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Abstract

We study the Maker-Maker version of the domination game introduced in 2018 by Duchêne et al. Given a
graph, two players alternately claim vertices. The first player to claim a dominating set of the graph wins. As
the Maker-Breaker version, this game is PSPACE-complete on split and bipartite graphs. Our main result is a
linear time algorithm to solve this game in forests. We also give a characterization of the cycles where the first
player has a winning strategy.
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1 Introduction

Positional games have been introduced successively by Hales and Jewett in [10] and by Erdős and Selfridge in [7],
and then widely studied in the literature (see the two books [1, 11] for an overview). They are played on an
hypergraph of vertex set X, with a finite set F ⊆ 2X of hyperedges. The set X is often called the board of the game,
and an element of F a winning set. The game involves two players that alternately claim a previously unclaimed
vertex of X. The winner of the game is defined according to a convention. The original one is called Maker-Maker
(or strong convention), where both players have the same objective, i.e. filling a whole winning set with their own
claimed vertices. Such games may end in a draw if each winning set contains one vertex claimed by each player.
When considering positional games, the main issue consists in determining which player has a winning strategy.
In particular, it is well-known that in the Maker-Maker convention, the second player has no winning strategy.
Thus, resolving a Maker-Maker game consists in determining whether the first player has a winning strategy or
whether it ends in a draw. As mentioned in [11], despite this result, this convention has not been widely studied
in the literature. The main reason is due to the hardness to tackle it, as the first player tries at the same time
to fill a winning set while considering all the threats of his opponent. As a consequence, Maker-Maker instances
often satisfy the so-called extra set paradox, which claims that adding new winning sets in the hypergraph is not
necessarily better for the first player.

For all these reasons, the convention that has been mainly studied in the literature is the Maker-Breaker con-
vention. In this convention, both players, called Maker and Breaker, have opposite objectives: Maker aims at
filling a winning set while Breaker prevents her to do so. Constructive results are generally more affordable in
this convention. In addition, the extra set paradox does not exist when playing in the Maker-Breaker convention:
adding new winning sets is always better for Maker.

In the literature, there are many graph optimization problems that have been turned into positional games. One
can cite for example the clique game, the connectivity game, the H-game [1], or the domination game [6]. If a large
part of the studies is devoted to the case where they are played on complete or random graphs, there is a more
recent approach that consists in playing such games on a general graph. It generally yields to algorithmic results,
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both in terms of hardness proofs or the construction of polynomial time algorithms to compute the winner of the
game [3, 5]. One can also find results about the parameterized complexity of such games [2]. In addition, general
algorithmic results about Maker-Breaker games played on k-uniforms hypergraphs (i.e., all the winning sets are of
size k) have been given by Rahman and Watson [12] and Galliot [8]. Indeed, they respectively proved that deter-
mining the winner of a Maker-Breaker positional game is PSPACE-complete when k = 6 and polynomial when k = 3.

When switching to the Maker-Maker convention, by putting together the above result of Rahman and Watson
with an argument of Byskov [4], it has been derived that Maker-Maker games are PSPACE-complete on 7-uniforms
hypergraphs. Beyond this result, connections between the two types of conventions are not well established. Indeed,
there are very few algorithmic results, even for particular positional games derived from optimization problems.
The objective of this paper is to investigate the Maker-Maker domination game, by highlighting the similarities,
the implications, and the differences with the results known in the Maker-Breaker convention. It is known that the
Maker-Breaker domination game is PSPACE-complete even for bipartite graphs and split graphs, and polynomial
for cographs and forests[6]. More precisely, it is shown that Maker has a winning strategy playing second on a forest
if and only if it admits a perfect matching. When switching to the Maker-Maker convention, we will see that some
of these complexity results still hold. Yet, in the case of forests, the polynomial characterization of the winning
positions is far more complex than simply finding a perfect matching. The major result of the current paper con-
sists in determining this characterization. To the best of our knowledge, this is the first time in the literature that
a non-trivial algorithm is given to determine the winner of a game played according to the Maker-Maker convention.

The paper is organized as follows: in Section 2, we present the main definitions that will be useful in the Maker-
Maker domination game. In Section 3, we give results about the Maker-Maker convention that are derived from
the Maker-Breaker one, including the PSPACE-hardness result. Then, we fully solve the case of paths and cycles
in Section 4. Sections 5 and 6 are devoted to the resolution of the Maker-Maker domination game on forests in
linear time. As the proof is rather complex, we decided to split it into two parts, where Section 5 corresponds to
the overview of the proof with the presentation of the algorithm, and Section 6 to the proof of the most technical
elements.

2 Preliminaries

2.1 Standard definitions of graph theory

In this paper, we will only consider finite, undirected and simple graphs. A graph G is defined by a couple (V,E)
where V denotes the set of vertices and E the edges of the graph. The (closed) neighborhood of a vertex x ∈ V ,
denoted by N [x], is the subset of vertices containing x and all the vertices that are adjacent to x. A vertex x is
universal if N [x] = V . The degree of a vertex is the number of vertices adjacent to it. A leaf is a vertex of degree 1.
If x is a vertex, G \ {x} denotes the graph on the vertex set V \ {x} with all the edges of E that are not incident
to x.

Let X be a subset of vertices. X is a independent set if there are no adjacent vertices in X. X is a cutset if
G\X is disconnected. The subgraph of G induced by X, denoted by G[X], is the graph with vertex set X and edge
set all the edges of E whose both extremities are in X. A matching M is a subset of edges that are two by two not
incident. If |M | = |V |/2 (i.e. if all the vertices appear in some edge of M) then M is perfect.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs on disjoint vertex sets. The union of G1 and G2 is the graph
G1 ∪G2 = (V1 ∪ V2, E1 ∪E2). The join of G1 and G2 is the graph on vertex set V1 ∪ V2 with edge set E1 ∪E2 ∪E×
where E× = V1 × V2.

A cograph is a graph that is either a single vertex or the union of two cographs or the join of two cographs. A
bipartite graph is a graph whose vertex set can be partitioned into two independent sets. A split graph is a graph
whose vertex set can be partitioned into two sets K and I where K induces a complete graph and I an independent
set. A path is a graph whose vertex set is {v1, ...., vn} and vivj is an edge if |i− j| = 1. A cycle is a path with the
additional edge v1vn. A forest is a graph without any cycle. A tree is a connected forest.

A vertex x dominates a vertex y if y ∈ N [x]. A subset of vertices S dominates a vertex y if there exists x ∈ S
that dominates y. A dominating set S of G is a subset of vertices that dominates all the vertices of the graph. The
smallest size of a dominating set of G is denoted by γ(G).
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2.2 The Maker-Maker domination game

The Maker-Maker domination game is played on a graph G = (V,E). Two players, Alice and Bob, alternately
claim an unclaimed vertex of the graph, with Alice playing first. The game ends when the vertices claimed by one
of players form a dominating set (in which case the corresponding player wins) or when all the vertices have been
claimed and none of the players managed to claim a dominating set (in which case the game is a draw).

As a 2-player finite perfect information game, if both players play optimally, one of the players has a winning
strategy or the game ends a draw. Furthermore, since this game is a Maker-Maker positional game, it is well known
that the second player, Bob, does not have a winning strategy (see for example [11]). As a consequence, there are
only two possible outcomes for the Maker-Maker domination game played on G: either Alice has a winning strategy,
which will be denoted by o(G) = A, or both players can ensure a draw, which will be denoted by o(G) = D. The
problem of deciding, given a graph G, if o(G) = A or o(G) = D is named the Maker-Maker Domination Game
problem.

Positions. A position P of the game is a triple (G,VA, VB) where G = (V,E) is a graph and VA, VB ⊆ V are two
subsets of vertices such that VA ∩ VB = ∅. The vertices in VA (respectively VB) correspond to vertices claimed by
Alice (resp. Bob). A vertex not in VA nor VB is unclaimed. If X is a set of vertices, the subposition induced by X is
the position (G[X], VA ∩X,VB ∩X). If {x, y} is a pair of unclaimed vertices of P . The position Px,y is defined by
Px,y = (G,VA ∪ {x}, VB ∪ {y}). A set of unclaimed vertices S is a winning set for Player t if S ∪ Vt is a dominating
set of G.

A pointed position is a position where the next player is specified, it will be denoted by a couple (P, t) where P
is a position and t ∈ {A,B} is the next player (A stands for Alice and B for Bob).

The outcome o(P, t) of a pointed position (P, t) is defined for positions P satisfying the property that both VA
and VB do not dominate G simultaneously. We have o(P, t) = A, if, the next player being t, considering that Alice
has already claimed all the vertices VA and Bob has claimed vertices VB , there is a winning strategy for Alice, i.e.
a strategy which ensures Alice to dominate the graph G before Bob. We will say in this case that the position is
A-win. Otherwise, we say that the position is Draw and we denote it by o(P, t) = D. In this latter case, note that it
also covers the case where Bob first dominates the graph, as the pointed position P may not be balanced depending
on the sets VA and VB . Such cases will be considered in the upcoming proofs when considering the different possible
sequences of moves (but their outcome will still be considered as a draw, as Alice will avoid them in her optimal
sequence of moves).

Note that the starting position on the graph G is the pointed position ((G, ∅, ∅), A) and we have o(G) =
o((G, ∅, ∅), A).

Ordering positions. Two positions P and P ′ are said equivalent if for any t ∈ {A,B}, o(P, t) = o(P ′, t). Two
pointed positions (P, t) and (P ′, t) with the same first player are said equivalent if o(P, t) = o(P ′, t).

In addition, and by analogy with combinatorial game theory, it is standard to order outcomes, stating that
A > D. With this convention, a pointed position (P, t) is better for Alice (respectively Bob) than a pointed position
(P ′, t′) if o(P, t) ≥ o(P ′, t′) (respectively o(P, t) ≤ o(P ′, t′)).

As an illustration of these definitions, the two following observations ensure that:

� it is always better for any player to start.

� if two positions have exactly the same winning sets, there are equivalent.

Observation 2.1. For any position P , we have o(P,A) ≥ o(P,B).

The proof of the above result derives from a standard stealing strategy.

Observation 2.2. Let P = (G,VA, VB) and P ′ = (G′, V ′A, V
′
B) be two positions such that there exists a bijection

f : V (G) \ VA ∪ VB → V (G′) \ V ′A ∪ V ′B between the sets of unclaimed vertices that satisfies that S is a winning set
for Alice (respectively Bob) if and only if f(S) is a winning set for Alice (respectively Bob). Then P and P ′ are
equivalent.

We say that a vertex x is forced for Alice (resp. Bob) in a position (P,A) (resp. (P,B), if whenever Alice (resp.
Bob) claims a vertex y 6= x in P , the resulting position is Draw (resp. A-win). Sometimes, a move is always better
than another. This is for example the case when the neighborhood of one vertex contained another neighborhood.
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The following lemma gives a general formal framework which allows us to eliminate uninteresting moves. Note that
this lemma or its derivatives are often used when studying positional games, sometimes not explicitly. For the sake
of completeness, we give a proof here.

Lemma 2.3. Let P = (G,VA, VB) be a position. Let x, y be two unclaimed vertices. Assume that for both t ∈ {A,B},
N [x] \N [Vt] ⊆ N [y] \N [Vt], where N [Vt] = ∪

v∈Vt

N [v] . Then there exists an optimal strategy in which y is claimed

before x.

Roughly speaking, the condition says that y dominates a superset of the vertices dominated by x for both
players. The conclusion says that if there exists an optimal strategy (for any player) starting by claiming x, one
can assume that there also exists an optimal strategy starting by claiming y.

Proof. Let P = (G,VA, VB) be a position. Suppose that Alice has a winning strategy S on P in which x is claimed
before y. Up to consider more moves, consider a position P ′ where the next vertex that will be claimed is x or y.
If it is y, there is nothing to do, so suppose it is x.

If x is claimed by Bob, by definition any strategy is loosing for Bob, thus they are all equivalent, and he can
claim y first instead without changing the outcome of the game. Therefore, we can suppose that Alice is going to
claim x. Consider the following strategy S ′ for Alice.

� Instead of claiming x, claim y.

� While Bob claims a vertex v 6= x, she claims the vertex w she would have claimed according to S if Bob has
claimed v when she had claimed x.

� If Bob claims x, she claims the vertex w she would have claimed according to S if Bob had claimed y.

As S was a winning strategy for Alice, at a certain moment of the game, she would obtain a set of vertices
SA ⊃ VA that is a dominating set of G, while SB ⊃ VB , the vertices claimed by Bob, is not. If both x and y are in
SA, then S ′ will make both Alice and Bob claim exactly the same vertices, so Alice will win. Otherwise, by denoting
by S′A and S′B the set of vertices claimed by Alice and Bob respectively after S ′, we have S′A = SA \ {x} ∪ {y}
and S′B = SB \ {y} ∪ {x}. We prove that S′A is still a dominating set and S′B is not, which proves that S ′ is a
winning strategy for Alice. Indeed, for S′A, if u is dominated only by x in SA, then it means that u /∈ N [VA] and
thus u ∈ N [x] \ N [VA]. Then by definition, u ∈ N [y] \ N [VA] and thus is dominated by y. For S′B , assume that
it is a dominating set. Since SB is not dominating, it means that there exists u ∈ N [x] not dominated in SB .
Thus, u /∈ N [y] but we also have u /∈ N [VB ] as VB ⊂ SB . Hence, u is in N [x] \N [VB ] but not in N [y] \N [VB ], a
contradiction.

The proof that if Bob has a drawing strategy is similar, by adding the fact that if Bob does not dominate the
graph, then SA is not a dominating set, and thus neither is SA \ {y} ∪ {x}.

Union and decomposition of positions. Let P = (G,VA, VB) and P ′ = (G′, V ′A, V
′
B) be two positions on

disjoint sets of vertices 1. The union of P and P ′, denoted by P ∪ P ′, is the position (G ∪G′, VA ∪ V ′A, VB ∪ V ′B).
Note that one can remove a position where both players have a dominating set. It is a simple consequence of
Observation 2.2 since the winning sets are the same.

Observation 2.4. Let P = (G,VA, VB) and P ′ = (G′, V ′A, V
′
B) be two positions on disjoint graphs. Assume that

V ′A and V ′B are dominating sets of G′. Then P ∪ P ′ and P are equivalent.

One cannot in general determine the outcome of a position P ∪P ′ knowing the outcome of P and P ′. However,
when both positions are A-win when Bob starts, the union is still A-win:

Observation 2.5. Let P and P ′ be two positions such that o(P,B) = o(P ′, B) = A. Then we have o(P∪P ′, B) = A.

Proof. Alice follows her strategies as second player in both P and P ′ until she dominates one of the component,
say P . Then she just claims in P ′ following her strategy. She might claim several times in a row in P ′ (if Bob goes
on claiming on P ), but by Observation 2.1, it is always better for Alice to play first than second. Thus, if she has
to claim twice in a row in P ′, she will be able to dominate P ′, before Bob does.

1In this paper, the union of two positions will always be done on disjoint sets of vertices. It could happen, for simplicity reasons,
that two vertices in different components have the same name. They must be considered as distinct vertices.
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Figure 1: On the left, v is a B-trap and w may be isolated; on the right v is a A-trap

When considering a position, it could be useful to decompose it into several disjoint games. To do such a
decomposition, the winning sets for both players should be the same. This is the case when a cut set is completely
claimed and dominated by both players.

Lemma 2.6. Let P = (G,VA, VB) be a position. Assume V (G) can be partitioned into three sets V1, V2, X such
that:

� There are no edges between V1 and V2;

� All the vertices of X have been claimed: X ⊆ VA ∪ VB.

� The vertices in X are already dominated by VA ∩X and VB ∩X.

Let P1 and P2 be the subpositions of P induced by V1∪X and V2∪X respectively (vertices of P1 and P2 are disjoint).
Then the position P and the position P1 ∪ P2 are equivalent.

Proof. We consider the trivial bijective map f between the unclaimed vertices of P and P1 ∪ P2. Let S be a set of
unclaimed vertices of P and t ∈ {A,B}. Assume first that S is a winning set of P for Player t Let S1 = f(S) ∩ V1.
We prove that S1 is a winning set of P1 for Player t. Let u be a vertex of P1 and u′ = f−1(u). Either u′ ∈ X
and thus is dominated by a vertex of Vt ∩X in P and thus u is still dominated in P1. Or u′ /∈ X, and then u′ is
dominated by some vertex s of S ∪ Vt in P . Since u′ /∈ X and X is a cutset, s should be in V1 ∪ X and f(s) is
still in S1 ∪ Vt. Similarly, we can prove that S2 = f(S) ∩ V2 is a winning set of P2 for Player t, and thus f(S) is a
winning set of P1 ∪ P2 for Player t. The reverse is easier: the union of two winning sets in P1 and P2 is clearly a
winning set of P . Therefore, Observation 2.2 applies and the two positions are equivalent.

2.3 Traps

We will frequently use the notion of trap that is defined in this section. Roughly speaking, a A-trap (respectively
B-trap) is a vertex of a game position such that, if it is not claimed by Alice (resp. Bob) by the end of the game,
means that Alice (resp. Bob) will never build a dominating set. Formally, traps can be defined as follows:

Definition 2.7. Let P = (G,VA, VB) be a position of the game. A A-trap (respectively B-trap) is an unclaimed
vertex v such that there exists a vertex w with N [w] ∩ V \VB = {v} (resp. N [w]\VA = {v})

In this definition, v corresponds to the vertex that must be claimed, and w to the vertex that will not be
dominated if v is not claimed. Figure 1 illustrates the notion of traps.

The next lemma shows that if there is a A-trap in a position, one can consider that the next player will claim
it immediately.

Lemma 2.8. Let P be a position of the game and v be a A-trap of P . Claiming v is an optimal move for both
players. Moreover, o(P,B) = D.

Proof. Let w such that N [w] ∩ V \VB = {v}. Suppose it is Bob’s turn. By claiming v, Bob isolates the vertex w as
now N [w] ⊆ VB . Therefore, Alice cannot dominate w any longer and the outcome is D.

If it is Alice’s turn, if she does not claim v, Bob claims it and once again isolates w. Therefore, v is forced for
Alice. Thus, v is an optimal move.
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Corollary 2.9. Let P be a position of the game. If there exist two A-traps v1 and v2 of P such that v1 6= v2, then
o(P,A) = o(P,B) = D.

Proof. Since there are two distinct A-traps, the two vertices w1 and w2 that might be isolated are necessarily
distinct (otherwise v1 and v2 would both be in their neighborhood, contradicting the definition of a trap). Hence,
even if Bob is not the first player, he will be able to claim in one of the two traps and hence isolate either w1 or
w2.

The next lemma proposes another example of a forced move for Alice when there exists an unclaimed P5 in a
position as a subgraph.

Lemma 2.10. Let (P,B) be a pointed position of the game with P = (G,VA, VB). If there exists a path G′ =
(v1, v2, v3, v4, v5) such that G′ is a subgraph of G with V (G′)∩ (VA ∪ VB) = ∅ and v2, v3, v4 of degree 2, then if Bob
claims v3, Alice is then forced to answer on v2 or v4.

Proof. If Bob claims v3, then if Alice answers elsewhere than on v1, v2 or v4, Bob claims his second move on v2 and
creates two A-traps in v1 and v4. Indeed, since the vertices v2 and v3 are of degree 2, there remains only one way
for Alice to dominate v2 (i.e. by claiming v1) and v3 (i.e. by claiming v4). By corollary 2.9, the resulting position
is Draw. If Alice claims v1, then Bob claims v4 and by symmetry creates two A-traps equivalent to the previous
case.

3 General results derived from the Maker-Breaker convention

Whereas the Maker-Maker domination game has not been studied yet, the Maker-Breaker version has been defined
in [6]. In this section, we recall some results in this convention that have consequences for the Maker-Maker
convention.

3.1 Basics

In Maker-Breaker games, only the winning condition differs from the Maker-Maker games. For more convenience
and according to the terminology of [6], we will call the players Dominator and Staller. Dominator wins if she
claims a dominating set, otherwise Staller wins. In particular, there is no draw. In this convention, since the two
players have different roles, one need to precise who the first player is. Note that both players have interest to start
since one can prove that if a player has a winning strategy playing second, he also has a strategy playing first.

When playing on the same graph, a winning strategy for Staller going second is a drawing strategy for Bob.
Indeed, Bob will prevent Alice to claim a dominating set and thus Alice has no winning strategy. The contrary is
not true since Bob can threaten Alice to create a dominating set in the Maker-Maker convention whereas Staller
cannot. As a counter-example, we will prove that Bob has a drawing strategy on the cycle on ten vertices (see
Theorem 4.7) whereas Dominator has a winning strategy for this graph [6]. However, strategies for Dominator
can sometimes be used by Alice (see for example Lemma 3.4). Furthermore, if Alice manages to prevent Bob from
claiming a dominating set, then she can play as Dominator in the Maker-Breaker convention in the rest of the game.
Using this fact, one can prove that deciding the outcome in the Maker-Maker convention is as difficult as deciding
the outcome in the Maker-Breaker convention.

Theorem 3.1. Maker-Maker Domination Game is PSPACE-complete even if G is bipartite or split.

Proof. First note Maker-Maker Domination Game is in PSPACE, by application of Lemma 2.2 from Schae-
fer [13], since there are most |V | turns and during each turn, at most |V | moves are available.

We prove that it is PSPACE-hard by a reduction from Maker-Breaker Domination Game: given a graph
G and a first player (Dominator or Staller), who has a winning strategy ? Maker-Breaker Domination Game
has been proven PSPACE-complete in [6], even if Staller starts, and even if the graph is split of bipartite.

We do the reduction as follows. Let G = (V,E) be a graph. Consider G′ = (V ∪{v0}, E) with v0 a new isolated
vertex. Note that the property of being split or bipartite is maintained by this operation. We prove that Dominator
wins the Maker-Breaker Domination Game on G going second, if and only if Alice wins the Maker-Maker
Domination Game on G′ going first.
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Suppose first that Dominator has a winning strategy S on G going second. We define the following strategy for
Alice on G′: first claim v0, then apply S. By hypothesis, this strategy is a winning strategy for Dominator, thus,
the set of vertices claimed by Alice at the end of the game will dominate the graph. As Bob cannot dominate v0,
he cannot dominate before her, thus Alice wins.

Reciprocally, suppose that Staller has a winning strategy S on G going first. We define the following strategy
for Bob on G′. If Alice does not claim first v0, claims it. Alice cannot dominate v0 any longer, so the outcome is
at least a Draw. Otherwise, apply S. By hypothesis, this strategy is a winning strategy for Staller, thus, the set of
vertices claimed by Alice at the end of the game will not dominate G, and the outcome is Draw.

Deciding the outcome of the union of graphs when the outcome of each graph is known is trivial in Maker-
Breaker convention (see [6]). Thus, to study a class of graphs, one just need to consider the connected case. In
Maker-Maker, the situation is slightly different, one cannot in general say anything about the union.

3.2 Pairing strategies

A standard strategy in positional games is the pairing strategy. Let S be a set of disjoint pair of vertices. A pairing
strategy using S consist in, whenever the opponent claims a vertex of a pair, answering by claiming the other one.
This strategy ensures that the player who follows it takes at least one vertex in each pair, i.e. takes a transversal
of S. For the Maker-Breaker domination game, this strategy can be used by Dominator if any transversal of S is a
dominating set. This corresponds to the definition of a pairing dominating set.

Definition 3.2 ([6]). Let G = (V,E) be a graph. A subset of pair of vertices S = {(u1, v1), ..., (uk, vk)} of V is
a pairing dominating set if all the vertices are distinct and if the intersections of the closed neighborhoods of each
pair cover all the vertices of the graph:

V = ∪ki=1N [ui] ∩N [vi].

In other words, any transversal of S is a dominating set.

Lemma 3.3 ([6]). If G has a pairing dominating set, then in the Maker-Breaker convention, Dominator wins
playing first or second.

A particular case of pairing dominating sets are perfect matchings. If G is a forest, both notions are equivalent.
In general, the reverse of Lemma 3.3 is not true. However, for some classes of graphs like forests or cographs,
the reverse holds: if Dominator has a winning strategy playing second (and thus first), then G admits a pairing
dominating set [6]. In the Maker-Maker convention, Alice can also use pairing strategies. A first possibility for
Alice is when there exists a pairing dominating set of size γ(G), the minimum size of a dominating set.

Lemma 3.4. Let G be a graph. If G has a pairing dominating set of size γ(G), then Alice has a winning strategy
in G.

Proof. Let G be a graph. Suppose G has a pairing dominating set of size γ(G). By claiming her γ first moves in
it, and claiming in the same pair as Bob if Bob claims a first vertex in a pair, Alice can dominate in γ moves. Bob
cannot dominate before by definition of γ(G). Therefore, Alice has a winning strategy in G.

This lemma can be applied in particular for connected cographs. Indeed, if G is a connected cograph with
a universal vertex, then Alice wins at her first move. Otherwise, G has a pairing dominating set of size 2 and
γ(G) = 2, thus by Lemma 3.4, Alice has a winning strategy. As mentioned previously, dealing with disconnected
graphs is not easy in the Maker-Maker convention. Actually, we did not manage to determine the outcome of a
general cograph and let it as an open problem. Note that determining the outcome for cographs in Maker-Breaker
convention is polynomial (see [6]), but finding the minimum number of moves needed by Dominator to win is
surprisingly open [9].

Another application of pairing strategies will be when there is some B-trap in a position. If it is Alice’s turn, she
can claim the trap and then play any strategy of Dominator, like a pairing strategy. For that, we will use a pairing
dominating set that are taking into consideration the vertices already claimed. We call such a pairing dominating
set a A-pairing.

Definition 3.5. Let G = (V,E) be a graph and P = (G,VA, VB) a position. A set of disjoint pairs of unclaimed
vertices S = {(u1, v1), ..., (uk, vk)} of V is a A-pairing of position P if for each transversal T of S, the set VA ∪ T
dominates V .
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Figure 2: Example of a graph where Bob wins in Maker-Maker, but if we remove any leaf with its neighbor, Alice
wins.

If Alice can prevent Bob to dominate the graph, A-pairings are then enough for Alice. This can be used in
particular where there are some B-traps in the game.

Lemma 3.6. Let P be a position with a B-trap and a A-pairing. Then, we have o(P,A) = A.

Proof. Let P be a position containing a B-trap v and a A-pairing S. Alice playing first can claim v. Now, Bob
cannot dominate G anymore. Therefore, by following a pairing strategy using S, Alice will claim a transversal of
S. Thus, she will dominate the whole graph and win.

Lemma 3.7. Let P be a position with two B-traps v and v′ and a A-pairing that contains nor v nor v′ in P . Then,
we have o(P,B) = A.

Proof. Alice follows a pairing strategy using S ∪{v, v′}. Bob cannot dominate since she will claim either v or v′ and
thus, there will be a vertex not dominated by Bob. She will dominate the graph since she will claim a transversal
of S.

3.3 Removing leaves

The key ingredient to solve trees in the Maker-Breaker convention is to remove leaves using the following lemma:

Lemma 3.8 ([6]). Let G be a graph, ` be a vertex of degree 1 and u be its unique neighbor. If u has degree 2, then
G and G \ {`, u} have the same outcome in Maker-Breaker convention: Dominator has a winning strategy in G if
and only if she has a winning strategy in G \ {`, u} (whoever is first).

Let T be a tree. One can apply successively Lemma 3.8 until obtaining a reduced tree T ′ where the unique
neighbor of any leaf has degree at least 3. Then there are only three possibilities for T ′. Either T ′ is empty, which
means that T has a perfect matching. In this case, Dominator wins playing first or second. The second possibility
is that T ′ is a single vertex or a star. Then the first player has a winning strategy. The last possibility is that
T ′ contains two disjoint cherries. A cherry is a vertex u connected to two leaves. In this last case, Staller wins
playing first or second. This operation of removing leaves of a tree until obtaining a reduced tree correspond to the
algorithm given in [6] to solve trees, and thus forests using unions of trees.

The situation is a quite different in the Maker-Maker convention. Indeed, Lemma 3.8 is not true anymore and
one cannot reduce trees as in Maker-Breaker convention. Indeed, leaves are still playing an important role as shown
by Figure 2. Actually, one can prove that it is always optimal for Bob to claim the unique neighbor of a leave:

Lemma 3.9. Let P = (G,VA, VB) be a position with an unclaimed leaf ` for which its unique neighbor u is also
unclaimed. Then o(P,B) = o(P`,u, B) 2.

2In this equality, it is assumed that P`,u is really a position, i.e. VB ∪ {u} and VA ∪ {`} do not both dominate the graph. In this
latter particular case, we obviously have o(P,B) = D .
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Proof. Suppose first that (P`,u, B) is Draw. Bob can, in (P,B), claims u first. Then ` is a A-trap and by Lemma 2.8,
Alice must claim it. Thus, the game is now (P`,u, B) that is Draw by hypothesis. Thus, (P,B) is Draw.

We prove the other implication by contraposition. Suppose (P`,u, B) is A-win. Let S be a winning strategy for
Alice in (P`,u, B). We consider a strategy S ′ for Alice in (P,B) defined as follows:

� If Bob claims a vertex in {`, u}, Alice claims the other one.

� Otherwise, Alice claims according to S (ignoring the moves on ` and u) until she dominates all the vertices of
V \{`, u}. If u, ` have been claimed at this moment, either Bob has claimed u and Alice `, and she wins since
the strategy played is the same as S ′, or Bob has claimed ` and Alice u, which dominates more vertices than
`. Therefore, in both cases, her winning strategy in S ′ ensures her that she dominates first. Otherwise, when
she dominates all the vertices of V \{`, u}, Bob does not dominate in the game played on (P`,u, B). Thus,
claiming u does not make him dominate G. Therefore, by claiming at her next move a vertex in {`, u}, Alice
wins.

Thus, Alice has a winning strategy in (P,B), finishing the proof.

In other words, after the first move of Alice, one can always assume that Bob has claimed all the vertices that are
adjacent to leaves of G, and that Alice has answered by claiming all the leaves. This will be particularly important
when dealing with trees.

4 Paths and cycles

In this section, we consider paths and cycles. The structure of the positions obtained after some moves will be
basically union of paths where the extremities are claimed. Thus, we first deal with these paths and derive some
general results on them that will help us to solve paths and cycles (and also forests in the next sections).

4.1 Bounded Paths

A bounded path is a path on at least four vertices where the four vertices at its extremities (the two leftmost and the
two rightmost) are already claimed by Alice and Bob in such a way that the four vertices are already dominated
by both players.

Definition 4.1. A bounded path of length n is a position (G,VA, VB) such that:

� G is a path (v−1, v0, v1, ...., vn, vn+1, vn+2);

� the unclaimed vertices are exactly vertices v1 to vn;

� exactly one vertex among {v−1, v0} (respectively {vn+1, vn+2}) is in VA, the other being in VB.

According to this definition, the knowledge of the label of v0 and vn+1 is sufficient to deduce the label of v−1
and vn+2. Therefore, for t, t′ in {A,B}, we will denote by [tont′] the bounded path of size n such that v0 ∈ Vt and
vn+1 ∈ Vt′ . See Figure 3 for an illustration of [Ao5A] and [Bo3A].

B A A B

[Ao5A]

A B A B

[Bo3A]

Figure 3: The bounded paths [Ao5A] and [Bo3A].

In some situations, bounded paths can be considered as a neutral structure that preserves the outcome when
adjoined to another position. The next lemma illustrates a first case in which this may occur. It will also lead to a
natural resolution of paths.

Lemma 4.2. For any position P and any integer n, o(P,B) = o(P ∪ [AonB], B).
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Proof. Let P = (G,VA, VB) be a position. We do the proof by induction on the number of unclaimed vertices in
P ∪ [AonB]. First note that if n ≤ 1, the result is true since [AonB] is already dominated by both players. Hence,
by Observation 2.4, the result is true when the number of unclaimed vertices is at most 1.

Now assume there are at least two unclaimed vertices and n ≥ 2. Suppose first that (P,B) = D. In this case,
Bob starts by claiming vn−1 in P ∪ [AonB] creating a A-trap in vn. By Lemma 2.8, Alice has to answer vn. By
induction hypothesis o(P ∪ [Aon−2B], B) = D, which ensures that o(P ∪ [AonB], B) = D.

Now assume that (P,B) is A-win and let S be a winning strategy for Alice in this pointed position. We give a
strategy for Alice in (P ∪ [AonB], B). Let vB be the vertex claimed by Bob in (P ∪ [AonB], B). Alice answers as
follows:

� If vB ∈ V (G) and if Alice does not dominate P , she claims the same vertex vA she would have answered
following S if Bob had claimed vB in (P,B). The resulting position has two vertices less, and is A-win by
induction hypothesis.

� If vB ∈ V (G) and Alice already dominates P , we necessarily have n ≥ 2, otherwise, she would already have
won. She claims v2. The resulting position is better than (P ∪ [AoA]∪ [Aon−2B], B), which itself is better than
([AoA]∪[Aon−2B], B), as Alice already dominates P . Thus, by induction hypothesis applied with P ′ = [AoA],
which is not dominated by Bob, the position is A-win.

� If vB is a vertex of [AonB], then vB corresponds to some vertex vk, with k ∈ {1, . . . , n}. If k = n, Alice
answers vn−1. Otherwise, she claims vk+1. Note that if k = n, the position obtained is better for Alice
than the one obtained by k = n − 1 (since she dominates a superset of vertices). Therefore, and without
loss of generality, we will assume that k < n. By Lemma 2.6, the resulting position is then equivalent
to (P ∪ [Aok−1B] ∪ [Aon−1−kB], B) which has less unclaimed vertices than the original one. By induction
hypothesis applied twice, it has the same outcome as (P ∪ [Aok−1B], B), which also has the same outcome as
(P,B), which is A-win by hypothesis.

This analysis ensures that o(P ∪ [AonB], B) = A, since for each claim of Bob, there exists an answer of Alice leading
to an A-win position.

The next lemma presents another situation where the adjunction of some bounded paths with particular con-
straints does not change a winning outcome for Alice.

Lemma 4.3. Let P = (G,VA, VB) be a position, let n be an integer such that n 6≡ 0 mod 3 and let n′ be an integer
such that n′ ≡ 0 mod 2. Then if o(P,B) = A, then o(P ∪ [AonA] ∪ [Bon

′
B], B) = A.

Proof. We prove this result by induction on the number m of unclaimed vertices of P ∪ [AonA] ∪ [Bon
′
B]. For

initialization, if m = 1, then P has no unclaimed vertices, n = 1 and n′ = 0. Thus, Alice dominates P ∪ [AonA] ∪
[Bon

′
B] and the result is true, by definition.

Assume now that m ≥ 2, If Alice dominates (P ∪ [AonA]∪ [Bon
′
B]) (which implies that n ≤ 2 and n′ = 0) then

the result is true, by definition. Otherwise, we have to prove that, for each vertex x claimed by Bob, there exists
an answer y for Alice such that o(P ∪ [AonA]∪ [Bon

′
B], B) = A, the pointed position obtained after the two claim

is A-win.
Denote by (u1, . . . , un) the unclaimed vertices of [AonA] and by (v1, . . . , vn′) the unclaimed vertices of [Bon

′
B].

We consider all the possible moves for Bob.

� If Bob claims u1 or u2 in [AonA] and n ≤ 2, we consider two subcases. If n′ = 0, then Alice dominates
[AonA] ∪ [Bon

′
B], which obviously gives the result. If n′ ≥ 2, Alice claims v1. By Observation 2.4, the

resulting game is equivalent to P ∪ [Aon
′−1B], which is equivalent to P by Lemma 4.2.

� If Bob claims u1 or u2 in [AonA] and n ≥ 4, by Lemma 2.3, we can suppose he claims u2. then Alice claims
u3. Thus, the resulting position is equivalent to P ∪ [Aon−3A] ∪ [Bon

′
B], which gives the result using the

induction hypothesis. The case where Bob claims un or un−1 is symmetric.

� If Bob claims a vertex uk in [AonA] with k /∈ {1, 2, n − 1, n}, Alice answers by claiming a vertex ui with
i ∈ {k−1, k+1} such that the resulting component is [AojA]∪[Aoj

′
B] with j 6≡ 0[3]. Note that, since n 6≡ 0[3],

this vertex always exists. By Lemmas 2.6 and 4.2, the resulting position is equivalent to P ∪ [AojA]∪ [Bon
′
B],

which gives the result using the induction hypothesis.
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� If Bob claims some vertex vk in [Bon
′
B], Alice answers by claiming a vertex vi with i ∈ {k − 1, k + 1} such

that the resulting component is [BojB] ∪ [Aoj
′
B] with j ≡ 0[2]. Note that as n′ ≡ 0[2], this vertex always

exists. By Lemma 4.2 and Lemma 2.6, the resulting position is equivalent to P ∪ [AonA] ∪ [BojB], which
gives the result using the induction hypothesis.

� If Bob claims a vertex x in P , we consider two subcases. If Alice does not dominate G yet, she claims the
vertex she would have claimed as an answer to x in her winning strategy in P . The resulting position has two
vertices less, which gives the result using the induction hypothesis.

If Alice already dominates G, and n′ ≥ 2, then Alice claims v1 in [Bon
′
B], turning it into [Aon

′−1B]. By
Lemma 4.2, the game is now equivalent to P ∪ [AonA], and Alice already dominates G, so by induction
hypothesis, it is a winning position for her. For n′ = 0 and n ≥ 4 (cases where n ≤ 2 are trivial), then
Alice claims u2. The resulting position is better for Alice than the position P ∪ [AoA] ∪ [Aon−2B], which, by
Lemma 4.2, is equivalent to P ∪ [AoA] and therefore is a winning position for Alice.

We finish this subsection by proving that bounded paths [BonB], where n is odd, and [AonA], when n ≡ 0
mod 3, are not good for Alice when Bob starts. The first one is natural and give a condition for a Draw whatever
the rest of the position is. The second one is more surprising. Here Bob obtains a Draw mostly by threatening
Alice to dominate before her. Thus, one cannot add any position and maintain a Draw.

Lemma 4.4. For any position P and any odd integer n, o(P ∪ [BonB], B) = D.

Proof. We prove the result by induction on n. If n = 1, there is a A-trap: by Lemma 2.8, o(P ∪ [BoB], B) = D.
Now, let n ≥ 3. Bob claims v2 which forces Alice to claim v1. The position is then equivalent to (P ∪ [Bon−2B], B)
which is Draw by induction.

Lemma 4.5. For any positive integer k, o([Ao3kA], B) = D.

Proof. We prove the result by induction on k.
If k = 1, Bob claims v2 and directly dominates [Ao3A]. Thus, o([Ao3A], B) = D.
If k = 2, Bob claims v2. If Alice does not answer in {v1, v3, v4}, Bob claims v3 at his second turn and create

two A-traps in v1 and v4 which ensures a Draw. Thus, Alice should claim a vertex among {v1, v3, v4} and does not
dominate the graph at her first claim. Then Bob can claim v5 and dominates the graph. Hence o([Ao6A], B) = D.

Assume now that k ≥ 3 and that the result is true for any positive k′ < k. Consider the position ([Ao3kA], B).
Bob claims v5 at his first turn. By Lemma 2.10 applied on (v3, v4, v5, v6, v7), Alice should answer on v4 or v6.
If she claims v4, then by Lemma 5.5, the position is equivalent to the position ([Ao3A] ∪ [Bo3k−5A], B), which is
equivalent, by Lemma 4.2 to ([Ao3A], B) which is Draw.

If she claims v6, in the same way, the position is equivalent to ([Ao4B]∪ [Ao3(k−2)A], B), which is equivalent to
([Ao3(k−2)A], B) which is Draw by induction.

4.2 Paths

Lemma 4.2 can be used to prove that Alice always wins on paths.

Theorem 4.6. Let Pn be the path of length n. Then o(Pn) = A.

Proof. Let v1, ..., vn be the vertices of the path. In n ≤ 3, then Alice wins at her first turn, so we can assume that
n ≥ 4. Alice starts by claiming v2. By Lemma 3.9, we can assume that Bob claims vn−1 and Alice answers by
claiming vn. Let (P,B) be the actual pointed position of the game. Using Observation 2.2, and since v1 should
be in any winning set of Bob, this position is equivalent to the position ([AoA] ∪ [Aon−4B], B). By Lemma 4.2,
o([AoA] ∪ [Aon−4B], B) = o([AoA], B) = A, which ensures that o(G) = A.

When playing in the Maker-Breaker convention, note that this result implies that Dominator also has a winning
strategy on any path playing first. This result was already known since [6], but the strategy developed here is
different from the other one.
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4.3 Cycles

The case of cycles in the Maker-Maker convention is more subtle than for the Maker-Breaker convention, where
Dominator always wins. More precisely, we will show that there are infinitely many A-win and Draw outcomes that
depend on the size of the cycle modulo 3.

From now, we will denote by Cn the cycle of order n. The vertices of Cn will be denoted by v0 to vn−1.

Theorem 4.7. Let n be an integer. We have o(Cn) = D if and only if n ≥ 10 and n ≡ 1 mod 3.

Proof. We first prove the “if” part. Let n = 3k + 1, with k ≥ 3, and let Cn be a cycle of order n By symmetry, we
can assume that Alice first claims v0 and thus o(Cn) = o(Cn, {v0}, ∅, B). We give a strategy for Bob to obtain at
least a draw. Bob first claims v5. By Lemma 2.10 with G′ = (v3, v4, v5, v6, v7), Alice has to answer v4 or v6.

� If Alice claims v6. Then Bob can claim v3 which forces Alice to claim the A-trap in v4 and then Bob can claim
v1 which forces Alice to claim the A-trap in v2. At this point, the position is equivalent to ([Ao3(k−2)A], B)
which is Draw by Lemma 4.5 (remember that k − 2 ≥ 1).

� If Alice claims v4. Bob can claim successively all the v2i+1 starting from v7, creating a A-trap in v2i that
Alice is forced to claim. If n is even, Bob follows this strategy until claiming vn−1. Then Alice has to claim
vn−2 and does not dominate the cycle (she does not dominate v2). Then Bob can dominate the cycle by
claiming v2.

If n is odd, Bob follows this strategy until claiming vn−4. After Alice has claimed vn−5, Bob claims v2. Alice
is forced to claim vn−1, otherwise Bob wins by claiming it. Then Bob claims vn−2, creating a trap in vn−3,
forcing Alice to claim it. At this point, Alice still does not dominate v2. Then Bob can dominate the cycle
by claiming v1.

In all cases, the game either ends in a draw or Bob dominates the graph, thus o(Cn) = D.

We now prove the “only if” part. First consider that n 6≡ 1 mod 3. Without loss of generality, one can assume
that Alice will claim v0 at her first turn, and thus we consider the pointed position (P,B) = ((Cn, {v0}, ∅), B).
Consider now the position P ′ obtained from P by adding a vertex claimed by Bob adjacent only to v0. This
position is better for Bob since he dominates more vertices than in P . Thus, it is enough to prove that (P ′, B) is
A-win to ensure that (P,B) is A-win. Using Observation 2.2, (P ′, B) is equivalent to ([Aon−1A], B). By Lemma 4.3,
since n− 1 6≡ 0 mod 3, o([Aon−1A], B) = A, and thus o(Cn) = A

It remains to prove that Alice wins on C4 and C7. On C4, Alice wins by claiming any two vertices and as
it is not possible to dominate in one move, she will dominate first. On C7, Alice can claim v0, and then use a
pairing strategy with pairs (v2, v3) and (v4, v5). This way, she dominates the cycle in three moves, and Bob cannot
dominate before since at least three vertices are required to dominate C7.

5 Forests

In this section, we give the essential elements to solve the case of forests, given by Theorem 5.1 below. In particular,
we will first reduce the problem to any standard forest, meaning that non-standard forests correspond to cases
that can be solved easily. Then we will give necessary conditions about the first move of Alice, yielding to the
introduction of the skeleton of a forest. From that definition, we will be able to present the general algorithm that
computes the outcome of any forest, as depicted by the decision tree of Figure 8. In the next section, we will give
the full proof of the validity of the algorithm.

Theorem 5.1. Deciding the outcome of a forest can be done in linear time.

5.1 Removing small components

If there is an isolated vertex in the forest, this is like playing in the Maker-Breaker convention.

Lemma 5.2. Let F be a forest with an isolated vertex v0. Then o(F ) = A if and only if F \ {v0} contains a perfect
matching.
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Figure 4: Example of labelling

Proof. Alice has to claim first v0. Then Bob is playing first in F \ {v0}. Since he cannot dominate anymore, he
has the same role as Staller in the Maker-Breaker Domination Game. In [6], it is proved that Dominator playing
second in a forest in the Maker-Breaker Domination Game wins if and only if there is a perfect matching, which
gives the result.

Isolated edges can be removed without changing the outcome.

Lemma 5.3. Let F be a forest with an isolated edge e = uv. Then o(F ) = o(F \ {u, v}).

Proof. If Alice (respectively Bob) has a winning (resp. draw) strategy in F \{u, v}, then she can apply her strategy
in F by pairing u with v. The resulting strategy will still be winning (resp. leading to a draw) in F .

By applying Lemma 5.2 and Lemma 5.3, one can consider in what follows that all the connected components
have at least three vertices.

5.2 Bottom-to-top strategies for Bob

In this subsection, we describe a strategy for Bob that will often be considered to obtain draws or to reduce trees.
Let T be a tree rooted on a vertex r, vertices of T except r are labeled inductively with values 0 and 1, starting
from the leaves as follows:

� If all children of v are labeled 1, then v is labeled 0 (hence, all the leaves are labeled 0);

� If at least a child of v is labeled by 0, then v is labeled by 1.

Figure 4 gives an example of such a labeling.
Let T be a tree rooted in r and consider the pointed position (P,B) with P = (T, VA, ∅) and VA ⊆ {r}. A

bottom-to-top strategy for Bob on (P,B) consists, at each step, in claiming a vertex v labeled by 1 such that all the
successors of v labeled by 1 are already claimed by Bob. The following property is maintained during this process:
Alice is forced to claim only vertices labeled by 0, and any vertex claimed by Alice (except r) has his parent claimed
by Bob. Indeed, it is true before the first claim of Bob. Assume it is true before Bob’s turn. Let v be a vertex
labeled by 1 such that all the successors of v labeled by 1 are already claimed by Bob. By definition of the labeling
and the assumption, v has a child u labeled by 0 that is unclaimed. All the children of u are by definition labeled
by 1 and thus already claimed by Bob. Thus, u is a A-trap and Alice is forced to claim it, maintaining the property
true. Such a strategy can also be applied when all the leaves of T are adjacent to vertices already claimed by Bob.
In this strategy, Bob can claim all the vertices labeled by 1. A particular interesting case for Bob is when there
exists a vertex v labeled by 1 with two children labeled by 0:

Lemma 5.4. Let T be a tree and consider the labeling of T rooted in v0. If there exists a vertex labeled by 1 with
two children labeled by 0, then the position (P,B) with P = (T, {v0}, ∅) is Draw.
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Proof. Bob uses a bottom-to-top strategy on T . When claiming v, he will create two A-traps on the two children
of v labeled by 0, which concludes the proof by Corollary 2.9.

Bob can also use bottom-to-top strategies to reduce the forest to a smaller one where he has a Draw strategy.

Lemma 5.5. Let F be a forest and v0 a vertex. Consider the labeling of F rooted in v0 (for the components not
containing v0, root on any vertex). Let v 6= v0 be a vertex labeled by 1 and Sv be the set of successors of v in the
rooted tree. Let Fv be the tree obtained by removing all vertices of Sv and adding a leaf v′ connected to v. Then, if
o(Fv, {v0, v′}, {v}, B) = D, then o(F, {v0}, ∅, B) = D.

Proof. Bob follows by a bottom-to-top strategy on Sv and can claim all the vertices of Sv labeled by 1 until
claiming v. Alice is always forced to claim a child of the claimed vertex. Afterward, Bob plays his strategy to
obtain a Draw in (Fv, {v0, v′}, {v}, B), leading to a Draw for (T, {v0}, ∅, B).

5.3 Cherries

A particular case where the bottom-to-top strategy will be useful is when there are some cherries in the forest.
Recall that a cherry is a vertex c connected to two leaves `1 and `2. It will be denoted by the triple C = (c, l1, l2).
If F contains some cherries, the outcome of F can be easily computed.

Lemma 5.6. Let F be a forest. If F has two cherries C = (c, `1, `2) and C ′ = (c′, `′1, `
′
2), with c 6= c′, then

o(F ) = D.

Proof. Let F be such a forest. After Alice has claimed her first vertex, she cannot have claimed both c and c′.
Suppose without loss of generality that Alice has claimed c′. Then Bob claims c. The resulting pointed position
contains two A-traps and thus is Draw by Corollary 2.9.

Lemma 5.7. Let F be a forest with exactly one cherry C = (c, `1, `2). Then o(F ) = A if and only if there is a
matching in F \ {c} that covers V (F ) \N [c].

Proof. Suppose first that F has a matching M in F \{c} that covers V (F )\N [c]. Then Alice claims c, which creates
a double B-trap in `1 and `2. The matching M is actually a A-pairing, and, we can suppose it contains neither `1
nor `2 since these two vertices have their neighborhood included in N [c]. Then by Lemma 3.7, Thus o(F ) = A.

Suppose now that F has no such matching M . We define a strategy for Bob as follows. If Alice’s first claim is
not element of the cherry, then Bob claims c and creates two A-traps, leading to a Draw position. Thus, we can
assume that Alice’s first claim r is and element of {c, `1, `2}. Let T be the connected component of F containing r.
If there exists another connected component T ′ of F that has no perfect matching, then Bob can apply the strategy
of Staller playing first in T ′ that prevents Dominator to dominates T ′ (see [6]). Thus, one can assume that there is
a perfect matching in all the components of F distinct from T . Now label the vertices of T rooted in r as defined
in Section 5.2. We want to prove that there exists a vertex labeled 1 with two children labeled 0, which will ensure
a Draw strategy for Bob by applying the bottom to top strategy. If it is not the case, then consider the matching
M ′ where all the vertices labeled 1 (except c) are paired with their unique child labeled 0. We claim that M ′ covers
V (T ) \N [c]. Indeed, assume x ∈ V (T ) \N [c] is not covered by M . Then x must be labeled 0 and its parent should
be r since it is the only vertex not labeled. But then x ∈ N [c]. Thus, there exists a matching in F \ {c} that cover
V (F ) \N [c]: take the union of M ′ and the perfect matchings of all the other components.

5.4 Definition of the skeleton and easy cases

Considering Lemmas 5.6 and 5.7, we will assume now that there is no cherry in F , no isolated vertex and no isolated
P2. From Lemma 3.9, one can assume that after the first turn of Alice, Bob will claim all the unclaimed vertices of
F with a leaf as a neighbor. Alice is then forced to answer on each leaf. This motivates us to define the skeleton of
F , denoted by SF , as the vertices that are not a leaf nor a parent of a leaf.

More formally, we denote by LF the leaves of F and by MF their parents. Remark that, with the hypothesis that
there is neither cherry nor isolated vertex, we have LF ∩MF = ∅ and the mapping : LF → MF , which associates
to each vertex v of LF its parent, is bijective. Then, let SF be defined by SF = V (F ) \ (LF ∪MF ). Figure 5 is an
illustration of a forest with its skeleton.

In some simple cases, we can directly give the outcome of F .
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SF

Figure 5: A forest F and its skeleton SF . Note that F is connected but SF is not. MF is the set of vertices in
triangles, and LF is the set of vertices in squares.

Lemma 5.8. If SF is empty, then o(F ) = A.

Proof. Set LF = {`1, . . . , `k}. By hypothesis, F has no cherry, therefore, no vertex can be adjacent to two of these
leaves. Thus, we can denote MF = {m1, . . . ,mk} with mi adjacent to `i for 1 ≤ i ≤ k. Note that k vertices (one
on each set {`k,mk}) are necessary and sufficient to dominate F . Thus γ(F ) = k and there is a pairing dominating
set of size k (the set of pairs {(`i,mi), i ∈ {1, ..., k}). By Lemma 3.4, Alice has a winning strategy in F .

Lemma 5.9. Let T be a connected component of F such that ST is empty. Then o(F ) = o(F \ T ).

Proof. Assume first that o(F \T ) = A and let x be the first claim of Alice in a winning strategy. Then Alice claims
x in F . By Lemma 3.9, Bob will claim all the vertices of MT and Alice will answer all the vertices of LT . After
these moves, T is completely claimed and dominated by both players. By Observation 2.4, we can remove this
component. The game is then equivalent to (F \ T, {x}, ∅) which is A-win when Bob starts, leading to o(F ) = A.

Assume now that o(F \ T ) = D. Consider the game played in F and a first claim x of Alice. If x ∈ V (F \ T ),
then as before, the position (F, {x}, ∅) is equivalent to the position (F \T, {x}, ∅) which is Draw when Bob starts. If
x ∈ V (T ), let x′ be the unique neighbor of x if x is a leaf or the leaf connected to x if x ∈MT . Then we can assume
by Observation 2.4 that Bob claims all the vertices in MT (except x or x′) and that Alice answers by claiming all
the vertices in LT (except x or x′). At this point, all the vertices of T have been claimed except x′. Then Bob
claims x′. Then both players dominate T and the position is equivalent to (F \ T,A) which is a Draw position. In
conclusion, whatever Alice claims, Bob can ensure a draw in F . Thus o(F ) = D

Lemma 5.10. If SF induces a star of center c such that c has no neighbor in MF , then o(F ) = A.

Proof. Alice claims the center c as a first move. Then as explained above, Bob claims all the vertices of MF and
Alice answers all the leaves of LF . After that, Alice dominates the whole graph and Bob does not, since he does
not dominate c.

We say that that F is standard if all its connected components have at least four vertices and a non-empty
skeleton, if F has no cherries, and if SF does not induce a star of center c where c has no neighbor in MF . We now
focus on the standard forests.
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5.5 First move of Alice

If F is standard, next lemmas say that it can be assumed that Alice must claim outside SF and must connect it.
The main idea behind this result is that, if Alice claims in SF , she claims too far from the leaves and Bob can win
with a bottom-to-top strategy.

Lemma 5.11. Let F be a standard forest and v0 ∈ SF . We have o((F, {v0}, ∅), B) = D.

Proof. Assume first that the graph induced by SF is either a unique vertex, a unique edge, or a star (whose center
has necessarily a neighbor in MF ). Let LF = {`1, . . . , `k} and MF = {m1, . . . ,mk} such that for 1 ≤ i ≤ k, `i
and mi are neighbors. Starting from (F, {v0}, ∅), Bob successively claims m1, . . . ,mk, which forces Alice to reply
`1, . . . , `k. When Bob has just claimed mk, he dominates the whole graph while Alice does not yet dominate `k.
This ensures that o((F, {v0}, ∅), B) = D.

It can now be assumed that the graph induced by SF is neither a unique vertex, a unique edge, nor a star.
Thus, we can consider the position P ′ = (F, {v0} ∪ LF ,MF ), and from successive applications of Lemma 3.9, we
just need to prove that o(P ′, B) = D.

First focus on components of SF which do not contain v0. Let C such a component, if each vertex of C is
dominated by a vertex of MF , then Bob dominates C while Alice does not. Otherwise, let v1 be a leaf of the subtree
TC of F induced by C. Bob plays the bottom-to-top strategy in TC rooted in v1. It can be done since the leaves of
TC are only connected to vertices of MF already claimed by Bob. If two vertices labeled by 0 have the same parent,
then the strategy creates a double trap, which ensures a Draw. If v1 has all its children labeled by 1, when Bob
claims the last vertex labeled by 1, a double trap is created, since v1 will be a trap. This also ensures the Draw.
The only non directly conclusive case is when v1 has one child labeled by 0, the reached position after Bob has
followed the bottom-to-top strategy is such that Bob dominates C while Alice does not. Indeed, Bob dominates v1
since it is a leaf of C and thus should be connected to MF but Alice does not dominate v1.

Bob follows this strategy on each component of SF not containing v0. All the answers from Alice are forced. If
a double trap appears, we are done. Otherwise, each component is dominated by Bob and not by Alice. Moreover,
it is Bob’s turn. In such a case , we now need to focus on the component C0 of SF which contains v0.

� If the diameter of C0 at most 1, (which implies that the graph induced by SF is not connected), Bob already
dominates C0, and therefore F , but Alice does not.

� If the diameter of C0 is 2, the graph induced by C0 is a star centered in a vertex c. Since it is assumed that
the graph induced by SF is not a star, C0 is not the only component of the graph induced by SF . Thus, if
Bob does not dominate C0 yet, he claims c or any of its neighbor and dominates the whole graph while Alice
does not.

� If the diameter of C0 is at least 3, there exists a vertex v2 at distance exactly 2 from v0 in the subgraph
induced by C0. Let (v0, v1, v2) be the path from v0 to v2. Bob can then use a bottom-to-top strategy in the
tree induced by C0 rooted in v0.

– If v1 is labeled by 0, then v2 is labeled by 1. Bob can play a bottom-to-top strategy claiming all the
vertices labeled by 1 except v2. Then he claims v1. At this moment, Bob dominates F but Alice does
not dominate v2.

– If v1 is labeled by 1, Bob plays a bottom-to-top strategy in all branches, finishing by claiming v1. At
this moment, he dominates F but, by construction, Alice does not dominate v2.

Thus, in any case, Bob has a strategy which leads to a Draw position, and thus o((F, {v0}, ∅), B) = D.

Lemma 5.12. If F is standard and o(F ) = A, then there exists a vertex v0 ∈MF such that o((F, {v0}, ∅), B) = A.
Moreover, v0 satisfies:

1. the subgraph of F induced by SF ∪ {v0} is a tree ;

2. in the labeling of F rooted in v0, each vertex v labeled by 1 has a unique child.

Proof. As it is supposed that o(F,A) = A, there exists a vertex v0 ∈ V (F ) such that o((F, {v0}, ∅), B) = A. From
Lemma 5.11, we have v0 ∈ MF ∪ LF . From Lemma 2.3, it can be assumed that v0 /∈ LF . Indeed, if l ∈ LF and
m ∈MF is its private neighbor, N [l] ⊂ N [m].

Thus, we can assume that v0 ∈MF . We now prove the two other properties.
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1. Since F has no cherry, there exists a unique vertex v−1 ∈ LF which is a neighbor of v0. Assume that the
graph induced by SF ∪ {v0} is not connected. We prove that, under this hypothesis, o((F, {v0}, ∅), B) = D,
which gives the result by contraposition. First, using Lemma 3.9, we have o((F, {v0}, ∅), B) = o((F, {v0} ∪
LF \ {v−1},MF \ {v0}), B).

With the same arguments as in the previous lemma, the implementation of a bottom-to-top strategy on each
component of the graph induced by SF ∪{v0} not containing v0 leads to either a double trap (which gives the
result), or a position where each of these components is dominated by Bob but not by Alice. Now, focus on
the component C containing v0. Bob then plays a bottom-to-top strategy on the tree induced by C rooted
in v0. Then Bob claims v−1 after all the vertices labeled by 1 have been claimed. By this way, if no trap has
appeared before, Bob dominates the whole forest F , while Alice does not totally dominate F . This gives the
result.

2. For the second item, consider the labeling of F (that is actually a tree) rooted in v0. First note that all the
leaves of SF are labeled by 0. Thus, each vertex labeled by 1 has at least one child. Assume that there exists
a vertex v labeled by 1 with has at least two children.

� If two children v′ and v” of v are labeled by 0, Bob can then use a bottom-to-top strategy until v is
claimed. When he claims v, he creates a double A-trap in v′ and v” and thus obtains a Draw.

� Otherwise, there exists one child v′ of v labeled by 0 and the other one, v′′ labeled by 1. Then Bob
uses a bottom-to-top strategy but without claiming v”, until all the vertices labeled by 1 (except v” are
claimed). All replies of Alice remain forced. After this is done, Bob claims v−1, the neighbor of v0 which
belongs to LF , and then dominates the whole graph while Alice does not dominate v”, which ensures
that o((T, {v0}, ∅), B) = D.

As a consequence of this result, if F is standard and winning for Alice, then F is necessarily a tree.

5.6 Splitting the graph

By Lemma 5.12, it can be assumed that Alice first claims a vertex v0 ∈MF that is connected to all the components
of SF (note that if SF is not connected, there is at most one such vertex). It can also be assumed that each vertex
labeled by 1 in F rooted in v0 has degree exactly 2. In all the remaining, v0 will denote this first claim of Alice.
Let v−1 be the leaf connected to v0. After this first move, it can be assumed, using Lemma 3.9, that Bob will
claim all the other vertices of MF one by one. At each time, Alice must answer to the corresponding leaf in LF .
After this step, the free vertices are the vertices in SF with the vertex v−1. Formally, the obtained position is
P = (F,LF \ {v−1} ∪ {v0},MF \ {v0}) and we have o(F ) = o(P,B). In that follows, we will split the graph into
several components defined from the connected components of the skeleton.

Definition 5.13. For a connected component C of SF , let T be the connected component of F \ {v0} that contains
C. The position PC is defined as the position induced by T ∪{v0, v′0} in the position P = (F,LF \{v−1}∪{v0},MF ∪
{v′0} \ {v0}), where v′0 is an additional leaf connected to v0 and claimed by Bob.

Figure 6 illustrates the two positions PC and PC′ derived from the forest F of Figure 5 when played on v0.
Lemma 5.14 shows that this splitting (with an additional [AoA] position) yields to an equivalent position.

Lemma 5.14. The position P = (F,LF \ {v−1} ∪ {v0},MF \ {v0}) is equivalent to the position ⋃
C∈CC(SF )

PC

 ∪ [AoA]

where CC(SF ) denotes the set of connected components of SF .

Proof. Let P ′ be the position (
⋃

C∈CC(SF ) PC) ∪ [AoA]. Note that the unclaimed vertices are in a one-to-one

correspondence in the two positions (v−1 is corresponding to the unclaimed vertex of [AoA]). By Observation 2.2,
we just need to prove that P and P ′ have the same winning sets for both players.

A set S of unclaimed vertices is winning for Alice in P and in P ′ if and only if it is dominating all the vertices
of SF except the ones connected to (a copy of) v0, which corresponds to the same condition in both positions. A
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Figure 6: On the left a forest F . On the right, the equivalent position obtained by splitting F in Lemma 5.14. The
component C is a fork whereas C ′ is a P2.
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set S of unclaimed vertices is winning for Bob in P if and only if v−1 ∈ S and S is dominating all the vertices of
SF that are not connected to a vertex of MF \ {v0}. In P ′, S is winning for Bob if it contains the unclaimed vertex
of [AoA] and if it is dominating all the unclaimed vertices not already dominated by Bob, that are exactly all the
vertices of SF not connected to MF \ {v0}. Thus, the winning sets are in bijection and by Observation 2.2, the
positions are equivalent.

Using this decomposition, we now prove that Bob can just focus on a subset of components where he has a
Draw strategy.

Lemma 5.15. Assume there exists a set S of connected components of SF such that o((
⋃

C∈S PC)∪ [AoA], B) = D.
Then o(F ) = D.

Proof. Using Lemma 5.14, it suffices to prove that o((
⋃

C∈CC(SF ) PC)∪ [AoA], B) = D. For each C /∈ S, Bob plays
a bottom-to-top strategy on PC rooted on v0. At each time Alice is forced to answer in the same component C,
and, at the end, Bob dominates the component C. This is successively done for all such components.

Afterward, the remaining position is equivalent to ((
⋃

C∈S PC) ∪ [AoA], B) which is Draw by hypothesis.

5.7 Favorable skeletons for Alice

In this subsection, we give some necessary and sufficient conditions for a component C to be winning for Alice.

Definition 5.16. A fork is a star with at least three branches where each is subdivided exactly once.

On Figure 6, the component C is an example of a fork with four branches.

Lemma 5.17. If ((F, {v0}, ∅), B) is A-win, then all the connected components of SF must induce a path or a fork
that is connected to v0 by a leaf.

Proof. Proceeding by contraposition, assume that there exists a component C of SF , which is neither a fork nor a
path connected to v0 by a leaf . We will prove o(PC ∪ [AoA], B) = D, which gives the result using Lemma 5.15.

Since C is not a path connected by a leaf to v0, there exists a vertex c ∈ C of degree at least 3 in the tree induced
by C ∪ {v0}. Let Pa = (c, a1, a2, ...ap) be the path linking c to v0 (ap is adjacent to v0), Pb = (c, b1, b2, ..., bq) be a
path of C of maximal length such that b1 6= a1 and Pc = (c, c1, c2, ..., cr) be another maximal path of SF starting in
c. Note that possibly p = 0, but that q ≥ r ≥ 1. In the labeling of F rooted in v0, the vertex c is necessarily labeled
by 0 since it has degree 3. This implies that both q and r are even since bq and cr, as leaves of C, are labeled by
0. Moreover, all the vertices labeled by 1 have degree 2. This implies that all the vertices of the three paths Pa, Pb

and Pc that are connected to other vertices of F must be labeled by 0. In particular, using Lemma 5.5, it is enough
to prove that there is a Draw strategy when C is reduced to these three paths.

Assume first that q ≥ 4. By Lemma 5.5, it is enough to give a Draw strategy for Bob for q = 4 and r = 2 with
C reduced to the union of the three paths. The first claim of Bob is b2. By Lemma 2.10, Alice should claim either
b1 or b3.

� If Alice replies by claiming b3, then Bob claims c, which forces Alice to claim b1. Then, he successively claims
a2, a4, and so on until ap−1 is dominated by B. Successive replies of Alice are forced: when Bob claims a2i,
Alice necessarily replies in a2i−1. Finally, Bob claims in [AoA] and gets a Draw by dominating before Alice
(Alice does not dominate c1 and c2).

� If Alice replies by claiming b1, then Bob claims c1, which forces Alice to claim c2. Then Bob claims the
unclaimed vertex of [AoA]. Then the position is equivalent to the position ([Aop−1B] ∪ [Bo2B], A). By
Lemma 4.2, this position is equivalent to ([Bo2B], A) which is Draw since Bob already dominates.

Assume now that r = q = 2. As before, it is enough to give a strategy for C restricted to the three paths.

� If p ≥ 5, then Bob claims a3, which enforces Alice to reply either a2 or a4 by Lemma 2.10.

– If Alice claims a4, then Bob successively claims b1, c1 (with forced Alice to claim b2 and c2), and then
a1, which creates two A-traps in a2 and c.
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Figure 7: Example of a tree F such that o(F ) = D but SF is a path. Alice should claim first v0 or v9. If Alice
claims v0, Bob claims the other vertices of MF . Then Bob can win by claiming v2 (Alice should answer v1, v3 or
v4), v6(Alice should answer v5,v7 or v8) and v−1. The case where Alice claims first v9 is similar.

– If Alice replies by a2, then, first, Bob claims, a5, a7, . . . , and so on until ap is dominated by Bob,
replies of Alice being forced on a4, a6, . . . . Second, Bob claims c. If Alice does not answer in the set
{a1, b1, b2, c1, c2}, Bob successively claim b1 creating a A-trap in b2, c1, creating a A-trap in c2 and a1
isolating c. Thus, Alice must claim a vertex in the set {a1, b1, b2, c1, c2}. Then Bob claims the unclaimed
vertex of [AoA] and dominates the whole position before Alice.

� If p = 4, the position can be treated as for p = 5 if Alice replies in a2 or a4. But she can also claim a1. In this
case, Bob claims the unclaimed vertex of [AoA] with the threat to claim c and dominate before Alice. Even if
Alice replies in c, Bob succeeds in dominating before Alice by successively claiming b1, c1 and a2 (Alice will
not dominate a3 during this time).

� If p = 1 or p = 3, then Bob claims c. If Alice claims the unclaimed vertex of [AoA], a2 or a3, then Bob can
claim b1 and c1, forcing Alice to reply by claiming b2 and c2. Then Bob can isolate c by claiming a1. Thus,
Alice should answer by claiming a vertex in {a1, b1, b2, c1, c2}. Then Bob can claim the unclaimed vertex of
[AoA]. If p = 1, he wins. If p = 3, he can dominate in one move by claiming either a2 or a3 whereas Alice
need at least two moves to dominate.

� If p = 2, then we have a fork (since all the other branches of C starting from c must have length 2 and the
vertices adjacent to C are labeled by 1, and thus of degree 2), which is not possible, by hypothesis.

� If p = 0, then Bob claims the unclaimed vertex of [AoA]. Alice needs at least two moves to dominate. If Alice
does not claim c, Bob wins at his second turn by claiming it. If Alice claims c she still need two moves to
dominate. Then Bob can dominate before by claiming b1 and c1.

Lemma 5.17 gives us the possible structures of the connected components of SF to have a position A-win. But
actually, this condition is not sufficient: there are for example trees where SF is a path, but Bob can obtain a Draw
(see for example Figure 7). We need to consider which vertices of SF are already dominated by Bob.

Definition 5.18. Let X,Y,∈ {A,B}, n be a positive integer, and a subset U ⊆ {1, 2, . . . , n}. We denote by
[XonY ]U the position obtained from the bounded path [XonY ] where for each i ∈ U a pendant edge xiyi is added to
the vertex vi, with xi is linked to vi and claimed by Bob, and yi claimed by Alice.

Informally, an [XonY ]U is a bounded path, where some vertices are already dominated by Bob. As an illustration,
if we set that v−1 is claimed by Bob on Figure 7, then we obtain the position [Ao8B]{4}. When U is empty,
[XonY ]U = [XonY ]. If Y = B (respectively X = B), one can assume that n /∈ U (resp. 1 /∈ U). Indeed, vn (resp.
v1) is already dominated by Bob.

Finally, if C is a connected component of SF that is a path connected to v0 by a leaf, then PC is equivalent to
a position [AonB]U , for a fixed n and a fixed U . Indeed, set for U all the integers i such that vi is connected to a
vertex of MF \ {v0}.

The following three observations give natural properties about bounded paths. The first one is about the
existence of a pairing.

Observation 5.19. A position [XonY ]U contains a A-pairing, except if X = Y = B and n is odd.
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Roughly speaking, the next two observations say that it is always better for Alice to play on a bounded path
with the extremities claimed by her, and with fewer vertices dominated by Bob in U .

Observation 5.20. For any integer n and any set U ∈ {1, ..., n}, and any X,∈ {A,B}, we have

o([AonA]U , X) ≥ o([AonB]U , X) ≥ o([BonB]U , X).

Observation 5.21. For any integer n and any sets U ⊆ U ′ ⊆ {1, ..., n}, and each X,Y, Z ∈ {A,B}, we have

o([XonY ]U , Z) ≥ o([XonY ]U
′
, Z)

.

In the next definition, we define the components C that are favorable for Alice, and among them, the ones that
are strongly and weakly favorable. Theorem 5.23 will justify this terminology.

Definition 5.22. Let v0 be the first move of Alice, satisfying Lemma 5.12. Let C be a connected component of SF .
We say that C is favorable for Alice if it satisfies one of the following case:

1. C is a path connected to v0 by a leaf, i.e, PC = [AonB]U with U ⊆ {1, 2, . . . , n − 1}, and at least one of the
following cases holds:

(a) n ∈ {1, 2} and U = ∅;
(b) n = 3 and U ⊆ {1} or U ⊆ {2};
(c) n ≥ 4 and U ⊆ {2, 3, n− 2};
(d) n ≥ 9, n is odd and U ⊆ {2, 5, n− 2};
(e) n ∈ {9, 11} and {3, 5} ⊆ U ⊆ {2, 3, 5, n− 2};

2. C induces a fork and the only vertices of C that can be connected to MF are the center c, the leaves except
the one connected to v0, and eventually the neighbor of c between c and v0.

Moreover, if C belongs to the cases (1.a), (1.b) or (1.c), we say that it is strongly favorable. On the opposite,
if C belongs to the cases (1.e) or (2), we say that it is weakly favorable.3

We can now state the final theorem that ends the characterization of trees. This theorem is actually technical
to prove, and thus the proof is postponed to Section 6.

Theorem 5.23. Let F be a tree and v0 ∈MF be a first move of Alice that satisfies the condition of Lemma 5.12.
The position ((F, {v0}, ∅), B) is A-win if and only if all the components of SF are favorable to Alice and at most
one of them is weakly favorable.

5.8 Proof of Theorem 5.1

We now have all the ingredients to complete the study of forests and prove Theorem 5.1. We summarize the
algorithm into the diagram of Figure 8.

Proof of Theorem 5.1. Let F be a forest. If F has an isolated vertex v0, then by Lemma 5.2, o(F ) = A if and
only if F \ {v0} has a perfect matching. If F has an isolated edge e = uv, then by Lemma 5.3, F has the same
outcome as F \ {u, v}. Thus, we can assume that all the connected components of F have at least three vertices.
If F has two cherries, then o(F ) = D by Lemma 5.6. If it has one cherry (c, l, l′), then by Lemma 5.7, o(F ) = A if
and only if there is a matching in F \ {c} that covers V (F ) \N [c]. Thus, we can assume that F has no cherry. If
SF = ∅, then o(F ) = A (Lemma 5.8). Otherwise, one can remove components of F that have an empty skeleton
(Lemma 5.9). If SF induces a star of center c such that c is not adjacent to MF , then o(F ) = A (Lemma 5.10).
Otherwise, F is standard. If F is not connected, then o(F ) = D. If SF is not connected, Alice should claim the
vertex v0 of MF that connects SF (Lemma 5.12) if it exists (otherwise o(F ) = D). Then Alice wins if and only if
all the components of SF are favorable to her and at most one is weakly favorable (Theorem 5.23). Assume now

3If C corresponds to the case (1.d), it is neither strongly nor weakly favorable.
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Figure 8: The decision tree to compute the outcome of any forest.

22



that SF is connected. Let C be the tree induced by SF . Alice should claim in MF and connected to a leaf of C
(Lemma 5.12). If there exists v0 ∈ MF that is adjacent to a leaf of C such that PC is favorable to Alice, then
o(F ) = A, otherwise o(F ) = D (Theorem 5.23).

In terms of complexity, almost all the operations described in the algorithm are elementary (finding a matching in
a forest, identifying the isolated vertices, edges and cherries, computing LF , MF and SF , deciding if SF is connected
or a star) and can be done in linear time by examining the tree from the leaves. When SF is not connected, there
exists at most one v0 that can connect them and this is easy to check. If SF is connected and thus reduce to a
single component, one have to check all the possible v0 that could make PSF

favorable. If SF induces a path, there
are at most two possibilities for v0 since it should be connected to an extremity of the path. If SF induces a fork
(easy to check) of center c, to be favorable, there must be at most one neighbor of c that is adjacent to MF . If there
is exactly one neighbor a1 of c adjacent to MF , then the leaf of SF adjacent to a1 must have only one neighbor in
MF and this neighbor will be the vertex v0. If all the neighbors at distance 1 of c in SF are not adjacent to vertices
of MF , then there must be at least one leaf of SF adjacent to exactly one vertex of MF . This vertex of MF would
be v0. In all the other cases, PSF

cannot be favorable. Thus, finding v0 can be done in linear time. Finally, once
v0 is fixed, deciding whether a component is favorable or not can also be done in linear time (because it is a fork
or a path with pending edges).

6 Proof of Theorem 5.23

We here prove Theorem 5.23 by considering successively both directions of the equivalence. The next subsection
proves that the favorable components are necessary conditions. The sufficient condition is then proved in Subsection
6.2.

6.1 The direct part

In this subsection, we assume that o((F, {v0}, ∅), B) = A and we prove that all the components are favorable and
at most one is weakly favorable. We already know by Lemma 5.17 that all the connected components of SF are
paths or forks. In Lemma 6.1, we prove that if a component is a fork, it should satisfy the conditions of Point 2 in
Definition 5.22. In Lemma 6.2, we prove that if a component is a path, it should satisfy the conditions of Point 1
in Definition 5.22. Finally, in Lemma 6.6, we prove that if two components are weakly favorable, then the outcome
is D.

Lemma 6.1. Assume that o((F, {v0}, ∅), B)) = A. Let C be a connected component of SF which induces a fork.
Then C is favorable.

Proof. Proceeding by contraposition, we assume that C is not favorable. We will prove that o([AoA]∪ PC , B) = D
which gives the result using Lemma 5.15.

Let c denotes the center of the fork. Let a1 and a2 be the two vertices on the path between c and v0 with a2
adjacent to v0, and v−1 be the unclaimed vertex of [AoA]. Since C is not favorable, it means that either a2 or a
neighbor of c but not a1 is dominated by Bob in PC . We consider the two cases.

� If a2 is already dominated by Bob, then Bob claims c.

– If Alice replies in v−1 then Bob can claim all the neighbors of c distinct from a1 and Alice is forced to
answer the leaf of C adjacent to the vertex claimed by Bob. Afterward, Bob claims a1, isolating the
vertex c, which ensures that Alice will not dominate the graph.

– otherwise, Bob claims v−1 and, therefore, dominates the graph before Alice.

� If Bob already dominates a neighbor b1 of c (with b1 6= a1), then Bob claims all the other neighbors of c
distinct from a1 and b1, forcing Alice to claim the leaves adjacent to them. Then Bob claims the unclaimed
vertex of [AoA]. At this point, he needs only one move to dominate the graph that can be either a1 or a2,
whereas Alice still need to dominate a1 and b2, which cannot be dominated in a single move. Thus, Bob will
dominate before Alice.

Lemma 6.2. Assume that o((F, {v0}, ∅, B)) = A, and let C be a connected component of SF which induces a path.
Then C is favorable.

23



Proof. Let PC = [AonB]U . We proceed by contraposition. Assume that C is not favorable. We will prove that
o([AoA]∪PC , B) = D, which gives the result by using Lemma 5.15. We split the proof into a few claims. We denote
by v−1 the unclaimed vertex of [AoA] and by v1, ..., vn the unclaimed vertices of PC . We consider for the labeling
that PC is rooted in v0.

Claim 6.3. If n is even and 5 ∈ U , then o([AoA] ∪ PC , B) = D.

Proof of the claim. When n = 6, Bob claims v3, which enforces Alice to reply in v4 (if Alice replies in v2, then
Bob claims v5 and create a double trap). Then Bob successively claims v1 and v−1 and, therefore dominates before
Alice.

If n ≥ 8, v7 is labeled by 1. By Lemma 5.5, the position can be reduced to the case n = 6, and thus is also
Draw. �

Claim 6.4. If n ≥ 4 and if there exists i ∈ U such that i /∈ {2, 3, 5, n− 2}, then o([AoA] ∪ PC , B) = D.

Proof of the claim. Assume first that i = 1.

� If n ∈ {4, 5}, then Bob first claims v3, (which forces Alice to answer v4 or v2). Then Bob claims v−1 and
dominates before Alice (who does not dominate v2 or v4).

� If n ≥ 6, either v5 or v6 is labelled by 1. Then as before, we can apply Lemma 5.5 to reduce to the case
n ∈ {4, 5}.

We can now assume that i ≥ 4. There are two cases, according to the parity of the value n − i. In each case,
Lemma 5.5 is used.

� If n− i is odd,

– If n− i = 1, that is i = n− 1, then Bob claims vn−3 (this is possible since 4 ≤ i < n),

* For n ≥ 6, Alice necessarily replies in vn−2. Indeed, by Lemma 2.10, Alice should answer in
vn−4 or vn−2, but if she claims vn−4 then a component [Bo2k+1B] will appear which is Draw by
Lemma 4.4. After Alice has claimed vn−2, the resulting position P is then equivalent to a position
[AoA] ∪ [Aon−4B]U

′ ∪ [Ao2B]{1}, for some set U ′. We thus have

o(P,B) ≤ o([AoA] ∪ ([Aon−4B] ∪ [Ao2B]{1}), B) = o([AoA] ∪ [Ao2B]{1}, B) = D.

The first equality comes from Lemma 4.2 and the second one is obvious since Bob can dominate in
one move. This gives the desired result in this case.

* For n = 5, Alice can also reply in vn−1. In such a situation, Bob claims v−1 and directly dominates
before Alice. If Alice claims vn−2 we are in the same situation as the previous case.

– If n − i ≥ 3, then vi+2 is labeled by 1 and Lemma 5.5 applies to reduce the instance to the case where
i = n− 1.

� Assume now that n − i is even. Since i /∈ {n − 2, n}, we have n − i ≥ 4. If n − i ≥ 6, then vi+5 is labeled
by 1, and Lemma 5.5 applies to reduce the instance to the case where n − i = 4. Thus, we can assume that
i = n− 4. Furthermore, since i /∈ {1, 2, 3, 5}, we can assume that n ≥ 8 and n 6= 9.

– If n ≥ 12, Bob claims vn−9, which, as before, enforces Alice to reply in vn−8 to avoid a component
[Bo2k+1B]. Afterward, Bob successively claims vn−11, vn−13, . . . and so on until v1 is dominated by Bob,
the answers of Alice being forced.

Bob now claims vn−6, which enforces Alice to reply vn−7, vn−5 or vn−4. Then Bob claims vn−2, which
enforces Alice to reply vn−1, or vn−3. In the resulting position, Bob dominates each vertex i , 1 ≤ i ≤ n,
while Alice does not. Indeed, there exists a vertex i ≥ n − 6, which is not dominated by Alice, as she
has claimed only two moves that can dominate vertices from vi for n − 6 ≤ i ≤ n, and each of them
dominates at most three vertices. Finally, Bob claims v−1 and dominates before Alice.

24



– if n = 11, Bob claims v9. By Lemma 2.10, Alice should answer in {v8, v10}. If Alice claims v8, Bob claims
v5. Alice has to claim either v4 or v6. Then, Bob claims v−1. Alice now needs to claim at least two more
vertices to dominate: one to dominate {v4, v6} and one to dominate v10, while Bob will dominate with
his next claim in {v1, v2}.
If Alice claims v10, Bob also claims v5. Alice has to claim v6, otherwise v7 creates a double trap. Now
Bob claims v−1 and will dominate with his next claim in {v1, v2}, while Alice needs two vertices to
dominate.

– if n = 10 , then Bob successively claims v8, v4. As, by Lemma 2.10, Alice has to claim a vertex adjacent
to the vertex that Bob has claimed, her moves are almost forced. If she has claimed v9 and v3, Bob
claims v6 and creates two traps in v5 and v7. Otherwise, he claims v−1 and dominates before Alice by a
final claim in {v1, v2}.

– if n = 8, then Bob successively claims v6, v2, v−1 and dominates before Alice. Indeed, she has only
claimed two moves to dominate vertices between v2 and v7, and the only dominating set of size two on
this path contains v6.

�

Claim 6.5. Assume that n ≥ 13, n is odd and {3, 5} ⊆ U , then o([AoA] ∪ PC , B) = D.

Proof of the claim. It suffices to prove it for n = 13, since, for n > 13, Lemma 5.5 applies. Bob claims v11, which
enforces Alice to reply in v10 (if Alice replies in v12, then Claim 6.3 applies). Then, Bob claims v8.

� If Alice replies in v7, then Bob successively claims v5 and v−1. Afterward, Bob finally succeeds in dominating
before Alice by claiming either v1 or v2.

� If Alice replies in v6, then Bob claims v2, which enforces Alice to claim v1,v3, or v4. Then Bob claims v−1.
At this step, Bob threatens to claims v5 and dominate before Alice. Thus, the reply of Alice is necessarily v5.
Then, Bob claims v7, which enforces the reply v9 from Alice. Finally, Bob claims either v3 or v4 (one of these
vertices is free) and dominates before Alice.

�

We can now finish the proof of the lemma. Since C is not favorable, we can split the cases according to n as
follows:

� If n = 1, then the result is obvious, since there is no unfavorable component.

� If n = 2 and 1 ∈ U , then Bob claims v−1 and then dominates the graph before Alice, which is a contradiction.

� If n = 3 and 1, 2 ∈ U , then Bob claims v−1 and then dominates the graph before Alice, which is a contradiction

� If n ∈ {4, 5, 6, 7} then Claim 6.3 and Claim 6.4 give the result.

� If n ≥ 8 and n is even, the combination of Claims 6.3 and 6.4 gives that U ⊆ {2, 3, n− 2}.

� If n is odd and n ≥ 13, then the combination of Claims 6.4 and 6.5 gives that either U ⊆ {2, 3, n − 2} or
U ⊆ {2, 5, n− 2}, which gives the result .

� If n ∈ {9, 11}, then Claim 6.4 allows to conclude.

Lemma 6.6. Assume there are two connected components C,C ′ of SF that are weakly favorable.
Then o(F, {v0}, ∅, B)) = D.

Proof. Assume first that both C and C ′ both induce forks. We prove the result for forks with exactly three branches.
Indeed, if Bob has a strategy in this case, he will have a strategy for forks with more branches using Lemma 5.5
since all the neighbors of c are labeled by 1. Let c denote the center of the fork induced by C, a1, b1, c1 denote the
neighbors of c, in such a way that such that a1 is between c and v0, and a2, b2, c2 respectively denote the neighbors
of a1, b1, c1 different from c . We define in the same way c′, a′1, b

′
1, c
′
1, a
′
2, b
′
2 and c′2 for C ′. Bob start by claiming

v−1. By symmetry, we can suppose that Alice replies one vertex among {c, a1, a2, b1, b2}.
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� If Alice replies in c , then Bob successively claims b1 and c1 (the replies of Alice are forced). Now Bob claims
c′, then Bob needs two more moves to dominate (one in (a1, a2) and one in (a′1, a

′
2)) whereas Alice needs three

moves.

� If Alice replies in a1, then Bob claims a2.

– If Alice replies in a′1, then Bob claims a′2. At this step, Alice needs at least four moves to dominate while
Bob can dominate in three moves in a lot of manners, with a center of a fork, and two vertices of the
other fork. Alice cannot avoid Bob to dominate using three moves, and therefore, before Alice.

– If Alice replies in c, then Bob successively claims b1 and c1. After the forced replies of Alice, Bob claims
in c′ and dominates before Alice with one last move in (a′1, a

′
2) while Alice cannot dominate in one move.

The case where Alice replies in c′ can be treated symmetrically.

– If Alice replies in b1, then Bob claims successively c1 and c′ and dominates before Alice by claiming one
vertex in (c, b2).

– If Alice replies in b′1, then Bob claims c′. At this step, Alice needs at least four moves to dominate while
Bob can dominate in three moves by a pairing strategy with the pairs (a′1, a

′
2), (b1, b2) and (c1, c2).

� If Alice replies in a2, then Bob claims a1, and afterward, all is similar to the previous case.

� If Alice replies in b1 or b2, then Bob claims c′. Bob can now dominate in three moves by pairing (a′1, a
′
2), (a1, a2)

and (c, c1) while Alice needs at least four moves.

Assume now that both C and C ′ induce paths. Since they satisfy the conditions 1.e of Definition 5.22, their
length is 9 or 11. Bob first reduce the paths to length 9 if needed so that both paths have length 9. Let (v1, v2, ...., v9)
(respectively (v′1, v

′
2, ...., v

′
9)) the path induced by C (resp. C ′), with v1 and v′1 connected to v0. Since the paths are

weakly favorable, Bob already dominates v3, v5, v′3 and v′5.
First, Bob successively claims v7 and v′7. By Lemma 2.10, Alice should answer first v6 or v8 and then v′6 or v′8.

We have three cases according to the replies of Alice.

� If the replies are v8 and v′8, then Bob continues by claiming v3 and v′3 which enforces Alice to reply in v4
and v′4 (if, for instance, Alice does not reply v4 , then Bob claims v5 and forbids Alice to dominate at the
following claim). Afterward, Bob claims v−1, and achieves to dominate before Alice as he only needs one
move in (v1, v2) and one in (v′1, v

′
2) while Alice needs to dominate v2, v

′
2, v6 and v′6, each of them requiring a

different move.

� If the replies are v6 and v′8 (note that v8 and v′6 is symmetric), then Bob continues by claiming v′3 which
enforces Alice to reply in v′4, Afterward, Bob claims v−1. Now Bob has a paired dominating set of size 3
{(v1, v2), (v′1, v

′
2), (v3, v4)}, but Alice needs to dominate v2, v8, v

′
2 and v′6, each of them requiring a different

move. Thus, Bob can dominate first.

� If the replies are v6 and v′6, Bob claims v−1. At this time Bob and Alice need four moves to dominate, but
each set of four moves for Alice contains the pair {v3, v′3}. Thus, after the reply of Alice, Bob can claim one
element of the pair {v3, v′3} and, by this way, dominate before Alice.

Assume now that C induces a path and C ′ induces a fork. As before, C ′ can be assumed to have exactly three
branches and C nine vertices. We denote the vertices of the fork and the path as in the previous cases.

First, Bob claim v7. Once again, Alice has to claim either v6 or v8, otherwise Bob ensure a draw by Lemma 2.10
There are two cases according to the reply of Alice.

� If Alice replies v8, then Bob successively claims b1, c1 and a1 (replies of Alice being forced in b2, c2 and c).
Afterward, Bob claims v3. Alice has to claim either v2 or v5 by Lemma 2.10. If she claims v2, Bob claims v5
and creates two traps. If she claims v4, Bob claims v−1. Now Bob only needs one move in either v1 or v2 to
dominate while Alice needs at least two, as she does not dominate v2 nor v6.

� If Alice replies v6, then Bob claims v−1
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– If Alice replies c, then Bob successively claims b1, c1 (replies of Alice are again forced in b2 and c2) and
then v3. At this time, Bob needs two moves to dominate (one in v1, v2 and one in (a1, a2)), while Alice
needs to dominate v2, v4 and v8, and each of them requires a different move. Therefore, Bob dominates
before Alice by this way.

– If Alice replies v3, then Bob claims c. Now (a1, a2), (v1, v2) and (v4, v5) is a paired dominating set for
Bob of size three, while Alice needs to dominated a2, b1, c1 and v8, each of these vertices requiring a
different move.

– If Alice replies v1 or v2, by Lemma 2.3, as N [v1] \N [Vt] ⊂ N [v2] \N [Vt] for t ∈ {A,B}, we can suppose,
she plays v2. Then Bob successively claims b1, c1, a1 (replies are forced in b2, c2, c respectively) and then
v1. At this time Bob needs one move to dominate in (v3, v4), while Alice needs to dominate v4 and v8
which she cannot dominate in a single move.

– If Alice replies a1 or a2, by Lemma 2.3, as N [a2] \N [Vt] ⊂ N [a1] \N [Vt] for t ∈ {A,B}, we can suppose
she claims a1. Bob claims a2.

* If Alice replies c, then Bob successively claims b1, c1, (replies are forced) and v3. At this time Bob
can dominate in two moves, one in (v1, v2) and one in (v4, v5) while Alice cannot, as she still has to
dominate v2, v4 and v8.

* If Alice replies v1 or v2, by Lemma 2.3, as N [v1] \ N [Vt] ⊂ N [v2] \ N [Vt] for t ∈ {A,B}, we can
suppose she replies v2. Then Bob successively claims b1, c1, (replies are forced for Alice) and v1. At
this time Bob needs one move in (v3, v4) to dominate, while Alice needs two moves to dominate v4
and v8.

* If Alice replies elsewhere, then Bob claims c. At this time Bob needs two moves to dominate,one
in (v1, v2) and one in (v3, v4, v5). By hypothesis, at least one will be available. Alice needs at least
three moves to dominate, as she does not dominate at least three of the four vertices v3, v8, b1 and
c1, each of them requiring a different move.

– If Alice replies elsewhere, then Bob claims c. At this time Bob needs three moves to dominate,one in
(v1, v2), one in (a1, a2) and one in (v3, v4, v5). By hypothesis, at least one will be available in each of
these sets at any moment. Alice needs at least four moves to dominate, as she does not dominate at
least four of the five vertices a1, b1, c1, v3 and v8, each of them requiring a different move.

6.2 The converse part

In this final subsection, we prove the reverse part of Theorem 5.23: if all the connected components of SF are
favorable and at most one is weakly favorable, then Alice has a winning strategy. This part is naturally harder
than the other one, as Alice cannot force Bob to answer where she would like to. Hence, all the possible answers of
Bob must be considered, which was not the case previously, as Alice was often forced to answer locally to a move
of Bob.

We first prove in Subsection 6.2.1, that we can remove the strongly favorable components (i.e. corresponding to
the cases 1.a to 1.c of Definition 5.22). In Subsection 6.2.2, we consider only one weakly favorable component and
give a strategy for Alice in this case. Finally, in Subsection 6.2.3, we define a class of positions C1 that contains the
starting positions (without strongly favorable components) and for which Alice can ensure either to win or to stay
in this class after a move of Bob. By induction, this will imply that Alice has a winning strategy in this class. Note
that one can always consider U to be maximal in Definition 5.22. Indeed, if Alice have a strategy for U maximal,
she will have a strategy with any subset of U .

6.2.1 Removing strongly favorable components

Lemma 6.7. Let Q be a position where Bob is not dominating. Consider a strongly favorable component [AonB]U .
We have

o(Q,B) ≤ o(Q ∪ [AonB]U , B).

In other words, adding a strongly favorable component can only be favorable to Alice.

Proof. First note that since [AonB]U is strongly favorable, we have U ⊆ {2, 3, n− 2}.
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We prove by induction of the number p of unclaimed vertices of Q ∪ [AonB]U that if o(Q,B) = A, then
o(Q ∪ [AonB]U , B) = A. Note that p ≥ n Let v1, v2, ....vn denotes the sequence of unclaimed vertices of [AonB]U .
First we can assume that n > 1. Indeed, if n = 1, then U = ∅ and by Observation 2.4, o(Q∪ [AoB]U , B) = o(Q,B).

Thus, we can assume that p ≥ 2 and n ≥ 2. If p = n = 2, Q contains no unclaimed vertices. Since o(Q,B) = A,
Alice dominates Q while Bob does not. Thus, in Q ∪ [Ao2B]U Bob claims v1 or v2, and Alice answers by claiming
the other one. By this way, Alice dominates Q∪ [AonB]U while Bob does not. Thus, the resulting position is A-win.

Consider now that p ≥ 3. Let y be the vertex claimed by Bob. Assume first that y is an unclaimed vertex of Q.
Note that Bob cannot dominate Q in one move unless Alice already does, otherwise we would have o(Q,B) = D.

� If Q is not dominated by Alice yet, then Alice claims x according to a winning strategy in Q. Thus, by
definition, o(Qx,y, B) = A and by induction hypothesis o(Qx,y ∪ [AonB]U , B) = A.

� if G is already dominated by Alice:

– if 2 ≤ n ≤ 4, then Alice claims v3 and dominates the whole graph before Bob;

– if n = 5, the Alice claims v3. We have:

o((Q ∪ [AonB]U )v3,y, B) ≥ o([AonB]U )v3,y, B) ≥ o([Ao2A]{2} ∪ [Ao2B]), B) = A,

. where the first inequality comes from the fact that Q is dominated by Alice, the second inequality
comes from Lemma 2.6 and from the fact that U ⊆ {2, 3}, which is strongly favorable according to
Definition 5.22.1.a, and the final equality is obtained by induction hypothesis, using Q′ = [Ao2A]{2}.

– if n = 6, then Alice claims v3. We have:

o((Q ∪ [AonB]U )v3,y, B) ≥ o([AonB]U )v3,y, B) ≥ o([Ao2A]{2} ∪ [Ao3B]){1}, B) = A,

where the first inequality comes from the fact that Q is dominated by Alice, the second inequality comes
from Lemma 2.6 and from the fact that U ⊆ {2, 3, n − 2}, which is strongly favorable according to
Definition 5.22.1.b, and the final equality is obtained by induction hypothesis, using Q′ = [Ao2A]{2}.

– if n ≥ 7, then Alice claims v3. We have:

o((Q ∪ [AonB]U )v3,y, B) ≥ o([AonB]Uv3,y, B) ≥ o([Ao2A]{2} ∪ [Aon−3B]{n−5}, B) = A,

where the first inequality comes from the fact that Q is dominated by Alice, the second inequality comes
from Lemma 2.6 and from the fact that U ⊆ {2, 3, n − 2}, which is strongly favorable according to
Definition 5.22.1.c, and the final equality is obtained by induction hypothesis, using Q′ = [Ao2A]{2} .

Assume now that Bob claimed a vertex vi of [AonB]U .

� If 2 ≤ i ≤ n− 1, then Alice claims vi+1. We have

o((Q ∪ [AonB]U )vi,vi+1
, B) = o(Q ∪ [Aoi−1B]{2,3} ∪ [Aon−i−1B]{n−i−3}, B) = A,

where the first equality comes from Lemma 2.6 and the inequality comes from two applications of the induction
hypothesis.

� If i = 1, and n ≥ 3 then Alice claims v3 . We have

o((Q ∪ [AonB]U )v3,v1 , B) ≥ o(Q ∪ [Aon−3B]{n−5}, B) = A,

by induction hypothesis.

If n = 2 then Alice claims v2 . We have o((Q ∪ [Ao2B]U )v2,v1 , B) = o(Q,B) = A, from Observation 2.4

� If i = n, then Alice claims vn−1. We have

o((Q ∪ [AonB]U )vn−1,vn , B) ≥ o(Q ∪ [Aon−2B]{2,3}, B) = A,

by induction hypothesis.

Thus, for each claim y of Bob onQ∪[AonB]U , there exists an answer x of Alice such that o((Q∪[AonB]U )x,y, B) =
A. This ensures that o(Q ∪ [AonB]U , B) = A.
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6.2.2 Dealing with the weakly favorable component

Lemma 6.8. Let C be a connected component of SF that is weakly favorable, then o(PC∪[AoA], B) = A. Moreover,
Alice can play to ensure that after each of her move, there is a A-pairing.

Proof. Recall that by Observation 5.19, there is A-pairing in any bounded path [XonY ] except if X = Y = B and
n is odd.

Assume first that C is a fork. Let c be the center of C, a1 the neighbor of c on the path to v0 and a2 the vertex
between a1 and v0. Let b1 be another neighbor of c and b2 the other neighbor of y. We prove the result by induction
on the number of branches in the fork. Note that, by Lemma 2.3, as N [a2] \N [Vt] ⊂ N [a1] \N [Vt] for t ∈ {A,B},
a1 is always a better move than a2, thus we can suppose that it will not be played as next move.

� if Bob claims c, then Alice replies in a1. Since there is a double B-trap and a A-pairing, disjoint from the
traps, Alice wins by Lemma 3.7. Moreover, by following the pairing strategy, she will keep the fact there is
always a A-pairing.

� If Bob claims b1, then Alice replies in b2. If there are strictly more than three branches, the position is still a fork
where the center is dominated by Bob (which is still weakly favorable). The result is true by induction. If there
were exactly three branches, then the actual position is ((PC ∪ [AoA])b2,b1 , B) = ([Ao5B]{2,3} ∪ [AoA], B). By
Lemma 6.7, o((PC ∪ [AoA])b2,b1 , B) ≥ o([AoA], B) = A. Furthermore, there is A-pairing by Observation 5.19.

� If Bob claims b2, then Alice replies in b1. If there are strictly more than three branches, then Alice follows the
strategy with one less branch. Since she dominates one more vertex, it can only be better for her. If there
are exactly three branches, we have as before:

o((PC ∪ [AoA])b1b2 , B) ≥ o([Ao5B]{2,3} ∪ [AoA], B) ≥ o([AoA], B) = A.

� If Bob claims a1 , then Alice replies by claiming c. We have

o((PC ∪ [AoA])c,a1 , B) = o([Ao2B] ∪ ... ∪ [Ao2B] ∪ [AoA], B) ≥ o([AoA], B) = A.

There is a A-pairing by pairing together the two vertices belonging to the same paths.

� If Bob claims v−1, then Alice replies by claiming c. We have

o((PC ∪ [AoA])c,v−1 , B) ≥ o([Ao2A]{2} ∪ [Ao2B] ∪ ... ∪ [Ao2B], B) ≥ o([Ao2A]{2}, B) = A.

Again, there is a A-pairing by pairing together the two vertices belonging to the same paths.

Assume now that PC is a bounded path. Alice will never let components of the form [Bo2`B] to Bob and thus
there will always be a A-pairing. Assume first that PC has length 9. We just need to prove that Alice has a
strategy in the worst case, that is for U = {2, 3, 5, 7}. Thus, let PC = [Ao9B]{2,3,5,7}. Note that, by Lemma 2.3, as
N [v1] \N [Vt] ⊂ N [v2] \N [Vt] for t ∈ {A,B}, v2 is always a better move than v1, thus we can suppose that it will
not be played as next move.

� If Bob claims v1, then Alice replies in v3. We have

o(([Ao9B]{2,3,5,7})v3,v1 ∪ [AoA]), B) ≥ o([Ao6B]{2,4} ∪ [AoA], B) ≥ o([AoA], B) = A,

where the last inequality comes from Lemma 6.7.

� If Bob claims v3, then Alice replies in v2. Then o((PC ∪ [AoA])w2,w3 , B) = A since there are two B-traps and
a A-pairing.

� If Bob claims vi, 4 ≤ i ≤ 8, then Alice replies in vi+1. We have

o(([Ao9B]{2,3,5,7})vi+1,vi∪[AoA], B) = o([Aoi−1B]{2,3,5,7}∩{1,...i−2}∪[Ao9−i−1B]7−i−1∪[AoA], B) ≥ o([AoA], B) = A,

where the last inequality comes from two applications of Lemma 6.7 (since both created paths satisfy hy-
potheses of Lemma 6.7 ).
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� If Bob claims v9 , then Alice replies in v8. We have

o(([Ao9B]{2,3,5,7})v8,v9∪[AoA], B) ≥ o([Ao7A]{2,3,5,7}∪[AoA], B) ≥ o([Ao7B]{2,3,5}∪[AoA], B) ≥ o([AoA], B) = A,

where the last inequality comes from two applications of Lemma 6.7.

� If Bob claims v−1, then Alice replies in v3. We have

o(([Ao9B]{2,3,5,7} ∪ [AoA])v3,v−1
, B) ≥ o([Ao6B]{2,4} ∪ [Ao2A], B) ≥ o([Ao2A], B) = A,

where the last inequality comes from Lemma 6.7.

Assume now that PC has length 11. As before, we can assume that PC = [Ao11B]{2,3,5,9}.

� If Bob claims vi, 1 ≤ i ≤ 8, then it can be done like for a path of length 9.

� If Bob claims v9, then Alice replies in v8,

– If now Bob claims v3, then Alice replies in v2, creating two B-traps. Thus o(Qv2,v3 , B) = A, by
Lemma 3.7,

– If now Bob claims v5, then Alice replies in v6, creating two B-traps. Thus o(Qv6,v5 , B) = A, by Lemma 3.7

– If now Bob claims v10 (or v11) , then Alice replies in v11 (or v11). The resulting position is equivalent to
[Ao7A]{2,3,5} ∪ [AoA], and, from Lemma 6.7,

o([Ao7A]{2,3,5} ∪ [AoA], B) ≥ o([AoA], B) = A.

.

– If now Bob claims vi , with i ∈ {−1, 1, 2, 4}, then Alice replies in v3. Afterward Alice can dominate
with two more claims, one in {v5, v6}, one in {v10, v11}, whatever the strategy of Bob; therefore Alice
dominates before Bob

– If now Bob claims vi , with i ∈ {6, 7}, then Alice replies in v5. Afterward Alice can dominate with two
more claims, one in {v2, v3}, one in {v10, v11}, whatever the strategy of Bob; therefore Alice dominates
before Bob.

� if Bob claims in v10, then Alice replies in v11, which reduces the problem to the previous case with 9 vertices.

� If Bob claims v11, then Alice replies in v10. The resulting position is equivalent to to [Ao9A]{2,3,5,9} ∪ [AoA],
and by Observation 5.20, we have

o([Ao9A]{2,3,5,9} ∪ [AoA], B) ≥ o([Ao9B]{2,3,5} ∪ [AoA], B) = A,

as seen before.

� If Bob claims v−1, then Alice replies in v3. We have

o(([Ao11B]{2,3,5,9} ∪ [AoA])v3,v−1
, B) ≥ o([Ao8B]{2,6} ∪ [Ao2A], B) ≥ o([Ao2A], B) = A,

where the last inequality comes from Lemma 6.7.

6.2.3 A stable class of positions

In order to define our stable class C1, we first define the class C0, that informally corresponds to the positions derived
from a weakly favorable position when Alice follows a winning strategy.

Definition 6.9 (C0). The class C0 is defined recursively as follows. A position P is an element of C0 if:

� P = PC where C is a weakly favorable component;

� there exists P ′ ∈ C0, with two unclaimed vertices x and y, such that P = P ′x,y and o(P ∪ [AoA], B) = A.
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Next corollary is a direct application of Lemma 6.8.

Corollary 6.10. For each P ∈ C0, we have o(P ∪ [AoA], B) = A.

We can now define the stable class of positions C1

Definition 6.11 (C1). A position P belongs to the class C1 if P is the union of the following positions:

1. at most one position in C0.

2. a union of positions of the type [AonB]{2,5,n−2} n ≥ 9, n odd.

3. a union of k positions of the type [Bo2tB]{2t−2}, t ≥ 1,

4. a union of k′ positions of the type [AonA]{2,5}, with k′ ≥ k and n ≥ 1.

Remark 6.12. By definition, each position formed by at most one weakly favorable position and some positions of
the alternative 1.d of Definition 5.22 is an element of C1.

Next corollary is a direct application of Lemma 6.8 and Observation 5.19.

Corollary 6.13. For each P ∈ C1, P admits an A-pairing.

We will now prove that the class C1 (with a trap [AoA] adjoined) is either stable after Alice’s answer to Bob’s
claim, or directly winning for Alice. We will consider the two cases according to whether Bob claims the unclaimed
vertex v−1 of [AoA] or not. The first case where Bob does not claim v−1 is proved by Lemma 6.15 that requires
Claim 6.14. The second case is when Bob claims v−1 and is solved by Lemma 6.17 that requires Claim 6.16 as a
particular case.

Claim 6.14. Let Q be any position, and t be a positive integer. Let (w1, w2, ..., w2t) be the unclaimed vertices of
[Bo2tB]{2t−2}. For each wi, there exists wj 6= wi and 0 ≤ t′ < t such that

o(Q ∪ [Bo2t
′
B]{2t

′−2}, B) ≤ o(Q ∪ [Bo2tB]{2t−2}wj ,wi
, B)

(with the convention that [Bo0B]{−2} is empty).

The idea behind this claim is that if a position contains a bounded path [Bo2tB]{2t−2} and Bob claims a vertex
in it, then Alice can reply in the same bounded path, preserving the global structure of the position.

Proof. We have three cases.

� If i = 2t then Alice claims w2t−1, using Observations 5.20 and 5.21, we have

o(Q∪([Bo2tB]{2t−2})w2t−1,w2t , B) = o(Q∪[Bo2t−2A]{2t−2}, B) ≥ o(Q∪[Bo2t−2B], B) ≥ o(Q∪[Bo2t−2B]{2t−4}, B)

� If i = 2k, 1 ≤ k < t, then Alice claims w2k−1. We have

o(Q ∪ [Bo2tB]{2t−2}w2k−1,w2k
, B) = o(Q ∪ [Bo2k−2A] ∪ [Bo2(t−k)B]{2(t−k)−2}, B).

Lemma 6.7 applies, and we get

o(Q ∪ [Bo2tB]{2t−2}wj ,wi
, B) ≥ o(Q ∪ [Bo2(t−k)B]{2(t−k)−2}, B).

� If i = 2k − 1, 1 ≤ k ≤ t, then Alice claims w2k. We have

o(Q ∪ [Bo2tB]{2t−2}wj ,wi
, B) = o((Q ∪ [Bo2k−2B] ∪ [Ao2(t−k)B]{2(t−k)−2}, B),

Lemma 6.7 applies, and we get

o(Q ∪ (Bo2tB]{2t−2}wj ,wi
, B) ≥ o(Q ∪ [Bo2k−2B], B) ≥ o(Q ∪ [Bo2k−2B]{2k−4}, B).
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Lemma 6.15 (Bob does not claim v−1). Let P ∈ C1, such that P is not dominated by Alice. Let Q = P ∪ [AoA]
and y be an unclaimed vertex of P . There exists an unclaimed vertex x 6= y such that at least one of the following
alternatives holds:

� o(Qx,y, B) = A;

� or there exists P ′ ∈ C1 with at least two unclaimed vertices less than P , such that o(P ′∪[AoA], B) ≤ o(Qx,y, B).

Proof. We denote by v−1 the unclaimed element of [AoA] in Q. We assume that Bob claims y. We have several
cases, according to the component that contains y.

� Assume first that y is an element of the component P ′ of P that belongs to C0. If there exists a free vertex x
of P ′ such that P ′x,y ∈ C0, then we are done, since Px,y ∈ C1.

Otherwise, by definition of C0, (P ′ ∪ [AoA], B) is A-win. Since there is no winning answer in P ′ for Alice to
the claim y of Bob, we necessarily have o((P ′ ∪ [AoA])v–1,y, B) = A. From the position (P ′ ∪ [AoA])v–1,y, Bob
cannot dominate the whole graph. Alice can follow her strategy on (P ′ ∪ [AoA])v–1,y and a pairing strategy
on the rest of the graph (that exists by Corollary 6.13). This ensures that o(Qv–1,y, B) = A

� Assume now that y is an unclaimed vertex of [AonB]{2,5,n−2}, with n odd, n ≥ 9. Let (w1, w2, ..., wn) be the
sequence of free vertices of [AonB]{2,5,n−2}. By Lemma 2.3, as N [w1] \N [Vt] ⊂ N [w2] \N [Vt] for t ∈ {A,B},
one can assume that y 6= w1. Let P ′ be the position such that P = P ′∪[AonB]{2,5,n−2} and let Q′ = P ′∪[AoA].
Note that P ′ ∈ C1.

– If y = w2 then take x = w3. By Lemma 2.6, Observation 2.4 and Lemma 6.7,

o(Qx,y, B) ≥ o(Q′ ∪ [Aon−3B]{2,n−5}, B) ≥ o(Q′, B).

– If y = w3, then take x = w2. There is double B-trap in Qw2,w3
. Thus, by Lemmas 3.7 and 6.13, we have

o(Qw2,w3 , B) = A.

– If y = wi i ≥ 4 with i even, then take x = wi+1 We have

o(Qx,y, B) = o(Q′ ∪ [Aoi−1B]{2,5} ∪ [Aon−iB]{n−i−2}, B) ≥ o(Q′ ∪ [Aoi−1B]{2,5}, B)

by application of Lemma 6.7. Note that P ′ ∪ [Aoi−1B]{2,5} is an element of C1.

– if y = wi with i odd and i ≥ 5 then take x = wi−1. We have

o(Qx,y, B) = o(Q′ ∪ [Aoi−2A]{2,5} ∪ [Bon−iB]{n−i−2}, B).

Note that P ′ ∪ [Aoi−2A]{2,5} ∪ [Bon−iB]{n−i−2} is an element of C1, since n− i is even and since we add
a position [Aoi−2A]{2,5}.

� If y is an unclaimed vertex of a component of the form [Bo2tB]{2t−2}, then the position can be reduced by
Claim 6.14.

� Assume now that y is an unclaimed vertex of [AonA]{2,5}. As before, we denote by (w1, w2, ..., wn) the vertices
of [AonA]{2,5}, by P ′ the position P without the component [AonA]{2,5} and by Q′ the position P ′ ∪ [AoA].
If n ≤ 3, then take x = v−1. We have o(Qv−1,y, B) = A since the position Qv−1,y admits a A-pairing by
Corollary 6.13 and Bob. Thus, it can be assumed that n ≥ 4.

– If y ∈ {w1, w2}, then take x = w3. We have

o(Qw3,y, B) ≥ o(Q′ ∪ [Aon−3A]{2}, B).

Note that P ′ ∪ [Aon−3A]{2} is in C1.

– If y = w3, then take x = w2. The position Qw2,w3 admits an A-pairing, by Corollary 6.13. Thus, by
lemma 3.7, we have o(Qw2,w3) = A.

32



– if y = wi, with i ≥ 4, then take x = wi−1. We have

o(Qx,y, B) = o(Q′ ∪ [Aoi−2A]{2,5} ∪ [Aon−iB], B) ≥ o(Q′ ∪ [Aoi−2A]{2,5}, B)

according to Lemma 6.7. We are done since P ′ ∪ [Aoi−2A]{2,5} is in C1.

Claim 6.16. Let P be any position, and t be a nonnegative integer. We have

o(P ∪ [AoA], B) ≤ o(P ∪ [AooAooA]{2,5} ∪ [Bo2tB]{2t−2}, B)

where [AooAooA]{2,5} is the position obtained from [Ao5A]{2,5} by adding the central vertex v3 in the set VA.

Proof. Let (w1, w2, ..., w2t) be the sequence of unclaimed vertices of [Bo2tB]{2t−2}, (v1, v2, v4, v5) the sequence of
unclaimed vertices of [AooAooA]{2,5}, from left to right, and v−1 denote the unclaimed vertex of [AoA]. To lighten
notation, we also state R = P ∪ [AooAooA]{2,5} ∪ [Bo2tB]{2t−2}

Assume that o(P ∪ [AoA], B) = A. We prove that o(R,B) = A by induction on the number p of unclaimed
vertices of R. For initialization, if p ∈ {4, 5}, then t = 0 and all the vertices of P are claimed except possibly one.
Thus, since o(P ∪ [AoA], B) = A, Alice dominates P , and therefore Alice dominates R = P ∪ [AooAooA]{2,5}.

Now assume that p ≥ 6. We have several alternatives according to the claim y of Bob in R.

� If y is an unclaimed vertex of [Bo2tB]{2t−2}, then Claim 6.14 applies, and the induction gives the result.

� Assume now that y is an unclaimed vertex of P . If there exists an unclaimed vertex x of P such that
o(Px,y ∪ [AoA], B) = A. We conclude by the induction hypothesis. If it is not possible, it means that once
Bob has claimed y in the position P ∪ [AoA], Alice is forced to claim v−1. Then, in R, Alice claims v2, creating
a double B-trap in v1 and v4.

In the position ((P ∪ [AoA])v−1,y, B), Alice has a strategy which allows her to dominate P . Thus, Alice can
win in Rv2,y playing component by component, until, the game ends as follows:

– If Bob claims in P , Alice also claims in P according to the strategy in ((P ∪ [AoA])v−1,y, B).

– If Bob claims in [AooAooA]{2,5}, then Alice isolates one vertex using one of the B-trap.

– If Bob claims in [Bo2tB]{2t−2}, Alice follows a pairing strategy with the A-pairing of this component.

This way, Alice will prevent Bob to dominate since Bob has to claim at some point in [AooAooA]. The two
other items ensure that Alice while dominate the whole graph.

� Assume finally that y is an unclaimed vertex of [AooAooA]. The position (P,A) is A-win since it corresponds
to the position (P ∪ [AoA], B) where Bob has claimed v−1. Let x be a unclaimed vertex of P such that
o(Px, B) = A, where Px is the position obtained from P when Alice has claimed x. Alice answers x in the
game R. We prove that o(Rx,y, B) = A. Alice plays as follows:

– If Bob claims a vertex in Px, Alice answers in Px according to her strategy in (Px, B).

– If Bob claims a vertex in [Bo2tB]{2t−2}, then Claim 6.14] can be used.

– If Bob claims again a vertex in [AooAooA], Alice claims w1.

The first item ensures that Alice dominates P before Bob. The second item ensures that the fact that
Bob claims in the component [Bo2tB]{2t−2} is irrelevant. In the case of third item, one can consider using
Lemma 6.7 that the component [Bo2tB]{2t−2} disappears. The component [AooAooA] becomes also irrelevant
since each player dominates all vertices of this component. Thus, it remains only the component derived from
Px where Alice dominates before Bob.

Lemma 6.17 (Bob claims v−1). Let P ∈ C1 such that P is not dominated by Alice and Q = P ∪ [AoA].
There exists an unclaimed vertex x of P such that at least one of the following alternatives holds:

� o(Qx,v−1
, B) = A,

� there exists P ′ ∈ C1 with at least one unclaimed vertex less than P , such that o(P ′∪ [AoA], B) ≤ o(Qx,v−1 , B).
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Proof. We have different cases according to the structure of P .

� If P contains a component [AonB]{2,5,n−2}, n ≥ 9, n odd, let v1, v2, ..., vn denote the sequence of free vertices
of this component. Take x = v2. Let P ′ be the position such that P = P ′ ∪ [AonB]{2,5,n−2} and let
Q′ = P ′ ∪ [AoA]. Note that P ′ ∈ C1.

We now have
o(Qv2,v−1

, B) ≥ o(Q′ ∪ [Aon−2B]{3,n−4}, B) ≥ o(Q′, B)

from Lemma 6.7.

� If P contains a component [AonA]{2,5}, let w1, w2, ..., wn denote the sequence of vertices of [AonA]{2,5}. Let
P ′ be the position such that P = P ′ ∪ [AonA]{2,5} and let Q′ = P ′ ∪ [AoA].

– If n ≥ 6, then take x = wn−1. We have

o(Qwn−1,v−1
, B) ≥ o(Q′ ∪ [Aon−2A]{2,5}, B)

and note that P ′ ∪ [Aon−2A]{2,5} is an element of C1.

– If 3 ≤ n ≤ 4, then take x = w2. We have

o(Qw2,v−1 , B) ≥ o(Q′ ∪ [Aon−2A], B)

and we conclude as previously.

– If n = 1, then take x = w1. The position Qw1,v−1 admits an A-pairing from Corollary 6.13. Thus,
from 3.6, we have o(Qw1,v−1 , B) = A.

– If p = 5 and k ≥ 1, take x = w3, which creates an [AooAooA]. We define P ′′ such that

P ′ = P ′′ ∪ ([Bo2tB]{2t−2}).

Note that P ′′ ∈ C1 as one component of each type 3 and 4 (in Definition 6.11)) has been removed.
Lemma 6.16 applies, thus

o(P ′′ ∪ [AoA], B) ≤ o(P ′′ ∪ [AooAooA]{2,5} ∪ [Bo2tB]{2t−2}, B) = o(Qw3,v|1 , B)

� If P cannot be treated in one of the previous cases, then P only contains some subpositions of the type
[Ao5A]{2,5} and at most one position P0 ∈ C0. In this case, we will prove that o(Q,B) = A, which implies the
result.

First we have o([Ao5A]{2,5}, B) = A. Indeed, Bob is forced to claim w3, since otherwise Alice claims w3

and wins. After this claim, there exists an A-pairing of size 2, while Bob needs at least two more claims to
dominate the graph. Thus Q = P ∪ [AoA] is formed by a union of winning positions (when Bob starts): one
is P0 ∪ [AoA] (or simply [AoA] if P0 does not exist) and the other ones are positions [Ao5A]{2,5}. Thus, by
Observation 2.5, we get o(Q,B) = A.

Corollary 6.18. For each position P ∈ C1, we have o(P ∪ [AoA], B) = A.

Proof. We prove the result by induction on the number of unclaimed vertices in Q = P ∪ [AoA]. If Alice dominates
P , then we directly have o(P ∪ [AoA], B) = A. Otherwise, consider a move x of Bob. If x 6= v−1 (respectively
x = v−1), then by Lemma 6.15 (resp. Lemma 6.17), there exists an unclaimed vertex y of P such that either Alice
wins or there exists a position P ′ of C1 with less unclaimed vertices such that o(P ′ ∪ [AoA], B) ≤ o(Qx,y, B). By
induction, o(P ′ ∪ [AoA], B) = A and thus o(Qx,y, B) = A.

Thus, for any claim x of Bob, Alice can claim a vertex y such that o(Qx,y, B) = A. Therefore, o(Q,B) = A.
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6.2.4 Conclusion

Putting together all the previous results, we can prove the reverse part of Theorem 5.23:

Corollary 6.19. If all the components of SF are favorable to Alice and at most one of them is weakly favorable,
then ((F, {v0}, ∅), B) is A-win.

Proof. Let Q = (F, {v0}, ∅) be a position such that all the components of SF are favorable to Alice and at most
one of them is weakly favorable. By Lemma 6.7, one can assume that there is no strongly favorable component in
SF . Let P such that Q = P ∪ [AoA]. By Remark 6.12, P is an element of C1. Corollary 6.18 leads to the desired
result.
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