.1. The operator A is skew-adjoint in X0, and thus it generates a group of
isometries (etA)t∈R in X0.

Proof. We have to prove that A∗ = −A. It is clear that we have −A ⊂ A∗ (i.e. (θ, u) ∈ D(A∗)
and A∗(θ, u) = −A(θ, u) for all (θ, u) ∈ D(A)). Indeed, for any (η, v), (θ, u) ∈ D(A), we have
after some integrations by parts

((θ, u), A(η, v))X0 = −
∫ L

0
[θ(vx + vxxx) + u(ηx + ηxxx)]dx

=

∫ L

0
[v(θx + θxxx) + η(ux + uxxx)]dx

= −(A(θ, u), (η, v))X0 .

Let us prove now that A∗ ⊂ −A. Pick any (θ, u) ∈ D(A∗). Then, we have for some constant
C > 0

|((θ, u), A(η, v))X0 | ≤ C‖(η, v)‖X0 ∀(η, v) ∈ D(A),

i.e. ∣∣∣∣∫ L

0
[θ(vx + vxxx) + u(ηx + ηxxx)]dx

∣∣∣∣ ≤ C (∫ L

0
[η2 + v2]dx

) 1
2

, ∀(η, v) ∈ D(A). (2.7)

Picking v = 0 and η ∈ C∞c (0, L), we infer from (2.7) that ux + uxxx ∈ L2(0, L), and hence that
u ∈ H3(0, L). Similarly, we obtain that θ ∈ H3(0, L). Integrating by parts in the left hand side
of (2.7), we obtain that

|θ(L)vxx(L)− θ(0)vxx(0) + θx(0)vx(0) + u(L)ηxx(L)− u(0)ηxx(0)− ux(L)ηx(L)|

≤ C
(∫ L

0
[η2 + v2]dx

)
, ∀(η, v) ∈ D(A).

It easily follows that

θ(0) = θ(L) = θx(0) = u(0) = u(L) = ux(L) = 0,

so that (θ, u) ∈ D(A) = D(−A). Thus D(A∗) = D(−A) and A∗ = −A. �
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Corollary 2.2. For any (η0, v0) ∈ X0, system (2.6) admits a unique solution (η, v) ∈ C(R, X0),
which satisfies ‖(η(t), v(t))‖X0 = ‖(η0, v0)‖X0 for all t ∈ R. If, in addition, (η0, v0) ∈ X3, then
(η, v) ∈ C(R, X3) with ‖(η, v)‖X3 := ‖(η, v)‖X0 + ‖A(η, v)‖X0 constant.

Using Corollary 2.2 combined with some interpolation argument between X0 and X3, we
infer that for any s ∈ (0, 3), there exists a constant Cs > 0 such that for any (η0, v0) ∈ Xs, the
solution (η, v) of (2.6) satisfies (η, v) ∈ C(R, Xs) and

‖(η(t), v(t))‖Xs ≤ Cs‖(η0, v0)‖Xs , ∀t ∈ R. (2.8)

2.2. Existence of traces. For the solutions of system (2.6), we know that the traces

η(·, 0), η(·, L), ηx(·, 0), v(·, 0), v(·, L), and vx(·, L)

vanish. We have a look at the other traces ηx(·, L), vx(·, 0) and prove that they belong to
L2
loc(R+) when (η0, v0) ∈ X1.

Proposition 2.3. Let (η0, v0) ∈ X1 and let (η, v) denote the solution of (2.6). Pick any T > 0.
Then ηx(·, L), vx(·, 0) ∈ L2(0, T ) with∫ T

0
[|ηx(t, L)|2 + |vx(t, 0)|2]dt ≤ C‖(η0, v0)‖2X1

(2.9)

for some constant C = C(T ).

Proof. Assume that (η0, v0) ∈ X3, so that (η, v) ∈ C([0, T ], X3) ∩ C1([0, T ], X0). We use
Morawetz multipliers as in [30]. We multiply the first (resp. second) equation in (2.6) by
xv (resp. xη), integrate by parts over (0, T ) × (0, L), and add the two obtained equations to
obtain

3

2

∫ T

0

∫ L

0
[η2x + v2x] dxdt− 1

2

∫ T

0

∫ L

0
[η2 + v2] dxdt+

[∫ L

0
[xηv]dx

]T
0

− L
2

∫ T

0
η2x(t, L) dt = 0. (2.10)

Since
∫ T
0 ‖(η, v)‖2X1

dt ≤ C‖(η0, v0)‖2X1
, this yields∫ T

0
η2x(t, L) dt ≤ C‖(η0, v0)‖2X1

.

By symmetry, using now as multipliers (L− x)v and (L− x)η, we infer that∫ T

0
v2x(t, 0) dt ≤ C‖(η0, v0)‖2X1

.

Thus (2.9) is established when (η0, v0) ∈ X3. Since X1 is dense in X3, the result holds as well
for (η0, v0) ∈ X1. �

We now turn our attention to the traces of order 2, namely ηxx(·, 0), ηxx(·, L), vxx(·, 0), and
vxx(·, L).

Proposition 2.4. Let (η0, v0) ∈ X2 and let (η, v) denote the solution of (2.6). Pick any T > 0.
Then ηxx(·, 0), ηxx(·, L), vxx(·, 0), vxx(·, L) ∈ L2(0, T ) with∫ T

0
[|ηxx(t, 0)|2 + |ηxx(t, L)|2 + |vxx(t, 0)|2 + |vxx(t, L)|2]dt ≤ C‖(η0, v0)‖2X2

(2.11)
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for some constant C = C(T ). Furthermore, ηx(·, L), vx(·, 0) ∈ H
1
3 (0, T ) with

‖ηx(·, L)‖2
H

1
3 (0,T )

+ ‖vx(·, 0)‖2
H

1
3 (0,T )

≤ C‖(η0, v0)‖2X2
(2.12)

for some constant C = C(T ).

Proof. Assume that (η0, v0) ∈ X3, so that (η, v) ∈ C([0, T ], X3) ∩ C1([0, T ], X0). Pick ρ ∈
C∞([0, L]) with ρ(x) = 0 for x ≤ 1/4 and ρ(x) = 1 for x ≥ 3/4, and set η̃ = ρη, ṽ = ρv. Then
we have

η̃t + ṽx + ṽxxx = ρxv + 3ρxvxx + 3ρxxvx + ρxxxv =: f̃ , (2.13)

ṽt + η̃x + η̃xxx = ρxη + 3ρxηxx + 3ρxxηx + ρxxxη =: g̃. (2.14)

Note that f̃ , g̃ ∈ C([0, T ], L2(0, L)). Multiplying each term in (2.13) by ṽxx (resp. in (2.14) by
η̃xx) and integrating by parts, we arrive to

1

2

∫ T

0

[
η̃2xx(t, L) + ṽ2xx(t, L) + η̃2x(t, L)] dt =

[∫ L

0
η̃xṽx dx

]T
0

+

∫ T

0

∫ L

0
[f̃ ṽxx + g̃η̃xx] dxdt.

It follows that∫ T

0

[
η2xx(t, L) + v2xx(t, L)] dt ≤ C

(
‖(η0, v0)‖2X2

+

∫ T

0
‖(f, g)‖2X0

dt

)
≤ C‖(η0, v0)‖2X2

,

and we can prove in a similar way that∫ T

0

[
η2xx(t, 0) + v2xx(t, 0)] dt ≤ C‖(η0, v0)‖2X2

.

Thus (2.11) is established when (η0, v0) ∈ X3. Since X3 is dense in X2, the result holds as well for
(η0, v0) ∈ X2. Let us proceed with the proof of (2.12). If (η0, v0) ∈ X4, then (η, v) ∈ C(R, X4),
so that (η̂, v̂) := (ηt, vt) = A(η, v) is in C(R, X1) and it solves

(η̂, v̂)t = A(η̂, v̂), (η̂, v̂)(0) = A(η0, v0).

It follows from (2.9) that

‖ηx(·, L)‖2H1(0,T ) + ‖vx(·, 0)‖2H1(0,T ) ≤ C‖(η
0, v0)‖2X4

. (2.15)

Since X2 = [X1, X4] 1
3
, we infer from (2.9) and (2.15) that

‖ηx(·, L)‖2
H

1
3 (0,T )

+ ‖vx(·, 0)‖2
H

1
3 (0,T )

≤ C‖(η0, v0)‖2X2
(2.16)

for some constant C = C(T ) and all (η0, v0) ∈ X2. �

2.3. Wellposedness of the nonhomogeneous problem. We consider the nonhomogeneous
system

ηt + vx + vxxx = 0, t ∈ (0, T ), x ∈ (0, L),
vt + ηx + ηxxx = 0, t ∈ (0, T ), x ∈ (0, L),
η(t, 0) = h0(t), η(t, L) = h1(t), ηx(t, 0) = h2(t), t ∈ (0, T ),
v(t, 0) = g0(t), v(t, L) = g1(t), vx(t, L) = g2(t), t ∈ (0, T ),
η(0, x) = η0(x), v(0, x) = v0(x), x ∈ (0, L),

(2.17)
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where the initial data (η0, v0) and the boundary data (h0, h1, h2, g0, g1, g2) are given in appro-
priate spaces.

We also consider the homogenous system
θt + ux + uxxx = 0, t ∈ (0, T ), x ∈ (0, L),
ut + θx + θxxx = 0, t ∈ (0, T ), x ∈ (0, L),
θ(t, 0) = θ(t, L) = θx(t, 0) = 0, t ∈ (0, T ),
u(t, 0) = u(t, L) = ux(t, L) = 0, t ∈ (0, T ),
θ(0, x) = θ0(x), u(0, x) = u0(x), x ∈ (0, L).

(2.18)

If both (η, v) and (θ, u) are in C([0, T ], [H3(0, L)]2) ∩C1([0, T ], [L2(0, L)]2), which is the case
when (η0, v0), (θ0, u0) ∈ X3 and hi, gi ∈ C2([0, T ]) with hi(0) = gi(0) = 0 for i = 1, 2, 3, then we
obtain after multiplying the two first equations of (2.17) by u and θ respectively, and integrating
by parts, that for all S ∈ [0, T ][∫ L

0
[ηθ + vu]dx

]S
0

=

∫ S

0
[θx(t, L)g2(t)− θxx(t, L)g1(t) + θxx(t, 0)g0(t)

−ux(t, 0)h2(t)− uxx(t, L)h1(t) + uxx(t, 0)h0(t)]dt. (2.19)

Definition 2.5. Let (η0, v0) ∈ X−2, g0, g1, h0, h1 ∈ L2(0, T ) and g2, h2 ∈ H−
1
3 (0, T ). We say

that (η, v) ∈ C([0, T ], X−2) is a solution of the nonhomogeneous problem (2.17) if we have that

〈(η(S), v(S)), (θ(S), u(S))〉X−2,X2 = LS(θ0, u0), ∀(θ0, u0) ∈ X2, ∀S ∈ [0, T ], (2.20)

where

LS(θ0, u0) := 〈(η0, v0), (θ0, u0)〉X−2,X2 + 〈g2,1(0,S)θx(·, L)〉
H−

1
3 (0,T ),H

1
3 (0,T )

+

∫ S

0
[−θxx(t, L)g1(t) + θxx(t, 0)g0(t)− uxx(t, L)h1(t) + uxx(t, 0)h0(t)]dt

−〈h2,1(0,S)ux(·, 0)〉
H−

1
3 (0,T ),H

1
3 (0,T )

, (2.21)

(θ, u) denoting the solution of system (2.18).

Note that LS : X2 → R is well defined for all S ∈ [0, T ], for θxx(·, 0), θxx(·, L), uxx(·, 0),

uxx(·, L) ∈ L2(0, T ) and θx(·, L), ux(·, 0) ∈ H
1
3 (0, T ) by Proposition 2.4. The fact that 1(0,S)θx(·, L),

1(0,S)ux(·, 0) ∈ H
1
3 (0, T ) for any S ∈ [0, T ] follows from [25, Théorème 11.4 p. 66].

The existence and uniqueness of a solution of system (2.17) is stated in the following result.

Proposition 2.6. Let (η0, v0) ∈ X−2, g0, g1, h0, h1 ∈ L2(0, T ), and g2, h2 ∈ H−
1
3 (0, T ). Then

there exists a unique solution (η, v) ∈ C([0, T ], X−2) of the nonhomogeneous problem (2.17).
Furthermore, we have

‖(η, v)‖L∞(0,T,X−2) ≤ C

(
‖(η0, v0)‖X−2 + ‖g0‖L2(0,T ) + ‖h0‖L2(0,T )

+‖g1‖L2(0,T ) + ‖h1‖L2(0,T ) + ‖g2‖
H−

1
3 (0,T )

+ ‖h2‖
H−

1
3 (0,T )

)
(2.22)
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for some constant C = C(T ) > 0. If, in addition, (η0, v0) ∈ X−1, g0 = g1 = h0 = h1 = 0, and
g2, h2 ∈ L2(0, T ), then (η, v) ∈ C([0, T ], X−1) and we have for some constant C ′ = C ′(T )

‖(η, v)‖L∞(0,T,X−1) ≤ C ′
(
‖(η0, v0)‖X−1 + ‖g2‖L2(0,T ) + ‖h2‖L2(0,T )

)
. (2.23)

Proof. Let (η0, v0) ∈ X−2, g0, g1, h0, h1 ∈ L2(0, T ), and g2, h2 ∈ H−
1
3 (0, T ). Pick any (θ0, u0) ∈

X2 and denote by (θ, u) the solution of the homogeneous system (2.18). Then, by Proposition

2.4, θxx(·, 0), θxx(·, L), uxx(·, 0), uxx(·, L) ∈ L2(0, T ) and θx(·, L), ux(·, 0) ∈ H
1
3 (0, T ). It follows

that for any S ∈ [0, T ], the linear map LS : X−2 → R defined in (2.21) is continuous. As the
map ΓS : (θ0, u0) ∈ X2 7→ (θ(S), u(S)) ∈ X2 is invertible, (η(S), v(S)) is defined in X−2 in a
unique way by (2.20). Furthermore, as ΓS and Γ−1S = Γ−S are uniformly bounded in L(X2) for
S ∈ [0, T ] (see (2.8)), we infer that (η, v) ∈ L∞(0, T,X−2) and that (2.22) holds. On the other
hand, if (η0, v0), (θ0, u0) ∈ X3 and hi, gi ∈ C2([0, T ]) with hi(0) = gi(0) = 0 for i = 1, 2, 3, the
respective strong solutions (η, v), (θ, u) ∈ C([0, T ], [H3(0, L)]2) ∩ C1([0, T ], [L2(0, L)]2) of (2.17)
and (2.18) satisfy (2.19), and thus (2.20), for X3 is dense in X2. Using (2.22) and a density
argument, we infer that (θ, v) ∈ C([0, T ], X−2) when we assume merely that (η0, v0) ∈ X−2,

g0, g1, h0, h1 ∈ L2(0, T ), and g2, h2 ∈ H−
1
3 (0, T ).

Assume finally that (η0, v0) ∈ X−1, g0 = g1 = h0 = h1 = 0 and g2, h2 ∈ L2(0, T ). Pick any
(θ0, u0) ∈ X2. Then

LS(θ0, u0) = 〈(η0, v0), (θ0, u0)〉X−2,X2 + 〈g2,1(0,S)θx(·, L)〉
H−

1
3 (0,T ),H

1
3 (0,T )

−〈h2,1(0,S)ux(·, 0)〉
H−

1
3 (0,T ),H

1
3 (0,T )

= 〈(η0, v0), (θ0, u0)〉X−1,X1 +

∫ S

0
[θx(t, L)g2(t)− ux(t, 0)h2(t)]dt. (2.24)

Using Proposition 2.3 and (2.24), we see that LS can be extended as a continuous linear map
from X1 to R. It follows from (2.20), the density of X2 in X1, and the fact that the map
(θ0, u0) ∈ X1 7→ (θ(S), u(S)) ∈ X1 is invertible with its norm and the norm of its inverse
uniformly bounded for S ∈ [0, T ], that (η, v) ∈ L∞(0, T,X−1) with (2.23) satisfied. The same
argument as above shows that (η, v) ∈ C([0, T ], X−1). �

3. Controllability of the linearized system

In this section, we are interested in the exact controllability of the linear system (2.17) using at
most two control inputs (the other control inputs being replaced by 0). The exact controllability
in X−2 is defined as follows.

Definition 3.1. We say that the system (2.17) is exactly controllable in X−2 (in small time)
if for all (η0, v0), (η1, v1) ∈ X−2 and all T > 0, one can find g0, g1, h0, h1 ∈ L2(0, T ) and

g2, h2 ∈ H−
1
3 (0, T ) such that the solution (η, v) of (2.17) satisfies

(η(T, ·), v(T, ·)) = (η1, v1). (3.1)

Here, we will restrict to situations when at most two control inputs can be prescribed, the other
being set to 0. Similarly, we say that the system (2.17) with g0 = g1 = h0 = h1 = 0 is exactly
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controllable in X−1 (in small time) if for all (η0, v0), (η1, v1) ∈ X−1 and all T > 0, one can find
g2, h2 ∈ L2(0, T ) such that the solution (η, v) of (2.17) satisfies (3.1).

As system (2.6) is reversible, the exact controllability of system (2.17) is equivalent to its null
controllability (i.e., the above property with (η0, v0) arbitrary but (η1, v1) = (0, 0)).

As it is well known, the exact controllability of a control system is equivalent to the observ-
ability of its adjoint system (see e.g. [12, 23, 24]). Here, using (2.20)-(2.21), we see that the exact

controllability of (2.17) in X−2 with the six controls g0, g1, h0, h1 ∈ L2(0, T ), g2, h2 ∈ H−
1
3 (0, T )

is equivalent to the existence of a constant C > 0 such that for all (θ0, u0) ∈ X2,

‖(θ0, u0)‖2X2
≤ C

(∫ T

0

[
|θxx(t, 0)|2 + |θxx(t, L)|2 + |uxx(t, 0)|2 + |uxx(t, L)|2

]
dt

+‖θx(·, L)‖2
H

1
3 (0,T )

+ ‖ux(·, 0)‖2
H

1
3 (0,T )

)
(3.2)

where (θ, u) denotes the solution of (2.18).
The exact controllabity in X−2 with less control inputs is equivalent to the observability

inequality (3.2) in which we remove the traces corresponding to the missing controls. Similarly,
the exact controllability of (2.17) in X−1 with the two controls g2, h2 ∈ L2(0, T ) is equivalent to
the existence of a constant C > 0 such that for all (θ0, u0) ∈ X1,

‖(θ0, u0)‖2X1
≤ C

∫ T

0

[
|θx(t, L)|2 + |ux(t, 0)|2

]
dt. (3.3)

The aim of this section is to provide a complete picture of the exact controllability results for
system (2.17) with one or two control inputs among g0, g1, g2, h0, h1, h2.

We introduce some subsets of (0,+∞) that are needed to give a complete picture of the critical
lengths for the control of the linearized KdV-KdV system:

N :=

{
2π√

3

√
k2 + kl + l2; k, l ∈ N∗

}
,

N3 :=

{
2π√

3

√
k2 + kl + l2; k, l ∈ N∗, 3|2k + l

}
⊂ N,

R :=

{
π

√
(
1

2
+ 2k)2 + (

1

2
+ 2l)2 + (

1

2
+ 2k)(

1

2
+ 2l); k, l ∈ Z, k 6= l

}
,

G :=

{
L ∈ (0,+∞); ∃a, b ∈ C,

2a

iea − 1
+ a =

2b

ieb − 1
+ b =

2(−a− b)
ie−a−b − 1

− a− b 6= 0,

L2 = −(a2 + ab+ b2)
}
,

G′ :=

{
L ∈ (0,+∞); ∃a, b ∈ C,

2a

−iea − 1
+ a =

2b

−ieb − 1
+ b =

2(−a− b)
−ie−a−b − 1

− a− b 6= 0,

L2 = −(a2 + ab+ b2)
}
.
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Then the control results for the linearized Boussinesq system with one or two boundary
controls of Dirichlet or Neumann type are outlined in the following theorem.

Theorem 3.2. Consider system (2.17) with one or two control inputs among g0, g1, g2, h0, h1, h2
(the other being set to 0). Then the exact controllability of (2.17) holds (in any time T > 0) if
and only if L is not a critical length, a concept depending on the set of control inputs that are
available. The precise results are reported in Table 1.

Controls Properties
Case h0 h1 h2 g0 g1 g2 Control Inputs State Space Set of Critical

Lengths
1 0 0 0 0 0 ? g2 ∈ L2(0, T ) (η0, w0) ∈ X−1 N

2 0 0 0 0 ? 0 g1 ∈ L2(0, T ) (η0, w0) ∈ X−2 N ∪ R

3 0 0 0 ? 0 0 g0 ∈ L2(0, T ) (η0, w0) ∈ X−2 N ∪ G ∪ G′

4 0 0 ? 0 0 ? h2, g2 ∈ L2(0, T ) (η0, w0) ∈ X−1 N

5 0 ? 0 0 ? 0 h1, g1 ∈ L2(0, T ) (η0, w0) ∈ X−2 ∅
6 0 ? 0 0 0 ? h1 ∈ L2(0, T ), g2 ∈ H−

1
3 (0, T ) (η0, w0) ∈ X−2 N

7 0 0 0 0 ? ? g1 ∈ L2(0, T ), g2 ∈ H−
1
3 (0, T ) (η0, w0) ∈ X−2 N

8 ? 0 0 0 0 ? h0 ∈ L2(0, T ), g2 ∈ H−
1
3 (0, T ) (η0, w0) ∈ X−2 N

9 0 0 0 ? 0 ? g0 ∈ L2(0, T ), g2 ∈ H−
1
3 (0, T ) (η0, w0) ∈ X−2 N

10 ? 0 0 0 ? 0 h0, g1 ∈ L2(0, T ) (η0, w0) ∈ X−2 R

11 0 0 0 ? ? 0 g0, g1 ∈ L2(0, T ) (η0, w0) ∈ X−2 N3

12 0 ? 0 ? 0 0 h1, g0 ∈ L2(0, T ) (η0, w0) ∈ X−2 G ∪ G′

Table 1. Controllability results for the linearized system

Remark 3.3. Using the symmetries, we notice that all the possibilities with one or two control
inputs are really considered in Table 1: indeed, h2 alone is similar to g2 alone (case 1); h0 alone
is similar to g1 alone (case 2); h1 alone is similar to g0 alone (case 3); the pair (h0, g0) is similar
to the pair (h1, g1) (case 5); the pair (h2, g1) is similar to the pair (h0, g2) (case 8); the pair
(h1, h2) is similar to the pair (g0, g2) (case 9); the pair (g0, h2) is similar to the pair (h1, g2)
(case 6); the pair (h0, h2) is similar to the pair (g1, g2) (case 7); the pair (h0, h1) is similar to
the pair (g0, g1) (case 11).

The proof of Theorem 3.2 is detailed in a series of propositions or theorems displayed in
several subsections.

3.1. Neumann controls. We consider first two controls (case 4) and next only one control
(case 1). We shall use repeatedly the following results from [30].

Proposition 3.4. ([30, Proposition 3.3]) For all L ∈ (0,+∞) \ N and T > 0, there exists a
constant C = C(L, T ) > 0 such that∫ L

0
|y0(x)|2 dx ≤ C

∫ T

0
|yx(t, 0)|2 dt, ∀y0 ∈ L2(0, L), (3.4)
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where y = y(t, x) denotes the solution to the linearized KdV system yt + yx + yxxx = 0, t ∈ (0, T ), x ∈ (0, L),
y(t, 0) = y(t, L) = yx(t, L) = 0, t ∈ (0, T ),
y(0, x) = y0(x), x ∈ (0, L).

(3.5)

Lemma 3.5. ([30, Lemma 3.5]) Let L > 0. Then L ∈ N if and only if there exist some numbers
p ∈ C and (α, β) ∈ C2 \ {(0, 0)} such that the map

f(ξ) =
α− βe−iLξ

ξ3 − ξ + p
(3.6)

is an entire function, i.e. a complex analytic function on C.

The controllability result for the case 4 is a consequence of the following observability inequal-
ity.

Proposition 3.6. Let L 6∈ N and T > 0. Then there exists a constant C = C(L, T ) > 0 such
that

‖(θ0, u0)‖2X1
≤ C

∫ T

0

[
|θx(t, L)|2 + |ux(t, 0)|2

]
dt, ∀(θ0, u0) ∈ X1, (3.7)

where (θ, u) denotes the solution of (2.18).

Proof. If (3.7) is not true, one can find two sequences (θ0n)n≥0 and (u0n)n≥0 such that

1 = ‖(θ0n, u0n)‖2X1
> n

∫ T

0
[|θn,x(t, L)|2 + |un,x(t, 0)|2]dt. (3.8)

Extracting a subsequence if necessary, one can assume that (θ0n, u
0
n) → (θ0, u0) weakly in X1,

and hence strongly in X0. In particular, we have that

(θ0n, u
0
n)→ (θ0, u0) strongly in X0,

(θn, un)→ (θ, u) strongly in C([0, T ], X0),

(θn, un)→ (θ, u) weakly in L2(0, T,X1),

θx,n(·, L)→ θx(·, L) weakly in L2(0, T ),

ux,n(·, 0)→ ux(·, 0) weakly in L2(0, T ).

Using (3.8), we infer that θx,n(·, L)→ 0 and ux,n(·, 0)→ 0 strongly in L2(0, T ). Thus θx(·, L) =
ux(·, 0) = 0. It follows that y(t, x) := θ(t, x) + u(t, x) satisfies yt + yxxx + yx = 0, t ∈ (0, T ), x ∈ (0, L),

y(t, 0) = y(t, L) = yx(t, L) = 0, t ∈ (0, T ),
y(0, x) = θ0(x) + u0(x), x ∈ (0, L)

together with yx(t, 0) = 0. We infer from Proposition 3.4 that θ0+u0 = 0. Similarly, considering
the function z(t, x) := θ(t, L− x)− u(t, L− x), we can conclude that θ0(L− x)− u0(L− x) = 0.
Therefore, θ0 = u0 = 0, and thus (θn, un)→ (0, 0) strongly in C([0, T ], X0). But it follows from
the above convergences and from (2.10) that (θn, un)→ (0, 0) strongly in L2(0, T,X1), and with
(2.8), that (θ0n, u

0
n)→ (0, 0) strongly in X1. This contradicts (3.8). �
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Let us investigate the exact controllability of (2.17) in case 4. If L 6∈ N, then by Proposition
3.6, system (2.17) is exactly controllable in X−1. If L ∈ N, then by [30, Remark 3.6 (i)] there
exists a nontrivial solution y of (3.5) such that yx(·, 0) = 0. Then (θ(t, x), u(t, x)) := (y(t, x) +
y(t, L−x), y(t, x)−y(t, L−x)) is a nontrivial solution of (2.18) such that θx(·, L) = ux(·, 0) = 0.
It follows that (2.17) is not exactly controllable in X−1 if L ∈ N.

We now turn into the problem of the controllability of (2.17) with only one Neumann control
(case 1). The following observability inequality improves Proposition 3.6, for only one boundary
measurement is needed to estimate the initial data.

Theorem 3.7. Let L 6∈ N and T > 0. Then there exists a constant C = C(L, T ) > 0 such that

‖(θ0, u0)‖2X1
≤ C

∫ T

0
|θx(t, L)|2dt, ∀(θ0, u0) ∈ X1, (3.9)

where (θ, u) denotes the solution of (2.18).

Proof. We follow closely [30]. In the first step, we transform the problem into a spectral problem.
In the second step, we solve the spectral problem by using Paley-Wiener theorem combined with
complex analysis. Introduce some notations. For any T > 0, let

NT := {(θ0, u0) ∈ X1; the solution (θ, u) of (2.18) satisfies θx(t, L) = 0 for a.e. t ∈ (0, T )},
MT := {(θ, u) = etA(θ0, u0); (θ0, u0) ∈ NT , t ∈ [0, T ]} ⊂ C([0, T ], X1).

Step 1. Reduction to a spectral problem.

Pick any L ∈ (0,+∞) \ N and any T > 0. If (3.9) is not true, one can find a sequence
(θ0n, u

0
n)n≥0 in X1 such that

1 = ‖(θ0n, u0n)‖2X1
> n

∫ T

0
|θn,x(t, L)|2dt, ∀n ≥ 0. (3.10)

Extracting a subsequence if necessary, one can assume that (θ0n, u
0
n) → (θ0, u0) weakly in X1,

and hence strongly in X0. Let (θn, un) and (θ, u) denote the solutions of (2.18) associated with
(θ0n, u

0
n) and (θ0, u0), respectively. Using (3.10), we infer that θn,x(·, L)→ 0 strongly in L2(0, T ),

and hence θx(·, L) = 0. Using (2.10), (3.10) and the fact that (θn, un)→ (θ, u) in C([0, T ], X0),
we see that (θn, un) → (θ, u) strongly in L2(0, T,X1), so that (θ0n, u

0
n) → (θ0, u0) strongly in

X1, and hence ‖(θ0, u0)‖X1 = 1. Thus (θ0, u0) ∈ NT \ {(0, 0)}. To obtain a contradiction, it is
sufficient to prove the following

Claim 1. NT = {(0, 0)} for all T > 0.

It is clear that T < T ′ ⇒ NT ′ ⊂ NT . On the other hand, the vector space NT has a finite
dimension, for its unit ball is compact. Indeed, the same argument as above shows that any
sequence (θ0n, u

0
n)n∈N in the unit ball of NT has a convergent subsequence for the norm ‖ ·‖X1 . If

Claim 1 is not true, one may find T ′ > 0 such that dim NT ′ > 0. Since the map T ∈ (0,+∞) 7→
dim NT ∈ N is nonincreasing, one may pick T ∈ (0, T ′) and ε > 0 such that T + ε < T ′ and
dim NT = dim NT+ε ≥ dim NT ′ > 0. It follows that Nt = NT for T ≤ t ≤ T + ε. Let
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(θ0, u0) ∈ NT , and let (θ, u) denote the solution of (2.18). By the semigroup property, we have
that

1

t

(
(θ(t, ·), u(t, ·))− (θ0, u0)

)
∈ NT , ∀t ∈ (0, ε),

and hence
1

t
((θ(t+ ·, ·), u(t+ ·, ·))− (θ, u)) ∈MT , ∀t ∈ (0, ε).

Since (θ, u) ∈ H1(0, T + ε, [H−2(0, L)]2), we have that

lim
t→0+

1

t
((θ(t+ ·, ·), u(t+ ·, ·))− (θ, u)) = (θt, ut) in L2(0, T, [H−2(0, L)]2).

But the vector space MT is closed in L2(0, T, [H−2(0, L)]2), for it is finite-dimensional. It follows
that (θt, ut) ∈MT ⊂ C([0, T ], X1), so that (θ, u) ∈ C1([0, T ], X1). This implies that

(θ0, u0) ∈ D(A) = X3, A(θ0, u0) = (θt(0, .), ut(0, .)) ∈ NT and θx(·, L) ∈ C([0, T ]).

In particular

dθ0

dx
(L) = θx(0, L) = 0.

Let NC
T denote the complexification of NT , and let ′ = d/dx. Since it was assumed that

dim NT 6= 0, we infer that the linear map (θ0, u0) ∈ NC
T 7→ A(θ0, u0) ∈ NC

T has at least one
eigenvalue; that is, there exist λ ∈ C and (θ, u) ∈ X3 \{(0, 0)} 2 solution of the spectral problem

−u′ − u′′′ = λθ, x ∈ (0, L), (3.11)

−θ′ − θ′′′ = λu, x ∈ (0, L), (3.12)

θ(0) = θ(L) = θ′(0) = θ′(L) = 0, (3.13)

u(0) = u(L) = u′(L) = 0. (3.14)

We show in the next step that (3.11)-(3.14) has no nontrivial solution when L 6∈ N.

Step 2. Study of the spectral problem.

We shall prove the following

Claim 2. For L 6∈ N, if λ ∈ C and (θ, u) ∈ X3 satisfy (3.11)-(3.14), then θ = u = 0.

Let (θ, u) be as in Claim 2, and extend θ and u to R by setting θ(x) = u(x) = 0 for x 6∈ [0, L].
Then we have in S′(R)

λθ + u′ + u′′′ = u′(0)δ′0 + u′′(0)δ0 − u′′(L)δL,

λu+ θ′ + θ′′′ = θ′′(0)δ0 − θ′′(L)δL,

where δζ denotes the Dirac measure at x = ζ and the derivatives u′(0), u′′(0), u′′(L), θ′′(0), θ′′(L)
are those of the functions u and θ when restricted to [0, L]. Taking the Fourier transform of

2We removed the superscript 0 to simplify the notations. We still used the notation X3 to denote the space of
complex-valued functions in (2.2).
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each term in the above system, we obtain

λθ̂(ξ) + iξû(ξ) + (iξ)3û(ξ) = u′(0)iξ + u′′(0)− u′′(L)e−iLξ,

λû(ξ) + iξθ̂(ξ) + (iξ)3θ̂(ξ) = θ′′(0)− θ′′(L)e−iLξ.

Setting λ = −ip, f(ξ) := θ̂(ξ) + û(ξ), and g(ξ) := θ̂(ξ)− û(ξ), we arrive to

f(ξ) =
i

ξ3 − ξ + p
(α+ βiξ + γe−iLξ),

g(−ξ) =
i

ξ3 − ξ + p
(α′ − βiξ + γ′eiLξ),

where α := u′′(0) + θ′′(0), α′ := u′′(0) − θ′′(0), β := u′(0), γ := −u′′(L) − θ′′(L), and γ′ :=
−u′′(L) + θ′′(L). Since both θ and u have a compact support, it follows from the Paley-Wiener
theorem that the functions f and g have to be entire (i.e. holomorphic in the whole plane C).
The same is true for the function

h(ξ) := f(ξ) + g(−ξ) =
ie−iLξ

ξ3 − ξ + p
(γ′e2iLξ + (α+ α′)eiLξ + γ).

Introduce the polynomial functions P (z) := γ′z2 + (α+α′)z+ γ and Q(ξ) := ξ3− ξ+ p, and let
µk, k = 0, 1, 2, denote the three roots of Q. Then P (eiLµk) = 0 for k = 0, 1, 2, since h is entire.
Let

z± =
−(α+ α′)±

√
(α+ α′)2 − 4γγ′

2γ′

denote the roots of the polynomial function P .
(i) If β = 0, then applying Lemma 3.5 to f(ξ) and g(−ξ), we infer that α = γ = α′ = γ′ = 0, so
that

u′′(0) = u′′(L) = u′(0) = θ′′(0) = θ′′(L) = 0.

It follows then that θ = u = 0 in [0, L], as desired.
(ii) If β 6= 0, then since g(−ξ) is entire, each root µk of Q has to satisfy α′− βiµk + γ′eiLµk = 0,
i.e. µk = (α′ + γ′eiLµk)/(iβ). Since eiLµk is a root of P , we arrive to the conclusion that

µk ∈
{
α′ + γ′z+

iβ
,
α′ + γ′z−

iβ

}
·

We infer that Q cannot have three distinct roots.
Assume that Q has a root of order 3, i.e. µ0 = µ1 = µ2. Then we have that Q(µ0) =
Q′(µ0) = Q′′(µ0) = 0. Since Q′′(ξ) = 6ξ, we conclude that µ0 = 0, hence p = 0, so that
Q(ξ) = ξ(ξ − 1)(ξ + 1) has three distinct roots, a contradiction.

We arrive to the conclusion that Q has a double root and a simple root. We can assume that
µ0 = µ1 6= µ2. Then, we infer from Q(µ0) = Q′(µ0) = 0 and the fact that Q′(ξ) = 3ξ2 − 1 that
µ0 = ± 1√

3
and p = ± 2

3
√
3
.

? Assume that µ0 = 1√
3
. Then Q(ξ) = ξ3 − ξ + 2

3
√
3

= (ξ − 1√
3
)2(ξ + 2√

3
). On the other hand,

since f is entire, µ2 = − 2√
3

(resp. µ0) has to be a root (resp. a root of order at least 2) of the
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numerator of f , i.e.

α+
i√
3
β + γe

−i L√
3 = 0, (3.15)

iβ − iLγe−i
L√
3 = 0, (3.16)

α− 2i√
3
β + γe

2i L√
3 = 0. (3.17)

From (3.16), we infer that β = Lγe−iL/
√
3. Substituting this value of β in (3.15) and (3.17) and

taking the difference of the two obtained equations, we obtain that

(i
√

3Lγ + γ)e
−i L√

3 = γe
2i L√

3 . (3.18)

- If γ = 0, we obtain β = 0 which contradicts the assumption in (ii).
- If γ 6= 0, then taking the module of both terms in (3.18) yields L = 0, which is impossible.

? Assume now that µ0 = − 1√
3
. Then, proceeding as above, we obtain that β = LγeiL/

√
3 and

that

(−i
√

3Lγ + γ)e
i L√

3 = γe
−2i L√

3 .

Again, we see that we obtain a contradiction for γ = 0 or for γ 6= 0. The proof of Theorem 3.7
is complete. �

With Theorem 3.7 at hand, we deduce that (2.17) is exactly controllable in X−1 with g2 as
unique control (case 1) when L 6∈ N. On the other hand, the exact controllability fails when
L ∈ N according to case 4.

Let us turn our attention to the cases 6, 7, 8 and 9 for which we have added one Dirichlet
control to the Neumann control g2. First, we notice that in case 1, we have for L 6∈ N the exact

controllability in X−2 by picking the controls g2 in H−
1
3 (0, T ). Indeed, from (3.9), we have for

(θ0, u0) ∈ X4

‖A(θ0, u0)‖2X1
≤ C

∫ T

0
|θxt(t, L)|2dt

and hence

‖(θ0, u0)‖2X4
≤ C‖θx(·, L)‖2H1(0,T ). (3.19)

By interpolation between (3.9) and (3.19), we infer that for all (θ0, u0) ∈ X2,

‖(θ0, u0)‖2X2
≤ C‖θx(·, L)‖2

H
1
3 (0,T )

. (3.20)

The observability inequality (3.20) implies the exact controllability in X−2 in case 1 (with

g2 ∈ H−
1
3 (0, T )) as well as in cases 6 to 9 for L 6∈ N. It remains to show that any L ∈ N is still

a critical length in cases 6 to 9. We claim that in each of those cases, the corresponding spectral
problem has for L ∈ N a nontrivial solution (θ, u), so that the corresponding observability
inequality fails for the exponential solution Re[eλt(θ, u)].

Proposition 3.8. Let L ∈ N. Then
1. (case 6) there exist λ ∈ C and (θ, u) ∈ X3 \ {(0, 0)} satisfying (3.11)-(3.14) and u′′(L) = 0.
2. (case 7) there exist λ ∈ C and (θ, u) ∈ X3 \ {(0, 0)} satisfying (3.11)-(3.14) and θ′′(L) = 0.
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3. (case 8) there exist λ ∈ C and (θ, u) ∈ X3 \ {(0, 0)} satisfying (3.11)-(3.14) and u′′(0) = 0.
4. (case 9) there exist λ ∈ C and (θ, u) ∈ X3 \ {(0, 0)} satisfying (3.11)-(3.14) and θ′′(0) = 0.

Proof. Let L ∈ N. Then we can write L = 2π
√

k2+kl+l2

3 with k, l ∈ N∗. Following [30], we

introduce the numbers

µ0 = −1

3
(2k + l)

2π

L
, µ1 := µ0 + k

2π

L
, µ2 = µ1 + l

2π

L
, p := iλ = −µ0µ1µ2.

We use again the notations in the proof of Theorem 3.7 (Claim 2). Let

f(ξ) =
i

ξ3 − ξ + p
(α+ βiξ + γe−iLξ),

g(−ξ) =
i

ξ3 − ξ + p
(α′ − βiξ + γ′eiLξ),

where α := u′′(0) + θ′′(0), α′ := u′′(0) − θ′′(0), β := u′(0), γ := −u′′(L) − θ′′(L), and γ′ :=
−u′′(L) + θ′′(L). We know that we can find coefficients α, β, γ, α′, γ′ not all zero so that the two
functions f(ξ) and g(−ξ) are entire, the roots ofQ(ξ) = ξ3−ξ+p being µ0, µ1, µ2. Furthermore, it
follows from Paley-Wiener theorem (see [30]) that the spectral problem (3.11)-(3.14) has indeed
a nontrivial solution. Our concern is to prove that we can as well impose the addition condition
in each case.

From our choice of the µk’s, we have that the quantity e−iLµk is independent of k. Set

C := e−iLµ0 = e−iLµ1 = e−iLµ2 .

We shall pick β = 0 in all the cases.
1. The additional condition u′′(L) = 0 is equivalent to γ′ = −γ. We can pick γ = 1, γ′ = −1,
α = −C, and α′ = C.
2. The additional condition θ′′(L) = 0 is equivalent to γ′ = γ. We can pick γ = γ′ = 1, α = −C,
and α′ = −C.
3. The additional condition u′′(0) = 0 is equivalent to α′ = −α. We can pick α = 1 and α′ = −1,
γ = −C, and γ′ = C.
4. The additional condition θ′′(0) = 0 is equivalent to α′ = α. We can pick α = α′ = 1, γ = −C,
and γ′ = −C. �

3.2. Dirichlet controls. We consider the cases in which only Dirichlet controls are involved.
We start with a preparatory result which is an observability inequality with the measurement
of three traces.

Proposition 3.9. For all L > 0 and T > 0, there is a constant C = C(L, T ) > 0 such that

‖(θ0, u0)‖2X2
≤ C

∫ T

0

[
|θxx(t, L)|2 + |uxx(t, L)|2 + |θx(t, L)|2

]
dt, ∀(θ0, u0) ∈ X2. (3.21)

Proof. First, we introduce the space

Y := L2(0, T, [H
7
4 (0, L)]2) ∩ C([0, T ], [H1(0, L)]2)



20 CAPISTRANO–FILHO, PAZOTO, AND ROSIER

which is a Banach space when endowed with the norm

‖(θ, u)‖2Y =

∫ T

0
[‖θ(t, ·)‖2

H
7
4

+ ‖u(t, ·)‖2
H

7
4
]dt+ sup

0≤t≤T
[‖θ(t, ·)‖2H1 + ‖u(t, ·)‖2H1 ].

Pick any (θ0, u0) ∈ X4 and let (θ, u) denote the solution of (2.18). Taking the derivative w.r.t.
x of each term in the two first equations of (2.18) results in

θtx + uxx + uxxxx = 0, t ∈ (0, T ), x ∈ (0, L), (3.22)

utx + θxx + θxxxx = 0, t ∈ (0, T ), x ∈ (0, L). (3.23)

Multiplying (3.22) by xux, (3.23) by xθx, integrating by parts over (0, T ) × (0, L) and adding
the two equations, we arrive to[∫ L

0
xθxux dx

]T
0

− 1

2

∫ T

0

∫ L

0
[θ2x + u2x]dxdt+

3

2

∫ T

0

∫ L

0
[θ2xx + u2xx] dxdt

−
∫ T

0

[x
2

(θ2x + u2x) + θxθxx + uxuxx +
x

2
(θ2xx + u2xx)

]L
0
dt = 0. (3.24)

Combining (3.24) with the forward/backward wellposedness in X2 and Sobolev embedding, this
yields

‖(θ0, u0)‖2X2
≤ C

∫ T

0
‖(θ, u)‖2X2

dt

≤ C

∫ T

0

∫ L

0
[θ2xx + u2xx] dxdt

≤ C

(
‖(θ, u)‖2Y +

∫ T

0
[θ2xx(t, L) + u2xx(t, L) + u2xx(t, 0)]dt

)
. (3.25)

Multiplying the two first equations in (2.18) by uxx and θxx respectively, integrating by parts
over (0, T )× (0, L) and adding the two equations, we obtain

1

2

∫ T

0
[θ2xx + u2xx]L0 dt−

[∫ L

0
θxux dx

]T
0

+
1

2

∫ T

0
θ2x(t, L)dt− 1

2

∫ T

0
u2x(t, 0)dt = 0, (3.26)

and hence∫ T

0
[θ2xx(t, 0) + u2xx(t, 0)]dt ≤ C

(
‖(θ, u)‖2Y +

∫ T

0
[θ2xx(t, L) + u2xx(t, L)]dt

)
. (3.27)

Combined with (3.25), this gives

‖(θ0, u0)‖2X2
≤ C

(
‖(θ, u)‖2Y +

∫ T

0
[θ2xx(t, L) + u2xx(t, L)]dt

)
. (3.28)

The result is also true for (θ0, u0) ∈ X2, by density of X4 in X2. It remains to “remove” the
term ‖(θ, u)‖2Y in (3.28). Assuming that (3.21) is not true, we can find a sequence (θ0n, u

0
n)n∈N

such that

1 = ‖(θ0n, u0n)‖2X2
> n

∫ T

0

[
|θnxx(t, L)|2 + |unxx(t, L)|2 + |θnx(t, L)|2

]
dt. (3.29)
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Extracting a subsequence if needed, we can assume that (θ0n, u
0
n)→ (θ0, u0) weakly in X2 (hence

strongly in X1). As the corresponding solution (θn, un) of (2.18) is bounded in C([0, T ], X2)

and in H1(0, T,X−1), and since the first embedding in X2 ⊂ [H
7
4 (0, L) ∩ H1

0 (0, L)]2 ⊂ X1

is compact, we infer from Aubin-Lions’ lemma (see e.g. [34, Corollary 4]) that the sequence
(θn, un)n≥0 admits a subsequence, still denoted (θn, un)n≥0, which is strongly convergent in

C([0, T ], [H
7
4 (0, L) ∩ H1

0 (0, L)]2), hence in Y . It follows then from (3.28) that the sequence
(θ0n, u

0
n)n≥0 is strongly convergent in X2. Thus its limit (θ0, u0) is such that ‖(θ0, u0)‖X2 = 1

and the corresponding solution of (2.18) satisfies

θxx(t, L) = uxx(t, L) = θx(t, L) = 0.

We infer that the function y(t, x) := θ(t, x) + u(t, x) (resp. y(t, x) := θ(t, L − x) − u(t, L − x))
solves the linearized KdV equation yt + yx + yxxx = 0 and satisfies the boundary conditions
y(t, L) = yx(t, L) = yxx(t, L) = 0 (resp. y(t, 0) = yx(t, 0) = yxx(t, 0) = 0), and hence it vanishes
in (0, T )× (0, L) by Holmgren’s theorem. We conclude that θ = u = 0 and this contradicts the
fact that ‖(θ0, u0)‖X2 = 1. �

We are in a position to investigate the case 5. The following observability inequality improves
those in Proposition 3.9.

Corollary 3.10. For all L > 0 and T > 0, there is a constant C = C(L, T ) > 0 such that

‖(θ0, u0)‖2X2
≤ C

∫ T

0

[
|θxx(t, L)|2 + |uxx(t, L)|2

]
dt, ∀(θ0, u0) ∈ X2. (3.30)

Proof. We proceed in two steps as in the proof of Theorem 3.7.

Step 1. Reduction to a spectral problem.
If (3.30) is false, then one can pick a sequence (θ0n, u

0
n)n∈N such that

1 = ‖(θ0n, u0n)‖2X2
> n

∫ T

0

[
|θn,xx(t, L)|2 + |un,xx(t, L)|2

]
dt. (3.31)

Extracting a subsequence if needed, we can assume that (θ0n, u
0
n) → (θ0, u0) weakly in X2.

Denote by (θn, un) (resp. (θ, u)) the solution of (2.18) with initial data (θ0n, u
0
n) (resp. (θ0, u0)).

Extracting again a subsequence, we can assume that (θn, un) → (θ, u) in Y . By (3.28) and
(3.31), we have that (θ0n, u

0
n) → (θ0, u0) strongly in X2. Thus ‖(θ0, u0)‖X2 = 1 and θxx(·, L) =

uxx(·, L) = 0 a.e. in (0, L). The same argument as the one in Step 1 of the proof of Theorem
3.7 shows that there exist λ ∈ C and (θ, u) ∈ X3 \ {(0, 0)} (superscript 0 dropped for simplicity)
which solve the spectral problem:

−u′ − u′′′ = λθ, x ∈ (0, L), (3.32)

−θ′ − θ′′′ = λu, x ∈ (0, L), (3.33)

θ(0) = θ(L) = θ′(0) = θ′′(L) = 0, (3.34)

u(0) = u(L) = u′(L) = u′′(L) = 0. (3.35)

We show in the next step that system (3.32)-(3.35) has no nontrivial solution for any L > 0.
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Step 2. Study of the spectral problem.

Claim 3. Let L > 0. If λ ∈ C and (θ, u) ∈ X3 satisfy (3.32)-(3.35), then θ = u = 0.

Let us prove Claim 3. Pick (λ, θ, u) as in Claim 3, and extend θ and u to R by setting θ(x) =
u(x) = 0 for x 6∈ [0, L]. Then we have

λθ + u′ + u′′′ = u′(0)δ′0 + u′′(0)δ0,

λu+ θ′ + θ′′′ = −θ′(L)δ′L + θ′′(0)δ0,

where δζ denotes the Dirac measure at x = ζ, and the derivatives u′(0), u′′(0), θ′(L), θ′′(0) are
those of the functions u and θ when restricted to [0, L]. Taking the Fourier transform of each
term in the above system, we obtain

λθ̂(ξ) + iξû(ξ) + (iξ)3û(ξ) = u′(0)iξ + u′′(0),

λû(ξ) + iξθ̂(ξ) + (iξ)3θ̂(ξ) = −θ′(L)(iξ)e−iLξ + θ′′(0).

Setting λ = −ip, f(ξ) := θ̂(ξ) + û(ξ), and g(ξ) := θ̂(ξ)− û(ξ), we arrive to

f(ξ) =
i

ξ3 − ξ + p
(α+ βiξ + γ′(iξ)e−iLξ)

g(−ξ) =
i

ξ3 − ξ + p
(α′ − βiξ + γ′(iξ)eiLξ)

where α := u′′(0) + θ′′(0), α′ := u′′(0)− θ′′(0), β := u′(0), and γ′ := −θ′(L). It follows that

f(ξ) + g(−ξ) =
i

ξ3 − ξ + p
(α+ α′ + 2γ′(iξ) cos(Lξ)) (3.36)

f(ξ)− g(−ξ) =
i

ξ3 − ξ + p
(α− α′ + 2βiξ − 2iγ′(iξ) sin(Lξ)). (3.37)

Let Q(ξ) = ξ3 − ξ + p and let µ0, µ1, µ2 be the roots of Q.
1. Assume that the three roots µ0, µ1, µ1 are simple. If ξ ∈ {µ0, µ1, µ2}, then ξ must be a root
of the numerators of f(ξ) + g(−ξ) and f(ξ)− g(−ξ), so that

2γ′iξ cos(Lξ) = −α− α′, (3.38)

2γ′iξ sin(Lξ) =
α− α′

i
+ 2βξ. (3.39)

Taking the square in both equations and summing, we obtain

−4γ′
2
ξ2 = (α+ α′)2 − (α− α′)2 + 4β2ξ2 +

4βξ

i
(α− α′)

and hence

(β2 + γ′2)ξ2 +
βξ

i
(α− α′) + αα′ = 0. (3.40)

As the three numbers µ0, µ1, µ2 satisfy (3.40), we infer that all the coefficients in (3.40) are null;
that is

β2 + γ′
2

= β(α− α′) = αα′ = 0.
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If γ′ = 0, then the solution (θ, u) of the system (3.32)-(3.33) of order 3 satisfies (3.34)-(3.35)
together with θ′(L) = 0 and is therefore null, by Cauchy-Lipschitz theorem (Cauchy data taken
at x = L).

If γ′ 6= 0, then β = ±iγ′ 6= 0 and thus α = α′ = 0. Assume that β = iγ′. From (3.38)-(3.39),
we infer that

ξ cos(Lξ) = 0, ξ(sin(Lξ)− 1) = 0 for ξ ∈ {µ0, µ1, µ2}.
If 0 ∈ {µ0, µ1, µ2}, say µ0 = 0, then sin(Lµj) = 1 for j = 1, 2, and hence

Lµj =
π

2
+ 2kjπ, kj ∈ Z.

Therefore L(µ0 +µ1 +µ2) = π(1 + 2(k1 + k2)), but this contradicts the fact that the sum of the
roots of Q is 0.

If 0 6∈ {µ0, µ1, µ2}, then for j = 1, 2, 3 we have sin(Lµj) = 1 and hence

Lµj =
π

2
+ 2kjπ, kj ∈ Z.

Then L(µ0 + µ1 + µ2) = π(32 + 2(k1 + k2 + k3)) 6= 0, a contradiction. Similarly, we obtain also a
contradiction when β = −iγ′.
2. Assume now that Q has a double root µ0 = µ1 and a simple root µ2 6= µ0. Then (µ0, µ2) =
±( 1√

3
,− 2√

3
). We shall consider the case (µ0, µ2) = ( 1√

3
,− 2√

3
), the case (µ0, µ2) = (− 1√

3
, 2√

3
)

being similar. As µ0 is a double root of Q, it should be a root of the numerators of the functions
f(ξ) + g(−ξ) and f(ξ)− g(−ξ) (see (3.36) and (3.37)) and of their first derivatives, so that

2γ′
i√
3

cos(
L√
3

) = −(α+ α′), (3.41)

2γ′
i√
3

sin(
L√
3

) =
α− α′

i
+ 2

β√
3
, (3.42)

2γ′i cos(
L√
3

) + 2γ′
i√
3

(−L sin
L√
3

) = 0, (3.43)

2βi+ 2γ′ sin(
L√
3

) + 2γ′
L√
3

cos(
L√
3

) = 0. (3.44)

On the other hand, the number µ2 is a simple root of Q, and hence it should be a root of the
numerators of the functions f(ξ) + g(−ξ) and f(ξ)− g(−ξ), so that

−4γ′
i√
3

cos(
2L√

3
) = −(α+ α′), (3.45)

−4γ′
i√
3

sin(−2
L√
3

) =
α− α′

i
− 4

β√
3
. (3.46)

Note that (3.43)-(3.44) can be rewritten as cos( L√
3
) − sin( L√

3
)

sin( L√
3
) cos( L√

3
)

 (
γ′

γ′ L√
3

)
=

(
0
−βi

)
·
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This yields

γ′ = −iβ sin(
L√
3

), (3.47)

γ′
L√
3

= −iβ cos(
L√
3

)· (3.48)

If γ′ = 0, then we infer as above that (θ0, u0) = (0, 0).
Assume that γ′ 6= 0, so that β 6= 0. Without loss of generality, we can assume by linearity that
β = 1. It follows from (3.47) and (3.48) that

γ′ = ± i√
1 + L2

3

· (3.49)

Let X := cos(L/
√

3). Then we infer from (3.48) and (3.49) that L2/(3X2) = 1 + (L2/3), so that

X = cos(
L√
3

) = cos(
1√

X−2 − 1
)·

On the other hand, from (3.41) and (3.45), we obtain that cos(L/
√

3) = −2 cos(2L/
√

3), and
hence X satisfies 4X2 +X − 2 = 0. We denote the two roots of this equation by

X+ :=
−1 +

√
33

8
≈ 0.5931, X− :=

−1−
√

33

8
≈ −0.8431.

Then we obtain by using a numerical computation that

cos(
1√

X−2+ − 1
) ≈ 0.7408 6= 0.5931, cos(

1√
X−2− − 1

) ≈ 0.0032 6= −0.8431.

This proves that the assumption γ′ 6= 0 leads to a contradiction.
3. The polynomial function Q cannot have a triple root µ0 = µ1 = µ2, otherwise 0 = Q′′(µ0) =
6µ0 yields µ0 = 0, p = 0, and Q(ξ) = ξ(ξ − 1)(ξ + 1), a contradiction. �

We now turn our attention to cases 2 and 3. We need the following estimate, whose (long)
proof is postponed in an appendix.

Theorem 3.11. For all L ∈ (0,+∞) \ 2πZ and all T > 0, there is a constant C = C(L, T ) > 0
such that for all (θ0, u0) ∈ X2, we have

‖(θ0, u0)‖2X2
≤ C

(∫ T

0
|θxx(t, L)|2 dt+ ‖(θ0, u0)‖2X0

)
, (3.50)

‖(θ0, u0)‖2X2
≤ C

(∫ T

0
|θxx(t, 0)|2 dt+ ‖(θ0, u0)‖2X0

)
. (3.51)

We first consider case 2.

Corollary 3.12. For all L ∈ (0,+∞) \ (N ∪ R) and all T > 0, there exists a constant C =
C(L, T ) > 0 such that

‖(θ0, u0)‖2X2
≤ C

∫ T

0
|θxx(t, L)|2 dt. (3.52)



CONTROL OF A BOUSSINESQ SYSTEM OF KDV-KDV TYPE ON A BOUNDED INTERVAL 25

Proof of Corollary 3.12: We proceed in two steps as in the proof of Theorem 3.7.

Step 1. Reduction to a spectral problem.

If (3.52) is false, then one can pick a sequence (θ0n, u
0
n)n∈N such that

1 = ‖(θ0n, u0n)‖2X2
> n

∫ T

0
|θn,xx(t, L)|2 dt. (3.53)

Extracting a subsequence if needed, we can assume that (θ0n, u
0
n) → (θ0, u0) weakly in X2.

Denote by (θn, un) (resp. (θ, u)) the solution of (2.18) with initial data (θ0n, u
0
n) (resp. (θ0, u0)).

Extracting again a subsequence, we can assume that (θn, un) → (θ, u) in X1. By (3.50) and
(3.53), we have that (θ0n, u

0
n)→ (θ0, u0) strongly in X2. Thus ‖(θ0, u0)‖X2 = 1 and θxx(·, L) = 0

a.e. in (0, T ). The same argument as the one in Step 1 of the proof of Theorem 3.7 shows that
there exists λ ∈ C and (θ, u) ∈ X3 \ {(0, 0)} (superscript 0 dropped for simplicity) solution of
the spectral problem

−u′ − u′′′ = λθ, x ∈ (0, L), (3.54)

−θ′ − θ′′′ = λu, x ∈ (0, L), (3.55)

θ(0) = θ(L) = θ′(0) = θ′′(L) = 0, (3.56)

u(0) = u(L) = u′(L) = 0. (3.57)

We show in the next step that (3.54)-(3.57) has no nontrivial solution for any L ∈ (0,+∞) \
(N ∪ R).

Step 2. Study of the spectral problem.

Proposition 3.13. Let L > 0. Then there exist λ ∈ C and (θ, u) ∈ X3 \ {(0, 0)} solution of
(3.54)-(3.57) if and only if L ∈ N ∪ R.

Proof. For θ and u ∈ H3(0, L), we still denote by θ and u their extension by 0 on R. Then

u′′′ = 1(0,L)u
′′′ + u′′(0)δ0 − u′′(L)δL + u′(0)δ′0 − u′(L)δ′L + u(0)δ′′0 − u(L)δ′′L in S′(R),

where the derivatives of u at 0 or L stand for the derivatives of u|(0,L) viewed as traces and 1(0,L)

denotes the characteristic function of the interval (0, L). Assume that

∃λ ∈ C, ∃(θ, u) ∈ X3 \ {(0, 0)} such that (3.54)-(3.57) hold. (3.58)

Note that (3.54)-(3.55) yields

λθ + u′ + u′′′ = u′′(0)δ0 − u′′(L)δL + u′(0)δ′0 in S′(R), (3.59)

λu+ θ′ + θ′′′ = θ′′(0)δ0 − θ′(L)δ′L in S′(R). (3.60)

Conversely, if a pair (θ, u) in L2(R)2 with Supp θ ∪ Supp u ⊂ [0, L] satisfies (3.59)-(3.60)
for some λ ∈ C and some complex coefficients (instead of u′′(0), u′′(L), etc.) in the r.h.s. of
(3.59)-(3.60), then θ, u ∈ H3(0, L) and (3.54)-(3.57) hold.
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Let θ̂(ξ) =
∫
R θ(x)e−iξxdx denote the Fourier transform of θ. Introduce f(ξ) := θ̂(ξ) + û(ξ)

and g(ξ) := θ̂(ξ)− û(ξ). Then (3.59)-(3.60) give

λθ̂(ξ) + (iξ + (iξ)3)û(ξ) = u′(0)iξ + u′′(0)− u′′(L)e−iLξ, (3.61)

λû(ξ) + (iξ + (iξ)3)θ̂(ξ) = −iξθ′(L)e−iLξ + θ′′(0), (3.62)

and hence

f(ξ) =
1

−iξ3 + iξ + λ

(
u′′(0) + θ′′(0) + u′(0)iξ − u′′(L)e−iLξ − iξθ′(L)e−iLξ

)
, (3.63)

g(ξ) =
1

iξ3 − iξ + λ

(
u′′(0)− θ′′(0) + u′(0)iξ − u′′(L)e−iLξ + iξθ′(L)e−iLξ

)
. (3.64)

Set λ = −ip. By Paley-Wiener theorem, we conclude that (3.58) is equivalent to the existence
of numbers p ∈ C and (α, α′, β, γ, γ′) ∈ C5 \ {(0, 0, 0, 0, 0)} such that the two functions defined
for ξ ∈ R by

f(ξ) =
i

ξ3 − ξ + p

(
α+ βiξ + γe−iLξ + γ′(iξ)e−iLξ

)
, (3.65)

g(−ξ) =
i

ξ3 − ξ + p

(
α′ − βiξ + γeiLξ + γ′(iξ)eiLξ

)
(3.66)

fulfill the conditions

f and g are entire; (3.67)

(f, g) ∈ L2(R)2; (3.68)

∃(C,N) ∈ (0,+∞)× N, ∀ξ ∈ C |f(ξ)|+ |g(ξ)| ≤ C(1 + |ξ|)NeL|Im ξ|. (3.69)

(We have set α := u′′(0)+θ′′(0), α′ := u′′(0)−θ′′(0), β := u′(0), γ := −u′′(L) and γ′ := −θ′(L).)
It is clear that for f and g given by (3.65)-(3.66), (3.67) implies both (3.68) and (3.69) (with
N = 1). Clearly, (3.67) holds if and only if the two following functions

f(ξ) + g(−ξ) =
i

ξ3 − ξ + p

(
α+ α′ + 2(γ + γ′iξ) cos(Lξ)

)
, (3.70)

f(ξ)− g(−ξ) =
i

ξ3 − ξ + p

(
α− α′ + 2βiξ − 2i(γ + γ′iξ) sin(Lξ)

)
(3.71)

are entire. Let Q(ξ) = ξ3 − ξ + p and let µ0, µ1, µ2 denote its roots. The polynomial function
Q cannot have a triple root (see the proof of Corollary 3.10), so either the roots µk, k = 0, 1, 2,
are simple, or there are a double root µ0 = µ1 and a simple root µ2 6= µ0.
1. Assume that the roots µ0, µ1, µ2 of Q are simple. If ξ ∈ {µ0, µ1, µ2}, then from the fact that
the functions in (3.70)-(3.71) are entire, we infer that

2(γ + γ′iξ) cos(Lξ) = −α− α′, (3.72)

2(γ + γ′iξ) sin(Lξ) =
α− α′

i
+ 2βξ, (3.73)

and hence

4(γ + γ′iξ)2 = (α+ α′)2 − (α− α′)2 + 4β2ξ2 + 4
βξ

i
(α− α′).
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The polynomial functions in the two sides of the above equation are of degree two and they take
the same values on the numbers µk, k = 0, 1, 2. Therefore, they must have the same coefficients;
that is,

β2 = −γ′2, (3.74)

αα′ = γ2, (3.75)

β(α− α′) = −2γγ′. (3.76)

(a) Assume that β = iγ′, so that (3.76) becomes

iγ′(α− α′) = −2γγ′. (3.77)

(i) If γ′ = 0, then β = 0 and (3.65)-(3.66) read

f(ξ) =
i

ξ3 − ξ + p

(
α+ γe−iLξ

)
, (3.78)

g(−ξ) =
i

ξ3 − ξ + p

(
α′ + γeiLξ

)
. (3.79)

It follows from Lemma 3.5 that there exist p ∈ C and (α, γ) ∈ C2\{(0, 0)} such that the function
f defined in (3.78) is entire if and only if L ∈ N. If it is the case, then the roots µ0, µ1, µ2 of Q
are simple and real, and g(−ξ) defined in (3.79) is also an entire function if we pick α′ = αγ/γ.
(ii) Assume now that γ′ 6= 0. From (3.75) and (3.77), we infer that

α′ = −iγ, α = iγ.

Then (3.70)-(3.71) become

f(ξ) + g(−ξ) =
2i

ξ3 − ξ + p
(γ + γ′iξ) cos(Lξ), (3.80)

f(ξ)− g(−ξ) = − 2

ξ3 − ξ + p
(γ + γ′iξ)(1− sin(Lξ)). (3.81)

• Assume that − γ
iγ′ 6∈ {µ0, µ1, µ2}, then each root µj of Q should also be a root of 1− sin(Lξ)

by (3.81), and hence it could be written as

Lµj =
π

2
+ 2kjπ, kj ∈ Z.

We arrive to the conclusion that

0 = L(µ0 + µ1 + µ2) = π(
3

2
+ 2(k0 + k1 + k2)),

which is impossible, for 2(k0 + k1 + k2) ∈ 2Z.
• Assume that − γ

iγ′ ∈ {µ0, µ1, µ2}, say µ0 = −γ/(iγ′). Then both f(ξ)+g(−ξ) and f(ξ)−g(−ξ)
are entire if and only if the other roots µ1 and µ2 of Q satisfy both equations

cos(Lξ) = 0 and 1− sin(Lξ) = 0.
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We arrive to the system

µ0 = − γ

iγ′
, (3.82)

Lµ1 =
π

2
+ 2k1π, k1 ∈ Z, (3.83)

Lµ2 =
π

2
+ 2k2π, k2 ∈ Z. (3.84)

With those expressions, µ0, µ1, µ2 are roots of Q if and only if

ξ3 − (µ0 + µ1 + µ2)ξ
2 + (µ0µ1 + µ0µ2 + µ1µ2)ξ − µ0µ1µ2 = ξ3 − ξ + p, ∀ξ ∈ C,

or

µ0 + µ1 + µ2 = 0, (3.85)

µ0µ1 + µ0µ2 + µ1µ2 = −1, (3.86)

−µ0µ1µ2 = p. (3.87)

We note that µ0 (and hence γ, if we pick γ′ = 1) is defined in terms of k1 and k2 by (3.83)-
(3.85), while p is defined in terms of k1 and k2 by (3.83)-(3.85) and (3.87). Replacing µ0 by
−(µ1 + µ2) in (3.86) results in

µ21 + µ1µ2 + µ22 = 1. (3.88)

Substituting the expressions of µ1 and µ2 given in (3.83)-(3.84) in (3.88), we obtain the critical
length

L = π

(
(
1

2
+ 2k1)

2 + (
1

2
+ 2k2)

2 + (
1

2
+ 2k1)(

1

2
+ 2k2)

) 1
2

. (3.89)

Finally, the roots µ0, µ1, µ2 are pairwise distinct if and only if k1 6= k2. Indeed, if k1 6= k2, it is
clear that µ1 6= µ2, while

µ0 = −π
L

(1 + 2(k1 + k2)) 6= µj =
π

L
(
1

2
+ 2kj), j = 1, 2.

(b) Assume now that β = −iγ′. The analysis is completely similar to the one in case (a), so
that we only sketch the main facts. Here iγ′(α− α′) = 2γγ′.
If γ′ = 0, we obtain again that the existence of a nontrivial solution p ∈ C, (α, α′, γ) ∈ C3 \
{(0, 0, 0)} of the spectral problem is equivalent to L ∈ N.
If γ′ 6= 0, then we obtain that α′ = iγ, α = −iγ, and

f(ξ) + g(−ξ) =
2i

ξ3 − ξ + p
(γ + γ′iξ) cos(Lξ),

f(ξ)− g(−ξ) =
2

ξ3 − ξ + p
(γ + γ′iξ)(1 + sin(Lξ)).

As in case (a), we can see that the assumption − γ
iγ′ 6∈ {µ0, µ1, µ2} leads to a contradiction.

Assume thus that − γ
iγ′ ∈ {µ0, µ1, µ2}, say µ0 = −γ/(iγ′). The other roots µ1 and µ2 should

solve the equations

cos(Lξ) = 0, sin(Lξ) = −1.
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Writing

Lµ1 = −π
2

+ 2k1π, Lµ2 = −π
2

+ 2k2π, k1 6= k2 ∈ Z,

we obtain as critical length

L = π

(
(2k1 −

1

2
)2 + (2k2 −

1

2
)2 + (2k1 −

1

2
)(2k2 −

1

2
)

) 1
2

,

and we notice that L ∈ R.
2. Assume that Q has a double root µ0 = µ1 and a simple root µ2 6= µ0. Then (µ0, µ2) =
±( 1√

3
,− 2√

3
). We shall consider the case (µ0, µ2) = ( 1√

3
,− 2√

3
), the case (µ0, µ2) = (− 1√

3
, 2√

3
)

being similar. As µ0 is a double root of Q, it should be root of the numerators of the functions
f(ξ) + g(ξ) and f(ξ)− g(−ξ) (see (3.70) and (3.71)) and of their first derivatives, so that

2(γ + γ′
i√
3

) cos(
L√
3

) = −(α+ α′), (3.90)

2i(γ + γ′
i√
3

) sin(
L√
3

) = α− α′ + 2
βi√

3
, (3.91)

2γ′i cos(
L√
3

) + 2(γ + i
γ′√

3
)(−L sin

L√
3

) = 0, (3.92)

2βi+ 2γ′ sin(
L√
3

)− 2i(γ + i
γ′√

3
)L cos(

L√
3

) = 0. (3.93)

As µ2 is a simple root of Q, it has to be a root of the numerators of the functions f(ξ) + g(−ξ)
and f(ξ)− g(−ξ), so that

2(γ − γ′ 2i√
3

) cos(
2L√

3
) = −(α+ α′), (3.94)

2i(γ − γ′ 2i√
3

) sin(−2
L√
3

) = α− α′ − 4
βi√

3
. (3.95)

Note that (3.92)-(3.93) can be rewritten as cos( L√
3
) − sin( L√

3
)

sin( L√
3
) cos( L√

3
)

 (
iγ′

L(γ + i γ
′
√
3
)

)
=

(
0
β

)
·

Picking β = 1, this yields

iγ′ = sin(
L√
3

), (3.96)

L(γ + i
γ′√

3
) = cos(

L√
3

)· (3.97)

In particular, (iγ′, γ) ∈ R2. From (3.90) and (3.94), we infer that

(γ + γ′
i√
3

) cos(
L√
3

) = (γ − γ′ 2i√
3

) cos(
2L√

3
).
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Combined with (3.96) and (3.97), this yields

cos2(
L√
3

) =

(
cos(

L√
3

)−
√

3L sin(
L√
3

)

)
cos(

2L√
3

). (3.98)

As the set of solutions of (3.98) cannot have a limit point, we conclude that on any segment
[0, R] there are at most finitely many L satisfying (3.98).

From (3.91) and (3.95), we infer that

2i(γ + γ′
i√
3

) sin(
L√
3

)− 2
βi√

3
= 2i(γ − γ′ 2i√

3
) sin(−2

L√
3

) + 4
βi√

3
.

Combined with (3.96) and (3.97), this yields (with β = 1)

L−1 cos(
L√
3

) sin(
L√
3

) =

(
L−1 cos(

L√
3

)−
√

3 sin(
L√
3

)

)
sin(
−2L√

3
) +
√

3. (3.99)

We claim that

cos(
L√
3

) sin(
L√
3

) 6= 0.

Indeed, otherwise we would have either cos( L√
3
) = 0 and then sin( L√

3
) = ±1, so that L = 0 by

(3.98), which is impossible, or sin( L√
3
) = 0 which is impossible by (3.99).

We infer from (3.98) and (3.99) that

cos(
L√
3

) sin(
L√
3

) =
cos2( L√

3
)

cos( 2L√
3
)

sin(
−2L√

3
) +
√

3L. (3.100)

On the other hand, it follows from (3.98) that

√
3L =

1

sin( L√
3
)

(
cos(

L√
3

)−
cos2( L√

3
)

cos( 2L√
3
)

)
. (3.101)

Replacing the last term in (3.100) by its expression in (3.101), multiplying the equation by
cos( 2L√

3
) sin( L√

3
) and simplifying by cos( L√

3
), we arrive to

sin2(
L√
3

) cos(
2L√

3
) = −2 cos2(

L√
3

) sin2(
L√
3

) + cos(
2L√

3
)− cos(

L√
3

),

or

sin2(
L√
3

)
(

cos(
2L√

3
) + 2 cos2(

L√
3

)
)

= −2 sin(
3L

2
√

3
) sin(

L

2
√

3
)·

Letting x := L
2
√
3
, we obtain that

sin2(2x)(4 cos2(2x)− 1) = −2 sin(3x) sinx = −2(3 sinx− 4 sin3 x) sinx.

Simplifying in the above equation by sin2 x (which is different from 0 since sin(L/
√

3) is), we
arrive to

4(1− sin2 x)(3− 16 sin2 x+ 16 sin4 x) = −2(3− 4 sin2 x).

Setting y := sin2 x, we obtain the polynomial equation

32y3 − 64y2 + 42y − 9 = 0



CONTROL OF A BOUSSINESQ SYSTEM OF KDV-KDV TYPE ON A BOUNDED INTERVAL 31

which has y = 3/4 as a double root and y = 1/2 as a single root. But y = 1/2 would
give cos(L/

√
3) = cos(2x) = 2 cos2 x − 1 = 0, which is impossible, and y = 3/4 would give

cos(L/
√

3) = 1− 2y = −1/2, cos(2L/
√

3) = −1/2, sin(L/
√

3) = ±
√

3/2. Plugging those values
in (3.98) would give

1

4
=

(
−1

2
−
√

3L · (±
√

3

2
)

)
· (−1

2
)

and hence L = 0, which is impossible. The proof of Proposition 3.13 and of Corollary 3.12 is
complete. �

Next, we investigate the spectral problems associated with cases 10 and 11.

Corollary 3.14. Let L > 0. Then there exist λ ∈ C and (θ, u) ∈ X3 \ {(0, 0)} solution of
(3.54)-(3.57) together with u′′(0) = 0 if and only if L ∈ R.

Proof. We use the same notations as in the proof of Proposition 3.13. The additional condition
u′′(0) = 0 is equivalent to the condition α′ = −α. When γ′ 6= 0, we obtained that (α, α′) =
(iγ,−iγ) for β = iγ′ (case (a)), and that (α, α′) = (−iγ, iγ) for β = −iγ′ (case (b)). Thus the
condition α′ = −α is automatically satisfied for the critical lengths L ∈ R.

Consider now the case γ′ = 0 with β = ±iγ′ = 0 corresponding to the critical length L ∈ N.
From [30, Lemma 3.5], we know that the three roots µ0, µ1, µ2 of Q can be written as

µ0 = −1

3
(2k + l)

2π

L
, µ1 = µ0 + k

2π

L
, µ2 = µ1 + l

2π

L
, (3.102)

for some k, l ∈ N∗. From (3.70), we know that the µj have to be zeros of the function γ cos(Lξ).
If γ = 0, then we infer from (3.65)-(3.66) that 0 = α = α′, and hence (θ0, u0) = (0, 0). If γ 6= 0,
from cos(Lµ0) = 0, we infer the existence of some p ∈ Z such that Lµ0 = π(12 + p), so that
1
2 +p = −2(2k+ l)/3. This gives 3/2 = −3p−2(2k+ l) where k, l, p ∈ Z, which is impossible. �

Corollary 3.15. Let L > 0. Then there exist λ ∈ C and (θ, u) ∈ X3 \ {(0, 0)} solution of
(3.54)-(3.57) together with θ′′(0) = 0 if and only if L ∈ N3.

Proof. The additional condition θ′′(0) = 0 is equivalent to α′ = α.
If γ′ 6= 0, then we have that α′ = −α = ±iγ, so that α = α′ = γ = 0. If β = iγ′ and
0 = − γ

iγ′ ∈ {µ0, µ1, µ2}, say µ0 = 0, then by (3.82)-(3.84)

0 = −Lµ0 = L(µ1 + µ2) = π(1 + 2(k1 + k2))

with k1, k2 ∈ Z, which is impossible. If β = −iγ′ and 0 = − γ
iγ′ = µ0, we arrive to

0 = −Lµ0 = L(µ1 + µ2) = π(−1 + 2(k1 + k2))

with k1, k2 ∈ Z, which again is impossible.
Thus no L ∈ R is a critical length for (3.54)-(3.57) with the additional condition θ′′(0) = 0.
If γ′ = 0, then β = 0 by (3.74), and (3.78)-(3.79) hold with α′ = α. For each root ξ ∈ {µ0, µ1, µ2}
of Q, we have that

α+ γe−iLξ = 0 = α+ γeiLξ.

This is equivalent to (3.102) together with the the condition 2Lµj ∈ 2πZ for j = 0, 1, 2. With
(3.102), the latter condition is equivalent to 2Lµ0 ∈ 2πZ, i.e. there exists q ∈ Z such that
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(−(2k + l)2π/(3L))2L = 2πq, or 3q = −2(2k + l). This is possible if and only if 3|2k + l, i.e.
L ∈ N3. �

We now turn our attention to case 3.

Theorem 3.16. For all L ∈ (0,+∞) \ (N ∪ G ∪ G′) and all T > 0, there exists a constant
C = C(L, T ) > 0 such that

‖(θ0, u0)‖2X2
≤ C

∫ T

0
|θxx(t, 0)|2 dt. (3.103)

Proof of Theorem 3.16: We proceed in two steps as in the proof of Theorem 3.7.

Step 1. Reduction to a spectral problem.

If (3.103) is false, then one can pick a sequence (θ0n, u
0
n)n∈N such that

1 = ‖(θ0n, u0n)‖2X2
> n

∫ T

0
|θn,xx(t, 0)|2 dt. (3.104)

Extracting a subsequence if needed, we can assume that (θ0n, u
0
n) → (θ0, u0) weakly in X2.

Denote by (θn, un) (resp. (θ, u)) the solution of (2.18) with initial data (θ0n, u
0
n) (resp. (θ0, u0)).

Extracting again a subsequence, we can assume that (θ0n, u
0
n) → (θ0, u0) in X1. By (3.51) and

(3.104), we have that (θ0n, u
0
n)→ (θ0, u0) strongly in X2. Thus ‖(θ0, u0)‖X2 = 1 and θxx(·, 0) = 0

a.e. in (0, T ). The same argument as the one in Step 1 of the proof of Theorem 3.7 shows that
there exist λ ∈ C and (θ, u) ∈ X3 \ {(0, 0)} (superscript 0 dropped for simplicity) which are
solution of the spectral problem:

−u′ − u′′′ = λθ, x ∈ (0, L), (3.105)

−θ′ − θ′′′ = λu, x ∈ (0, L), (3.106)

θ(0) = θ(L) = θ′(0) = θ′′(0) = 0, (3.107)

u(0) = u(L) = u′(L) = 0. (3.108)

Proposition 3.17. Let L > 0. Then there exist λ ∈ C and (θ, u) ∈ X3 \ {(0, 0)} solution of
(3.105)-(3.108) if and only if L ∈ N ∪ G ∪ G′.

Proof. We use the same notations as those in the proof of Proposition 3.13. Consider the
property:

∃λ ∈ C, ∃(θ, u) ∈ X3 \ {(0, 0)}, (3.105)-(3.108) hold. (3.109)

Note that (3.105)-(3.106) yields

λθ + u′ + u′′′ = u′′(0)δ0 − u′′(L)δL + u′(0)δ′0 in S′(R), (3.110)

λu+ θ′ + θ′′′ = −θ′′(L)δL − θ′(L)δ′L in S′(R). (3.111)

Conversely, if a pair (θ, u) in L2(R)2 with Supp θ ∪ Supp u ⊂ [0, L] satisfies (3.110)-(3.111)
for some λ ∈ C and some complex coefficients (instead of u′′(0), u′′(L), etc.) in the r.h.s. of
(3.110)-(3.111), then θ, u ∈ H3(0, L) and (3.105)-(3.108) hold.
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Let f(ξ) := θ̂(ξ) + û(ξ) and g(ξ) := θ̂(ξ)− û(ξ). Then (3.110)-(3.111) yield

λθ̂(ξ) + (iξ + (iξ)3)û(ξ) = u′′(0)− u′′(L)e−iLξ + u′(0)iξ, (3.112)

λû(ξ) + (iξ + (iξ)3)θ̂(ξ) = −θ′′(L)e−iLξ − iξθ′(L)e−iLξ, (3.113)

and hence

f(ξ) =
1

−iξ3 + iξ + λ

(
u′′(0)− (u′′(L) + θ′′(L))e−iLξ + u′(0)iξ − iξθ′(L)e−iLξ

)
,(3.114)

g(ξ) =
1

iξ3 − iξ + λ

(
u′′(0) + (−u′′(L) + θ′′(L))e−iLξ + u′(0)iξ + iξθ′(L)e−iLξ

)
.(3.115)

Set λ = −ip. By Paley-Wiener theorem, we conclude that (3.109) is equivalent to the existence
of numbers p ∈ C and (α, β, γ1, γ2, γ

′) ∈ C5 \ {(0, 0, 0, 0, 0)} such that the two functions defined
for ξ ∈ R by

f(ξ) =
i

ξ3 − ξ + p

(
α+ βiξ + (γ1 + γ2)e

−iLξ + γ′(iξ)e−iLξ
)
, (3.116)

g(−ξ) =
i

ξ3 − ξ + p

(
α− βiξ + (γ1 − γ2)eiLξ + γ′(iξ)eiLξ

)
(3.117)

fulfill the conditions

f and g are entire; (3.118)

(f, g) ∈ L2(R)2; (3.119)

∃(C,N) ∈ (0,+∞)× N, ∀ξ ∈ C |f(ξ)|+ |g(ξ)| ≤ C(1 + |ξ|)NeL|Im ξ|. (3.120)

(We have set α := u′′(0), β := u′(0), γ1 := −u′′(L), γ2 := −θ′′(L) and γ′ := −θ′(L).) It is clear
that for f and g as in (3.116)-(3.117), the condition (3.118) implies both (3.119) and (3.120)
(with N = 1). Clearly, (3.118) holds if and only if the two following functions

f(ξ) + g(−ξ) =
i

ξ3 − ξ + p

(
2α− 2γ2i sin(Lξ) + 2(γ1 + γ′iξ) cos(Lξ)

)
, (3.121)

f(ξ)− g(−ξ) =
i

ξ3 − ξ + p

(
2βiξ + 2γ2 cos(Lξ)− 2i(γ1 + γ′iξ) sin(Lξ)

)
(3.122)

are entire. Let Q(ξ) = ξ3 − ξ + p and let µ0, µ1, µ2 denote the roots of Q. The polynomial
function Q cannot have a triple root, so either the roots µk, k = 0, 1, 2, are simple, or there are
a double root µ0 = µ1 and a simple root µ2 6= µ0.

1. Assume that Q has three simple roots. Let ξ be a root of Q. Setting

a := γ1 + γ′iξ, b := iγ2,

we infer from the fact that the numerators of the r.h.s. of (3.121) and (3.122) vanish at ξ that(
a −b
b a

) (
cosLξ
sinLξ

)
=

(
−α
βξ

)
·

This yields

cos(Lξ) =
−αa+ bβξ

a2 + b2
, sin(Lξ) =

aβξ + αb

a2 + b2
·
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Expanding in the identity cos2(Lξ) + sin2(Lξ) = 1 gives a2 + b2 = α2 + β2ξ2, i.e.

−(γ′)2ξ2 + 2γ1γ
′iξ + γ21 − γ22 = α2 + β2ξ2.

Since Q has three different roots, we arrive at

−(γ′)2 = β2, (3.123)

γ1γ
′ = 0, (3.124)

γ21 − γ22 = α2. (3.125)

a. If γ′ = 0, then β = 0, and the existence of p ∈ C and of (α, γ1, γ2) ∈ C3 \ {(0, 0, 0)} such that
both f(ξ) and g(−ξ) are analytic in C is equivalent to the fact that L ∈ N, by Lemma 3.5.
b. If γ′ 6= 0, then γ1 = 0, β = ±iγ′ 6= 0 and α = ±iγ2.

Case 1. β = iγ′ and α = iγ2.
Then

f(ξ) =
i

ξ3 − ξ + p
(i+ e−iLξ)(γ2 + γ′(iξ)), g(−ξ) =

i

ξ3 − ξ + p
(i− eiLξ)(γ2 − γ′(iξ)).

If, each root µj (0 ≤ j ≤ 2) of Q is such that γ2 + iµjγ
′ 6= 0, then

e−iLµj = −i = e−i
π
2 ,

and hence Lµj = π
2 + 2kjπ, for some kj ∈ Z. This contradicts the fact that µ0 + µ1 + µ2 = 0.

Therefore, there exists some root µj of Q, say µ0, such that γ2 + iµ0γ
′ = 0. In the same way, we

can prove that some root µk of Q should satisfy γ2 − iµkγ′ = 0. If µk = µ0, then γ2 = µ0 = 0,
and hence p = 0 and {µ1, µ2} = {±1}. Then we should have i + e−iLµ1 = i + e−iLµ2 = 0, i.e
eiL = e−iL = −i, and this is impossible. If µk 6= µ0, say µk = µ1, then µ1 = γ2/(iγ

′) = −µ0,
and thus µ2 = −(µ0 + µ1) = 0. But then i+ e−iLµ2 = i 6= 0, and µ2 is a pole of f , which yields
a contradiction.

Case 2. β = −iγ′ and α = −iγ2.
It is similar to Case 1 and is impossible.

Case 3. β = iγ′ and α = −iγ2.
Then

f(ξ) =
i

ξ3 − ξ + p

(
−iγ2 + iγ′(iξ) + γ2e

−iLξ + γ′(iξ)e−iLξ
)
, (3.126)

g(−ξ) =
i

ξ3 − ξ + p

(
−iγ2 − iγ′(iξ)− γ2eiLξ + γ′(iξ)eiLξ

)
· (3.127)

If γ2 = 0, then

f(ξ) + g(−ξ) =
−2γ′

ξ3 − ξ + p
ξ cos(Lξ), f(ξ)− g(−ξ) = − 2γ′iξ

ξ3 − ξ + p
(1− sin(Lξ)).

If p 6= 0, then 0 6∈ {µ0, µ1, µ2} and cos(Lµj) = 0 yields Lµj = (π/2) + 2kjπ with kj ∈ Z for
k = 0, 1, 2, contradicting the fact that µ0 + µ1 + µ2 = 0.
If p = 0, then we have (after relabeling) µ0 = 0, µ1 = 1 and µ2 = −1. Then both µ1 and
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µ2 = −µ1 should solve 1 − sin(Lξ) = 0, which is impossible. We conclude that γ2 6= 0 when
β = iγ′ 6= 0 and α = −iγ2.

Dividing in (3.126)-(3.127) by γ′, we can assume that γ′ = 1. Each root ξ of Q should satisfy

γ2(−i+ e−iLξ) + iξ(i+ e−iLξ) = 0, (3.128)

γ2(−i− eiLξ) + iξ(−i+ eiLξ) = 0. (3.129)

Then system (3.128)-(3.129) is equivalent to

e−iLξ =
iγ2 + ξ

γ2 + iξ
, (3.130)

eiLξ =
iγ2 − ξ
−γ2 + iξ

· (3.131)

(Note that both γ2 + iξ and −γ2 + iξ are different from 0, otherwise we would infer from (3.128)-
(3.129) that γ2 = 0.) We notice that (3.130) and (3.131) are equivalent, so that we can focus on
(3.131). Using basic algebra, we have that

eiLξ =
iγ2 − ξ
−γ2 + iξ

⇐⇒ ieiLξ = 1 +
2iξ

γ2 − iξ

⇐⇒ 2iξ

ieiLξ − 1
+ iξ = γ2 = Const.

Thus, the existence of p ∈ C, γ2 ∈ C∗ and µ0, µ1, µ2 such that (3.85)-(3.87) hold together with

2iµ0
ieiLµ0 − 1

+ iµ0 =
2iµ1

ieiLµ1 − 1
+ iµ1 =

2iµ2
ieiLµ2 − 1

+ iµ2 = γ2

is reduced, by letting a := iLµ0, b := iLµ1, to the existence of a, b ∈ C such that

2a

iea − 1
+ a =

2b

ieb − 1
+ b =

2(−a− b)
ie−a−b − 1

− a− b 6= 0,

L2 = −(a2 + ab+ b2).

Thus, this is possible if and only if L ∈ G.

Case 4. β = −iγ′ and α = iγ2.
It is similar to Case 3. We find, instead of (3.130)-(3.131), the system

−e−iLξ =
iγ2 + ξ

γ2 + iξ
,

−eiLξ =
iγ2 − ξ
−γ2 + iξ

which can be reduced to its second equation equivalent to

2iξ

−ieiLξ − 1
+ iξ = γ2 = Const.

Introducing again a := iLµ0, b = iLµ1, we see that the existence of p ∈ C, γ2 ∈ C∗ and µ0, µ1, µ2
(the roots of Q) holds if and only if L ∈ G′.
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2. Assume that Q has a double root µ0 = µ1 and a simple root µ2 6= µ0. Then (µ0, µ2) =
±( 1√

3
,− 2√

3
). We shall consider the case (µ0, µ2) = ( 1√

3
,− 2√

3
), the case (µ0, µ2) = (− 1√

3
, 2√

3
)

being similar. As µ0 is a double root of Q, it should be a root of the numerators of the functions
f(ξ) + g(−ξ) and f(ξ)− g(−ξ) (see (3.121) and (3.122)) and of their first derivatives, so that

−γ2i sin(
L√
3

) + (γ1 + γ′
i√
3

) cos(
L√
3

) = −α, (3.132)

γ2 cos(
L√
3

)− i(γ1 + γ′
i√
3

) sin(
L√
3

) = −β i√
3
, (3.133)

(−γ2iL+ γ′i) cos(
L√
3

)− L(γ1 +
iγ′√

3
) sin(

L√
3

) = 0, (3.134)

(γ′ − γ2L) sin(
L√
3

)− i(γ1 +
iγ′√

3
)L cos(

L√
3

) = −βi. (3.135)

As µ2 is a simple root of Q, it has to be a root of the numerators of the functions f(ξ) + g(−ξ)
and f(ξ)− g(−ξ), so that

−γ2i sin(− 2L√
3

) + (γ1 − γ′
2i√

3
) cos(

2L√
3

) = −α, (3.136)

γ2 cos(
2L√

3
)− i(γ1 − γ′

2i√
3

) sin(−2
L√
3

) = 2
βi√

3
. (3.137)

Note that (3.134)-(3.135) can be rewritten as cos( L√
3
) − sin( L√

3
)

sin( L√
3
) cos( L√

3
)

 (
−γ2iL+ iγ′

L(γ1 + i γ
′
√
3
)

)
=

(
0
β

)
·

If β = 0, then we obtain −γ2iL + iγ′ = γ1 + i γ
′
√
3

= 0, and (3.133) gives γ2 cos(L/
√

3) = 0.

Then either cos(L/
√

3) 6= 0 and γ2 = 0, or cos(L/
√

3) = 0 and (3.137) gives again γ2 = 0. Thus
0 = γ2 = γ′ = γ1, and (3.132) yields α = 0, so that (θ, u) = (0, 0), which is impossible.

Assume now that β 6= 0. Picking β = 1, we obtain

−γ2iL+ iγ′ = sin(
L√
3

), (3.138)

L(γ1 + i
γ′√

3
) = cos(

L√
3

)· (3.139)

We can compute all the coefficients in (3.132)-(3.137) in terms of L. Indeed, we infer from
(3.133) and (3.139) that cos(L/

√
3) 6= 0 and

γ2 =
i

L
sin(

L√
3

)− i√
3 cos( L√

3
)
·

Combined with (3.138), this yields

γ′ = Lγ2 − i sin(
L√
3

) = − iL√
3 cos( L√

3
)
·
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It follows that

γ1 − γ′
2i√

3
= (γ1 +

iγ′√
3

)−
√

3iγ′ =
1

L
cos(

L√
3

)− L

cos( L√
3
)
·

From (3.132) and (3.136), we infer that

− γ2i sin(
L√
3

) + (γ1 + γ′
i√
3

) cos(
L√
3

) = γ2i sin(
2L√

3
) + (γ1 − γ′

2i√
3

) cos(
2L√

3
). (3.140)

Substituting the values of γ2, γ1 + γ′ i√
3

and γ1 − γ′ 2i√3 in (3.140), we obtain the equation

i

(
i

L
sin(

L√
3

)− i√
3 cos( L√

3
)

)
·
(

sin(
L√
3

) + sin(
2L√

3
)

)
+

(
1

L
cos(

L√
3

)− L

cos( L√
3
)

)
cos(

2L√
3

)

− 1

L
cos2(

L√
3

) = 0.

Simplifying the above equation, we arrive to

1

L
cos(

L√
3

)

(
cos(

L√
3

)(1− 4 sin2(
L√
3

))− 1

)
− L cos(

2L√
3

) +
1√
3

(
sin(

L√
3

) + sin(
2L√

3
)

)
︸ ︷︷ ︸

h(L)

= 0.

From (3.133) and (3.137), we infer that

− 2γ2 cos(
L√
3

) + 2i(γ1 + γ′
i√
3

) sin(
L√
3

) = γ2 cos(
2L√

3
) + i(γ1 − γ′

2i√
3

) sin(
2L√

3
). (3.141)

Substituting the values of γ2, γ1 + γ′ i√
3

and γ1 − γ′ 2i√3 in (3.141), we obtain the equation(
i

L
sin(

L√
3

)− i√
3 cos( L√

3
)

)
·
(

cos(
2L√

3
) + 2 cos(

L√
3

)

)
+ i

(
1

L
cos(

L√
3

)− L

cos( L√
3
)

)
sin(

2L√
3

)

− 2i

L
cos(

L√
3

) sin(
L√
3

) = 0.

After some simplifications, we arrive to

(
1

2L
+ L) sin(

2L√
3

) +
1√
3

(
cos(

2L√
3

) + 2 cos(
L√
3

)

)
︸ ︷︷ ︸

k(L)

= 0.

Let ζ(L) := h(L)2 + k(L)2. Then ζ(L) = L2 +O(L) as L→ +∞, so that the equation ζ(L) = 0
has no root L� 1. Using a numerical computation, we see that infL>0 ζ(L) ≈ 5.3333 > 0. Thus
the system {

h(L) = 0,
k(L) = 0

has no solution L > 0. Therefore, there is no critical length in the case of a double root. The
proof of Proposition 3.17 and of Theorem 3.16 is complete. �
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Next, we investigate the spectral problem associated with case 12.

Corollary 3.18. Let L > 0. Then there exist λ ∈ C and (θ, u) ∈ X3 \ {(0, 0)} solution of
(3.105)-(3.108) together with u′′(L) = 0 if and only if L ∈ G ∪ G′.

Proof. We use the same notations as in the proof of Proposition 3.17. The extra condition
u′′(L) = 0 means that γ1 = 0. As for Proposition 3.17, the case when Q has multiple roots is
impossible. We therefore assume that Q has three different roots.
a. If γ′ = 0, then β = 0 and for each root ξ of Q, we have that

α+ γ2e
−iLξ = 0 = α− γ2eiLξ.

We assume γ2 6= 0 (otherwise all the coefficients are zero), and we arrive to e2iLξ = −1 and
2Lξ = π + 2πk, k ∈ Z. Since the sum of the three roots of Q is 0, we arrive to a contradiction.
b. If γ′ 6= 0, then we have (still) γ1 = 0, β = ±iγ′ 6= 0 and α = ±iγ2, a case already considered
in the proof of Proposition 3.17. The cases 1 and 2 have to be excluded, while the cases 3 and
4 are valid and they lead to L ∈ G ∪ G′. �

4. Proof of Theorems 1.1 and 1.2.

We shall first investigate the wellposedness of system (1.20) when picking g2(t) = −αηx(t, L)
as control input, with α > 0. We first notice that a global Kato smoothing effect holds, thanks
to which we can derive the wellposedness of the system in the energy space X0 = [L2(0, L)]2.

Let us first pay our attention to the linearized system
ηt + vx + vxxx = 0, t ∈ (0, T ), x ∈ (0, L),
vt + ηx + ηxxx = 0, t ∈ (0, T ), x ∈ (0, L),
η(t, 0) = 0, η(t, L) = 0, ηx(t, 0) = 0, t ∈ (0, T ),
v(t, 0) = 0, v(t, L) = 0, vx(t, L) = −αηx(t, L), t ∈ (0, T ),
η(0, x) = η0(x), v(0, x) = v0(x), x ∈ (0, L).

(4.1)

We introduce the operator

Ã(η, v) := (−vx − vxxx,−ηx − ηxxx)

with domain

D(Ã) := {(η, v) ∈ H3(0, L)2; η(0) = η(L) = ηx(0) = v(0) = v(L) = 0, vx(L) = −αηx(L)} ⊂ X0.

Proposition 4.1. Assume that α > 0. Then the operator Ã generates a semigroup of con-

tractions (etÃ)t≥0 in X0. Furthermore, for any T > 0 and any (η0, v0) ∈ X0, the solution

(η, v) := etÃ(η0, v0) of (4.1) belongs to L2(0, T, [H1(0, L)]2) and we have∫ T

0

∫ L

0
(η2x + v2x) dxdt ≤ 2

3

(
L+

T

2
+
L(α2 + 1)

4α

)
‖(η0, v0)‖2X0

. (4.2)

Proof. It is clear that D(Ã) is dense in X0 and that Ã is closed. Let (η, v) ∈ D(Ã). Then we
readily obtain that

(Ã(η, v), (η, v))X0 = −αηx(L)2 ≤ 0,
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so that Ã is a dissipative operator. Introduce the operator B(θ, u) := (ux+uxxx, θx+θxxx) with
domain

D(B) := {(θ, u) ∈ H3(0, L)2; θ(0) = θ(L) = θx(0) = u(0) = u(L) = 0, ux(L) = αθx(L)} ⊂ X0.

We easily obtain that (B(θ, u), (θ, u))X0 = −αθx(L)2 ≤ 0, so that B is also a dissipative

operator. We claim that B = Ã∗. First, for all (η, v) ∈ D(Ã) and all (θ, u) ∈ D(B), we have by
integration by parts that

(Ã(η, v), (θ, u))X0 = ((η, v), B(θ, u))X0 ,

which shows that B ⊂ Ã∗.
Let us now check that Ã∗ ⊂ B. Pick any (θ, u) ∈ D(Ã∗). Then, we have for some constant

C > 0 that ∣∣∣((θ, u), Ã(η, v))X0

∣∣∣ ≤ C‖(η, v)‖X0 ∀(η, v) ∈ D(Ã),

i.e. ∣∣∣∣∫ L

0
[θ(vx + vxxx) + u(ηx + ηxxx)]dx

∣∣∣∣ ≤ C (∫ L

0
[η2 + v2]dx

) 1
2

∀(η, v) ∈ D(Ã). (4.3)

Picking v = 0 and η ∈ C∞c (0, L), we infer from (2.7) that ux + uxxx ∈ L2(0, L), and hence that
u ∈ H3(0, L). Similarly, we obtain that θ ∈ H3(0, L). Integrating by parts in the left hand side
of (4.3), we obtain that

|θ(L)vxx(L)− θ(0)vxx(0) + αθx(L)ηx(L) + θx(0)vx(0) + u(L)ηxx(L)− u(0)ηxx(0)− ux(L)ηx(L)|

≤ C
(∫ L

0
[η2 + v2]dx

)
∀(η, v) ∈ D(Ã).

It follows that

θ(0) = θ(L) = θx(0) = u(0) = u(L) = 0, ux(L) = αθx(L),

so that (θ, u) ∈ D(B) and Ã∗ = B. We conclude that the operator A is m−dissipative in X0

and that it generates a semigroup of contractions in X0.

Pick any (η0, v0) ∈ D(Ã) and let (η, v)(t) := etÃ(η0, v0). Scaling the two first equations in
(4.1) by η and v respectively, and summing the two obtained equations we arrive to the energy
identity [

1

2

∫ L

0
[η2 + v2]dx

]T
0

+ α

∫ T

0
ηx(t, L)2dt = 0. (4.4)

Scaling the two first equations in (4.1) by xv and xη, respectively, and summing the obtained
equations, we arrive to[∫ L

0
(xηv)dx

]T
0

− 1

2

∫ T

0

∫ L

0
(η2 +v2)dxdt+

3

2

∫ T

0

∫ L

0
(η2x+v2x)dxdt− L

2
(α2 +1)

∫ T

0
ηx(t, L)2dt = 0.
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Combined with (4.4), it yields

3

2

∫ T

0

∫ L

0
(η2x + v2x)dxdt = −

[∫ L

0
(xηv)dx

]T
0

+
1

2

∫ T

0

∫ L

0
(η2 + v2)dxdt+

L

2
(α2 + 1)

∫ T

0
ηx(t, L)2dt

≤ L
(
‖η(T )‖L2(0,L)‖v(T )‖L2(0,L) + ‖η0‖L2(0,L)‖v0‖L2(0,L)

)
+

(
T

2
+

L

4α
(α2 + 1)

)
(‖η0‖2L2(0,L) + ‖v0‖2L2(0,L))

≤
(
L+

T

2
+

L

4α
(α2 + 1)

)
‖(η0, v0)‖2X0

,

as desired. �

We search a solution of
ηt + vx + (ηv)x + vxxx = 0, t ∈ (0,∞), x ∈ (0, L),
vt + ηx + vvx + ηxxx = 0, t ∈ (0,∞), x ∈ (0, L),
η(t, 0) = 0, η(t, L) = 0, ηx(t, 0) = 0, t ∈ (0,∞),
v(t, 0) = 0, v(t, L) = 0, vx(t, L) = −αηx(t, L), t ∈ (0,∞),
η(0, x) = η0(x), v(0, x) = v0(x), x ∈ (0, L),

(4.5)

as a solution of the integral equation

(η, v)(t) = etÃ(η0, v0)−
∫ t

0
e(t−τ)Ã((ηv)x(τ), (vvx)(τ))dτ, t ≥ 0. (4.6)

Introducing the map Γ defined by

Γ(η, v)(t) := etÃ(η0, v0)−
∫ t

0
e(t−τ)Ã((ηv)x(τ), (vvx)(τ))dτ,

we will show that for any (sufficiently small) time T > 0, the map Γ has a unique fixed-point in
some closed ball B(0, R) in the space

ET := C([0, T ], X0) ∩ L2(0, T, [H1(0, L)]2)

endowed with the norm

‖(η, v)‖ET := sup
t∈[0,T ]

‖(η(t), v(t))‖X0 +

(∫ T

0
‖(ηx(t), vx(t))‖2X0

) 1
2

.

Such a fixed-point yields a local solution of (4.5).

Proposition 4.2. For any (η0, v0) ∈ X0, there are some positive numbers T and R such that
the system (4.5) has a unique (integral) solution (η, v) ∈ B(0, R) ⊂ ET .

Proof. The proof is very similar to those of the wellposedness of the KdV equation with the
boundary conditions u(t, 0) = u(t, L) = ux(t, L) = 0 (see [29, 30]). First, we can prove as in [30]
that for some constant C1 > 0, we have for all T ∈ (0, 1] and all (f, g) ∈ L1(0, T,X0)

‖
∫ t

0
e(t−τ)Ã(f(τ), g(τ))dτ‖ET ≤ C1‖(f, g)‖L1(0,T,X0). (4.7)
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Following [29], one can find a constant C(L) > 0 such that for all T ∈ (0, 1] and all (η, v) ∈ ET ,
it holds∫ T

0
‖(ηv)x‖X0dt ≤ CT

1
4

(
‖ηx‖L2(0,T,L2(0,L))‖v‖

1
2

L∞(0,T,L2(0,L))
‖vx‖

1
2

L2(0,T,L2(0,L))

+‖vx‖L2(0,T,L2(0,L))‖η‖
1
2

L∞(0,T,L2(0,L))
‖ηx‖

1
2

L2(0,T,L2(0,L))

)
. (4.8)

It follows that there are some positive constants C2(L), C3(L) such that for all T > 0 and all
(η1, v1), (η2, v2) ∈ ET we have

‖Γ(η1, v1)‖ET ≤ C2‖(η0, v0)‖X0 + C3T
1
4 ‖(η1, v1)‖2ET , (4.9)

‖Γ(η1, v1)− Γ(η2, v2)‖ET ≤ C3T
1
4 (‖(η1, v1)‖ET + ‖(η2, v2)‖ET )‖(η1 − η2, v1 − v2)‖ET .(4.10)

Picking R = 2C2‖(η0, v0)‖X0 and T > 0 such that 2C3T
1
4R = 1/2, we see that the map Γ is a

contraction in the closed ball B(0, R) of ET , and hence that it has a unique fixed point by the
contraction mapping theorem. �

Let us now proceed to the proof of Theorems 1.1 and 1.2. Assume that L ∈ (0,+∞)\N. First,

we show that the semigroup (etÃ)t≥0 is exponentially stable in X0; that is, for some constants
C, µ > 0 it holds

‖etÃ(η0, v0)‖X0 ≤ Ce−µt‖(η0, v0)‖X0 ∀t ∈ R+. (4.11)

It is actually sufficient to prove that for some T > 0 and some C = C(T ) > 0,

‖(η0, v0)‖2X0
≤ C

∫ T

0
ηx(t, L)2dt. (4.12)

Indeed, combining (4.12) with (4.4), we obtain ‖(η(T ), v(T ))‖2X0
≤ (1 − 2αC−1)‖(η0, v0)‖2X0

which yields (4.11) by the semigroup property.
To prove (4.12), we proceed by contradiction. If (4.12) is not true, one can find a sequence

(η0,n, v0,n)n≥0 in X0 such that, denoting (ηn, vn)(t) := etÃ(η0,n, v0,n), we have

1 = ‖(η0,n, v0,n)‖2X0
> n

∫ T

0
ηnx(t, L)2dt. (4.13)

Scaling the two first equations in (4.1) by (T − t)η and (T − t)v respectively, and summing the
two obtained equations we obtain

T

2
‖(η(0), v(0))‖2X0

=
1

2

∫ T

0

∫ L

0
(η2 + v2)dxdt+ α

∫ T

0
(T − t)ηx(t, L)2dt. (4.14)

Since by (4.1) and (4.2) the sequence (ηn, vn) is bounded in L2(0, T, [H1
0 (0, L)]2)∩H1(0, T,

[H−2(0, L)]2), we infer from Aubin-Lions’ lemma that a subsequence (ηnk , vnk) is convergent in
L2(0, T, [L2(0, L)]2). Combined to (4.13)-(4.14), this yields that (η0,nk , v0,nk)→ (η0, v0) strongly
in X0 for some (η0, v0) ∈ X0 satisfying ‖(η0, v0)‖X0 = 1 and ηx(·, L) ≡ 0. Taking into account
(4.1), we infer that vx(·, L) ≡ 0 as well. But since L 6∈ N, this is impossible by Theorem 3.7.

Thus (4.12) is established. Proceeding in much the same way as for [28, Theorem 1.1], we
can derive Theorem 1.2. (The proof is omitted for the sake of shortness.)
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Let us now proceed to the proof of Theorem 1.1. We first notice that the linear system
ηt + vx + vxxx = 0, t ∈ (0, T ), x ∈ (0, L),
vt + ηx + ηxxx = 0, t ∈ (0, T ), x ∈ (0, L),
η(t, 0) = 0, η(t, L) = 0, ηx(t, 0) = 0, t ∈ (0, T ),
v(t, 0) = 0, v(t, L) = 0, vx(t, L) = −αηx(t, L) + h(t), t ∈ (0, T ),
η(0, x) = η0(x), v(0, x) = v0(x), x ∈ (0, L),

(4.15)

is well posed for (η0, v0) ∈ X0 and h ∈ L2(0, T ). Clearly, the wellposedness can be derived for h ∈
C2([0, T ]) by performing the change of unknowns η̃(t, x) := η(t, x), ṽ(t, L) := v(t, L) +h(t)g(x),
where the function g ∈ C∞([0, L]) is such that g(0) = g(L) = 0 and g′(L) = −1. To extend the
result from C2([0, T ]) to L2(0, T ), we need to derive some a priori estimates. Scaling in the first
(resp. second) equation of (4.15) by η (resp. v), we obtain after some integrations by parts[

1

2

∫ L

0
[η2 + v2]dx

]T
0

+ α

∫ T

0
ηx(t, L)2dt−

∫ T

0
ηx(t, L)h(t)dt = 0.

This yields for all T ≥ 0

‖(η(T, .), v(T, .))‖2X0
+ α

∫ T

0
ηx(t, L)2dt ≤ ‖(η0, v0)‖2X0

+
1

α

∫ T

0
h(t)2dt, (4.16)

and thus (η, v) ∈ C([0, T ], X0) if (η0, v0) ∈ X0 and h ∈ L2(0, T ). Scaling now in the first (resp.
second) equation of (4.15) by xv (resp. xη) yields for some constant C = C(L, T ) > 0∫ T

0

∫ L

0
(η2x + v2x)dxdt ≤ C

(
‖(η0, v0)‖2X0

+

∫ T

0
h(t)2dt

)
,

so that (η, v) ∈ ET if (η0, v0) ∈ X0 and h ∈ L2(0, T ).
The same computations as in the proof of Theorem 1.2 show that the operator

Â(η, v) = (−vx − vxxx,−ηx − ηxxx)

with domain

D(Â) = {(η, v) ∈ H3(0, L)2; η(0) = η(L) = ηx(L) = v(0) = v(L) = 0, vx(0) = αηx(0)} ⊂ X0

generates a semigroup of contractions in X0. Next, performing the change of variables t→ T − t
and x→ L− x, we infer that for any (θ1, u1) ∈ X0, the backward system

θt + ux + uxxx = 0, t ∈ (0, T ), x ∈ (0, L),
ut + θx + θxxx = 0, t ∈ (0, T ), x ∈ (0, L),
θ(t, 0) = 0, θ(t, L) = 0, θx(t, 0) = 0, t ∈ (0, T ),
u(t, 0) = 0, u(t, L) = 0, ux(t, L) = αθx(t, L), t ∈ (0, T ),
θ(T, x) = θ1(x), u(T, x) = u1(x), x ∈ (0, L),

(4.17)

has a unique solution (θ, u) ∈ C([0, T ], X0), which belongs to C([0, T ], [H3(0, L)]2)∩C1([0, T ], X0)

if (θ1(L− ·), u1(L− ·)) ∈ D(Â).
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We now prove the exact controllability in X0 of the linear system (4.15). Scaling in the first
(resp. second) equation of (4.15) by θ (resp. u), we obtain after some integrations by parts[∫ L

0
[ηθ + vu]dx

]T
0

=

∫ T

0
θx(t, L)h(t)dt.

By the Hilbert Uniqueness Method (see [23, 24]), the exact controllability of (4.15) holds in X0

with control inputs h ∈ L2(0, T ) if and only if the following observability inequality holds

‖(θ1, u1)‖2X0
≤ C

∫ T

0
|θx(t, L)|2dt (4.18)

for the solutions of the backward system (4.17). Again the backward system enjoys the global
Kato smoothing property:

‖(θx, ux)‖L2(0,T,X0) ≤ C‖(θ
1, u1)‖X0 .

Proceeding as in [30], we easily see that if (4.18) is false, then we can find a pair of data (θ1, u1)
in X0 such that ‖(θ1, u1)‖X0 = 1 and θx(·, L) ≡ 0. But this is impossible by Theorem 3.7, for
L 6∈ N.

We have established the exact controllability of the linear system (4.15). The (local) exact
controllability of the nonlinear system (1.20) in X0 follows at once by applying the contraction
mapping theorem as in [30] for KdV. (Note that ηx(·, L) ∈ L2(0, T ) by (4.16), and hence g2 =
−αηx(·, L) + h ∈ L2(0, T ) as well.) We omit the details for the sake of shortness. The proof of
Theorem 1.1 is complete.

Appendix: Proof of Theorem 3.11.

The proof of Theorem 3.11 is not based on the multiplier method, but on the analysis of
the spectral properties of the operator A. More precisely, we estimate the asymptotic be-
havior of the eigenvalues of A and use it to establish the observability inequalities (3.50)-
(3.51). The proof of Theorem 3.11 is outlined as follows. In Step 1, we introduce the operator
By = −y′′′(L−x)−y′(L−x) with domain D(B) = {y ∈ H3(0, L)∩H1

0 (0, L); y′(L) = 0}, which
is closely related to the operator A (but more easy to handle). We prove that it is selfadjoint
and that it has a compact resolvent, so that it can be diagonalized in an orthonormal basis in
L2(0, L). In Step 2, we estimate the asymptotic behavior of the eigenvalues of B. Finally, in
Step 3 we show that A can be diagonalized in an orthonormal basis of [L2(0, L)]2 and use the
expansions of the solutions in terms of the eigenfunctions to prove (3.50) and (3.51).

Step 1 (Study of the operator B)
Let

(By)(x) := −y′′′(L− x)− y′(L− x) for y ∈ D(B) =: {y ∈ H3(0, L) ∩H1
0 (0, L); y′(L) = 0},

where ′ = d/dx. Then we have the following result.

Claim A.1 B is a selfadjoint operator in L2(0, L).
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Picking any y, z ∈ D(B), we readily obtain by integration by parts that∫ L

0
[−y′′′(L− x)− y′(L− x)]z(x)dx =

∫ L

0
y(x)[−z′′′(L− x)− z′(L− x)]dx,

i.e. (By, z)L2 = (y,Bz)L2 where (., .)L2 stands for the scalar product in L2(0, L). This means
that D(B) ⊂ D(B∗) and that B∗ = B on D(B). Conversely, pick any z ∈ D(B∗). Then

|(By, z)L2 | =
∣∣∣∣∫ L

0
[−y′′′(L− x)− y′(L− x)]z(x) dx

∣∣∣∣ ≤ C‖y‖L2 ∀y ∈ D(B).

Setting w(x) = z(L − x), we arrive to |(y′′′ + y′, w)L2 | ≤ C‖y‖L2 , or equivalently for y ∈ D =
D(0, L) ∣∣〈w′′′ + w′, y〉D′,D

∣∣ ≤ C‖y‖L2 ·

It follows that w′′′ + w′ ∈ L2(0, L), and hence w ∈ H3(0, L) and z ∈ H3(0, L). Integrating by
parts in (By, z)L2 and using the fact that y′′′ + y′ ∈ L2(0, L), we arrive to∣∣−y′′(L)z(0) + y′′(0)z(L) + y′(0)z′(L)

∣∣ ≤ C ′‖y‖L2 , ∀y ∈ D(B).

This yields z(0) = z(L) = z′(L) = 0. Thus z ∈ D(B), and we infer that D(B∗) = D(B) and
that B∗ = B.

Claim A.2 If L ∈ (0,+∞) \ N, then B−1 : L2(0, L) → H3(0, L) is a well-defined continuous
operator.

Pick any L 6∈ N and any z ∈ L2(0, L). We search for y ∈ D(B) solving the equation By = z, i.e.

−y′′′(L− x)− y′(L− x) = z(x), x ∈ (0, L),

y(0) = y(L) = y′(L) = 0.

We search for the function y in the form y(x) = y1(x) + y2(x) with

y1(x) =

∫ L

x
[1− cos(x− s)]z(L− s)ds.

We see at once that y1 ∈ H3(0, L) with y′′′1 (x) + y′1(x) = −z(L − x) a.e. in (0, L) and y1(L) =
y′1(L) = y′′1(L) = 0. Thus, it remains to find y2 ∈ H3(0, L) such that y′′′2 + y′2 = 0 and
y2(L) = y′2(L) = 0, y2(0) = −y1(0). By linearity, there is no loss of generality in assuming that
y2(0) = 1. The three roots of the equation r3 + r = 0 are r1 = i, r2 = −i and r3 = 0. We search
for y2 in the form

y2(x) =
3∑
j=1

aj [e
rjx − ierj(L−x)],
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where the coefficients a1, a2, a3 have still to be found. It is clear that y2 solves y′′′2 + y′2 = 0, and
the boundary conditions y2(L) = y′2(L) = 0 and y2(0) = 1 give the following conditions

3∑
j=1

aj(e
rjL − i) = 0, (4.19)

3∑
j=1

aj(1− ierjL) = 1, (4.20)

3∑
j=1

rjaj(e
rjL + i) = 0. (4.21)

Using (4.19), (4.20) and the precise values of r1, r2, r3, we obtain that a3 = 1
2 − a1 − a2 and

a2 =
1

e−iL − 1

(
i− 1

2
− a1(eiL − 1)

)
.

(Note that L 6∈ 2πZ, for L 6∈ N.) Plugging these expressions of a2 and a3 in (4.21), we arrive to

a1

(
i(eiL + i)− eiL − 1

e−iL − 1
(−i)(e−iL + i)

)
+ (−i)(e−iL + i)

i− 1

2(e−iL − 1)
= 0.

We readily see that the coefficient behind a1 is not zero, for L 6∈ 2πZ, so that the last equation
for a1 can be solved. Claim A.2 is proved.

Claim A.3 There is an orthonormal basis (vn)n∈N in L2(0, L) composed of eigenvectors of B:
for all n ∈ N, vn ∈ D(B) and Bvn = λnvn for some λn ∈ R.

It is a direct consequence of Claims A.1 and A.2, since B−1 is a bounded compact selfadjoint
operator in L2(0, L). Thus B−1 is diagonalizable in an orthonormal basis in L2(0, L), and the
same is true for B.

Step 2 (Asymptotics of the eigenvalues of B)

Claim A.4 Using a convenient relabeling, the sequence of eigenvalues of B can be written
(λn)n∈Z, with λn ≤ λn+1 for all n ∈ Z and

λn =

( π
6 + 2π(k1 + n)

L

)3

+O(n) as n→ +∞, (4.22)

λn = −

(
7π
6 + 2π(k2 − n)

L

)3

+O(n) as n→ −∞ (4.23)

for some numbers k1, k2 ∈ Z.
The eigenvalues of B as given in Claim A.3 satisfy |λn| → +∞ as n → +∞. We shall show

that they can be separated into two subsequences, one with the asymptotics (4.22) and another
one with the asymptotics (4.23).
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Assume that (v, λ) is a pair of eigenvector/eigenvalue for B; that is, v ∈ D(B), v 6= 0, and
v′′′(x) + v′(x) = −λv(L− x). This yields

v(6) + 2v(4) + v′′ = −λ2v. (4.24)

The roots of the equation
(r3 + r)2 = −λ2 (4.25)

read r1, r2, r3,−r1,−r2,−r3, where r1, r2, r3 denote the roots of

r3 + r = iλ. (4.26)

Note that if the rj are not pairwise distinct, then any multiple root r should also solve 3r2+1 = 0,

so that r = ±i/
√

3 and λ = ±2/(3
√

3). Thereafter, we assume that |λ| > 2/(2
√

3) so that the
roots rj (1 ≤ j ≤ 3) of (4.26) are simple. Note that the roots ±rj (1 ≤ j ≤ 3) of (4.25) are
also simple, for ri = −rj yields iλ = r3i + ri = −(r3j + rj) = −iλ and λ = 0. It follows that the

exponential maps e±rjx (1 ≤ j ≤ 3) are not linked. From (4.24), we can write

v(x) =

3∑
j=1

[aje
rjx + bje

−rjx]

for some constants aj , bj ∈ C (1 ≤ j ≤ 3). The equation Bv = λv yields

3∑
j=1

(
[aj(r

3
j + rj) + bjλe

−rjL]erjx + [ajλe
rjL − bj(r3j + rj)]e

−rjx
)

= 0.

This holds if and only if bj = −ierjLaj for 1 ≤ j ≤ 3. Thus v takes the form

v(x) =

3∑
j=1

aj [e
rjx − ierj(L−x)]. (4.27)

Then the conditions v(L) = 0, v(0) = 0 and v′(L) = 0 are equivalent to

3∑
j=1

aj(e
rjL − i) = 0, (4.28)

3∑
j=1

aj(1− ierjL) = 0, (4.29)

3∑
j=1

rjaj(e
rjL + i) = 0. (4.30)

The equations (4.28)-(4.29) yield
∑3

j=1 aj =
∑3

j=1 aje
rjL = 0, i.e.

a3 = −a1 − a2,
a1(e

r1L − er3L) + a2(e
r2L − er3L) = 0. (4.31)

Substituting the values of a3 and a2 in (4.30) results in

a1
[
r1(e

r1L + i)(er2L − er3L) + r2(e
r2L + i)(er3L − er1L) + r3(e

r3L + i)(er1L − er2L)
]

= 0.
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Thus if er2L 6= er3L, then a2 can be expressed in terms of a1, and the system has a solution
(a1, a2, a3) 6= (0, 0, 0) if and only if

r1(e
r1L + i)(er2L − er3L) + r2(e

r2L + i)(er3L − er1L) + r3(e
r3L + i)(er1L − er2L) = 0. (4.32)

The case er2L = er3L is actually impossible for |λ| large enough, see below (4.33) and (4.37). We
shall use several times the following classical result.

Theorem 4.3. (Rouché’s theorem, see e.g. [35, 3.42]) Let f and g be analytic inside and on
a closed contour Γ, and such that |f(z) − g(z)| < |f(z)| on Γ. Then f and g have the same
number of zeros inside Γ.

• Assume that λ→ +∞. Then |r| → +∞ and from the equation r3(1 + 1
r2

) = iλ, we infer that

r3 ∼ iλ.
Then we can choose r1, r2, r3 so that

r1 ∼ −iλ
1
3 , r2 ∼ −ijλ

1
3 , r3 ∼ −ij2λ

1
3

where j = ei
2π
3 . More precisely, for any C > 1/3 and for λ large enough, there is only one

solution r of r3(1 + 1
r2

) = iλ in the disk {r ∈ C; |r − (−iλ
1
3 )| < Cλ−

1
3 }. Indeed, letting

f(r) = r3− iλ, g(r) = r3 + r− iλ, and considering r = −iλ
1
3 + ρ with |ρ| = Cλ−

1
3 , we have that

|f(r)− g(r)| = |r| = λ
1
3 +O(λ−

1
3 ), while

|f(r)| =
∣∣∣(−iλ 1

3 + ρ)3 − iλ| = |3(−iλ
1
3 )2ρ+ 3(−iλ

1
3 )ρ2 + ρ3

∣∣∣ = 3Cλ
1
3 +O(λ−

1
3 ).

The conclusion for r1 ∼ r∗1 := −iλ
1
3 follows then from Rouché’s theorem. We can do exactly the

same for the two other roots r2 ∼ r∗2 := jr∗1 and r3 ∼ r∗3 := j2r∗1.
From r3 = iλ(1 + r−2)−1 = iλ(1− r−2 + r−4 + · · · ), we obtain that

r1 = −iλ
1
3 (1 +

1

3
λ−

2
3 + · · · ) = −iλ

1
3 +O(λ−

1
3 ) ∼ −iλ

1
3 ,

r2 = −ijλ
1
3 (1 +

1

3
j−2λ−

2
3 + · · · ) = −ijλ

1
3 +O(λ−

1
3 ) ∼ (

√
3

2
+
i

2
)λ

1
3 ,

and r3 = −ij2λ
1
3 (1 +

1

3
j−4λ−

2
3 + · · · ) = −ij2λ

1
3 +O(λ−

1
3 ) ∼ (−

√
3

2
+
i

2
)λ

1
3 .

Clearly,

|er1L| → 1, |er2L| → +∞ and er3L → 0. (4.33)

Plugging these expressions in (4.32), we arrive to

er1L(r1 − r2) + i(r1 − r3) = O(λ
1
3 e−

√
3
2
λ

1
3 ). (4.34)

On the other, we have that

r1 − r2 = −iλ
1
3 (1− j) +O(λ−

1
3 ), r1 − r3 = −iλ

1
3 (1− j2) +O(λ−

1
3 ),

and hence

er1L = e−iλ
1
3L+O(λ−

1
3 ) = ij2 +O(λ−

2
3 ) = e−i

π
6 +O(λ−

2
3 ). (4.35)
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We infer that for λ large enough,

λ
1
3L =

π

6
+ 2nπ +O(λ−

1
3 )

for some n ∈ Z, so that λn ∼ L−3
(
π
6 + 2nπ

)3
. On the other hand, we claim that there is

a simple eigenvalue λn ∼ L−3
(
π
6 + 2nπ

)3
for all n ∈ N large enough. Indeed, we infer from

r3 + r − iλ = 0 that r2 + r3 = −r1 and r2r3 = iλ/r1, so that

r2,3 =
−r1 ± (r21 − 4iλ

r1
)
1
2

2
=
−r1 ± (−3r21 − 4)

1
2

2
.

Since

r2 ∼ r∗2 = jr∗1 =
−r∗1 +

√
3ir∗1

2
=
−r∗1 + (−3(r∗1)2)

1
2

2
,

we have that

r2 =
−r1 + (−3r21 − 4)

1
2

2
, r3 =

−r1 − (−3r21 − 4)
1
2

2
· (4.36)

Let

g(r1) =
[
r1(e

r1L + i)(er2L − er3L) + r2(e
r2L + i)(er3L − er1L) + r3(e

r3L + i)(er1L − er2L)
]
e−r2L

where r2 and r3 are as in (4.36), and let f(r1) = er1Lr1(1 − j) + r1i(1 − j2). Then for λ large

enough, f(r1) = 0 has a solution r∗1 = −iλ
1
3
n where λn = [ 1L(π6 + 2πn)]3, n ∈ Z. On the

other hand, |f(r1) − g(r1)| = O(λ−
1
3 ) < 1 < |f(r1)| if |r1 − r∗1| = 1/L and λ is large enough.

As f(r∗1) = 0, we infer from Rouché’s theorem that g(r1) = 0 has only one root in the disk
{r1 ∈ C; |r1 − r∗1| < 1

L}. Combined with (4.35), this yields for all n ∈ N large enough an
eigenvalue λn such that

λ
1
3
nL =

π

6
+ 2nπ +O(n−1),

and hence

λn = L−3
(π

6
+ 2nπ

)3
+O(n),

and we see from (4.27)-(4.30) that the associated eigenspace is onedimensional.
• Assume that λ→ −∞. We still choose r1, r2, r3 so that

r1 ∼ −iλ
1
3 , r2 ∼ −ijλ

1
3 , r3 ∼ −ij2λ

1
3 .

Then we obtain that

r1 = −iλ
1
3 +O(λ−

1
3 ) ∼ i|λ|

1
3 ,

r2 = −ijλ
1
3 +O(λ−

1
3 ) ∼ −(

√
3

2
+
i

2
)|λ|

1
3 ,

and r3 = −ij2λ
1
3 +O(λ−

1
3 ) ∼ (

√
3

2
− i

2
)|λ|

1
3 .

Clearly,

|er1L| → 1, |er2L| → 0 and |er3L| → +∞. (4.37)
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Plugging these expressions in (4.32), we arrive to

er1L(r3 − r1) + i(r2 − r1) = O(|λ|
1
3 e−

√
3
2
|λ|

1
3 ).

On the other, we have that

r3 − r1 = −iλ
1
3 (j2 − 1) +O(λ−

1
3 ), r2 − r1 = −iλ

1
3 (j − 1) +O(λ−

1
3 ),

and hence

er1L = e−iλ
1
3L+O(λ−

1
3 ) = ij +O(λ−

1
3 ) = ei

7π
6 +O(λ−

2
3 ).

We infer that

−λ
1
3L =

7π

6
+ 2nπ +O(λ−

1
3 ),

for some n ∈ Z, so that

λ = −L−3
(

7π

6
+ 2nπ

)3

+O(n). (4.38)

On the other hand, we can prove as above that for all n ∈ Z with n < 0 and |n| large enough,
there is indeed an eigenvalue

λn = −L−3
(

7π

6
+ 2|n|π

)3

+O(n),

and that it is simple.
• Finally, we can relabel the λn’s so that the eigenvalues of B form a sequence (λn)n∈Z as in
Claim A.4.

Step 3. Diagonalization of the operator A

We denote by (vn)n∈Z an orthonormal basis in L2(0, L) such that Bvn = λnvn for all n ∈ Z.
Let for n ∈ Z

θ+n (x) := − i√
2
vn(L− x), θ−n (x) :=

i√
2
vn(L− x), and u+n (x) = u−n (x) :=

1√
2
vn(x).

Then (θ+n , u
+
n )n∈Z∪(θ−n , u

−
n )n∈Z is an orthonormal basis in L2

C(0, L)×L2
C(0, L) (endowed with the

natural scalar product ((θ, u), (ϕ,w)) =
∫ L
0 [θ(x)ϕ(x) + u(x)w(x)]dx) composed of eigenvectors

of A:

A(θ+n , u
+
n ) = iλn(θ+n , u

+
n ), A(θ−n , u

−
n ) = (−iλn)(θ−n , u

−
n ).

Let (θ0, u0) ∈ [L2
C(0, L)]2 be decomposed as

θ0(x) =
∑
n∈Z

anvn(L− x), u0(x) =
∑
n∈Z

bnvn(x).

(Note that (vn(L− ·))n∈Z is also an orthonormal basis in L2(0, L).) Then we can write

(θ0, u0) =
∑
n∈Z

[c+n (θ+n , u
+
n ) + c−n (θ−n , u

−
n )]
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where

c+n =
1√
2

(ian + bn), c−n =
1√
2

(bn − ian).

It follows that the solution (θ, u) of (2.18) can be written as

(θ, u) =
∑
n∈Z

[c+n e
iλnt(θ+n , u

+
n ) + c−n e

−iλnt(θ−n , u
−
n )]. (4.39)

Let us show that there is an asymptotic spectral gap for the spectrum.
It follows from (4.22) and (4.23) that

λn+1 − λn ∼ 24π3

L3
n2 as n→∞, (4.40)

λn − λn−1 ∼ 24π3

L3
n2 as n→ −∞. (4.41)

On the other hand, for all k ∈ Z and n ∈ N, we have that

λn − (−λk−n) = (a− b)(a2 + ab+ b2) +O(n)

where a = (π6 + 2π(k1 + n))/L, b = (7π6 + 2π(k2 − k + n))/L. Then

|a− b| =
∣∣∣∣2π(k1 − k2 + k)− π

L

∣∣∣∣ ≥ π

L

and

a2 + ab+ b2 ≥ 1

2
(a2 + b2).

It follows that there is some n0 ∈ N∗ such that for any k ∈ Z and some C ∈ R+,

|λn − (−λk−n)| = π

2L3

∣∣∣π
6

+ 2π(k1 + n)
∣∣∣2 +O(n) ≥ Cn2 for n ≥ n0.

Combined with (4.40)-(4.41), we infer that for all A > 0 we can find some n1 ≥ n0 such that we
have the spectral gap relation

|(iλn)− (iλm)| ≥ A, ∀m 6= n with |m| ≥ n1, |n| ≥ n1,
|(iλn)− (−iλm)| ≥ A, ∀m,n with |m| ≥ n1, |n| ≥ n1.

Pick any T > 0. It follows then from Ingham’s lemma that there exist an integer N ∈ N and a
constant K > 0 such that for all (c+n )n∈Z, (c

−
n )n∈Z ∈ l2(Z), we have

K−1
∑
|n|≥N

(
|c+n |2 + |c−n |2

)
≤
∫ T

0
|
∑
|n|≥N

(
c+n e

iλnt + c−n e
−iλnt)|2dt ≤ K ∑

|n|≥N

(
|c+n |2 + |c−n |2

)
.

Next, we compare |v′′n(0)| to |v′′n(L)| as |n| → +∞.

Claim A.5 There are two numbers K+,K− ∈ C∗ such that v′′n(0) ∼ K+v
′′
n(L) as n→ +∞ and

v′′n(0) ∼ K−v′′n(L) as n→ −∞.
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It follows from (4.27) that

v′′n(0) =

3∑
j=1

ajr
2
j (1− ierjL), v′′n(L) =

3∑
j=1

ajr
2
j (e

rjL − i)

where rj = rj(n) and aj = aj(n). Assume first that n→ +∞. Then

a3 = −a1 − a2, a1(e
r1L − er3L) + a2(e

r2L − er3L) = 0.

It follows that

v′′n(0) = a1r
2
1(1− ier1L) + a2r

2
2(1− ier2L) + a3r

2
3(1− ier3L)

= a1

(
r21(1− ier1L) + r22ie

r1L − r23 +O(λ
2
3
ne
−
√
3

2
λ

1
3
n )

)
= a1

(
(1− j4)(−λ

2
3
n ) + ier1L(j2 − 1)(−λ

2
3
n ) +O(1)

)
= a1(1− j)(−λ

2
3
n )(1 + j2ier1L +O(λ

− 2
3

n )).

But er1L ∼ e−iλ
1
3
n L ∼ e−i

π
6 = ij2, and hence

v′′n(0) ∼ a1(1− j)2(−λ
2
3
n ).

Similarly, we obtain

v′′n(L) = a1r
2
1(er1L − i) + a2r

2
2(er2L − i) + a3r

2
3(er3L − i)

= a1

(
r21(er1L − i)− r22er1L + ir23 +O(λ

2
3
ne
−
√
3
2
λ

1
3
n )

)
= a1

(
er1L(1− j2)(−λ

2
3
n ) + i(j − 1)(−λ

2
3
n ) +O(1)

)
= a1(1− j)(−λ

2
3
n )(−j2er1L − i+O(λ

− 2
3

n )),

and hence

v′′n(L) ∼ a1(1− j) ij2(−λ
2
3
n ).

We conclude that v′′n(0) ∼ 1−j
ij2
v′′n(L) as n → +∞. We can prove in the same way that

v′′n(0) ∼ K−v′′n(L) as n→ −∞ for some constant K− 6= 0.
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We are in a position to complete the proof of Theorem 3.11. Pick any (θ0, u0) ∈ X2. From
(4.39), we have that

θxx(t, L) =
∑
n∈Z

[c+n e
iλntθ+n,xx(L) + c−n e

−iλntθ−n,xx(L)]

=
i√
2

∑
n∈Z

[−c+n eiλntv′′n(0) + c−n e
−iλntv′′n(0)],

θxx(t, 0) =
i√
2

∑
b∈Z

[−c+n eiλntv′′n(L) + c−n e
−iλntv′′n(L)],

uxx(t, L) =
1√
2

∑
n∈Z

[c+n e
iλntv′′n(L) + c−n e

−iλntv′′n(L)],

and uxx(t, 0) =
1√
2

∑
n∈Z

[c+n e
iλntv′′n(0) + c−n e

−iλntv′′n(0)].

Then by (3.30), Claim A.4 and Claim A.5, we have that (with a constant C that may change
from line to line)

‖(θ0, u0)‖2X2
≤ C

∫ T

0
[|θxx(t, L)|2 + |uxx(t, L)|2] dt

≤ C

∫ T

0

∣∣∣∣∣∑
n∈Z

[−c+n eiλntv′′n(0) + c−n e
−iλntv′′n(0)]

∣∣∣∣∣
2

dt

+

∫ T

0

∣∣∣∣∣∑
n∈Z

[c+n e
iλntv′′n(L) + c−n e

−iλntv′′n(L)]

∣∣∣∣∣
2

dt


≤ C

‖(θ0, u0)‖2X0
+
∑
|n|≥N

(|c+n |2 + |c−n |2)(|v′′n(0)|2 + |v′′n(L)|2)


≤ C

‖(θ0, u0)‖2X0
+
∑
|n|≥N

(|c+n |2 + |c−n |2)|v′′n(0)|2


≤ C

(
‖(θ0, u0)‖2X0

+

∫ T

0
|θxx(t, L)|2 dt

)
.

Thus (3.50) is proved. The proof of (3.51) is similar, and therefore it is omitted. The proof of
Theorem 3.11 is complete. �
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