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Abstract
In a single-pixel camera, an unknown object is sequentially illuminated by intensity patterns. The
total reflected or transmitted intensity is summed in a single-pixel detector from which the object
is computationally reconstructed. In the situation where the measurements are limited by
photon-noise, it is questionable whether a single-pixel camera performs better or worse than
simply scanning the object with a focused intensity spot—a modality known as point raster
scanning and employed in many laser scanning systems. Here, we solve this general question and
report that positive intensity modulation based on Hadamard or Cosine patterns does not
necessarily improve the single-to-noise ratio (SNR) of single-pixel cameras, as compared to point
raster scanning (RS). Instead, we show that the SNR is only improved on object pixels at least k
times brighter than the object mean signal x̄, where k is a constant that depends on the modulation
scheme (modulation matrix, number of detectors, etc). The constant k is derived for several
widespread cases and has important consequences on the choice of the optical deign. This
fundamental property is demonstrated theoretically, numerically, and is experimentally confirmed
in the spatial domain (widefield fluorescence imaging) and in the spectral domain (spontaneous
Raman spectral measurements). Finally, we provide user-oriented guidelines that help decide when
and how multiplexing under photon-noise should be used instead of point RS.

Over the last decade, single-pixel cameras have received increasing attention in fields as diverse as microscopy
[1, 2], spectroscopy [3], photoacoustic imaging [4] or cytometry [5]. Single-pixel cameras, combined with
various computational techniques, offer the promise of considerably faster and cheaper optical systems
[6, 7]. A single-pixel camera typically relies on some form ofmultiplexing. Unlike point raster-scanning
(RS)—where an object is probed point-by-point—in multiplexing the signal from different parts of an object
is combined into a single-pixel detector (figure 1(a)). The object is thus seen through a sequence of
time-varying patterns and the detected signal must be demultiplexed to retrieve the original information.
Here, we consider intensity modulation multiplexing (measurements are incoherent sums of intensities),
achieved via the widely used Hadamard or Cosine-based positive patterns. This type of multiplexing
Positive-Hadamard and Cosine (PHC) multiplexing.

A major asset of PHC-multiplexing is known as theMultiplexing advantage [8]: it is an improvement in
signal-to-noise ratio (SNR) brought by multiplexing over RS (figure 1(b)), when the measurement noise
comes from the detector electronics (additive signal-independent noise). Then, multiplexing via Hadamard
or Cosine based-patterns leads to the detection of consequently more signal than RS, thereby comparatively
reducing the amount of noise and dramatically improving the SNR (figures 1(a) and (b)). This property of
PHC-multiplexing has been known since the 1960s [8–15]; but it is with the concomitant advent of
spatial-light-modulators, efficient computational imaging techniques, and high-speed and low-noise
detectors that multiplexing with single-pixel detectors became extremely popular [16–32].

© 2023 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2515-7647/acc70b
https://crossmark.crossref.org/dialog/?doi=10.1088/2515-7647/acc70b&domain=pdf&date_stamp=2023-6-7
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-6091-3192
mailto:camille.scotte@gmail.com
https://doi.org/10.1088/2515-7647/acc70b


J. Phys. Photonics 5 (2023) 035003 C Scotté et al

One consequence of using high-performance single-pixel detectors is that their noise may be so low that
the main source of noise in the system now arises from the photon-counting process itself (figure 1(c))—as it
is the case for instance when using high performance photomultiplier tubes in the UV and visible spectral
regions. Yet, in this photon-noise regime, the multiplexing advantage does not hold any more [33–37]:
PHC-multiplexing does not ensure a SNR improvement over RS (figure 1(c)). This effect was partially
studied in a few dated works [10, 34, 38–42], which only considered average SNR values, and therefore do
not enable one to conclude if, yes or no, and when and how, PHC-multiplexing is beneficial over RS in terms
of SNR. Despite the attention that multiplexing has received in recent years, this fundamental question has
remained largely unaddressed or ignored. Therefore, in a context of increasing use of computational-imaging
techniques based on multiplexing such as compressive sensing [43–45] or ghost imaging [46], and with
progress in detectors technology that tends to make measurements more and more likely to be limited by
photon noise only [47], we believe it is necessary to clarify under which circumstances PHC-multiplexing
brings a SNR advantage over RS, for photon-noise limited data (figure 1(c)).

In this paper, we theoretically, numerically, and experimentally compare RS and PHC-multiplexing, in
terms of SNR, when the noise only arises from the photon-counting process. We show that, even when
PHC-multiplexing leads to the detection of consequently more photons than RS, it does not necessarily
improve the SNR, and can even degrade it significantly. More precisely, we show that, on a given object,
PHC-multiplexing only improves the SNR of object parts brighter than a certain threshold value that
depends on the multiplexing implementation strategy and on the sample average signal. This allows us to
draw user-oriented guidelines that help decide when and how PHC-multiplexing should be used instead of
RS. The results presented in this paper are supported by a detailed supplementary information (SI)
document that provides further details and the theoretical proofs.

1. Model and assumptions

Although not limited to a specific dimensionality or experimental system, for the sake of clarity and without
loss of generality, we base the narrative on the specific example of a simple incoherent 2D imaging system
such as in figure 1(a), made of (i) an intensity object x, (ii) an optical lens for signal collection, (iii) a
single-pixel detector. Figure 1(b) illustrates the well-known multiplexing advantage mentioned in the
introduction: when the noise is additive and independent of the signal, both positive-Hadamard and
positive-cosine multiplexing substantially improve the SNR as compared to RS, by a factor proportional to√
N, with N the number of pixels [8, 9, 13–15]. Figure 1(c) illustrates the case where the noise arises from the

photon-counting process. There, the intensity of an object xmodulated through a positive matrix
A ∈ RN×N

+ , leads to measurements b:

b∼ Poisson(Ax) (1)

where x and b are assumed to be real and positive quantities. The object x contains the intensities xi from
every pixel i (x= [x1, . . . ,xN]T), and the measurement b contains the observed photon counts bi
(b= [b1, . . . ,bN]T). Each measured number of photons bi is a random variable whose probability law is a
Poisson distribution of mean ⟨bi ⟩= [Ax]i. A is the multiplexing matrix that contains the positive modulation
patterns and is assumed to be invertible. In RS, A is the identity matrix IN (each measurement bi collects
signal from a single object pixel i). We further assume that (i) the measurements as statistically independent,
(ii) the number of measurements is equal to the number of probed object pixels N, (iii) that the system
optical resolution is smaller than the finest object structures. Note that, unless otherwise stated, all results
hold for any object dimensionality (1D, 2D, etc)—as long as the variables can be rearranged in the form of
equation (1)—and for any experimental system—as long as it complies with the linear model of equation (1)
and its assumptions. This implies that this study does not hold for phase imaging (see SI p 6 and p 21).

1.1. Comparisonmetrics
Since the measurements b are noisy, one cannot perfectly access the ground-truth object x but can only
estimate it. This estimate, denoted x̂, is directly equal to the measurements for RS, and to their demodulation
for multiplexing. In both cases, it differs from x by some error δx̂= x̂− x. The aim of this work is to
determine which of RS or PHC-multiplexing leads to the smallest error. This is assessed with the
mean-square error (MSE) and SNR. Both inform on how precise and accurate is the estimate x̂ on each
object pixel i:

MSE(x̂i) = ⟨(x̂i − xi)
2⟩;SNR(x̂i) =

xi√
MSE(x̂i)

. (2)

2
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Figure 1. (a) Schematic representation of point raster-scanning and positive Hadamard or cosine-multiplexing in the absence of
noise. At fixed irradiance and exposure time, PHC-multiplexing detects more photons. x: intensity object; x̂: estimation of x from
the measurements b; A: multiplexing matrix (real and positive, invertible); IN : identity matrix; LS: least-square. (b) Example of
estimated object in the presence of signal-independent noise, modelled as additive white Gaussian noise. (c) Example of estimated
object, for photon noise.

The potential SNR improvement or degradation brought by PHC-multiplexing over RS can then be
quantified with the following ratio:

Gi =
SNR(x̂i)multiplex

SNR(x̂i)RS
=

√
MSE(x̂i)RS

MSE(x̂i)multiplex
. (3)

If Gi > 1, multiplexing improves the SNR on pixel i as compared to RS, and conversely. Since SNR and MSE
are directly related, and to bypass the additional dependence on the object ground-truth, in the following we
only give results in terms of MSE.

1.2. Multiplexing matrices
The SNR depends on the multiplexing matrix. Here, we focus on positive-Hadamard multiplexing and on
positive-Cosine modulation with the discrete-cosine transform (DCT). These two widely used classes of
multiplexing are generally implemented via matrices with coefficients comprised between 0 and 1.

• Positive-Hadamard multiplexing (figure 2) is often implemented by modulating or blocking parts of the
light with simple absorptive patterns [13] or with light modulator devices [15, 29, 32], as schematically
depicted in figure 1(a). The associated multiplexing matrix is binary, and can for instance be: (i) the matrix
H1 (Hadamard matrix with−1 elements replaced with 0):

H1 =
1

2
(H+ J) (4)

whereH is the Hadamardmatrix J is the constant matrix of ones; or (ii) the matrix S (e.g. Hadamardmatrix
without first row and column, with−1 elements replaced with+1, and+1 elements 0), defined via [13]:{

STS= SST = N+1
4 (I+ J)

JS= SJ= N+1
2 J

(5)

3
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Figure 2. Considered multiplexing matrices.H1 and S are associated with positive-Hadamard multiplexing and C1 with
positive-cosine multiplexing.

For both matrices, about half of the N coefficients of each row are ones, and half are zeros (figure 2). Refer
to SI (p 12) for more details.

• Positive-cosine multiplexing (figure 2) can be implemented in different ways (e.g. [28, 31, 48–50]). In this
text, we exclusively focus on positive-cosine intensity modulation based on the matrix C1 of equation (6).
It is based on the DCT [51], and defined such that the coefficients of C1 are comprised between 0 and 1:

C1 =
1

2
(DCT+ J) (6)

where DCT is the discrete-Cosine transform matrix with coefficients comprised between −1 and +1 (see
SI for other positive-cosine modulation types).

1.3. Multiplexing schemes
The SNR may also depend on the chosen single-pixel multiplexing scheme. Here, we consider three
configurations, illustrated in 2D in figure 3 and detailed in SI section 3.

• InOne-step multiplexing, an object is probed with a series of patterns which have the same dimensionality as
the object. Each measurement bi is then the sum of the point-wise product between the object and a pattern
encoded in the ith row of the multiplexing matrix (figures 1 and 3).

• Two-step multiplexing applies only in 2D: A 2D object can be multiplexed with two independent 1D mul-
tiplexing stages that probe uncorrelated dimensions, such as the vertical and horizontal dimensions of a
2D spatial object. The two sets of patterns derive from the rows and columns of two distinct multiplexing
matrices, and the equivalent multiplexing matrix is their Kronecker product (figure 3 and SI p 10). This
scheme is particularly relevant when the dimensions cannot easily be multiplexed in a single experimental
step (like for spatio-spectral multiplexing; see for instance [23, 28]).

• In Dual-detection, the one-step multiplexing scheme is supplemented with an additional detector, such
that the two detectors make complementary measurements b1 and b2 (the non-collected signal by the first
detector is collected by the second detector). This is equivalent to associating the matrixM to the measure-
ments b1 and the matrixM2 to the measurements b2, such that:M+M2 = J (J is the matrix of ones). The
measure can be reconstituted by combining the measurements from each detector into a single vector; or
by subtracting them (figure 3). The later approach, often found in the literature [31, 49, 52, 53], is referred
to as Balanced detection.

1.4. Number of photons
The SNR depends on the number of photons collected by RS and PHC-multiplexing. To begin with, we draw
the comparison when the number of photons is not constant. Rather, we give the advantage to multiplexing
by comparing them at fixed exposure time and irradiance. On the example of figure 1, this means each
sample pixel is illuminated with the same light power: if in RS, each pixel of the object is illuminated with
1mW during 1ms, then in multiplexing, each pixel of the object will also see 1mW of incident light during
1ms. This results in a consequently higher measured number of photons for PHC-multiplexing (figure 1(a)):
for N measurements, if RS leads to a total of Nx̄ photon counts, PHC-multiplexing leads to a total of about
N2

2 x̄ photon counts.

1.5. Estimationmethod
The SNR depends on the estimator used to demultiplex the raw measurements. To begin with, we estimate x̂
with the least-square (LS) estimation, i.e. via x̂= A−1b (see section 5, equation (12)).

4
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Figure 3. Schematic in 2D of the considered positive-multiplexing schemes, with their associated equivalent multiplexing matrix.
In dual-detection, the measurements can be combined into a single vector (left) or subtracted (right).M2: complementary matrix
of M.

2. Results

In this context, we prove (in SI, section 4) that, for the three considered multiplexing schemes, and both
positive-Hadamard multiplexing and positive-cosine multiplexing; the MSE obtained with least-square
estimation is approximately constant over the estimated object x̂, on most pixels i and for a number of pixels
N≫ 1. The MSE is proportional to the average signal contained in the object x̄:

MSEPHC(x̂i)≈ kx̄ (7)

where k is a positive constant that depends on the multiplexing scheme (figure 3) and matrix (figure 2). In
opposite, in RS, the MSE equals the object itself:

MSERS(x̂i) = xi (8)

and the associated SNR scales with the square-root of the object intensity at each pixel i. Therefore, as
compared to RS, PHC-multiplexing improves the SNR by a factor (equation (3)):

Gi =

√
xi
kx̄

. (9)

Hence, PHC-multiplexing brings a SNR improvement over RS only on object pixels i which intensity xi
verify:

xi ⩾ kx̄. (10)

In other words, PHC-multiplexing only improves the SNR on pixels brighter that k times the object mean
signal x̄, and degrades it on regions dimmer than this value. When averaged over all object pixels, the overall
SNR is degraded by a factor

√
k, meaning that any SNR gain is compensated by a SNR loss on other pixels.

Hence, although under our assumptions, PHC-multiplexing detects about N/2 times more photons than RS,
it does not improve the SNR on every pixel of the estimated object. From this, it immediately appears that
the choice between PHC-multiplexing and RS greatly depends on the value of k (i.e. on the multiplexing
scheme and matrix) and on the object structure (i.e. on how the object pixels are distributed as compared to
the object average signal x̄).

2.1. Positive-Hadamardmultiplexing
Table 1 gives the theoretical values of k for positive-Hadamard multiplexing, for the three multiplexing
schemes of figure 3. One-step multiplexing leads to a better theoretical MSE than two-step multiplexing, and
the best MSE is achieved with dual-detection. In general, the matricesH1 and S lead to the same MSE:
one-step multiplexing leads to a MSE equals to twice the object average (k= 2); two-step multiplexing
degrades the MSE by a factor two (k= 4); and dual-detection improves the MSE by a factor two (k= 1). The
differences betweenH1 and S lie (i) in the presence of few special pixels in the MSE forH1 (ii) in the
dual-detection: forH1, considering the full measurements or subtracting them lead to the same MSE, while
with the S-matrix, it is important not to subtract the two measurements. The theoretical proofs for the MSE
are derived in SI, section 4.2.

To assess the influence on the object structure, we simulate RS and positive-Hadamard multiplexing on a
typical intensity object with beads of different brightness (figure 4). After a single realization of the data
(figures 4(b) and (c)), the brightest bead on the top right appears less noisy with multiplexing than with RS;
dual-detection leading to the least noise and two-step multiplexing to the most. In opposite, the dimmest

5
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Table 1. Theoretical MSE for positive-Hadamard multiplexing. Results hold for LS-estimation and large number of pixels N≫ 1. The
specific pixels n1 and the theoretical proofs are given in SI section 4.2. A: equivalent multiplexing matrix. x̄: object intensity average.

One-step Two-step Dual-detection

A M M⊗M [M M2]
T M−M2

Positive-Hadamard multiplexing (M= S)

MSE 2x̄ (∀i) 4x̄ (∀i) x̄ (∀i) 2x̄ (∀i)

Positive-Hadamard multiplexing (M=H1)

MSE 2x̄ (∀i ̸=1) 4x̄ (∀i ̸=n1) x̄ (∀i)

Figure 4.MSE for positive-Hadamard multiplexing and LS-estimation. (a) Schematic representation of a 2D imaging system in
point raster-scanning mode and in three multiplexing modes, with the associated theoretical MSE per object pixel i and constant
k of equation (7). Here, one-step multiplexing is performed withH1, two-step with S⊗ S, and dual detection withH1 −H2 (H2 is
the complementary ofH1). (b) Example of an estimate x̂ obtained after one realization of the data (one simulated measurement).
For visualization purposes, only positive estimated values are shown. (c) Section of x̂ along the anti-diagonal. The dashed-lines
represent theoretical MSE values. (d) Empirical MSE obtained with n= 20000 noise realizations. MSE is its average over all pixels
(except the first pixel for one-step multiplexing, see table 1). (e) Section ofMSE(x̂) along the anti-diagonal. The dashed-lines
represent theoretical MSE values, and the faint strip the error-bar (section 5). Inset: ground-truth object of average x̄. (f) Example
of one estimate for a sparse object and a ‘negative’ object (object with structures of interest dimmer than a bright background),
for raster-scanning and one-step multiplexing. The associated complete results are shown in figure S1.

bead on the bottom left appears much noisier with multiplexing, to the point that it is nearly buried into the
background noise in the two-step scheme. Repeating the simulation n= 20000 times leads to an ‘empirical’
MSE value (figures 4(d) and (e)). As predicted, the MSE of RS tends towards the ground-truth object x, and
the positive-Hadamard multiplexing MSE is constant over all object pixels, approaching the theoretical
values of table 1. On the MSE section plot (figure 4(e)) it appears clearly that, as compared to RS, the three
multiplexing schemes degrade the MSE (and SNR) on all pixels along the anti-diagonal, except on the
brightest bead. For example, one-step multiplexing, improves the SNR by 1.7 times on the brightest bead,
degrades it by the same amount on the dimmest bead and by 4 times on the background. This example
illustrates a key point to consider when choosing between PHC-multiplexing or RS: the magnitude of the
SNR gain and loss essentially depends on how the object pixels are distributed as compared to the object
average signal x̄. Two utmost cases are illustrated on figure 4(f): on a sparse object, the few non-zero pixels of
interest are most likely much brighter than kx̄: a substantial SNR gain is then expected on those pixels,
although it is degraded on null pixels. In opposite, for a ’negative’ object (object with structures of interest
dimmer than a bright background), the structures of interest are likely to be dimmer than kx̄: a SNR loss is
then expected on most pixels of interest. The detailed results for these two objects are shown in figure S1
(Appendix). Note that the contrast (or peak-to-background ratio, defined as the maximum object intensity
over the background standard deviation) is systematically worsened by PHC-multiplexing with

6
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Figure 5. Experimental results of raster-scanning and positive-Hadamard multiplexing in fluorescence imaging (a)–(f) and in
Raman spectroscopy (g)–(j). (a) Example of estimation after one single experiment. (b) Estimation variance from n= 20

experiments, and its average over all pixels V(x̂) (except the 1st pixel for 1step-multiplexing). (c) Section of the estimation
variance along the image anti-diagonal. Dashed-lines: predicted theoretical values of table 1. The raster-scanning offset is
discussed in the section (Robustness to perturbations). Right inset: object average with mean signal x̄. Left inset: representation
of the sample imaged onto the DMD plane. N= 4096: number of object pixels, α≈ 0.065%: accounts for the imperfect DMD
contrast, Nαx̄= 4.25 counts: resulting offset, exposure time per measurement= 40ms. (d)–(f) Same as (a)–(c) for Sample 2,
with N= 1024 and Nαx̄= 5.7 counts. (g) Schematic representation of a dispersive spectrometer in the different modalities. G:
diffraction grating, S: slit, D: single-pixel detector, L: converging lens. See figure 11(b) for more details; (h)–(i) Example of
spectrum estimation after one single measurement (5ms and 2ms exposure time per spectral bin). (j) Estimation variance with
τexp = 5 ms from n= 1000 experiments with error bars (Supp. Methods). Dashed-lines: predicted theoretical values from table 1.
Right inset: object average with mean signal x̄. Left inset: representation of the DMD plane containing dispersed wavelengths
constituting a spectrum.

LS-estimation, independently of the object structure. Indeed, in RS, the background fluctuation is equal to
the background magnitude, and in PHC-multiplexing, it is equal to

√
kx̄. PHC-multiplexing therefore

worsens the contrast by
√
kx̄. More details are given in [30], chapter 6. Also note that multiplexing requires

an estimation step, the time for retrieving the object should be taken into account. Here, for one-step
multiplexing, one estimation required about 7ms (and 600ms for when the matrix has not yet been
inverted—standard Laptop 2.8 GHz Intel Core i7 with 16 Go RAM, running on macOS 12.6.1).

These results are confirmed experimentally on an optical system where the noise only arises from the
photon-counting process (figures 13 and 14—section 5). All experimental details and justifications can be
found in the section 5. Here, to bypass dependence on the experimental ground truth, we do not calculate
the MSE but rather the estimation variance V after n experiments (in the absence of bias,MSE= V). First,
we consider the case of 2D fluorescent imaging: we detected the fluorescent signal emitted by fluorescent
particles deposited on a glass slide. In essence, the experimental setup is similar to the scheme of figure 1(a),
where the single-pixel detector is a photomultiplier tube operating in photon-counting mode; and the
multiplexing matrix is physically implemented onto a digital micromirror device (DMD). This 2D array of

7
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micromirrors—acting as a binary modulator—contains the magnified 2D fluorescent image (figure 5(c)-left
inset). For the comparisons between multiplexing and RS to be reliable, we implement RS directly onto the
DMD plane, which is formally equivalent to scanning the sample plane with a point-focus. The first sample
(figures 5(a)–(c)) is relatively sparse, and the particles are more than 10 times brighter than the sample
average signal (≈1.6 counts). After one experiment, the SNR is visually improved on the particles
(figure 5(a)). Repeating the experiment n= 20 times leads to an approximately constant variance
(figures 5(b) and (c)) that confirms the theoretical values of table 1. The second sample is the same physical
object but cropped onto the DMD plane. This sample is no longer sparse, and the particles intensity is only
about twice higher than the sample average signal (≈9 counts). This time, dual-detection improves the SNR
on the particles and slightly degrades the background, while two-step multiplexing clearly degrades the SNR
on all pixels (figures 5(d)–(f)). These experimental results confirm the theoretical MSE values for
multiplexing. But one may notice that the variance associated with RS is not exactly equal to the object. It
comprises an offset due to the imperfect DMD contrast, which impact is negligible for multiplexing, but
significant for RS (see figure 8(d) and section 5). Yet, this artefact only comes from the fact that we mimic RS
measurements with the DMD: in practice, RS does not involve a multiplexing element but a focussed beam
that would not degrade the performance in the same way.

Secondly, to highlight that the results of this paper are not restricted to imaging, we also confirm the
results on Raman spectroscopy experiments. There, the object x is a 1D intensity spectrum (figure 5(j)-right
inset), and the multiplexed quantities are no longer spatial pixels but wavelength bins of the spectrum
(figure 5(g)). In the optical setup figure 11(b), a sample emits Raman intensity containing several
wavelengths, which are dispersed with a diffraction grating. The DMD plane thus contains a 1D Raman
spectrum (figure 5(j)-left inset) which can then be modulated. The sample is a liquid solvent (Dimethyl
Sulphoxide), acquired for two different integration times (5ms and 2ms). The variance results obtained with
n= 1000 measurements validate the theoretical values. On this sample, dual-detection is advantageous
everywhere but on the background; one-step multiplexing is advantageous everywhere but on the
background and dimmest peak; and two-step multiplexing is only advantageous on the brightest peaks. For
one random experiment, this may directly result in noisy dim peaks (figure 5(h)) or even in
undistinguishable dim peaks (figure 5(i)). Note that the two-step multiplexing scheme is not physically
relevant for a 1D Raman spectrum, but is mimicked with one step multiplexing with an equivalent matrix
M⊗M (figure 3). Also note that here, the impact of the imperfect DMD contrast in negligible (see section 5).

2.2. Positive-cosine multiplexing
For positive-cosine multiplexing, the MSE results are analogous to positive-Hadamard multiplexing: the
above analyses hold, but the constant k is not the same.

Table 2 and figure S2 (Appendix) give the values of k for positive-cosine multiplexing with the specific
positive DCT matrix defined in equation (6). They show that, one-step multiplexing leads to a MSE equals to
four times the object average (k= 4). Comparatively, two-step multiplexing squares the MSE (k= 16); and
dual-detection improves it by a factor two (k= 2). Here again, one-step multiplexing leads to a better MSE
than two-step multiplexing, and dual-detection improves the MSE. These results also show that
positive-cosine multiplexing with the matrix C1 consequently degrades the MSE as compared to
positive-Hadamard multiplexing. This SNR loss is particularly visible in the two-step scheme (figure S2) ,
where positive-cosine multiplexing is worse than RS on all beads—including the brightest one—and where
the dimmest bead (bottom left) is completely buried into the background noise. Overall, a similar analysis as
for figure 4 can be drawn, but positive-cosine multiplexing does not improve the SNR of RS on as many pixels
as with positive-Hadamard multiplexing. Note that the results of table 2 results are partially empirical: we
prove theoretically (SI, section 4.3) that the MSE of a general positive-cosine multiplexing scheme is constant
for N≫ 1, but the values of k for the specific matrix C1 matrix are deduced from simulations (figure 22).

We emphasize that these values of k are not general for all forms of positive-cosine multiplexing, but
are only valid for the matrix C1 defined in equation (6). Here, as for the matricesH1 and S, the matrix
coefficients are comprised between 0 and 1. By setting this constraint, we chose the point-of-view of a user of
a typical incoherent optical system, where the modulation possibilities are often comprised in this range.
Positive-cosine modulation can be performed in other manners, potentially leading to different values of k.
Diverse positive-matrices built upon the discrete cosine transform can be used (e.g. with other normalization
factor); and the system architecture by itself can define a different multiplexing matrix [28, 50]. If the
multiplexing matrix is simply proportional to C1, the MSE would be modified according to table 4. Note that
positive-cosine modulation also applies to cases where multiplexing is achieved via interferometric
measurements (e.g. Fourier-transform infrared spectroscopy) [8, 13, 40, 41]. Such systems do not fall into
the scope of this text because the modulation does not happen in intensity. Yet, they comply with the model
of equation (1), where the field power spectrum (object x) is linearly related via some positive cosine
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Table 2.MSE for positive-cosine multiplexing with the matrix C1 defined in equation (6)—for the three multiplexing schemes of
figure 3. Results hold for LS-estimation and large number of pixels N≫ 1.Results for other forms of positive-cosine multiplexing are
detailed in SI, section 4.3.

One-step Two-step Dual-detection

A M MT ⊗M [M M2]
T M−M2

Positive-cosine multiplexing (M= C1)

MSE 4x̄ (∀i ̸=1) 16x̄ (∀i ̸=n1) 2x̄ (∀i)

transform to the measurements [11, 41]. We show in SI that the results of the present text also apply to such
interferometric systems, to a constant. They also lead to a constant MSE and comply with equation (7). Last,
note that for positive-cosine multiplexing, there exist alternative solutions to the dual-detection scheme that
are likely to further improve the MSE—such as the common four-step phase-shifting method [31, 49]. Such
strategies are not considered in this work.

2.3. Practical consequences of the results
First, our results highlight that, for PHC-multiplexing, the SNR is substantially affected by the system design:
when possible, one-step multiplexing should be preferred over the two-step scheme, and implemented in a
dual-detection mode. Second, they show that positive-Hadamard multiplexing should be preferred over
positive-cosine multiplexing with the matrix C1. Last, they feature that the benefit of PHC-multiplexing over
RS depends on how the intensity is distributed over the object pixels: PHC-multiplexing is mostly beneficial
for samples which features of interest are brighter than k times its average value x̄: in particular, it can be
present a great advantage on sparse objects, but should be avoided on ‘negative’ objects.

2.4. Physical explanation of the results
These results are not particularly intuitive and contrast with the multiplexing advantage that holds under
additive white Gaussian noise (figure 1(b)). There, the noise is independent of the signal, thus more signal
comparatively means less noise. With photon-noise, the key point is that the noise depends on the signal: the
noise variance scales with the detected signal (replacing the Poisson noise with Gaussian noise of variance
equal to the signal lead same results). Then, in RS, the photon noise on each pixel is associated with its own
brightness, and a null pixel does not induce photon noise. In opposite, PHC-multiplexing combines photons
from object parts of different brightness, collecting a large signal varying about a high positive DC value
(figure 1(a)). When demultiplexing, the large noise associated with this DC value seems to spread over the
whole object, thereby risking to bury the signal of a faint pixel into the photon-noise of bright ones [25, 32].

3. Robustness and extension of the results

3.1. Impact of other estimators
The above results are valid when the object is retrieved via least-square estimation. Yet, this estimator does
not take into account some a priori knowledge such that (i) the object positivity, (ii) the nature of Poisson
noise. Therefore, we consider three simple alternative estimators: a LS-estimator with positive threshold
(LS-clip); an estimator that takes into account the positivity constraint (NNLS: non-negative least-square);
and an estimator that take into account both the positivity constraint and the nature of the noise (MLE:
maximum likelihood estimator). Details on these estimators are provided in the section 5. Here, the aim is
not to provide a complete study, but rather to identify in which cases these estimators may be useful to
improve the MSE. The simulations of figures 6 and S3 assess the performance of these estimators on different
types of samples. Essentially, they show that these estimators mostly reduce the MSE on object pixels where
the positivity constraint can be enforced (i.e. on lowest-intensity or zero-valued object pixels), and that the
dimmer the pixel, the more NNLS and MLE are beneficial over LS-clip. This is clear on the MSE of
figures 6(d) and (g): as compared to LS, the MSE is reduced on the background but not on the particles. On
the estimate, this translates to a reduction of the background noise, and the dimmer the pixels, the stronger is
the noise reduction. On figures 6(a) and (e), the effect is quite visible on the background, but is most
pronounced when the object is sparse (figure S3(a)) figure 10 also indicates that the MLE seems to perform
better than NNLS at reducing the MSE on the background without introducing a consequent bias in the
estimation, but at the expense of computational complexity and reconstruction time. Note that these
algorithms do not include a sparsity-prior, the error reduction is simply due to the positivity constraint.
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Figure 6. Effect of the proposed estimators, for one-step positive-Hadamard multiplexing, as compared to LS-estimation
(figures 4 and 5). (a)–(d) Results for the simulated object of figure 4, with n= 5000 realizations. The estimators reduce the MSE
on the background. (e)–(g) Experimental results for fluorescence imaging, as described in figure 5, with n= 20 realizations.
The estimators reduce the MSE on the background. Here the MLE is applied to raster-scanning and improves the original offset
(section 5).

Table 3. Indicative effect of the estimators on the threshold value of equation (10). LS: least-square, LS-clip: least-square with positive
threshold, NNLS: non-negative least-square, MLE: maximum-likelihood estimator (definitions in section 5). This indicative table is valid
except for extremely dim samples where the positively constrained estimators may impact even pixels higher than kx̄.

Pixel intensity Estimator
SNR of PHC-multiplexing as
compared to raster-scanning? SNR gain/loss

xi ⩾ kx̄ All SNR improvement gain=
√ xi

kx̄
xi ⩽ kx̄,xi ̸= 0 LS SNR degradation loss=

√ xi
kx̄

LSclip, NNLS, MLE SNR degradation but the degradation
is mitigated on dim parts

loss⩽
√ xi

kx̄

xi ⩽ kx̄,xi = 0 LS SNR degradation loss=
√ xi

kx̄
LSclip SNR degradation but mitigated loss⩽

√ xi
kx̄

NNLS, MLE ≈no SNR modification ≈no change

Overall, the considered estimators do not necessarily bring an improvement over LS (e.g. in figure S3(b)).
They are mostly beneficial for sparse objects (figure S3(a)) or objects with dim parts (figure 6). LS-clip
improves the MSE by discarding potential negative estimated values, and NNLS and MLE bring an
additional improvement if the object is sparse or comprises null pixels. In any case, as summarized in table 3,
equation (10) remains globally valid: PHC-multiplexing brings a SNR improvement over RS for pixels
brighter than kx̄. For dim pixels under this threshold value, these estimators can partially mitigate the SNR
degradation. Yet, it is in the presence of null pixels that estimators such as MLE or NNLS are most useful:
on these pixels, they can completely counterbalance the SNR degradation induced by the use of
PHC-multiplexing with LS-estimation, which is particularly useful for sparse objects. On such objects, they
can also help mitigate the contrast degradation caused by PHC-multiplexing [30].

3.2. Robustness to perturbations
Experimentally, several noise sources—such as the ones depicted on figure 7—may sometimes perturb the
initial photon-noise limited system of equation (1). Therefore, it is important to assess which of RS or
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Figure 7. Additional nuisance sources. e: additive white Gaussian noise of variance σ2. η, β: unwanted signal adding to the object
signal. α: constant offset added to the multiplexing matrix, J: the matrix of ones. η, β and α are real positive quantities and
assumed to be known from a calibration step.

Figure 8. Impact of the nuisance sources on the MSE. Top: noise model. Grey box: PHC-multiplexing improves the SNR on pixels
i brighter than the indicated value. black: MSE associated with raster-scanning; red: MSE associated with positive-Hadamard
multiplexing (S-matrix, LS-estimation); dashed-lines: MSE for the initial photon-noise model of equation (1). ∀i,
σ2 = ηi = βi ≈ Nαx̄≈ 3 counts.

PHC-multiplexing is most robust to system perturbations. Here, we study their robustness to: (i) additional
electronic noise e arising from the detector, (ii) additional signal η entering the system after the multiplexing
step, (iii) additional signal β entering the system before the multiplexing step, (iv) a constant offset α in the
multiplexing matrix itself.

The theoretical results (SI, section 5.2) and simulations (figure 8) show that, when the number of pixels is
sufficiently large, PHC-multiplexing is robust to these additional perturbations, except when the unwanted
signal β undergoes multiplexing (figure 8(c)). Conversely, RS is not robust to these perturbations, since the
noise variance or magnitude adds as an offset to the MSE (figures 8(a)–(d)). Hence, PHC-multiplexing is
more robust than RS to additional signal independent noise e, to unwanted non-multiplexed signal η, and to
a multiplexing offset as α. In these cases, the initial equation (10) is lowered by an amount proportional to
the strength of the nuisance: the larger the nuisance signal, the more pixels benefit from PHC-multiplexing.
However, in the presence of an unwanted multiplexed signal β, PHC-multiplexing is less robust than RS,
since its MSE is on average k times more impacted. In this case, the more nuisance, the more pixels benefit
from RS (figure 8(c)).

Note that the last scenario depicted in figure 8(d) (constant offset α on the multiplexing matrix) explains
the impact of the imperfect DMD contrast on the experimental results of (figure 5). Indeed, we measured
that DMD pixels in the ‘OFF’ order contribute to an amount α≈ 0.065% to the detected signal. This seems
insignificant but substantially degrades the MSE of RS with an offset of αNx̄≈ 5 counts for fluorescence
imaging (figures 5(a) and (b)) and αNx̄⩽ 1 count for Raman spectroscopy (figure 5(c)) (section 5). We
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Table 4. Ã: modified multiplexing matrix; ε: positive constant; M̃SE: resulting MSE for PHC-multiplexing.

One-step Two-step Dual-detection

Ã 1
ϵ
M 1

ϵ1
M⊗ 1

ϵ2
M 1

ϵ
[M M2]

T

M̃SE ε kx̄ ϵ1ϵ2 kx̄ ε kx̄

emphasize that this SNR degradation only comes from the fact that we mimic RS measurements with a
DMD: it would not happen in practice since RS does not involve a multiplexing device. It is nevertheless
interesting that this minor contrast imperfection most likely explains why it is probably rare to observe a
clear advantage for RS when performing imaging on a DMD, especially if the contrast imperfection is not
removed from the raw data (figure S4).

Another sort of modification of the initial model could be that the initial multiplexing matrix is
multiplied by a constant. Then the resulting MSE of PHC-multiplexing is modified according to table 4 (SI,
section 5.1).

3.3. Impact of a constant number of photons
Last, we emphasize that we have compared positive-multiplexing and RS at fixed irradiance and integration
time, i.e. when the number of photons was not constant. In this case, we have shown that even though
PHC-multiplexing detects about N/2 times more photons than RS, it does not necessarily improve the final
SNR. It then seems trivial that, if the number of photons collected by PHC-multiplexing is lowered to be
equal to the number of photons detected with RS (e.g. by lowering the laser power), its SNR will be further
degraded. In SI (section 5.1), we show the MSE is worsened by a factor N/2 (as compared to equation (7)):

MSEPHC(x̂i)≈
N

2
kx̄. (11)

Then, if N≫ 1, Gi ≈ 0, meaning that PHC-multiplexing degrades the SNR on virtually all object pixels. On
average, the SNR loss is proportional

√
N. Therefore, when the measurements are only limited by

photon-noise, the common argument (that holds for additive-white gaussian noise) stating that since
PHC-multiplexing allows detecting more photons than raster-scanning, the integration time or laser power can
be lowered to obtain the same SNR is not valid. An illustration of this effect is provided in figure S4.

4. Conclusion

This paper compared the SNR of RS and positive-multiplexing based on Hadamard and Cosine modulation,
at fixed integration time and irradiance, when the noise only arises from the photon-counting process. In
this context, although PHC-multiplexing detects about N/2 times more photons than RS, it does not
necessarily improve the SNR of the estimated object. Instead, we showed that the MSE is approximately equal
to a constant kx̄, meaning that PHC-multiplexing improves the SNR only on pixels at least k times brighter
than the object mean signal x̄. On pixels lower than kx̄, PHC-multiplexing degrades the SNR, except on
zero-valued pixels, where the degradation can be mitigated with appropriate estimators. The constant k is at
the core of this work: it depends on the multiplexing matrix and on the specific multiplexing configuration.

These results highlight that, for PHC-multiplexing, the SNR is substantially affected by the system
design: when possible, one-step multiplexing should be preferred over the two-step scheme, and
implemented in a dual-detection mode. Indeed, as compared to one-step multiplexing, the two-step scheme
squares k and dual-detection divides it by two. For dual-detection, we also showed that the
balanced-detection strategy can be used for the matricesH1 and C1, but should not be used for the S-matrix.
We also show that positive-Hadamard multiplexing leads to a better SNR than positive-cosine multiplexing
with C1, although this may differ for other types of positive-cosine multiplexing modulations. Most
importantly, these results highlight that the benefit of PHC-multiplexing over RS depends on how the
intensity is distributed over the object pixels, i.e. on the object structure. Therefore, the question: Does
PHC-multiplexing leads to a better SNR than raster-scanning for photon-noise limited data? has no
straightforward universal answer. The results depend on the type of sample and on the user’s interest. Yet, we
provide an indicative guideline table with typical sample types and the preferred estimator to use (figure 9),
when the SNR is the figure-of-merit to optimize. Altogether, RS should be preferred when pixels of interest
lie under kx̄, such as in homogeneous objects, ‘negative’ objects, or objects with structures of very different
brightness. For such objects, it should also be preferred if the figure of merit to optimize is the contrast.
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Figure 9. Indicative guideline for the preferred choices between PHC-multiplexing and raster-scanning, for several classes of
objects, provided the SNR is the figure-of-merit to optimise. The preferred estimator choice amongst LS, LS-clip, NNLS and MLE
is also indicated. The scale bar indicates the position of the object average signal x̄ as compared to the structures of the object. bck:
background, PBR: peak-to-background ratio.

Conversely, PHC-multiplexing should be preferred for objects with some large intensity parts on a faint or
null background; and finds its greatest advantage for sparse objects.

With this study, we hope to have clarified a few crucial points concerning the choice of some acquisition
strategies and their SNR. Yet, it also leaves many open questions. First, concerning the validity framework of
the results. In this text, we focused on intensity modulation multiplexing, for PHC modulation. We showed
(SI) that the results also hold for some systems where the modulation does not happen in intensity
(positive-cosine-multiplexing via interferometric measurements such as in Fourier-transform infrared
spectroscopy), consistently with [8, 13, 40, 41]. It is also possible that our results hold for intensity
modulation multiplexing with other deterministic real positive matrices: in SI, we give some theoretical
conditions on such matrices that may help to answer this question. The SI document also provides a detailed
methodology with general results to facilitate the adaptation to other multiplexing matrices. In addition, it
would also be of great interest to conduct a similar SNR analysis for non-deterministic modulations, for
example with speckle intensities or positive random matrices [45, 54–56]. Another important aspect to
consider is the impact of the number of measurements. Indeed, one advantage of positive-multiplexing is
that it can be applied to undetermined systems with techniques such as compressive sensing [6, 43]. But
there also, it is crucial to identify the correct noise hypothesis that may impact the performances of some
widely used computational methods [54, 57]. Otherwise, many other parameters could be investigated to
complete our SNR study: one could for instance apply the same study to non-linear systems [58, 59],
investigate the case of phase imaging, consider the impact of the resolution and sampling [60, 61]; of other
estimation methods with sparsity priors [62]; or of more complex sources of noise [63]. Last, we remind that
this study only focused on the SNR, but other criteria should be taken into account when choosing between
RS and PHC-multiplexing, such as the contrast, the acquisition time, or the time needed for retrieving the
object which can be non-negligible in the case for PHC-multiplexing.
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5. Methods

5.1. Estimators
5.1.1. Least-square estimation (LS)
The LS estimator minimizes the squared l2 norm between the noisy and noiseless measurements. The LS
solution reads:

x̂LS = argmin||b− b0||2 = A−1b (12)

if A is invertible. The LS estimator is optimal in the sense of the maximum-likelihood for AWGN. Under
Poisson noise with no constraint on the estimate x̂, and if A is invertible, the LS estimate is efficient, meaning
is unbiased with variance equal to the Cramer–Rao lower bound [41, 64, 65]. Yet, here, the objects of interest
are positive intensities and the measurements number of photons counts. We thus consider in the following
estimators with positivity constraints.

5.1.2. LS estimation with negative values removal (LS-clip)
The simplest method to take into account the positivity of the object is to find the LS estimate (12) and set
the negative values of x̂ to zero. We call this ad hoc method LS-clip. We choose to include this method
because it reflects the commonly applied positive threshold on experimental results.

5.1.3. Non-negative LS estimation (NNLS)
The NNLS estimator takes into account the positivity of the object by solving the LS problem with positivity
constraints:

x̂NNLS = argmin ||b− b0||2 subject to xi ⩾ 0. (13)

For simplicity, we use the in-built Matlab function lsqnonneg based on [66]. On the studied objects, we
verified that it approximately behaves as FISTA with positivity constraints.

5.1.4. Poisson maximum-likelihood estimate with positivity constraints (MLE)
To better take into account the photon noise model, we use an estimator derived from the Poisson
distribution. For statistically independent measurements, the probability of observing a particular vector of
photons counts b for a given x—is given by [64, 67]:

P(b;x) =
M∏
i=1

e−[Ax+g]i ([Ax+ g]i)
bi

bi!
(14)

where Ax+ g= b0i = ⟨bi ⟩. Here we add a small constant vector g≈ 10−31N counts to the initial model in
order to avoid singularities in the following algorithms. P(b;x) is called the likelihood for a Poisson
distribution. We seek the values of xn than maximize the likelihood to obtain bi photon counts, under the
positivity constraint xn ⩾ 0 (n= 1 . . .N). In other words, given b, we seek the MLE

x̂MLE = argmax P(b;x) subject to xi ⩾ 0. (15)

To solve the above equation, we use two different algorithms. First, we use the expectation–maximization
(EM) algorithm (known as Richardson–Lucy algorithm) [68–70], that searches for the solution of (15) by
solving

ATdiag(Ax+ g)−1b−AT1= 0 (16)

iteratively through:

x̂q+1 =
ATdiag(Axq + g)−1b

AT1
⊙ x̂q. (17)

The algorithm is well-established, widely used and simple to implement. It was shown to converge towards a
MLE estimation, but there is no guarantee that the maximum is a global maximum [71]. We initialize the
algorithm with the NNLS estimate with an offset given by g.

To double-check our implementation of the EM algorithm and its behaviour, we also solve (16), with a
second algorithm called ‘SPIRAL-TAP’ (Sparse Poisson Intensity Reconstruction ALgorithms) [72]. This
algorithm was shown to be stable and converge [72]. In this work we do not include the sparsity constraints
that can be taken into account in this algorithm. In all the results of this paper, the two algorithms converge
to the same solution, therefore we only show the results for SPIRAL-TAP.
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Figure 10. Variance and bias sections along the anti-diagonal associated with the MSE of figures S3 and 6 n= 5000 realizations.

5.1.5. Effect of estimators on the variance and bias
The MSE combines the variance and bias through MSE= Var+ ⟨δx̂⟩2, where the bias is the expected value
of the estimation error δx̂. In this section, we empirically study the effect of the different estimators on the
estimation variance and bias for three simulated objects. Figure 10 confirms that the LS-estimator is
unbiased, and shows that the MSE is mostly dominated by the effect of the variance. The constrained
estimators only reduce the variance where the positivity constraints apply, but this variance reduction can be
at the expense of a slight bias (figures 10(b) and (d)). For the object of figure 10(b), LS-clip trivially adds a
significant positive bias on pixels with low or zero value (e.g. 34% relative error on the background). NNLS
and MLE also overestimate the background and both slightly underestimate brighter pixels (few% relative
error). For the sparse object (figure 10(d)), the MLE estimator introduces significantly lower bias than
NNLS. However, it is well known that MLE introduces some artefacts on edges [73], see the marked pixels
(∗). These results are consistent with [41, 74].

5.2. Experimental methods
For both RS and multiplexing, the setups layouts are similar, and both make use of a DMD. The DMD is a 2D
matrix of micromirrors, controlled to either direct the light to a detector or discard it to a beam dump. Since
the DMD acts as a binary modulator, it is used to implement both RS and multiplexing: RS is performed by
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Figure 11. Schematic of the experimental setups. (a) The fluorescence signal emitted by the sample is imaged onto the DMD
plane. L1–L6, convex lenses with focal lengths 50mm, 150mm, 150mm, 150mm, 180mm, 50mm, and 150mm, respectively; L7,
combination of two lenses imaging the DMD into the PMT with×3 demagnification. (b) The wavelength components of the
Raman signal emitted by the sample are dispersed onto the DMD. Same components as in (a) except for L3 100mm, L4 100mm
L5 150mm. D, dichroic mirror; F, notch filter; M, mirror; PMT, photon-counting photomultiplier tube; S, confocal slit; G,
amplitude grating.

turning on each DMD pixel (or group of pixels) one-by-one, and multiplexing is performed by displaying
each reshaped multiplexing-matrix row sequentially onto the DMD. In the dual detection scheme, each
pattern and its complementary are displayed sequentially, which models the presence of a second detector
(that would detect simultaneously the complementary measure). For the 2-steps multiplexing scheme, the
two patterns can be displayed sequentially, or obtained simply by displaying each reshaped row of aM⊗M
matrix.

5.2.1. Widefield fluorescence imaging (figure 11(a))
Principle: The DMD plane contains the fluorescence signal emitted from the sample plane. Multiplexing the
DMD pixels along (x, y) combines several spatial bins into the detector at each instant. RS the DMD along
(x, y) is formally equivalent to scanning the sample plane with a point-focus such as in (figure 11(a)). We
choose to perform RS onto the DMD instead of implementing it physically to make the SNR comparisons
more reliable.
Experimental setup: On the illumination side, a continuous wave laser (532 nm Verdi, Coherent Inc) is
focused onto the back focal plane of a microscope objective (Olympus 20×, 0.4 NA) to create a widefield
illumination in the sample plane. On the detection side, the fluorescent signal from the object, selected via a
dichroic mirror and notch filter, is imaged with a×60-demagnification onto the DMD (V-7001, Vialux
-1024× 768 mirrors). When the DMD pixels are in the ‘ON’ state, the signal impinging on these pixels is
deflected into a photon-counting PMT (H7421-40, Hamamatsu). The theoretical spatial resolution of the
system is about 1µm. The theoretical FOV is about 600µm, but in practise we reduce it to 80µm or 40µm
by using only a sub-part of the DMD area. In addition, an iris is placed before the DMD to limit the amount
on light impinging on the DMD, and the associated spurious signal arising from pixels in the ‘OFF’ state. For
the same reason, an iris is also placed right after the DMD, to only select the central diffraction order created
by the blazed-grating structure of the device [75].
Sample: The sample is made of fluorescent particles of 15µm (F36909 FocalCheck fluorescence microscope
test slide 1—invitrogen).
Excitation power and integration time: The experiments are carried at constant integration time and
irradiance for RS and multiplexing. The maximum excitation intensity is chosen such as the maximum count
rate lies within the linearity range of the detector (≈106 counts s−1). The laser power at the sample plane is
about 50mW (irradiance≈7.2× 10−9 W µm−2). The exposure times are set to 10ms per measurement.

16



J. Phys. Photonics 5 (2023) 035003 C Scotté et al

Figure 12. Raw variance sections (not Gaussian filtered), taken along the anti-diagonal of the variance images of figures 5(c)
and (f).

Number of measurements: The two fluorescent samples of figure 5 are the same, but the FOV is more or less
cropped to artificially render the sample more sparse. In the two cases, the spatial sampling is about 1.3µm
(DMD pixels binned 4-by-4 along x and y).

• Sample 1: For one-step multiplexing and dual detection, we multiplex with a positive-Hadamard-matrix of
sizeN = 64× 64= 4096; for two-stepmultiplexing, we choose thematrix S⊗ Swith the closest dimensions
with N = 63× 63= 3969.

• Sample 2: For one-step multiplexing and dual detection, we multiplex with a positive-Hadamard-matrix of
size N = 32× 32= 1024; for two-step multiplexing, N = 31× 31= 961.

Data processing: All the measurements are repeated 20 times in the exact same configurations to calculate
statistical values. We choose to calculate the variance of the experimental estimation rather than the MSE.
Indeed, we expect the differences between RS and multiplexing performances to be subtle, and with no access
to the real ground truth, we do not want to favour one or the other with some potential experimental bias.

The multiplexing matrix is pre-compensated to take into account for the diamond-shape of the DMD
(placed at 45◦) and avoid mismatch between the theoretical and physical multiplexing matrix [76].

To calculate the experimental object mean x̄ via:

x̄= (x̄RS + x̄H1 + x̄H1b)/3 (18)

where x̄RS is the object mean obtained by averaging all RS measurements, x̄H1 is the object mean obtained by
averaging all one-step measurements, and x̄H1b is the object mean obtained by averaging all dual-detection
measurements. We discard two-steps multiplexing since it leads to the the highest error. The number of
realizations being small, we apply a Gaussian filter with σ = 1 on the variance section plots for clarity (but
not on the variance images). The row variance plots are shown in figure 12.

5.2.2. Raman spectroscopy (figure 11(a))
Principle: The DMD λ−axis contains a Raman spectrum. RS the spectrum along λ leads to a sequential
measure of each wavelength bin. Instead, multiplexing sequentially measures combinations of several
wavelengths. This is formally equivalent to comparing monochromators with either a moving exit slit or a
coded-aperture spectrometer.
Experimental setup: On the illumination side, a continuous wave laser (532 nm Verdi, Coherent Inc) is
focused onto the sample plane, with a microscope objective (Olympus 20×, 0.4 NA). On the detection side,
the Stokes–Raman scattered light from the object is relayed onto a confocal slit. A combination of dichroic
mirror and notch filter ensures only the Raman signal is retained. Next, it is dispersed with a blazed grating
(600mm−1, Thorlabs), and the spatially dispersed wavelength components are imaged onto the DMD
(V-7001, Vialux -1024× 768 mirrors). The DMD λ−axis, in conjunction with the grating, acts as a
programmable spectral filter. When the DMD pixels are in the ‘ON’ state, the signal impinging on these
pixels is deflected into a photon-counting PMT (H7421-40, Hamamatsu), while the rest is sent into a beam
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Figure 13. (a) Experimental mean and variance of the counted photons, at fixed laser power; (b) normalized histogram of
measured detector dark-counts.

dump. The spectral resolution of this system is about 40 cm−1; limited by the grating and the focal lengths
lenses of the spectrometer.
Sample: The sample is a liquid solvent—pure DMSO (Dimethyl Sulfoxide—99.9%, Sigma-Aldrich)—placed
in a quartz spectroscopic cuvette.
Excitation power and integration time: The experiments are carried at constant integration time and
irradiance for RS and multiplexing. The maximum excitation intensity is chosen such as the maximum count
rate lies within the linearity range of the detector (≈106 counts s−1). The laser power at the sample plane is
about 1.2mW (irradiance≈3.3× 10−3 W µm−2) and the exposure times are set to 5ms per measurement.
Number of measurements: The spectral resolution of the system allows us to bin the 1024 DMD pixels along
λ-axis 8-by-8 with no resolution loss. This results in 128 effective pixels. For one-step multiplexing, we
multiplex with a S-matrix since in 1D it is preferable over the positive Hadamard matrix (table 1 Main Text)
The identity matrix and S-matrix are of size 127× 127 (N = 127). For dual detection, N = 128. For
two-steps multiplexing, we choose the S⊗ S with the closest dimensions, i.e. made of two S-matrices of size
11, thus N = 121. Although this modality is not relevant in 1D, we model it to verify our theoretical results
experimentally.
Data processing: All the measurements are repeated n= 1000 times in the exact same configurations to
calculate the empirical means and variance. We choose to rather present results on the variance rather than
on the MSE. Indeed, we expect the differences between RS and multiplexing performances to be subtle, and
with no access to the real ground truth, we do not want to favour one or the other with some potential
experimental bias. We calculate the experimental object mean x̄ in the same way than for fluorescent
imaging:

x̄= (x̄RS + x̄S + x̄Sb)/3≈ 10.6 counts (19)

(with x̄RS = 11, x̄S = 10.5, x̄Sb = 10.5). On the variance plot (figure 5(j)), the amplitude of the error bar at
one standard deviation is (normal distribution approximation) [77]:

2(n− 1)

n2
(Var(x̂i))

2 (20)

where Var(x̂i) the empirical variance obtained after estimation over all n=1000 measurements.

5.2.3. Photon-noise hypothesis
The paper is based on the hypothesis that each measured number of photons b is a random variable whose
probability law is a Poisson distribution of mean b0. To verify this hypothesis, the mean number of counted
photoelectrons should be equal to its variance with ⟨b⟩= ⟨δb2⟩= b0.

Experimentally, we count the detected photons through the spectroscopic system (figure 11(b)) with a
sample of DMSO, with all DMD pixels ‘ON’. On figure 13(a), the laser power is fixed to 0.5mW and the
integration time is varied between 0.1ms and 10ms. Each measurement is repeated 2000 times, and we verify
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Figure 14. Verification of the proposed models for one-step multiplexing with the samples of figure 5. (a) The mean and variance
of a DMSO Raman spectrum differ from less than one count. (b) Section (along the anti-diagonal) of the mean and smoothed
variance of the fluorescent object (sample 1). The variance is equal to the estimation mean plus an offset equal to Nαx̄. Note that
the negative values of (b) are due to the inversion of the matrix A+αJN.

that variance approximately equals to the mean. In addition, the detector dark noise (Poisson distributed and
signal independent) is measured 1000 times in complete darkness, for an exposure time of 1 s. Figure 13(c)
shows the resulting normalized histogram, which can be fitted with a Poisson distribution of mean≈9
(coherent with the PMT specifications). Thus, the dark count of our detector is about of 9 photoelectrons
per second: since our integration times are of the order of 5–10ms, this value is considered as negligible as
compared to the typical count rates measured in the context of the present experiments.

5.2.4. Noise model for the experimental data
As seen on figures 5(a)–(f), the contrast of the DMD is not perfect: the pixels in the ‘OFF’ order contribute to
some amount to the signal detected in the ‘ON’ order. This means that, even when all the DMD pixels are
‘OFF’, there is still a small portion α of the signal of the DMD plane (e.g. fluorescence, Raman) that
contributes to the ‘ON’ order and therefore enters the detector. In our case, we estimate this relative
contribution α to≈0.065% (by measuring the ratio between the signal when the DMD is all ‘ON’ and all
‘OFF’, for different samples). Although this contribution seems insignificant, it may seriously impact the
measurements. Indeed, if a 100× 100 pixels object emits on average 10 photons per pixel, the object sum
(i.e. signal all DMD ‘ON’) would account for 105 counts, thus the ‘OFF’ order for Nαx̄= 65 counts, which
may be more than the intensity of each pixel. The relative contribution α is independent of the object signal,
but the absolute contribution of the ‘OFF’ order, equal to Nαx̄, depends on the object signal.

In Raman spectroscopy experiments (figures 5(g)–(j)), the DMD ‘OFF’ order contributes to Nαx̄≈ 0.9
counts (N = 127, x̄= 10.6 counts). This contribution is negligible, as verified on figure 14(a): indeed the
mean and variance for RS experiments are quasi-equal (difference of less than one count). Therefore, our
Raman spectroscopy experiments can indeed be modelled by the simple initial model:

b∼ Poisson(Ax).

In the fluorescent imaging experiments of figures 5(a)–(f), the contribution from the DMD OFF order
cannot be considered as negligible (figure 14(b)). For sample 1, Nαx̄≈ 4.25 counts (N = 4096, x̄= 1.6
counts); for sample 2, Nαx̄≈ 5.7 counts (N = 1024, x̄= 9 counts).

Therefore, the object is actually multiplexed by A plus an constant offset matrix αJN . For RS, this leads to
b∼ Poisson((1−α)IN +αJN)x), or to b∼ Poisson((IN +αJN)x) since in our case, α≪ 1.

For positive-Hadamard multiplexing, half of the pixels are ‘ON’ at each measurement, which leads to
b∼ Poisson(A+αJN − α

2 JN)x). Therefore, the general model can be written as:

b∼ Poisson((A+αJN)x) (21)

with α for RS, 0.5α for one-step multiplexing and 0.75α for two-steps multiplexing with S-matrices. The
LS-estimation is thus performed by inverting the matrix A+αJN. Note the experiment could as well be
modelled as b∼ Poisson(Ax+η), with η = αJNx= Nαx̄. Yet, this implies a calibration step for each new
sample, in order to estimate η. More details are given in SI.
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Figure 15. Same results as figures 5(a)–(f), but without correcting the model as in equation (21). Since here, αx̄ is sufficiently
small, only the raster-scan estimation (∗) is changed: the estimation is biased by an offset equal to Nαx̄.

We emphasize that it is crucial to take this imperfection into account into the model to compare RS and
multiplexing (figure 15). Otherwise, the RS results would be biased by a factor Nαx̄.
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Appendix

Figure S1.MSE for positive-Hadamard multiplexing, for a sparse and ‘negative’ object. One-step multiplexing is performed with
H1, two-step with S⊗ S, and dual detection withH1 −H2 (H2 is the complementary ofH1). (a) and (e) Example of one estimate
x̂ obtained after one realization of the data (one simulated measurement and LS-estimation). For visualization purposes, only
positive estimated values are shown. (b) and (f) Section of x̂ along the anti-diagonal. (c) and (g) Empirical MSE obtained with
n= 20000 noise realizations.MSE is its average over all pixels (except the first pixel for one-step multiplexing, see table 1).
(d) and (h) Section ofMSE(x̂) along the anti-diagonal. The dashed-lines represent theoretical MSE values, and the faint strip the
error-bar. Inset: ground-truth object x.
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Figure S2.MSE for positive-cosine multiplexing with the matrix C1. (a) Schematic representation of a 2D imaging system in
raster-scanning mode and in three multiplexing modes, with the associated theoretical MSE per object pixel i and constant k.
(b) Example of one estimate x̂ obtained after one realization of the data (one simulated measurement and LS-estimation). For
visualization purposes, only positive estimated values are shown. (c) Section of x̂ along the anti-diagonal. The dashed-lines
represent theoretical MSE values. (d) Empirical MSE obtained with n= 20000 noise realizations. MSE is its average over all pixels
(except the first pixel for one-step multiplexing, and the first row and column of pixels for two-step multiplexing, see table 2.
(e) Section ofMSE(x̂) along the anti-diagonal. The dashed-lines represent theoretical MSE values. Inset: ground-truth object x of
intensity average x̄. (f) Example of one estimate for a sparse object and a ‘negative object’ (object with structures of interest
dimmer than a bright background), for raster-scanning and one-step multiplexing.
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Figure S3. Effect of the estimators as compared on the MSE, for positive-Hadamard multiplexing and one-step multiplexing. LS:
least-square, LS-clip: least-square with positive threshold, NNLS: non-negative least-square, MLE: maximum likelihood
estimator. (a) Effect on a sparse object. LS-clip discards the negative values and improves the MSE. NNLS and MLE further reduce
the MSE on the background, at the expense of an increase on the peak for NNLS (Methods). n= 5000 noise realizations.
(b) Effect on a ‘negative’ object. This object is bright therefore the positivity-constraint hardly applies: other estimators give
approximately the same MSE than LS. n= 5000 noise realizations. (c) Effect on the experimental Raman spectra. The spectrum is
not sparse (presence of a positive background). LS-clip allows to discard negative estimated values, but the other estimators do
not bring an additional improvement. n= 1000 noise realizations.
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Figure S4. Comparison of raster-scanning and positive-Hadamard multiplexing at constant number of photons (1.8× 107

collected photons in total in both cases), and at constant irradiance and exposure time (2000 more photons detected in
multiplexing). (a) At constant number of photons, the SNR of positive-Hadamard multiplexing is significantly degraded (b) by a
factor proportional to the number of pixels N, (equation (11) Main text) N= 4096, x̄= 4.4× 103.
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