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Abstract

For any Kac-Moody root data D, D. Muthiah and D. Orr have defined a partial
order on the semi-direct product W+ of the integral Tits cone with the vectorial Weyl
group of D, and a compatible length function. We classify covers for this order and
show that this length function defines a Z-grading of W+, generalizing the case of
affine ADE root systems and giving a positive answer to a conjecture of Muthiah and
Orr.
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Introduction

Motivations

Reductive groups over p-adic fields Let G be a split reductive group scheme with
the data of a Borel subgroup B containing a maximal torus T. Let W v = NG(T)/T be its
vectorial Weyl group and Y be its coweight lattice: Y = Hom(Gm,T). The action of W v on
T induces an action of W v on Y and allows to form the semi-direct product W a = Y ⋊W v.
This group called the extended affine Weyl group of G, appears naturally in the geometry
and the representation theory of G over discretely valued fields. A foundational work
in this regard was done by N. Iwahori and H. Matsumoto in 1965 ([IM65]), when they
exhibited a Bruhat decomposition of G(Qp) indexed by W a.

Let K be a non-archimedean local field with ring of integer OK ⊂ K, uniformizer π ∈ OK
and residue field kK = OK/π. Let G = G(K), let K = G(OK) its integral points and let
I be its Iwahori subgroup, defined as I = {g ∈ K | g ∈ B(kK) mod π}. The extended
affine Weyl group can be understood as NG(T(K))/T(OK), so admits a lift in G. Then, G
admits a decomposition in I double cosets indexed by W a, the Iwahori-Matsumoto Bruhat
decomposition:

G =
⊔

πλw∈Wa

IπλwI.

W a is a finite extension of a Coxeter group and thus admits a Bruhat order and a Bruhat
length. The Bruhat order comes up in the geometry of the homogeneous space G/I: for
any πλw ∈ W a, IπλwI is a subvariety of pure dimension ℓ(πλw) in G/I, and its adherence
admits a disjoint decomposition in I orbits:

IπλwI =
⊔

πµv≤πλw

IπµvI (0.1)

which extends Iwahori-Matsumoto decomposition. The connection between the geometry
of G/I and the combinatorial structure of W a is deeper. In particular, R-Kazhdan Lusztig
polynomials, defined as the number of points of certain intersections in G/I, are also given
by a recursive formula based on the Bruhat order and the Bruhat length of W a.

These polynomials appear in many topics around reductive groups over local fields, we
aim to develop analogous polynomials when G is replaced by a general Kac-Moody group.

Extension to Kac-Moody groups Replace G by a general split Kac-Moody group.
Kac-Moody group schemes are entirely defined by the underlying Kac-Moody root data D,
as defined in [Rém02, §2], and reductive groups correspond to root datum of finite type.
Then the Iwahori-Matsumoto decomposition no longer holds on G = G(K). However there
is a partial Iwahori-Matsumoto decomposition: there exists a sub-semigroup G+ of G such
that:

G+ =
⊔

πλw∈W+

IπλwI.
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The indexing set for this decomposition W+ is a sub-semigroup of Y ⋊W v, and it appears
naturally in other related contexts, for example when trying to construct a Iwahori-Hecke
algebra for G [BKP16, BPGR16]. Let us briefly explain how W+ is defined:

Let Φ be the real root system of the root data D. It is an infinite set (unless D is
reductive) of linear forms on Y coming with a subset of positive roots Φ+ ⊂ Φ such that
Φ = Φ+ ⊔ −Φ+. Let Y ++ = {λ ∈ Y | ∀α ∈ Φ+, α(λ) ≥ 0} and Y + = W v.Y ++. Then W+

is defined as Y + ⋊W v. In the reductive case, Y + coincides with Y and thus W+ = W a.
However, Y ⋊W v can no longer be conceived as a finite extension of a Coxeter system, hence
there is a priori no Bruhat order on W+, let alone on Y ⋊W v. A well-behaved topology
on G+/I would allow to define an order on W+ through the analog of decomposition (0.1),
but G+/I does not seem to have a natural variety, nor even an ind-variety structure.

An order and two lengths on W+ In appendix of their article on the construction
of a Iwahori Hecke algebra for G an affine Kac-Moody group over a p-adic field [BKP16,
Appendix B2], A. Braverman, D. Kazhdan and M. Patnaik propose the definition of a
preorder on W+ which would replace the Bruhat order of W a and they conjecture that it
is a partial order. In [Mut18], D. Muthiah extends the definition of this preorder to any
Kac-Moody group G, defines a Z ⊕ εZ-valued length compatible with this preorder and
hence shows that it is an order. In a joint work [MO19], Muthiah and D. Orr then show
that this length can be evaluated at ε = 1 to obtain a Z-valued length strictly compatible
with the order on W+.

In order to build a Kazhdan-Lusztig theory of p-adic Kac Moody groups, we want to
understand how close this order is to the Bruhat order of an affine Coxeter group, which
properties still hold and which do not. The definition of a Z-length is already a significant
step, but many important properties, which are known to hold for Bruhat orders, remain
unknown in this context. Several were proved only for Kac-Moody root systems of affine
simply laced type using the specific structure of affine Weyl group of W v in this context.

Choice of vocabulary The order on W+ is often mentioned in the literature as "double
affine Bruhat order" and the associated length as "double affine Bruhat length" because
it is most studied in the case of G a Kac-Moody group of affine type (in which case W v

is already an affine Weyl group). In this paper we refer to it as "affine Bruhat order" and
"affine Bruhat length", denoted ℓa, because we do not suppose that W v is an affine Weyl
group. Note that, if W v is finite, then the affine Bruhat length and order on W+ are just
the ones induced by its Coxeter group structure.

Main result Our main result is a positive answer to [MO19, Conjecture 1.5] in full
generality:

For any partial order ≤ on a set X, we say that y covers x if x ̸= y and {z ∈ X | x ≤
z ≤ y} = {x,y}. A grading of X is a length function on X strictly compatible with ≤ and
such that y covers x if and only if x ≤ y and ℓ(y)− ℓ(x) = 1. Gradings thus give an easy
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classification of covers and more generally of maximal chains in X. The Bruhat length for
a Coxeter group equipped with the Bruhat order is the prototypical example of a grading.

In [MO19], Muthiah and Orr prove that if Φ is of affine ADE type, the affine Bruhat
length gives a Z-grading of W+ for the affine Bruhat order and conjecture this to be true
in general. The main result of this paper is a positive answer to this conjecture:

Theorem. Let D be any Kac-Moody root data. Then the affine length ℓa on W+ defines
a Z-grading of W+ strictly compatible with the affine Bruhat order. Otherwise said, let
x ≤ y ∈ W+. Then:

y covers x if and only if ℓa(y)− ℓa(x) = 1.

Along the way, we obtain several geometric properties of covers for the affine Bruhat
order which we expect to be insightful even if the root data is reductive (so W v is finite
and W+ is an affine Weyl group) as they only rely on the Coxeter structure of W v.

Further directions In an upcoming joint work with A. Hebert, we prove that segments
for the affine Bruhat order are finite in full generality, which generalizes a result proved
by A. Welch [Wel22] in the affine ADE case. We use this finiteness in the context of
masures to define R-Kazhdan Lusztig polynomials, following Muthiah’s strategy exposed
in [Mut19]. We hope that our understanding of covers would be helpful to compute these
R-polynomials and to use them to define P -Kazhdan Lusztig polynomials.

Another interesting (but quite long reach) question is the following: W+ appears as
the affinization of W v, which may be taken as an affinized version of a finite Coxeter
group. Can we iterate the affinization process, e.g to obtain a valid theory for reductive or
Kac-Moody groups on valued fields of higher dimensions?

Finally, little is known on the preorder defined on the whole semi-direct product Y ⋊W v,
it could be insightful to study it and to connect it to the failure of the full Iwahori-
Matsumoto decomposition of G.

Organization of the paper

Scheme of proof The proof relies on elementary methods, and is quite straightforward.
The aim is to construct a non-trivial chain from x to y every time y ≥ x verifies ℓa(y)−
ℓa(x) > 1. Let projY

+

denote the projection W+ = Y + ⋊W v → Y +. We distinguish two
cases which depend on the form of x and y: The first case is when projY

+

(y) lies in the
orbit of projY

+

(x), and the other case is when it does not.
In the first case, we show that the affine Bruhat order on {z ∈ W+ | x ≤ z ≤ y} is, in

some sense, a lift of several Bruhat-like orders on W v, and we are able to construct chains
between x and y from chains in W v. The second case is more involved. Through a careful
study of the relation between the vectorial chambers of projY

+

(x) and projY
+

(y), we show
that the length difference ℓa(y)− ℓa(x) can be rewritten in a more workable form, making
the conditions for which it is equal to one clear. Then the game is to build, explicitly, a
non-trivial chain every time one of these conditions is not satisfied.
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Organization Section 1 consists of preliminaries. In Subsection 1.1 we formally define
everything we mentioned in this introduction. In particular we give the definition of the
affine Bruhat order and the two affine Bruhat lengths as they are given in [MO19]. To be
more flexible, we chose to define the affine Bruhat order on the whole semi-group Y ⋊W v,
on which it may not be a preorder.

We show that we indeed recover the affine Bruhat order on W+ from this preorder
in Subsection 1.3 at the end of this section, and we give other preliminary results, more
classical, which are quite useful for our study of the affine Bruhat length and for the
construction of chains.

We also give, in Subsection 1.2, a geometric interpretation of W+ and its affine Bruhat
order, which is to be compared with the Coxeter complex of a Coxeter group, and its
interpretation of the Bruhat order. Even though it is not clearly mentioned in the rest of
the paper, this geometric interpretation was very useful to construct chains and understand
W+.

In Section 2, we show the result for covers such that projY
+

(y) ∈ W v.projY
+

(x). Firstly
we define a relative version of the Bruhat length on W v in Subsection 2.1 and we show
that it appears naturally in the expression of the affine Bruhat length of W+ in Subsection
2.2. In Subsection 2.3, we then use this to lift chains from W v to W+ to show the result.

In Section 3, we deal with covers such that projY
+

(y) /∈ W v.projY
+

(x). We first show
in Subsection 3.1 that these covers are of a very specific form. Namely, if x = πv(λ)w with
v, w ∈ W v and λ ∈ Y ++, then y needs to be of the form πv(λ+β∨)sv(β)w or πvsβ(λ+β∨)sv(β)w
for some β ∈ Φ+.

The strategy is then to get enough necessary conditions on v, w, λ, β for y to cover x, in
order to obtain a simplified expression for ℓa(y)− ℓa(x). Proposition 3.2 gives a first result
in this direction. In Subsection 3.2 we fully exploit this strategy to obtain Expression (3.2)
for the length difference.

Finally, in Subsection 3.3, we construct various chains from y to x to prove that the
quantities appearing in Expression (3.2) need to be minimal when y covers x, which allows
us to conclude.

Acknowledgments I am especially grateful to Auguste Hebert for his help in under-
standing the affine Bruhat order and his feedbacks throughout the conception of this paper,
as well as Stéphane Gaussent for his supervision and his careful rereading.
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1 Preliminaries

1.1 Definition and notations

Let D = (A,X, Y, (αi)i∈I , (α
∨
i )i∈I) be a Kac-Moody root data as defined in [R0́2, §8]. It is

a quintuplet such that:

• I is a finite indexing set and A = (aij)(i,j)∈I×I is a generalized Cartan matrix

• X and Y are two dual free Z-modules of finite rank, we write ⟨, ⟩ the duality bracket.

• (αi)i∈I (resp. (α∨
i )i∈I) is a family of linearly independent elements of X (resp. Y ),

the simple roots (resp. simple coroots)

• For all (i, j) ∈ I2 we have ⟨α∨
i , αj⟩ = aij

Vectorial Weyl group For every i ∈ I set si ∈ AutZ(X) : x 7→ x − ⟨α∨
i , x⟩αi. The

generated group W v = ⟨si | i ∈ I⟩ is the vectorial Weyl group of the Kac-Moody root
data. The duality bracket ⟨Y,X⟩ induces a contragredient action of W v on Y , explicitly
si(y) = y − ⟨y, αi⟩α∨

i . The bracket ⟨., .⟩ is then W v-invariant.
W v is a Coxeter group, in particular it has a Bruhat order < and a length function ℓ

compatible with the Bruhat order.

Vectorial distance on a Coxeter group On any Coxeter group W we define a map
dW : W ×W → W by dW (v, w) = v−1w, called the vectorial distance of W , it is W -
invariant: dW (rv, rw) = dW (v, w) for any r, v, w ∈ W . We also define dN = ℓW ◦ dW where
ℓW is the Bruhat length on W . These maps have properties analogous to the standard
distance axioms, which justify the name. This is made precise in the context of buildings
in [Ron89, Chapter 3 §1].

Real roots Let Φ = W v.{αi | i ∈ I} be the set of real roots of D, it is a root system in
the classical sense, but possibly infinite. In particular let Φ+ =

⊕
i∈I

Nαi ∩ Φ be the set of

positive real roots, then Φ = Φ+ ⊔ −Φ+, we write Φ− = −Φ+ the set of negative roots.
The set Φ∨ = W v.{α∨

i | i ∈ I} is the set of coroots, and its subset Φ∨
+ =

⊕
i∈I

Nα∨
i ∩Φ∨

is the set of positive coroots.
To each root β corresponds a unique coroot β∨: if β = w(αi) then β∨ = w(α∨

i ). This
map β 7→ β∨ is well defined, bijective between Φ and Φ∨ and sends positive roots to positive
coroots. Note that ⟨β∨, β⟩ = 2 for all β ∈ Φ.

Moreover to each root β we associate a reflection sβ ∈ W v: If β = w(±αi) then
sβ := wsiw

−1. Explicitly it is the map x 7→ x − ⟨β∨, x⟩β. sβ = s−β and the map forms a
bijection between the the set of positive roots and the set {r ∈ W v | r2 = 1} of reflections
of W v.
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Inversion sets For any w ∈ W v, let Inv(w) = Φ+ ∩ w−1.Φ− = {α ∈ Φ+ | w(α) ∈ Φ−}.
Theses sets are strongly connected to the Bruhat order, as by [Kum02, 1.3.13], for all
α ∈ Φ+:

α ∈ Inv(w) ⇐⇒ wsα < w ⇐⇒ sαw
−1 < w−1.

Moreover, they are related to the Bruhat length : ℓ(w) = |Inv(w)| ([Kum02, 1.3.14]).
They also have a geometric interpretation in the Coxeter complex of W v as described

below.

Integral fundamental chamber and Tits cone We define the (integral) fundamental
chamber by Y ++ = {λ ∈ Y | ⟨λ, αi⟩ ≥ 0 ∀i ∈ I}. Then, the integral Tits cone is
Y + = W v.Y ++. It is a convex cone of Y , in particular it is a semi-group for the group
operation of Y , and it is equal to Y if and only if W v is finite, if and only if Φ is finite, if
and only if A is of finite type (see [Kum02, 1.4.2])

Y ++ is a fundamental domain for the action of W v on Y +, and for any λ ∈ Y + we
define λ++ to be the unique element of Y ++ in its W v-orbit.

There is a height function on Y +, defined as follows:

Definition 1.1. Let (Λi)i∈I be a set of fundamental weights, that is to say ⟨α∨
i ,Λi⟩ = δij

for any i, j ∈ I. We fix it once and for all. Let ρ =
∑

i∈I Λi. Then for any λ ∈ Y define
the height of λ as:

ht(λ) = ⟨λ, ρ⟩.

The height depends on the choice of fundamental weights, but its restriction to Q∨ =
⊕
i∈I

Zα∨
i

does not: ht(
∑

i∈I niα
∨
i ) =

∑
i∈I ni.

Affine Weyl group The action of W v on Y allows to form the semi-direct product
Y ⋊W v and we denote its elements by πλw with λ ∈ Y,w ∈ W v.

By definition, Y + ⊂ Y is stable by the action of W v on Y , therefore we can form
W+ = Y +⋊W v which is a sub semi-group of Y ⋊W v. This semi-group is called the affine
Weyl group (although it is not a group if W v is infinite). In [MO19] D. Muthiah and D.
Orr define a Bruhat order and an associated length function on W+ which we aim to study
in this article.

Denote by projY
+

: W+ → Y + the canonical projection, which sends πλw onto λ. More-
over denote by projY

++

: W+ → Y ++ the projection to Y ++: projY
++

(x) = (projY
+

(x))++.
Let us call projY

+

(x) the coweight of x, and projY
++

(x) its dominance class.

Affine roots Let Φa = Φ × Z be the set of affine roots and denote by β + nπ the
affine root (β, n). β + nπ is said to be positive if n > 0 or (n = 0 and β ∈ Φ+) and we
write Φa

+ for the set of positive affine roots. We have Φa = Φa
+ ⊔ −Φa

+.
Y ⋊W v acts on Φa by:

πλw(β + nπ) = w(β) + (n+ ⟨λ,w(β)⟩)π. (1.1)
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For any n ∈ Z, its sign is denoted sgn(n) ∈ {−1,+1}, with the convention that sgn(0) =
+1.

For n ∈ Z and β ∈ Φ+, set:

β[n] = sgn(n)β + |n|π ∈ Φa
+ (1.2)

sβ[n] = πnβ∨
sβ. (1.3)

If n ̸= 0 we also define β[n] ∈ Φa
+ for β ∈ Φ−, by β[n] = (−β)[−n].

Bruhat order on W+ Recall Braverman, Kazhdan and Patnaik’s definition of the
Bruhat order < introduced in [BKP16, Section B. 2]: Let x ∈ W+ and let β[n] ∈ Φa

+

be such that xsβ[n] ∈ W+. Then:

x < xsβ[n] ⇐⇒ x(β[n]) ∈ Φa
+. (1.4)

Explicitly, if x = πλw ∈ W+, this is written:

|n|+ sgn(n)⟨λ,w(β)⟩ > 0

or |n|+ sgn(n)⟨λ,w(β)⟩ = 0 and sgn(n)w(β) > 0.

Then we extend this relation by transitivity, which makes it a preorder. Originally, they
defined it only for affine vectorial Weyl groups, but the definition extends to any vectorial
Weyl group and Muthiah showed in [Mut18] that it is an order on W+ in general.

Extension to Y ⋊W v As the whole semi-direct product Y ⋊W v acts on Φa
+, Formula

(1.4) makes sense for any x ∈ Y ⋊W v, and in this paper we define < on the whole semi-
direct product Y ⋊W v, as the closure by transitivity of the relation defined through (1.4)
for x ∈ Y ⋊W v. We show in the next section that if x < y and y ∈ W+, then x ∈ W+,
this ensures that the restriction of the Y ⋊W v-preorder to W+ coincides with Braverman,
Kazhdan, Patnaik’s order on W+. However < may not be an order on Y ⋊W v.

Bruhat order through a right action The Bruhat order can also be recovered using
a right action of Y ⋊W v on Φa

+, namely:

sβ[n]π
λw > πλw ⇐⇒ (πλw)−1(β[n]) = sgn(n)w−1(β) + (|n| − sgn(n)⟨λ, β⟩)π ∈ Φa

+. (1.5)

Note that this formula holds if β ∈ Φ+ and n ∈ Z, but also if β ∈ Φ− and n ∈ Z \ {0}.
In case β ∈ Φ− and n = 0 however, it is no longer correct and Formula (1.5) needs to be
applied with the root −β[0].

Applying reflections on the left is better suited for the geometric interpretation we will
give in the next paragraph.
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Length functions on W+ Muthiah and Orr associated a length function strictly com-
patible with the Bruhat order on W+, generalizing the classical Bruhat length on Coxeter
groups. They use it to show that the Bruhat order on W+ is anti-symmetric (so it is an
order and not only a preorder). However, this length function takes values in Z⊕ εZ and
not in N, setting ε = 1 gives a well-behaved length with integral values, but which can
take negative values. Let us now give its definition, it heavily relies on the inversion sets
we introduced above.

Definition 1.2. The affine length function is the map W+ → Z⊕ εZ defined by:

ℓaε(π
λw) = 2ht(λ++) + ε(|{α ∈ Inv(w−1) | ⟨λ, α⟩ ≥ 0}| − |{α ∈ Inv(w−1) | ⟨λ, α⟩ < 0}|).

The affine length with integral values is the affine length function on which we set
ϵ = 1:

ℓa(πλw) = 2ht(λ++) + (|{α ∈ Inv(w−1) | ⟨λ, α⟩ ≥ 0}| − |{α ∈ Inv(w−1) | ⟨λ, α⟩ < 0}|).

In [MO19] the authors show that both lengths functions are strictly compatible with
the Bruhat order on W+, in the sense that:

xsβ[n] > x ⇐⇒ ℓaε(xsβ[n]) > ℓaε(x) ⇐⇒ ℓa(xsβ[n]) > ℓa(x).

In what follows we will mostly use ℓa and rarely mention ℓaε .

1.2 Geometric interpretation

We introduced everything in a very algebraic way, but there is a strong geometric intuition
behind root systems, vectorial Weyl groups and the vectorial Bruhat order, developed for
instance in the context of buildings in [Ron89]. There is also a geometrical interpretation of
the Bruhat order on W+ which we develop in this paragraph, it takes place in the standard
apartment of the masure associated to a Kac-Moody group with underlying Kac-Moody
data D.

Let V = Y ⊗Z R, X embeds in its dual V ∨ and the vectorial Weyl group W v acts
naturally on it. Inside V we have the fundamental chamber Cv

0 = {v ∈ V | ⟨v, αi⟩ ≥ 0}
and the Tits cone T = W v.Cv

f . A vectorial chamber is a set of the form w.Cv
f for

w ∈ W v. Since the interior of Cv
f has trivial stabiliser in W v, the set of chambers is in

natural bijection with W v by w 7→ wCv
0 = Cv

w.

To each root β ∈ Φ+ let Mβ = {x ∈ V | ⟨x, β⟩ = 0}, it is an hyperplane of V and, if
β = w(αi) with αi a simple root, then Mβ ∩ T = Cv

w ∩ Cv
wsi

.
We can put a structure of simplicial complex on T , for which chambers are the cells

of maximal rank and the walls are the cells of maximal rank within non-chambers. The
walls split the Tits cone in two parts, and separate the set of vectorial chambers in two:
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say that Cv
w is on the positive side of Mβ if w−1(β) > 0. In particular since β is a positive

root, the positive side is always the one which contain the fundamental chamber.
Then the vectorial Bruhat order can be interpreted by: sβw > w if and only if, when

we split T along Mβ the chambers Cv
w and Cv

0 are in the same connected component of T ,
that is to say Cv

w is on the positive side of Mβ.
Moreover Inv(w−1) the inversion set of w−1 can be interpreted as the set of walls

separating the chamber Cv
w = w.C0 from the fundamental chamber Cv

0 .

In Figure 1.1 we represent the Tits cone and its structure for a root system of rank 2

with Cartan matrix
(

2 −3
−2 2

)
, which is of indefinite type. The Tits cone is colored in

blue, and the vectorial chamber Cv
w is labelled by w. It is an approximation since W v is

infinite.

Figure 1.1: The Tits cone for a root system of Cartan Matrix
(

2 −3
−2 2

)
.
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Let us now turn to the interpretation of the W+-Bruhat order. Let A be a real affine
space with underlying vectorial space V , we call A the (standard) affine apartment asso-
ciated to D. The tangent space of A is canonically isomorphic to TA = A × V , with, for
any x ∈ A, TxA = {x} × V .

The semi-group W+ has an affine action on A, given by πλw(x) = −λ + w(x), it
induces an action on the tangent space TA given by πλw((x, v)) = (−λ+ w(x), w(v)). To
any positive affine root β[n] ∈ Φa

+ corresponds an affine hyperplane Mβ[n] = {x ∈ A |
⟨x, β⟩ + n = 0}, the affine wall associated to the affine root β[n]. For any x ∈ Mβ[n] we
have TxMβ[n] = {x} ×Mβ ⊂ TxA.

For any πλw ∈ W+ let Cπλw = {−λ} × Cv
w ⊂ TλA ⊂ TA, we call it the alcove of

type πλw. Mirroring the classical situation, C0 = {0} × Cv
f is a fundamental domain for

the action of W+ on Y + × T ⊂ TA and W+ acts on {Cx | x ∈ W+} simply transitively.
Affine walls separate naturally the set of alcoves in two and we call the side containing C0

the positive side.
Then the W+-Bruhat order can be interpreted by: sβ[n]πλw > πλw if and only if Cπλw

is on the positive side of Mβ[n].
We give an illustration of the affine apartment in Figure 1.2 below.

Figure 1.2: The affine apartment for a root system of Cartan Matrix
(

2 −3
−2 2

)
.
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In Figure 1.2 we represent the affine apartment for the same root data as in Figure
1.1. The blue polygons represent the local Tits cones at three different points: the origin,
−λ ∈ −Y + and −µ, which is the image of −λ by the reflection along the wall Ms1(α2)[2]

(represented in green).
We have highlighted three alcoves: In orange the alcove C0; in red the alcove C = Cπλs1s2

and in green D = Cπµs1 which is the image of C by ss1(α2)[2]. We see that D is on the same
side of Ms1(α2)[2] as the fundamental alcove C0, thus: πλs1s2 = ss1(α2)[2](π

µs1) > πµs1.
Note that −λ lies in the negative vectorial chamber −s2C

v
f , that is to say that s2λ is

dominant. Therefore πλs2 is the minimal length element of πλW v. We will make this more
explicit in Section 2.2.

1.3 Preliminary results

In this paper, we consider the action of reflections on W+ on the left. To switch between
the right and left actions note that:

πλwsβ[n] = πλ+nw(β∨)sw(β)w = πsw(β)λ+(n+⟨λ,w(β)⟩)w(β∨)sw(β)w = sw(β)[n+⟨λ,w(β)⟩]π
λw.

Since the affine Bruhat order is generated on W+ by the relations sβ[n]x > x ⇐⇒
ℓa(sβ[n]x) > ℓa(x) for affine roots β[n] ∈ Φa

+, covers are always of this form.

Lemma 1.3. Let πλw ∈ Y ⋊ W v and β[n] ∈ Φa
+. Write πµw′ for sβ[n]π

λw and suppose
that (πλw)−1(β[n]) ∈ Φa

+. Then λ ∈ [µ, sβµ]. In particular, µ ∈ Y + =⇒ λ ∈ Y +.

Proof. Explicitely:
πµw′ = πnβ∨

sβ.π
λw = πsβλ+nβ∨

sβw.

Thus µ = sβλ+ nβ∨ = λ+ (n− ⟨λ, β⟩)β∨ and sβµ = λ− nβ∨.
Moreover, since (πλw)−1(β[n]) ∈ Φa

+, by Formula (1.5), |n|− sgn(n)⟨λ, β⟩ = sgn(n)(n−
⟨λ, β⟩) ≥ 0.

Therefore, unless n − ⟨λ, β⟩ = 0, n and n − ⟨λ, β⟩ have same sign and thus, λ =
sβµ+ nβ∨ = µ− (n− ⟨λ, β⟩)β∨ lies in [sβµ, µ]. If n− ⟨λ, β⟩ = 0 then µ = λ and the result
remains true.

In particular, since Y + is convex and W v-stable, if µ lies in Y + then so does λ.

We directly obtain from the last point that:

Corollary 1.4. The affine Bruhat order defined on W+ coincides with the restriction of
the preorder defined through (1.4) on the whole semi-direct product Y ⋊W v

We give here a few elementary results on the height function, which will be useful in
our study of the affine Bruhat length. They are also used in [MO19, Section 3].

Lemma 1.5. For any w ∈ W v,

ρ− w−1(ρ) =
∑

γ∈Inv(w)

γ.
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Proof. This is [Kum02, 1.3.22 Corollary 3], we prove it by induction on the length of w:

• If w is a simple reflection sα then Inv(sα) = {α} and ρ− sα(ρ) = ⟨α∨, ρ⟩α = α since
⟨α∨, ρ⟩ = 1 by definition of ρ.

• Suppose the result true for elements of length n, and suppose that ℓ(n) = n + 1
then write w = w1sα for α a simple root and w1 an element of length n− 1. Then :
ρ − w(ρ) = ρ − w1(ρ) + w1(ρ − sα(ρ)) =

∑
γ∈Inv(w−1

1 )

γ + w1(α) and since Inv(w−1) =

Inv(w−1
1 ) ⊔ {w1(α)} we get the result for w.

Corollary 1.6. For any positive root β ∈ Φ+ we have:

2ht(β∨) =
∑

γ∈Inv(sβ)

⟨β∨, γ⟩. (1.6)

Moreover all the terms of the summand are positive.

Proof. This is a direct application of Lemma 1.5. Moreover for any γ ∈ Inv(sβ), by
definition γ ∈ Φ+ and sβ(γ) = γ − ⟨β∨, γ⟩β∨ ∈ Φ− so, since β is a positive root the
coefficient ⟨β∨, γ⟩ is necessarily positive.

Corollary 1.7. Let µ ∈ Y + and u ∈ W v be such that µ = uµ++. Then:

ht(µ++) = ht(µ)−
∑

τ∈Inv(u−1)

⟨µ, τ⟩. (1.7)

Moreover the terms in this summand are non-positive.

Proof. By definition ht(µ++) = ⟨u−1(µ), ρ⟩ = ⟨µ, u(ρ)⟩, and by Lemma 1.5:

ht(µ++) = ⟨µ, u(ρ)⟩ = ⟨µ, ρ−
∑

τ∈Inv(u−1)

τ⟩ = ht(µ)−
∑

τ∈Inv(u−1)

⟨µ, τ⟩.

Moreover, for any τ ∈ Φ, we have ⟨µ, τ⟩ = ⟨µ++, u−1(τ)⟩, so τ ∈ Inv(u−1) =⇒ ⟨µ, τ⟩ ≤ 0
and the terms of the above summand are all non-positive.

We end this section with a classical result on Coxeter complexes which will be useful
to construct many chains for the affine Bruhat order. Recall that, for any Coxeter group
W with simple reflection set S, a minimal gallery in W from w to v is a sequence w =
w1, ..., wn = v such that wi+1 = wisi for some simple reflection si ∈ S. A gallery is said
to be minimal if its length n is equal to dN(w1, wn). We refer to [Ron89, Chapter 2] for
the elementary properties of minimal galleries in Coxeter complexes. The next Lemma is
another formulation of [Ron89, Proposition 2.8].
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Lemma 1.8. Let W be a Coxeter group and let v1, v2, w ∈ W be such that v2 is not on a
minimal gallery from v1 to w. Then there is a reflection r ∈ W such that dW (v1, rw) >
dW (v1, w) and dW (v2, rw) < dW (v2, w).

Proof. If v2 is not on a minimal gallery from v1 to w, there exists a root (seen as a half-
apartment) α such that v1, w ∈ α and v2 /∈ α, by [Ron89, Proposition 2.8]. Then consider
the folding along α, defined by:

∀u ∈ W, ρα(u) =

{
rαu if u /∈ α

u otherwise.

It reduces the vectorial distance, hence:

dW (v1, w) = dW (ρα(v1), ρα(rαw)) < dW (v1, rαw).

dW (v2, rαw) = dW (rαv2, w) = dW (ρα(v2), ρα(w)) < dW (v2, w).

2 The case of constant dominance class
In this section, we study the affine Bruhat order restricted to a dominance class, that is
to say, for a given λ++ ∈ Y ++, the restriction of the affine Bruhat order to the subset
(projY

++

)−1(λ++) = {πµw ∈ W+ | µ ∈ W v.λ++}.
We start this section by defining a relative length and a relative Bruhat order on W v,

which naturally appear in the affine length ℓa on W+. This connection was already observed
by Muthiah and Orr in [MO18].

2.1 Relative length on W v

Definition 2.1. For any v, w ∈ W v let:

ℓv(w) = |Inv(w−1) \ Inv(v−1)| − |Inv(w−1) ∩ Inv(v−1)|.

This is a signed version of the Bruhat length, in particular ℓ1 = ℓ.
We associate an order to ℓv by setting, for any element w ∈ W v and any reflection

r ∈ W v: w <v wr if and only if ℓv(w) < ℓv(wr) and then let <v be the order generated
by these relations, it is strictly compatible with ℓv. In particular <1 is the classical Bruhat
order.

As does the Bruhat length, the lengths ℓv have a geometric interpretation on the Coxeter
complex associated to W v: it is the summand ℓv(w) =

∑
ϵv(M) over every wall separating

the chamber 1 and the chamber w, where ϵv(M) is −1 if M separates 1 and v−1 and +1
otherwise.

We will use this relative length to give an alternative definition of the affine length. Let
us first give an explicit formula for ℓv depending only on the classical length ℓ = ℓ1.

14



Lemma 2.2. If sv > v with v ∈ W v and s a simple reflection then for any w ∈ W v,
ℓsv(w) = ℓv(sw)− 1.

Proof. For any w ∈ W v, the map γ 7→ sγ defines a bijection:

Inv(w−1) \ {αs} ∼= Inv(w−1s) \ {αs}.

Moreover because sv > v, αs ∈ Inv(v−1s) and αs /∈ Inv(v−1).
Therefore:

|Inv(w−1) ∩ Inv(v−1s) \ {αs}| = |Inv(w−1s) ∩ Inv(v−1)|

and
|Inv(w−1) \ Inv(v−1s)| = |Inv(w−1s) \ (Inv(v−1) ∪ {αs})|.

• If αs ∈ Inv(w−1) then αs /∈ Inv(w−1s) and ℓsv(w) = |Inv(w−1s) \ Inv(v−1)| −
(|Inv(w−1s) ∩ Inv(v−1)|+ 1) = ℓv(sw)− 1.

• If αs /∈ Inv(w−1) then αs ∈ Inv(w−1s) and ℓsv(w) = (|Inv(w−1s) \ Inv(v−1)| − 1) −
|Inv(w−1s) ∩ Inv(v−1)| = ℓv(sw)− 1.

Proposition 2.3. For all v, w ∈ W v we have:

ℓv(w) = ℓ(v−1w)− ℓ(v).

Proof. Since ℓ = ℓ1, we take a reduced expression for v and apply Lemma 2.2 recursively
to get the result.

The order <v also has a geometric interpretation which will be important later on, and
given by the following corollary:

Corollary 2.4. For any root α ∈ Φ and element w ∈ W v, we have that w <v sαw if and
only if, in the Coxeter complex of W v, Cv

w and Cv
v are on the same side of the wall Mα.

Proof. We have ℓv(sw)− ℓv(w) = ℓ(v−1sw)− ℓ(v−1w) and by the definition of the Coxeter
complex this is positive if and only if Cv

v and Cv
w are on the same side of the wall Ms.

Therefore <v can be interpreted as a shift of the classical Bruhat order, corresponding
geometrically to taking Cv as fundamental chamber in the Coxeter complex.
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2.2 Relation with the affine Bruhat length

For λ ∈ Y +, let Φλ denote the set {α ∈ Φ | ⟨λ, α⟩ = 0} and Wλ = StabW v(λ). Let v ∈ W v

be such that λ = vλ++. Then Wλv = vWλ++ and, since λ++ is dominant, Wλ++ is a
standard parabolic subgroup, that is a group of the form WJ = ⟨s | s ∈ J⟩ where J ⊂ S is
a set of simple reflections. More precisely, J = {s ∈ S | s.λ++ = λ++}.

By standard Coxeter group theory (see for instance [BB05, Section 2.2]), for any u ∈
W v, the left coset uWλ++ = uWJ has a unique representative of minimal length which we
denote uJ , and one has a decomposition u = uJuJ with uJ ∈ WJ such that:

ℓ(u) = ℓ(uJ) + ℓ(uJ). (2.1)

Definition 2.5. • For any λ ∈ Y ++, we denote by W λ the set of minimal length
representatives for Wλ cosets: w ∈ W λ ⇐⇒ ∀w̃ ∈ Wλ, ℓ(ww̃) > ℓ(w)

• For any λ ∈ Y +, we denote by vλ the minimal length element in W v which verifies
λ = vλλ++. In other words, for any u ∈ W v such that λ = uλ++, we have vλ = uJ ,
where J is the set of simple reflections such that WJ = Wλ++.

Proposition 2.6. For any coweight λ = vλ++ ∈ Y +, for any w ∈ W v, we have:

|{α ∈ Inv(w−1) | ⟨λ, α⟩ ≥ 0}| − |{α ∈ Inv(w−1) | ⟨λ, α⟩ < 0}| = ℓvλ(w).

Thus:
ℓaε(π

λw) = 2ht(λ++) + εℓvλ(w) and ℓa(πλw) = 2ht(λ++) + ℓvλ(w)

Proof. For λ ∈ Y + and v ∈ W v such that λ = vλ++, then, α ∈ Φ+ verifies ⟨λ, α⟩ ≥ 0 if
and only if α ∈ Φλ ∪ (Φ+ \ Inv(v−1)), so:

{α ∈ Inv(w−1) | ⟨λ, α⟩ ≥ 0} =
(
Inv(w−1) \ Inv(v−1)

)⊔(
Inv(w−1) ∩ Inv(v−1) ∩ Φλ

)
Inv(w−1) ∩ Inv(v−1) = {α ∈ Inv(w−1) | ⟨λ, α⟩ < 0}

⊔(
Inv(w−1) ∩ Inv(v−1) ∩ Φλ

)
.

Therefore we have:

|{α ∈ Inv(w−1) | ⟨λ, α⟩ ≥ 0}|−|{α ∈ Inv(w−1) | ⟨λ, α⟩ < 0}| = ℓv(w)+2|Inv(w−1)∩Inv(v−1)∩Φλ|

We show that Inv((vλ)−1) ∩ Φλ = ∅ which is enough to prove the result.
Let α ∈ Inv((vλ)−1) ∩ Φλ, then since α ∈ Φλ, sα fixes λ, that is sα ∈ Wλ. More-

over (vλ)−1(α) < 0 so sαv
λ < vλ, this contradicts the minimality of vλ (note that, as

Wλv
λ = vλWλ++ , vλ is also the minimal representative for the right coset Wλv

λ). Hence
Inv((vλ)−1) ∩ Φλ = ∅.

Corollary 2.7. Let λ ∈ Y + and w ∈ W v. Suppose that πµw′ = sβ[n]π
λw for some affine

root β[n] ∈ Φa is such that µ++ = λ++. Then:

πµw′ > πλw ⇐⇒ ℓvµ(w
′) > ℓvλ(w).

In particular:
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• If w,w′ ∈ W v, then:
πλw < πλw′ ⇐⇒ w <vλ w′.

In particular πλvλ is the minimal element of πλW v.

• If r ∈ W v, then:
πrλrw > πλw ⇐⇒ rvλ < vλ.

Remark 2.8. The fact that Inv((vλ)−1) ∩ Φλ = ∅ is visible geometrically in the Coxeter
complex of W , in which Φλ is the set of walls containing λ, Inv(v−1) is the set of walls
separating Cv

f and vCv
f , and vλCv

f is the projection of the fundamental chamber on the face
containing λ, that is to say the closest chamber from the fundamental one amongst the
chambers containing λ in their closure.

Remark 2.9. By combining Formula (1.7) with Proposition 2.6, we obtain the formulas
already given by Muthiah and Orr in [MO19, Proposition 3.10].

2.3 Covers with constant dominance class

We now use the relative vectorial Bruhat order and length to prove that, for any λ++ ∈
Y ++, covers in projY

++

(λ++) increase the affine Bruhat length by exactly one. This is a
first step towards a characterization of general covers.

Theorem 2.10. If x◁ y is a cover in W+ with projY
+

(y) ∈ W v.projY
+

(x), then ℓa(y) =
ℓa(x) + 1.

Proof. Let λ = projY
+

(x) and let v of minimal length be such that λ = vλ++ (so v = vλ

with the above notation). We can write y = sβ[n]x with β ∈ Φ+ and n ∈ Z. We suppose
that ℓa(y)− ℓa(x) = N > 1 and we show that there exists a non-trivial chain from x to y.

Suppose first that projY
+

(y) = projY
+

(x) = λ, then n = ⟨λ, β∨⟩ and we can write
y = πλsβw with x = πλw.

Then, N = ℓa(y)−ℓa(x) = ℓv(sβw)−ℓv(w) and by Corollary 2.7, it is enough to exhibit
w′ ∈ W v such that w <v w

′ <v wsβ.
By Lemma 2.3, ℓ(v−1sβw) − ℓ(v−1w) = N > 1 and there is a chain v−1w < v−1wr1 <

... < v−1wr1...rN = v−1wsw(β). So we have a <v-chain w <v wr1 <v ... <v wr1...rN = sβw,
in particular y does not cover x.

Suppose now that y = sβ[n]x > x = πλw with projY
+

(y) ∈ W v.λ \ {λ}. To simplify
notations, write s for sβ. We know from Corollary 2.7 that y = πsλsw with sv < v, suppose
for now that ℓ(sv) = ℓ(v)− 1.

Let u ∈ WJ be such that svu is the minimal representative (sv)J = vsλ of the coset
svWJ . Then by equality 2.1, ℓ(sv) = ℓ(svu) + ℓ(u) and, since ℓ(sv) = ℓ(v)− 1, we obtain:

ℓvsλ(sw)− ℓv(w) =ℓ((vu)−1w)− ℓ(v−1w) + ℓ(v)− ℓ(svu)

=ℓ((vu)−1w)− ℓ(v−1w) + ℓ(u) + 1

=ℓ(u) + 1− (dN(v, w)− dN(vu, w)).

(2.2)
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Since dN(vu, v) = ℓ(u), by triangular inequality dN(v, w)−dN(vu, w) ≤ ℓ(u) hence ℓvsλ(sw)−
ℓv(w) is greater or equal to 1, with equality if and only if there is a minimal gallery from
w to v going through vu. Equivalently, if and only if, in Wλ++ = WJ , u is on a minimal
gallery from 1 to v−1projvWJ

(w), where projvWJ
(w) denotes the closest element of vWJ

from w.
Indeed, by standard Coxeter group theory (e.g. [Ron89, Theorem 2.9]), for any element

ṽ of vWJ , there is a minimal gallery from ṽ to w which goes through projvWJ
(w), so if

vu ∈ vWJ is on a minimal gallery from v to w, then one can suppose that this gallery also
goes through projvWJ

(w).
We thus want to produce, when u is not on a minimal gallery from 1 to v−1projvWJ

(w) in
WJ , an element of W+ greater than πλw and lesser than πsλsw. By Lemma 1.8, there is r ∈
WJ such that dWJ (1, rv−1projvWJ

(w)) > dWJ (1, v−1projvWJ
(w)) and dWJ (u, rv−1projvWJ

(w)) <
dWJ (u, v−1projvWJ

(w)). In W v, this implies dW
v
(vr, w) > dW

v
(v, w) and dW

v
(vru, w) <

dW
v
(vu, w).
Let w̃ = vrv−1w. We compute:

ℓv(w̃)− ℓv(w) = ℓ(rv−1w)− ℓ(v−1w) > 0

ℓvsλ(sw)− ℓvsλ(sw̃) = ℓ((vu)−1w)− ℓ((vru)−1w) > 0

ℓvsλ(sw̃)− ℓv(w̃) = ℓ(u) + 1− (dN(v, w̃)− dN(vu, w̃)) > 0.

Hence by Corollary 2.7, πλw < πλw̃ < πsλsw̃ < πsλsw.
Finally, if ℓ(sv) < ℓ(v)−1, let r1...rm be reflections of W v such that ℓ(rk...r1v) = ℓ(v)−k

for all k ∈ J1,mK and sv = rm...r1v. Geometrically, the rk are the reflections corresponding
to the walls crossed by a minimal gallery from v to sv. By computation (2.2) we get
that πrk...r1λrk...r1w < πrk+1...r1λrk+1..r1w for all k and in particular πsλsw does not cover
πλw.

3 Covers with varying dominance class

3.1 A few properties of covers with varying dominant coweight

We now turn to the case of covers πλw < πµw′ in W+ with µ++ ̸= λ++.
By the formula (1.5), if πµsβw = sβ[n]π

λw > πλw then n ∈ Z\]0, ⟨λ, β⟩[ and conversely
if n ∈ Z\ [0, ⟨λ, β⟩] then sβ[n]π

λw > πλw, however sβ[n]πλw may not be in W+ as λ+Zβ∨ ̸⊂
Y +. The limit cases n ∈ {0, ⟨λ, β⟩} correspond to λ++ = µ++ dealt with in the previous
section.

We next show that covers only occur for minimal n:

Proposition 3.1. Let λ ∈ Y + and w ∈ W v, let β ∈ Φ and n ∈ Z. Let us denote
σ = sgn(⟨λ, β⟩) ∈ {1,−1}. If πµw′ = sβ[n]π

λw > πλw is a cover with λ++ ̸= µ++, then
n ∈ {−σ, ⟨λ, β⟩+ σ}.

Proof. For any ν ∈ Y + if we identify the Coxeter complex of W v with the positive Tits cone
T ⊂ A, Cv

vν is the closest vectorial chamber, from the fundamental chamber, containing ν in
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its closure. All the elements of λ+σZ>0β
∨ are on the same side of Mβ, hence by Corollary

2.4, for any two such ν, ν ′ ∈ λ+ σZ>0β
∨ and any w ∈ W v, w <vν sβw ⇐⇒ w <vν′ sβw.

Suppose first that n ∈ ⟨λ, β⟩+ σZ>1 and let µ = λ+ (n− ⟨λ, β⟩)β∨, then:

• If w <vµ sβw, we have a chain:

πλw < sβ[⟨λ,β⟩+σ]π
λw = πλ+σβ∨

sβw < πµw < πµsβw.

The second inequality comes from πµw = sβ[n+σ]π
λ+σβ∨

sβw with the positivity con-
dition being easily verified, the third comes from the hypothesis and Corollary 2.7.

• If sβw <vµ w then we have a chain:

πλw < sβ[⟨λ,β⟩+σ]π
λw = πλ+σβ∨

sβw < πλ+σβ∨
w < πµsβw.

Here the second inequality comes from the argument above: sβw <vµ w ⇐⇒
sβw <vλ+σβ∨ sβw, and Corollary 2.7. The third comes from πµsβw = sβ[n+σ]π

λ+σβ∨
w

with the positivity condition (1.5) being verified.

Either way, for n ∈ ⟨λ, β⟩ + σZ>1, sβ[n]π
λw does not cover πλw. For n ∈ −σZ>1 the

argument is similar, because all the elements of sβλ−σZ>0β
∨ are on the same side of Mβ.

Hence the only possible covers (with varying coweights) are for n ∈ {−σ, ⟨λ, β⟩+ σ}.

This is still far from a sufficient condition and many cases of potential covers can still
be eliminated. For example, if sβvλ < vλ (i.e. σ = −1) then:

• If w <vλ sβw: πλw < πλsβw < sβπ
λsβw = πsβλw < sβ[−⟨λ,β⟩−σ]π

sβλw = sβ[−σ]π
λw.

• If sβw <vλ w, then w <
v
sβλ sβw and: πλw < sβπ

λw = πsβλsβw < πsβλw <

πsβλ+β∨
sβw = sβ[−σ]π

λw.

We give another necessary condition for πµsβw = sβ[n]π
λw > πλw to be a cover, this is

a generalisation of the chains produced in the proof of Theorem 2.10:

Proposition 3.2. Let πµsβw = sβ[n]π
λw > πλw with µ++ ̸= λ++. Suppose that sβv

µ is
not on a minimal gallery from w to vλ. Then πµsβw > πλw is not a cover.

Proof. We express the difference of ε-length using Proposition 2.6:

ℓaε(π
µsβw)− ℓaε(π

λw) = 2ht(µ++ − λ++) + ε(ℓvµ(sβw)− ℓvλ(w)).

If there exists a reflection r ∈ W v such that ℓvλ(rw) > ℓvλ(w) and ℓvµ(sβrw) < ℓvµ(sβw)
then since the ε-length is increasing along this sequence, we have a chain:

πλw < πλrw < πµsβrw < πµsβw.

Since ℓv(rw) − ℓv(w) = ℓ(v−1rw) − ℓ(v−1w) for v, r, w ∈ W v, Lemma 1.8 guaranties the
existence of r, which proves the proposition.

In Figure 3.1 below, we give an example of a chain constructed this way in the A1-affine

case (with Cartan matrix
(

2 −2
−2 2

)
).
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Figure 3.1: Example of a chain constructed as in Proposition 3.2.

In this example, α and β are the simple roots of a A1-affine root system, and we have
chosen λ,w and β[n] such that vλ = sα, vµ = sαsβ and w = sβ. πλw corresponds to the
alcove C1 in light blue, and its image πµsβw by sβ[6] corresponds to C4. Since r = sβsαsβ
verifies dW

v
(vλ, rw) = sαsβsα > dW

v
(vλ, w) = sαsβ, and dW

v
(sβv

µ, rw) = sβ < sβsα =
dW

v
(sβv

µ, w), there is a chain πλw < πλrw < πµsβrw < πµsβw which corresponds to the
sequence of alcoves (C1, C2, C3, C4) on the figure.

Outside of the case of constant dominant coweight dealt with in Theorem 2.10, if we
write x = πvλw with λ ∈ Y ++, v, w ∈ W v with v of minimal length in vWλ, by Proposition
3.1 the only covers are of the form y ∈ {πv(λ+β∨)sv(β)w, π

vsβ(λ+β∨)sv(β)w} for some β ∈ Φ+,
so the rest of this paper is dedicated to covers of this sort.

Remark 3.3. Let v, w ∈ W v and α0 ∈ Φ. To produce chains, note that Formula (1.5)
applied with the affine reflections sv(α0)[m+⟨µ,α0⟩] and sv(α0)[−m] give for any µ0 ∈ Y that:

∀m ∈ Z \ J−⟨µ0, α0⟩, 0K =⇒

{
πv(µ0+mα∨

0 )sv(α0)w > πvsα0 (µ0)w

πv(µ0+mα∨
0 )sv(α0)w > πv(µ0)w.

(3.1)

The limit cases m ∈ {−⟨µ0, α0⟩, 0} need to be treated more carefully, they depend on the
sign of the root v(α0) (because Formula (1.5) holds for the affine reflection sv(α0)[0] only if
v(α0) ∈ Φ+), on the sign of ⟨µ0, α0⟩ and on the vectorial element w.
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3.2 Another expression for the affine length difference

In this subsection, we give another expression for the length difference ℓa(y)− ℓa(x) when
x is of the form πv(λ)w and y ∈ {πv(λ+β∨)sv(β)w, π

vsβ(λ+β∨)sv(β)}, with λ ∈ Y ++, v ∈ W λ,
w ∈ W v and β ∈ Φ+ such that λ+ β∨ ∈ Y +.

The two next lemmas give information on the vectorial chamber of v(λ+ β∨).

Lemma 3.4. Let λ ∈ Y ++ and β∨ ∈ Φ∨
+, let u ∈ W v be such that λ + β∨ belongs to the

vectorial chamber Cv
u, that is to say u−1(λ+ β∨) ∈ Y ++. Then ℓ(sβu) = ℓ(sβ) + ℓ(u)

Proof. Let sτ1 ..sτn be a reduced expression of u, so that ℓ(u) = n and:

Inv(u−1) = {τ1, sτ1(τ2), ..., sτ1 ..sτn−1(τn)}.

We show that sτk+1
..sτ1sβ > sτk ..sτ1sβ for all k ≤ n− 1.

Since λ + β∨ ∈ Cv
u, for any α ∈ Inv(u−1) we have ⟨λ + β∨, α⟩ ≤ 0 and, in particular

since λ is dominant, ⟨β∨, α⟩ ≤ 0.
Let k ∈ J0, n − 1K. Since sτ1 ..sτk(τk+1) ∈ Inv(u−1), ⟨β∨, sτ1 ..sτk(τk+1)⟩ ≤ 0, so:

sβ(sτ1 ..sτk(τk+1)) = sτ1 ..sτk(τk+1) − ⟨β∨, sτ1 ..sτk(τk+1)⟩β is a positive root as a sum of
positive roots. Thus sτk+1

..sτ1sβ > sτk ..sτ1sβ for any k ≤ n − 1 and therefore ℓ(sβu) =
ℓ(u−1sβ) = n+ ℓ(sβ) = ℓ(sβ) + ℓ(u).

Lemma 3.5. Let λ ∈ Y ++ and β ∈ Φ+ be such that λ + β∨ ∈ Y +. Let v ∈ W λ and let u
denote the element vλ+β∨.

Then, if πv(λ+β∨)sv(β)w (resp. πvsβ(λ+β∨)sv(β)w) covers x = πv(λ)w, we have:

ℓ(vu) = ℓ(v) + ℓ(u) (resp. ℓ(vsβu) = ℓ(v) + ℓ(sβu)).

Proof. Let us write to simplify notation, WJ for W(λ+β∨)++ . Note that vu = projvuWJ
(v)

since u is the element uJ of minimal length in uWJ .
Suppose by contradiction that ℓ(vu) < ℓ(v)+ℓ(u). Then dN(1, vu) = ℓ(vu) < dN(1, v)+

dN(v, vu) = ℓ(v)+ℓ(u), so v is not on a minimal gallery from 1 to vu. Therefore by Lemma
1.8, there is a reflection r ∈ W v such that dW

v
(1, rvu) > dW

v
(1, vu) and dW

v
(1, rv) <

dW
v
(1, v), that is to say rv < v and rvu > vu.
By minimality of u, r is not in vuWJ(vu)

−1 : otherwise rvu ∈ vuWJ verifies dW v
(v, rvu) =

dW
v
(rv, vu) < dW

v
(v, vu), because foldings reduce the vectorial distance and v, vu are on

different sides of the wall associated to r.
Since vu is the projection of v on vuWJ which is convex (see [Ron89, Lemma 2.10]), and

since the wall Mr associated to the reflection r separates v and vu, any element of vuWJ

is on the same side of the wall Mr as vu, so rvuũ > vuũ for any ũ ∈ WJ . In particular,
let ũ ∈ WJ be such that rvuũ is the minimal coset representative of rvuWJ . Then by
Corollary 2.7 (second point), since rvuũ > vuũ, we have:

πrv(λ+β∨)rsv(β)w = πrvuũ((λ+β∨)++)rsv(β)w < πvuũ((λ+β∨)++)sv(β)w = πv(λ+β∨)sv(β)w.
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Therefore by Corollary 2.7 for the left and right hand side inequalities and Formula
(3.1) applied with (µ0, α0,m) = (λ, β, 1) for the middle one, we have a chain:

πv(λ)w < πrv(λ)rw < πrv(λ+β∨)srv(β)rw = πrv(λ+β∨)rsv(β)w < πv(λ+β∨)sv(β)w.

The case of πvsβ(λ+β∨)sv(β)w is similar with the chain:

πv(λ)w < πrv(λ)rw < πrvsβ(λ+β∨)srv(β)rw = πrvsβ(λ+β∨)rsv(β)w < πvsβ(λ+β∨)sv(β)w.

Proposition 3.6. Let λ ∈ Y ++, v ∈ W λ, w ∈ W v. Let β ∈ Φ+ be a positive root such that
λ+ β∨ ∈ Y + and let u denote vλ+β∨ ∈ W (λ+β∨)++.

Suppose that y ∈ {πv(λ+β∨)sv(β)w, π
vsβ(λ+β∨)sv(β)w} covers x = πv(λ)w. Then:

ℓa(y)− ℓa(x) =

( ∑
γ∈Inv(sβ)

⟨β∨, γ⟩ − ℓ(sβ)

)
− 2

(
ℓ(u) +

∑
τ∈Inv(u−1)

⟨λ+ β∨, τ⟩

)
. (3.2)

Proof. Let WJ denote W(λ+β∨)++ . Recall that u = vλ+β∨ is the minimal element of W v

such that u((λ + β∨)++) = λ + β∨, so it is the minimal representative of the coset uWJ .
By Proposition 2.6 we have:

ℓa(πv(λ+β∨)sv(β)w)− ℓa(πv(λ)w) = 2ht((λ+ β∨)++)− 2ht(λ) + ℓvv(λ+β∨)(sv(β)w)− ℓv(w)

ℓa(πvsβ(λ+β∨)sv(β)w)− ℓa(πv(λ)w) = 2ht((λ+ β∨)++)− 2ht(λ) + ℓ
v
vsβ(λ+β∨)(sv(β)w)− ℓv(w).

We unwrap these formulas with the help of previous results.

• In the case y = πv(λ+β∨)sv(β)w, let ũ ∈ WJ be such that vuũ = (vu)J = vv(λ+β∨). The
term ℓvv(λ+β∨)(sv(β)w)− ℓv(w) rewrites as ℓ((uũ)−1sβv

−1w)− ℓ(vuũ)− ℓ(v−1w)+ ℓ(v).
Since y > x is a covering, by Proposition 3.2, vsβuũ = sv(β)(vu)

J is on a minimal
gallery from v to w, so ℓ(v−1w) = ℓ((vsβuũ)

−1w)+ℓ(sβuũ). Moreover by Lemma 3.4,
ℓ(sβuũ) = ℓ(sβ)+ℓ(uũ) and, by Lemma 3.5, ℓ(vu) = ℓ(v)+ℓ(u). Finally, by Equation
(2.1), since u = uJ = vλ+β∨ and vuũ = (vu)J = vv(λ+β∨), we have ℓ(uũ) = ℓ(u)+ ℓ(ũ)
and ℓ(vu) = ℓ(vuũ) + ℓ(ũ). Thus:

ℓvv(λ+β∨)(sv(β)w)− ℓv(w) = ℓ((uũ)−1sβv
−1w)− ℓ(v−1w)− ℓ(vuũ) + ℓ(v)

= −ℓ(sβuũ)− ℓ(vu) + ℓ(ũ) + ℓ(v)

= −ℓ(sβ)− ℓ(uũ)− ℓ(u) + ℓ(ũ)

= −ℓ(sβ)− 2ℓ(u).

• In the second case, let ũ ∈ WJ be such that vsβuũ = (vsβu)
J = vvsβ(λ+β∨), then

ℓ
v
vsβ(λ+β∨)(sv(β)w) − ℓv(w) rewrites as ℓ((uũ)−1v−1w) − ℓ(vsβuũ) − ℓ(v−1w) + ℓ(v).

By Proposition 3.2, ℓ((uũ)−1v−1w) = ℓ(v−1w) − ℓ(uũ). By Equation (2.1), ℓ(uũ) =
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ℓ(u) + ℓ(ũ) and ℓ(vsβuũ) = ℓ(vsβu) − ℓ(ũ). By Lemma 3.5 and 3.4, ℓ(vsβu) =
ℓ(v) + ℓ(sβu) = ℓ(v) + ℓ(sβ) + ℓ(u).

Thus in this case:

ℓ
v
vsβ(λ+β∨)(sv(β)w)− ℓv(w) = ℓ((uũ)−1v−1w)− ℓ(vsβuũ)− ℓ(v−1w) + ℓ(v)

= ℓ(v−1w)− ℓ(uũ)− (ℓ(vsβu)− ℓ(ũ))− ℓ(v−1w) + ℓ(v)

= −ℓ(sβ)− 2ℓ(u).

• By Formula (1.7) we have 2ht((λ + β∨)++) = 2ht(λ + β∨) − 2
∑

τ∈Inv(u−1)

⟨λ + β∨, τ⟩,

and by Formula (1.6), 2ht(β∨) =
∑

γ∈Inv(sβ)
⟨β∨, γ⟩

Combining these points, we get:

ℓa(y)− ℓa(x) = 2ht(λ) + 2ht(β∨)− 2
∑

τ∈Inv(u−1)

⟨λ+ β∨, τ⟩ − 2ht(λ)− ℓ(sβ)− 2ℓ(u)

=

( ∑
γ∈Inv(sβ)

⟨β∨, γ⟩ − ℓ(sβ)

)
− 2

(
ℓ(u) +

∑
τ∈Inv(u−1)

⟨λ+ β∨, τ⟩

)
.

It is easy to see that
∑

γ∈Inv(sβ)
⟨β∨, γ⟩− ℓ(sβ) is always positive and that, on the contrary,

ℓ(u) +
∑

τ∈Inv(u−1)

⟨λ+ β∨, τ⟩ is always non-positive. Therefore, the length difference is equal

to 1 if and only if the first term is equal to 1 and the second term cancels out. In the next
subsection we construct chains to show that this is the case under a certain assumption on
β.

3.3 End of the proof

The result we prove in this section is the following:

Theorem. Suppose that y covers x. Then:

ℓa(y) = ℓa(x) + 1.

We first deal with the second term of Expression (3.2), through the following Proposi-
tion:

Proposition 3.7. Let λ ∈ Y ++, β ∈ Φ+, v, w ∈ W v be such that v is a minimal
coset representative in vWλ and such that λ + β∨ ∈ Y +. Suppose that πv(λ+β∨)sv(β)w
or πvsβ(λ+β∨)sv(β)w covers πv(λ)w. Then:

∀τ ∈ Φ+, ⟨λ+ β∨, τ⟩ ≥ −1.
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It is deduced from the two following technical lemma, we give their proofs after showing
how they imply the proposition.

Lemma 3.8. Let λ ∈ Y ++, v, w ∈ W v, β ∈ Φ+ be such that v is a minimal coset repre-
sentative of vWλ. Suppose that there exists a pair (τ, n) ∈ Φ+ × Z such that :

(i) n > 0

(ii) ⟨λ+ nτ∨, β⟩ ≥ −1

(iii) n < −⟨λ+ β∨, τ⟩.

Then, πv(λ+β∨)sv(β)w and πvsβ(λ+β∨)sv(β)w do not cover πv(λ)w.

Lemma 3.9. Let λ ∈ Y ++ and β ∈ Φ+ be such that λ + β∨ lies in Y +. Let τ ∈ Φ+ be
such that ⟨λ+ β∨, τ⟩ ≤ −2 and suppose that ⟨τ∨, β⟩ ≤ −2. Then ⟨λ+ β∨, sτ (β)⟩ ≥ −1.

Proof of Proposition 3.7. We prove the contrapositive: Let τ ∈ Φ+ be a positive root such
that ⟨λ+ β∨, τ⟩ ≤ −2 then πv(λ+β∨)sv(β)w and πvsβ(λ+β∨)sv(β)w do not cover πv(λ)w.

Since ⟨τ∨, β⟩ and ⟨β∨, τ⟩ have the same sign ([Bar96, Lemma 1.1.10]), we have that
⟨τ∨, β⟩ ≤ −1.

Suppose first that ⟨τ∨, β⟩ ≤ −2, then we show that (τ,−(⟨λ + β∨, τ⟩ + 1)) is a pair
which satisfy the conditions of Lemma 3.8:

(i) Since ⟨λ+ β∨, τ⟩ ≤ −2 and λ is dominant, ⟨β∨, τ⟩ ≤ −2 and −(⟨β∨, τ⟩+ 1) > 0.

(ii) By Lemma 3.9, ⟨λ+ β∨, sτ (β)⟩ ≥ −1, thus:

⟨λ− (⟨λ+ β∨, τ⟩+ 1)τ∨, β⟩ = ⟨sτ (λ+ β∨)− β∨ − τ∨, β⟩
= ⟨λ+ β∨, sτ (β)⟩ − 2− ⟨τ∨, β⟩
≥ ⟨λ+ β∨, sτ (β)⟩ ≥ −1.

(iii) Clearly −(⟨β∨, τ⟩+ 1) < −⟨β∨, τ⟩.

Suppose now that ⟨τ∨, β⟩ = −1, we show that (τ, 1) is a pair satisfying the conditions of
Lemma 3.8:

(i) The first point is trivially verified.

(ii) Since ⟨τ∨, β⟩ = −1 and λ is dominant, ⟨λ+ τ∨, β⟩ ≥ −1.

(iii) Since ⟨λ+ β∨, τ⟩ ≤ −2, 1 < −⟨λ+ β∨, τ⟩.

Hence, either way we can apply Lemma 3.8 to prove that if such a τ ∈ Φ+ exists,
πv(λ+β∨)sv(β)w and πvsβ(λ+β∨)sv(β)w do not cover πv(λ)w.

Proof of Lemma 3.8. We use conditions (i),(ii), (iii) to produce chains from πv(λ)w to
πv(λ+β∨)sv(β)w and πvsβ(λ+β∨)sv(β)w.
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• By Condition (i), since λ is dominant and τ is a positive root, using Formula (3.1)
with (µ0, α0,m) = (λ, τ, n), we have the inequalities :

πv(λ)w < πv(λ+nτ∨)sv(τ)w

πv(λ)w < πvsτ (λ+nτ∨)sv(τ)w.

• On the other hand, since ⟨τ∨, τ⟩ = 2, Condition (iii) is equivalent to −n < −⟨λ +
β∨ + nτ, τ∨⟩, so, using Formula (3.1) for (µ0, α0,m) = (λ+ β∨ + nτ∨, τ,−n), we get
the inequalities:

πvsτ (λ+β∨+nτ∨)sv(τ)sv(β)w < πv(λ+β∨)sv(β)w

πvsβ(λ+β∨+nτ)sv(β)sv(τ)w < πvsβ(λ+β∨)sv(β)w.

• Let us first suppose that Inequality (ii) is strict, so ⟨λ+nτ∨, β⟩ ≥ 0. Then by Formula
(3.1) applied with (µ0, α0,m) = (λ+ nτ∨, β, 1), we get the inequalities:

πvsτ (λ+nτ∨)sv(τ)w < πvsτ (λ+β∨+nτ∨)sv(τ)sv(β)w

πv(λ+nτ∨)sv(τ)w < πvsβ(λ+β∨+nτ∨)sv(β)sv(τ)w.

Thus, if Inequality (ii) is strict, we have chains :

πv(λ)w < πvsτ (λ+nτ∨)sv(τ)w < πvsτ (λ+β∨+nτ∨)sv(τ)sv(β)w < πv(λ+β∨)sv(β)w (3.3)

πv(λ)w < πv(λ+nτ∨)sv(τ)w < πvsβ(λ+β∨+nτ)sv(β)sv(τ)w < πvsβ(λ+β∨)sv(β)w (3.4)

Now suppose that ⟨λ + nτ∨, β⟩ = −1. Then note that λ + nτ∨ + β∨ = sβ(λ + nτ∨), and
Formula (3.1) can not be used for the middle inequality anymore.

• If vsτ (β) ∈ Φ+ then we can apply Formula (1.5) to the element πvsτ (λ+τ∨)sv(τ)w and
the positive affine root vsτ (β)[0], and since ⟨λ+ nτ∨, β⟩ = −1 < 0, we still have:

πvsτ (λ+nτ∨)sv(τ)w < svsτ (β)[0]π
vsτ (λ+τ∨)sv(τ)w = πvsτ (λ+β∨+nτ∨)sv(τ)sv(β)w

and the chain (3.3) still holds.

• If vsτ (β) ∈ Φ−, that is to say sτ (β) ∈ Inv(v), then by the second point of Corollary
2.7:

πv(λ)w < πvssτ (β)(λ)sv(τ)sv(β)sv(τ)w

and by Formula (3.1) applied with (µ0, α0,m) = (λ, τ, 1) we get:

πvsτ sβsτ (λ)sv(τ)sv(β)sv(τ)w < πvsτ sβ(λ+nτ∨)sv(τ)sv(β)w = πvsτ (λ+β∨+nτ∨)sv(τ)sv(β)w.

We thus obtain a chain:

πv(λ)w < πvsτ sβsτ (λ)sv(τ)sv(β)sv(τ)w < πv(sτ (λ+β∨+nτ∨))sv(τ)sv(β)w < πv(λ+β∨)sv(β)w.
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For the element πvsβ(λ+β∨)sv(β)w in the case ⟨λ + nτ∨, β⟩ = −1, we have the following
distinction of cases:

• If w−1vsτ (β) ∈ Φ−, by Formula (1.5) applied to πv(λ+nτ∨)sv(τ)w and the affine root
v(β)[⟨λ+ nτ∨, β⟩], since ⟨λ+ nτ∨, β⟩ < 0, we get:

πv(λ+nτ∨)sv(τ)w < πv(λ+nτ∨)sv(β)sv(τ)w = πvsβ(λ+β∨+nτ∨)sv(β)sv(τ)w

and the chain (3.4) still holds.

• If w−1vsτ (β) ∈ Φ+, then using Formula (1.5) with πv(λ)w and the affine reflection
vsτ (β)[⟨λ, sτ (β)⟩] (which is always possible because, if ⟨λ, sτ (β)⟩ = 0 then by mini-
mality of v, vsτ (β) ∈ Φ+), we get:

πv(λ)w < πv(λ)sv(τ)sv(β)sv(τ)w

and then, by Formula (3.1) applied with (µ0, α0,m) = (λ, τ, n), we get:

πv(λ)sv(τ)sv(β)sv(τ)w < πv(λ+nτ∨)sv(β)sv(τ)w

hence we obtain a chain:

πv(λ)w < πv(λ)sv(τ)sv(β)sv(τ)w < πvsβ(λ+β∨+nτ∨)sv(β)sv(τ)w < πvsβ(λ+β∨)sv(β)w.

Therefore, in all cases, if such a pair (τ, n) exists, then πv(λ+β∨)sv(β)w and πvsβ(λ+β∨)sv(β)w
do not cover πv(λ)w.

Proof of Lemma 3.9. The proof relies on the assumption that λ+ β∨ lies in the Tits cone,
which is equivalent to saying that there is only a finite number of positive roots α such
that ⟨λ+ β∨, α⟩ < 0.

We will show that ⟨λ+β∨, (sτsβ)
n(τ)⟩ ≥ 0 for n large enough implies ⟨λ+β∨, sτ (β)⟩ ≥

−1, which implies the lemma. To shorten the computation, let us write a = −⟨β∨, τ⟩
and a∨ = −⟨τ∨, β⟩. So the assumptions ⟨λ + β∨, τ⟩ ≤ −2 and ⟨τ∨, β⟩ ≤ −2 imply
that a ≥ 2 + ⟨λ, τ⟩ and a∨ ≥ 2. In the basis (β, τ) of Rβ ⊕ Rτ , the matrix of sτsβ

is M =

(
−1 a
−a∨ aa∨ − 1

)
. We have χM = X2 + (2 − aa∨)X + 1 thus, since aa∨ ≥ 4,

M2 = (aa∨ − 2)M − I2. Write Mn = µnM + νnI2 for n ∈ N, then an easy computation
shows that νn = −µn−1 and µn+1 = (aa∨ − 2)µn − µn−1. In particular since aa∨ − 2 ≥ 2
and µ0 = 0 < µ1, by iteration (µn) is strictly increasing.

Let x = ⟨λ, β⟩ ≥ 0 and y = ⟨λ, τ⟩ ∈ [0, a− 2]. Then:

⟨λ+ β∨, (sτsβ)
n(τ)⟩ = ⟨λ+ β∨, aµnβ + ((aa∨ − 1)µn − µn−1)τ⟩

= (x+ 2)µna+ ((aa∨ − 1)µn − µn−1)(y − a).
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Since this is non-negative for n large enough, we have for n large: (x + 2)µna ≥ (a −
y)((aa∨ − 1)µn − µn−1) > (a− y)µn(aa

∨ − 2) since µn−1 < µn. Hence:

(x+ 2) > (a− y)(a∨ − 2

a
) = aa∨ − a∨y − 2 + 2

y

a
.

Therefore ⟨λ + β∨, sτ (β)⟩ = x + 2 + a∨y − aa∨ > −2 + 2y
a

and, since it is an integer, we
deduce ⟨λ+ β∨, sτ (β)⟩ ≥ −1 ≥ 1− a∨, which proves the result.

Corollary 3.10. Let λ ∈ Y ++, v ∈ W λ, w ∈ W v. Let β ∈ Φ+ be a positive root such that
λ+ β∨ ∈ Y +. Suppose that y ∈ {πv(λ+β∨)sv(β)w, π

vsβ(λ+β∨)sv(β)w} covers x = πv(λ)w.
Then:

ℓa(y)− ℓa(x) =
∑

γ∈Inv(sβ)

⟨β∨, γ⟩ − ℓ(sβ). (3.5)

Proof. We first deduce from Proposition 3.7 that
∑

τ∈Inv(u−1)

⟨λ + β∨, τ⟩ = −ℓ(u), where

u = vλ+β∨ ∈ W v.
By Proposition 3.7, ⟨λ+β∨, τ⟩ ≥ −1, and we show that for any τ ∈ Inv(u−1) this is an

equality. By Corollary 1.7, the terms ⟨λ+ β∨, τ⟩ are all non-positive.
Moreover, since τ ∈ Inv(u−1) we have u−1sτ < u−1 or, equivalently, sτu < u, so by

minimality of u, sτu((λ + β∨)++) ̸= λ + β∨, and thus ⟨λ + β∨, τ⟩ ̸= 0. Hence, we obtain
⟨λ + β∨, τ⟩ = −1 for all τ ∈ Inv(u−1) and, since |Inv(u−1)| = ℓ(u−1) = ℓ(u), we get the
equality: ∑

τ∈Inv(u−1)

⟨λ+ β∨, τ⟩ = −ℓ(u).

We then directly obtain Expression (3.5) from Expression (3.2).

We now prove in Lemma 3.11 that, under a certain assumption, for such covers,∑
γ∈Inv(sβ)

⟨β∨, γ⟩ is actually equal to ℓ(sβ) + 1, which is enough to conclude that the length

difference is exactly 1.

Lemma 3.11. Let λ ∈ Y ++, v, w ∈ W v be such that v is the minimal coset representative
of vWλ. Let β ∈ Φ+ and let γ ∈ Inv(sβ) \ {β} be such that ⟨β∨, γ⟩ ≥ 2 and suppose that
β /∈ Inv(sγ). Then πv(λ+β∨)sv(β)w and πv(λ+β∨)sv(β)w do not cover πv(λ)w.

Proof. By Proposition 3.7, we can suppose that ⟨λ + β∨, τ⟩ ≥ −1 for any τ ∈ Φ+. Let γ
be as in the statement and write α = sγ(β) ∈ Φ+. We will construct non-trivial chains
in the same fashion as in the proof of Lemma 3.8. Beforehand, we show by computation
that ⟨λ + γ∨, α⟩ ≥ −1. If ⟨γ∨, β⟩ = 1 = −⟨γ∨, α⟩ it is clear since λ is dominant, else if
⟨γ∨, β⟩ ≥ 2:

⟨λ+ γ∨, α⟩ = ⟨λ+ β∨ − α∨ + (1− ⟨β∨, γ⟩)γ∨, α⟩
= ⟨λ+ β∨, α⟩+ (1− ⟨β∨, γ⟩)⟨γ∨, α⟩ − 2

= ⟨λ+ β∨, α⟩+ (⟨β∨, γ⟩ − 1)⟨γ∨, β⟩ − 2.
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Since ⟨β∨, γ⟩ ≥ 2 and ⟨γ∨, β⟩ ≥ 2, (⟨β∨, γ⟩ − 1)⟨γ∨, β⟩ ≥ 2, and by Proposition 3.7,
⟨λ+ β∨, α⟩ ≥ −1. Thus, ⟨λ+ γ∨, α⟩ ≥ −1 either way.

We construct chains which are slight modifications of the ones constructed in the proof
of Lemma 3.8, we give the detail for sake of completeness.

• Suppose first that ⟨λ+ γ∨, α⟩ ≥ 0. Then we show that we have the following chains:

πv(λ)w < πv(λ+γ∨)sv(γ)w < πv(λ+γ∨+α∨)sv(α)sv(γ)w < πv(λ+β∨)sv(β)w (3.6)

πv(λ)w < πvsγ(λ+γ∨)sv(γ)w < πvsγsα(λ+γ∨+α∨)sv(γ)sv(α)w < πvsβ(λ+β∨)sv(β)w. (3.7)

Indeed:

1. λ is dominant and γ ∈ Φ+, so ⟨λ, γ⟩ ≥ 0 and Formula (3.1) applied with
(µ0, α0,m) = (λ, γ, 1) gives the leftmost inequalities.

2. Since ⟨λ+γ∨, α⟩ ≥ 0, Formula (3.1) applied to (µ0, α0,m) = (λ+γ∨, α, 1) gives
the second inequalities.

3. Since λ + β∨ = (λ + γ∨ + α∨) + (⟨β∨, γ⟩ − 1)γ∨, by applying Formula (3.1)
to (µ0, α0,m) = (λ + γ∨ + α∨, γ, ⟨β∨, γ⟩ − 1), as ⟨β∨, γ⟩ − 1 > max(0,−⟨λ +
γ∨ + α∨, γ⟩) (explicitly −⟨λ+ γ∨ + α∨, γ⟩ = ⟨β∨, γ⟩ − ⟨λ, γ⟩ − 2) we obtain the
rightmost inequalities.

• We now suppose that ⟨λ + γ∨, α⟩ = −1. Then λ + γ∨ + α∨ = sα(λ + γ∨) and the
above chains do not always hold. We focus here on the case of πv(λ+β∨)sv(β)w.

1. If v(α) ∈ Φ+, since ⟨λ + γ∨, α⟩ < 0, the inequality πvsα(λ+γ∨)sv(α)sv(γ)w >
πv(λ+γ∨)sv(γ)w still holds, by Formula (1.5) applied with sv(α)[0]. The rest of the
chain (3.6) still holds and the whole chain remains correct.

2. If v(α) ∈ Φ−, then vsα < v, and we have the chain:

πv(λ)w < πvsα(λ)sv(α)w < πvsα(λ+γ∨)sv(α)sv(τ)w < πv(λ+β∨)sv(β)w.

The reflection used for the first inequality is s−v(α)[0], and it holds by Formula
(1.5) because ⟨v(λ),−v(α)⟩ = −⟨λ, α⟩ < 0. Note that this is non-zero because
v is the minimal representative of vWλ and thus vsα < v implies sα /∈ Wλ so
⟨λ, α⟩ ≠ 0. For the second and the third inequalities we use Formula (3.1) with
(µ0, α0,m) equal to (λ, γ, 1) and (λ+ α∨ + γ∨, γ, ⟨β∨, γ⟩ − 1) respectively.

• We suppose that ⟨λ + γ∨, α⟩ = −1 and we deal with the case of πvsv(β)(λ+β∨)sv(β)w.
Then:

πvsγsα(λ+γ∨+α∨)sv(γ)sv(α)w = πvsγ(λ+γ∨)svsγ(α)sv(γ)w = svsγ(α)[⟨λ+γ∨,α⟩]π
vsγ(λ+γ∨)sv(γ)w.

Moreover (sv(γ)w)
−1(vsγ(α)) = w−1v(α). Thus, since ⟨λ+ γ∨, α⟩ < 0 we have:
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1. If w−1v(α) ∈ Φ−, by Formula (1.5), πvsγ(λ+γ∨)sv(γ)w < πvsγsα(λ+γ∨+α∨)sv(γ)sv(α)w
and the chain (3.7) still holds.

2. If w−1v(α) ∈ Φ+, then, since ⟨λ, α⟩ = ⟨γ∨, β⟩ − 1 > 0, by Formula (1.5),
πv(λ)w < sv(α)[⟨λ,α⟩]π

v(λ)w = πv(λ)sv(α)w. Then by Formula (3.1) applied to
(µ0, α0,m) = (λ, γ, 1) we have πv(λ)sv(γ)sv(β)sv(γ)w < πvsγ(λ+γ∨)sv(β)sv(γ)w =
πvsγsα(λ+γ∨+α∨)sv(γ)sv(α)w and we have a chain:

πv(λ)w < πv(λ)sv(α)w < πvsγsα(λ+γ∨+α∨)sv(γ)sv(α)w < πvsβ(λ+β∨)sv(β)w.

Lemma 3.12. Let β ∈ Φ+ and suppose that there exists γ ∈ Inv(sβ) \ {β} such that
⟨β∨, γ⟩ ≥ 2 and ⟨β∨, γ⟩⟨γ∨, β⟩ ≠ 3. Then γ can be chosen such that β /∈ Inv(sγ).

Proof. Note that, by [Bar96, Lemma 1.1.10], for any β, γ ∈ Φ, ⟨β∨, γ⟩ and ⟨γ∨, β⟩ have
the same sign, so if ⟨β∨, γ⟩ ≥ 2 and ⟨β∨, γ⟩⟨γ∨, β⟩ ̸= 3, either ⟨β∨, γ⟩⟨γ∨⟩ ≥ 4, either
⟨β∨, γ⟩ = 2 and ⟨γ∨, β⟩ = 1. We treat separately these cases:

• Let us first suppose that there exists γ ∈ Inv(sβ) such that ⟨β∨, γ⟩ = 2 and ⟨γ∨, β⟩ =
1. Suppose that β ∈ Inv(sγ), so sγ(β) = β − γ < 0, and sβ(γ) = γ − 2β < 0. Then
we show that β /∈ Inv(sγ̃) for γ̃ = −sβ(γ):

sγ̃(β) = sβsγsβ(β) = −sβ(β − γ) = γ − β = −sγ(β) > 0.

Moreover sβ(γ̃) = −γ < 0 and ⟨β∨, γ̃⟩ = ⟨β∨, γ⟩ = 2 therefore, γ can be chosen such
that β /∈ Inv(sγ).

• Let us now suppose that there exists γ ∈ Inv(sβ) such that ⟨β∨, γ⟩ ≥ 2 and ⟨β∨, γ⟩⟨γ∨, β⟩ ≥
4. Write β = vβ(β0) = sα1 ..sαn(β0) where the αi and β0 are simple roots, and
suppose that n is of minimal length amongst possible expressions of β. Therefore
sα1 ..sαnsβ0sαn ..sα0 is a reduced expression of sβ and:

Inv(sβ) = {sα1 ..sαp−1(αp) | p ≤ n} ⊔ {β} ⊔ {sα1 ..sαnsβ0sαn ..sαn+1−p(αn−p) | p ≤ n}.

Let k be the smallest such that γk = sα1 ..sαk−1
(αk) verifies ⟨β∨, γk⟩ ≥ 2 and ⟨β∨, γk⟩⟨γ∨

k , β⟩ ≥
4.

The expression sα1 ..sαk−1
sαk

sαk−1
..sα1 is an expression of sγk , thus:

Inv(sγk) ⊂ {sα1 ..sαp−1(αp) | p ≤ k − 1}⊔{γk}⊔{sα1 ..sαk
sαk−1

..sαk+1−p
(αk−p) | p ≤ k−1}.

Suppose by contradiction that β ∈ Inv(sγk). Since vβ is of minimal length, β is not in
the first set, hence there is p ∈ J1, k − 1K such that β = sα1 ..sαk

sαk−1
..sαk+1−p

(αk−p).
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We show that γk−p = sα1 ..sαk−p−1
(αk−p) ∈ Inv(sβ) verifies ⟨β∨, γk−p⟩ ≥ 2, which

contradicts the minimality of k. Note that β = −sγk(γk−p) We compute:

⟨β∨, γk−p⟩ = ⟨−sγk(γ
∨
k−p), γk−p⟩

= −(2− ⟨γ∨
k−p, γk⟩⟨γ∨

k , γk−p⟩)
= ⟨β∨, γk⟩⟨γ∨

k , β⟩ − 2.

So since ⟨β∨, γk⟩⟨γ∨
k , β⟩ ≥ 4, we get ⟨β∨, γk−p⟩ ≥ 2, and with a similar computation,

we find that ⟨γ∨
k−p, β⟩ = ⟨β∨, γk−p⟩ ≥ 2 as well, so ⟨β∨, γk−p⟩⟨γ∨

k−p, β⟩ ≥ 4. This
contradicts the minimality of k and thus β /∈ Inv(sγk).

Proposition 3.13. Let λ ∈ Y ++, v, w ∈ W v be such that v is the minimal coset repre-
sentative of vWλ. Let β ∈ Φ+ and let γ ∈ Inv(sβ) \ {β} be such that ⟨β∨, γ⟩ ≥ 2. Then
πv(λ+β∨)sv(β)w and πvsβ(λ+β∨)sv(β)w do not cover πv(λ)w.

Proof. If β /∈ Inv(sγ) this is Lemma 3.11, and by Lemma 3.12 it extends to every γ ∈
Inv(sβ) such that ⟨β∨, γ⟩ ≥ 2 and ⟨β∨, γ⟩⟨γ∨, β⟩ ̸= 3. Therefore the only case left is if
β ∈ Inv(sγ) and:

⟨β∨, γ⟩ = 3, ⟨γ∨, β⟩ = 1.

We then show that, in this case, β, γ appear as positive roots of a root subsytem of
Φ isomorphic to G2, and we use this system to construct chains replacing the ones in the
proof of Lemma 3.11.

First, note that −sγ(β) lies in Inv(sβ) (so sβsγ(β) is positive). Indeed, we can write,
as in the proof of Lemma 3.12, β = sα1 ..sαn(β0) for a minimal n, and γ = sα1 ..sαk−1

(αk)
for some k ≤ n. Then, since β ∈ Inv(sγ), β is also of the form sα1 ..sαk

sαk−1
..sαk−p+1

(αk−p)
for some p ≤ k − 1, and thus −sγ(β) = sα1 ..sαk−p−1

(αk−p) ∈ Inv(sβ). Therefore we have
the following positive roots, and their associated coroots (the notation will become clear
afterwards):

• θ1 := −sγ(β) = γ − β ∈ Φ+, with associated coroot θ∨1 = −sγ(β
∨) = 3γ∨ − β∨.

• β̃ := −sβ(γ) = 3β − γ ∈ Φ+, with associated coroot β̃∨ = −sβ(γ
∨) = β∨ − γ∨.

• γ̃ := sβsγ(β) = 2β − γ ∈ Φ+, with associated coroot γ̃∨ = sβsγ(β
∨) = 2β∨ − 3γ∨.

Let us also denote θ2 = sθ1(γ) = 3β − 2γ, with associated coroot θ∨2 = β∨ − 2γ∨. Then
one can check that {θ1, θ2} form the positive simple roots of a G2 root system (in the sense
that ⟨θ∨1 , θ2⟩ = −3 and ⟨θ∨2 , θ1⟩ = −1), such that γ = sθ1(θ2), β = sθ1sθ2(θ1), γ̃ = sθ2(θ1)

and β̃ = sθ2sθ1(θ2). However, θ2 may not be a positive root in Φ, and we thus need to
distinguish these two cases.

Let us first suppose that θ2 lies in Φ+. Notice that θ∨1 +β̃∨+θ∨2 = (3γ∨−β∨)+(β∨−γ∨)+
(β∨ − 2γ∨) = β∨, and sθ1sβ̃sθ2 = sθ1(sθ2sθ1sθ2sθ1sθ2)sθ2 = sθ1sθ2sθ1sθ2sθ1 == sθ2sβ̃sθ1 = sβ.
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Moreover, we have ⟨θ∨2 , β̃⟩ = ⟨β∨ − 2γ∨, 3β − γ⟩ = 1 > 0, and ⟨θ∨2 + β̃∨, θ1⟩ = ⟨2β∨ −
3γ∨, γ − β⟩ = −1.

Hence:

• Suppose first that ⟨λ, θ2⟩ > 0. Then, since λ is dominant and by the previous
computations, using Formula (3.1) with (µ0, α0,m) = (λ, θ2, 1) for the first inequality,
(λ+θ∨2 , β̃, 1) for the second and (λ+θ∨2 + β̃∨, θ1, 1) for the third, we obtain the chains:

πv(λ)w < πv(λ+θ∨2 )sv(θ2)w < πv(λ+θ∨2 +β̃∨)sv(β̃)sv(θ2)w < πv(λ+β∨)sv(β)w (3.8)

πv(λ)w < πvsθ2 (λ+θ∨2 )sv(θ2)w < πvsθ2sβ̃(λ+θ∨2 +β̃∨)sv(θ2)sv(β̃)w < πvsβ(λ+β∨)sv(β)w. (3.9)

• If ⟨λ, θ1⟩ = 0, then ⟨λ + θ∨2 + β̃∨, θ1⟩ = −1 so the last inequality in the chains (3.8)
and (3.9) do not always hold, we have the following disjunction of cases, which we
already encountered in Lemma 3.11 and Lemma 3.8:

– If v(θ1) ∈ Φ+, the chain (3.8) still holds, else vsθ1 < v, λ+ β∨ = sθ1(λ+ θ∨2 + β̃)
and we instead have the chain:

πv(λ)w < πvsθ1 (λ)sv(θ1)w < πvsθ1 (λ+θ∨2 )sv(θ1)sv(θ2)w < πvsθ1 (λ+θ∨2 +β̃∨)sv(θ1)sv(β̃)sv(θ2)w

where the last term is actually equal to πv(λ+β∨)sv(β)w.

– If w−1v(θ1) ∈ Φ−, then since ⟨λ+θ∨2 +β̃∨, θ1⟩ < 0, by Formula (1.5) applied with
the affine root vsθ2sβ̃(θ1)[⟨λ+θ∨2 +β̃∨, θ1⟩], the third inequality of Chain (3.9) still
holds, and thus the whole chain remains correct. Otherwise if w−1v(θ1) ∈ Φ+

we instead have the chain:

πv(λ)w < πv(λ)sv(θ1)w < πvsθ2 (λ+θ∨2 )sv(θ2)sv(θ1)w < πvsθ2sβ̃(λ+θ∨2 +β̃∨)sv(θ2)sv(β̃)sv(θ1)w

where the last term is actually equal to πvsβ(λ+β∨)sv(β)w since λ + θ∨2 + β̃∨ =
sθ1(λ+ β∨).

We now turn to the case of θ2 ∈ Φ−. Notice that β∨ = −θ∨2 + γ̃∨ + γ∨ and sβ = sγsγ̃sθ2 =
sθ2sγ̃sγ. Moreover, ⟨−θ∨2 , γ̃⟩ = ⟨2γ∨−β∨, 2β−γ⟩ = −1 and ⟨−θ∨2+γ̃∨, γ⟩ = ⟨β∨−γ∨, γ⟩ = 1.
Therefore, since λ is dominant and −θ2 is a positive root:

• If ⟨λ, γ̃⟩ > 0, then using Formula (3.1) with (µ0, α0,m) = (λ,−θ2, 1) for the first
inequality, (λ−θ∨2 , γ̃, 1) for the second and (λ−θ∨2 + γ̃∨, γ, 1) for the third, we obtain
the chains:

πv(λ)w < πv(λ−θ∨2 )sv(θ2)w < πv(λ−θ∨2 +γ̃∨)sv(γ̃)sv(θ2)w < πv(λ+β∨)sv(β)w (3.10)

πv(λ)w < πvsθ2 (λ−θ∨2 )sv(θ2)w < πvsθ2sγ̃(λ−θ∨2 +γ̃∨)sv(θ2)sv(γ̃)w < πvsβ(λ+β∨)sv(β)w.
(3.11)
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• Suppose now that ⟨λ, γ̃⟩ = 0, so λ− θ∨2 + γ̃ = sγ̃(λ− θ∨2 ). Then:

– If v(γ̃) ∈ Φ+, the chain (3.10) still holds. Else, vsγ̃ < v and we instead have the
chain:

πv(λ)w < πvsγ̃(λ)sv(γ̃)w < πvsγ̃(λ−θ∨2 )sv(γ̃)sv(θ2)w < πv(λ+β∨)sv(β)w

where the first inequality comes from Corollary 2.7 and the two others from
Formula (3.1).

– If w−1v(γ̃) ∈ Φ−, then the chain (3.11) still holds. Else w−1v(γ̃) ∈ Φ+ and we
instead have the chain:

πv(λ)w < πv(λ)sv(γ̃)w < πvsθ2 (λ−θ∨2 )sv(θ2)sv(γ̃)w < πvsβ(λ+β∨)sv(β)w

where the first inequality is deduced from Formula (1.5) used with the affine
root v(γ̃)[⟨λ, γ̃⟩], and the two others from Formula (3.1) as for the chain (3.11).

We thus have proved that, for any β ∈ Φ+, if there exists γ ∈ Inv(sβ) such that ⟨β∨, γ⟩ ≥ 2,
then πv(λ+β∨)sv(β)w and πvsβ(λ+β∨)sv(β)w do not cover πv(λ)w.

We now have everything to prove the Theorem:

Theorem 3.14. Suppose that y covers x. Then:

ℓa(y) = ℓa(x) + 1.

Proof. Suppose that y covers x. The case projY
+

(y) ∈ W v.projY
+

(x) is Theorem 2.10
Else, if projY

+

(y) /∈ W v.projY
+

(x), by Proposition 3.1, y is of the form πv(λ+β)sv(β)w or
πvsβ(λ+β∨)sv(β)w, for x = πv(λ)w with λ ∈ Y ++, v ∈ W λ, w ∈ W v and β ∈ Φ+. Then, by
Corollary 3.10, we have:

ℓa(y)− ℓa(x) =
∑

γ∈Inv(sβ)

⟨β∨, γ⟩ − ℓ(sβ).

Moreover, by Proposition 3.13, ⟨β∨, γ⟩ = 1 for any γ ∈ Inv(sβ)\{β}. Since |Inv(sβ)| = ℓ(sβ)
and β ∈ Inv(sβ) verifies ⟨β∨, β⟩ = 2, we deduce that

∑
γ∈Inv(sβ)

⟨β∨, γ⟩ = ℓ(sβ) + 1, and

therefore for any form of y covering x:

ℓa(y)− ℓa(x) = 1.
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