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Abstract 

Iodonium salts are historical cationic photoinitiators extensively used for the 

polymerization of epoxides or vinyl ethers. As drawback, the absorption of iodonium salts is 

strongly UV-centered so that this UV photoinitiator can only operate in the visible range by 

mean of a photosensitization process. With aim at simplifying the composition of the 

photopolymerizable resins, numerous chromophores have been covalently linked to the 

iodonium salts, enabling to design monocomponent photoinitiating systems. In this review, 

an overview of the different dyes that have been connected to iodonium salts is provided. 
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 1. Introduction 

 During the past decades, photopolymerization has witnessed intense research efforts, 

supported by the ever-growing demand for photopolymers.[1] Nowadays, 

photopolymerization is used in research fields such as 3D and 4D printing, adhesives, coatings 

and varnishes, solvent-free paints, microelectronics or dentistry.[2–15] Historically, 

photopolymerization was developed with photoinitiating systems activable in the UV range. 

Nowadays, this approach is discarded in favour of visible light photopolymerization that 

exhibits numerous advantages compared to UV photopolymerization. Notably, UV light is 

well-known to be responsible of skin cancers and eye damages.[16,17] UV irradiation setups 

are also costly and energy-consuming devices. Considering the current energy sobriety drive 

numerous European countries are currently facing, alternatives to UV irradiation setups must 

be found. Interest for alternative technologies is also supported by the different rules imposed 

by the United Nations Environmental Program (UNEP) Minamata Convention on Mercury 

from 2013 that has totally banned Hg lamps as light sources. Since 2020, Hg lamps are even no 

longer allowed to be manufactured, imported or exported. To overcome these drawbacks, 

light-emitting diodes (LEDs) have emerged as new light sources exhibiting different 

advantages such as compactness, long operating lifetime, low cost, and precise emission 
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wavelength. Nowadays, LEDs emitting from the UV range up to the near-infrared region are 

commercially available. Benefiting from these new light sources, visible light 

photopolymerization has emerged as a promising strategy to elaborate photopolymers. 

Another key parameter to efficiently promote a polymerization process is the light penetration 

inside the resins. As shown in the Figure 1, the light penetration that can be achieved in the 

visible range varies between a few millimeters up to a few centimeters in the near-infrared 

range. [18] With aim at elaborating composites, the significant light penetration that can be 

achieved at 800 nm thus enables to polymerize resins containing fillers but also thick 

samples.[19] Polymerization of such photocomposites is almost impossible with UV light.          

 
Figure 1. Light penetration in a polystyrene latex with an average diameter of 112 nm. 

Reprinted with permission from Ref.[18] 

 However, contrarily to UV photons that are highly energetic, the situation differs for 

visible light photons that are clearly less energetic. To address this issue, more reactive 

photoinitiating systems have thus to be designed. Over the years, various structures have been 

examined in order to design visible light photoinitiating systems and cyclohexanones,[20–23] 

cyanines,[24–30] iodonium salts,[31–41] naphthoquinones,[42–44] naphthalimides,[32,45–63] 

benzylidene ketones,[64–71] acridine-1,8-diones,[72–74] bodipy,[31,75–79] chalcones,[10,80–

96] iridium complexes, [97–105] chromones and flavones,[106–108] carbazoles,[109–124] 

benzophenones,[125–132] furan derivatives,[133] copper complexes,[134–151] 

glyoxylates,[152–156] diketopyrrolopyrroles,[157] phenothiazines,[158–166] 

thioxanthones,[31,167–181] coumarins,[182–195] iron complexes,[196–203] zinc 

complexes,[204] perylenes,[205–208] curcumin,[209–212] quinoxalines,[213–227] 

camphorquinones,[228,229] chalcones,[10,80–95] anthracenes,[230] pyrenes,[231–239] and 

push-pull dyes [197,240–255] can be cited as relevant examples of these intense research 

efforts. Still related to the design of visible light photoinitiating systems, a growing demand 

exists for photobleachable photoinitiating systems,[123,158,187,256,257] for photoinitiators 

that can be activated with sunlight or daylight,[258] or that are water-soluble.[259,260] In this 

last case, polymerization in water becomes possible. However, even if the photosensitizer is 

important, the way how the radicals are produced can strongly differ with the photoinitiating 

system, considering that two mechanisms exist. In the case of Type I photoinitiators, a 

homolytic cleavage of the bond can occur, producing radicals (See Scheme 1). Acyloximino 



esters, benzylketals, oxime esters, α-haloacetophenones, α-aminoalkyl-acetophenones, 

hexaaryl biimidazoles (HABIs), o-acyl-α-oximino ketones, phosphine oxides, trichloromethyl-

S-triazine glyoxylates or hydroxyacetophenones can be cited as the most extensively studied 

Type I photoinitiators.[261–263] As specificity, photocleavage of Type I photoinitiators is 

irreversible so that a decrease of the photoinitiator content and thus of the initiating species 

within the photocurable resin is observed. The situation differs with Type II photoinitiators. 

In this case, Type II photoinitiators are not capable to initiate the polymerization alone so that 

additives have to be used. As a result of this, the production of initiating species is directly 

related to the use of multicomponent systems. Type II photoinitiators can be combined with 

hydrogen donors or used as photosensitizers for the sensitization of onium salts (sulfonium 

or iodonium salts).[20,168,173,264–269] In this last case, a photoinduced electron transfer 

between the excited dye and the onium salt occurs. 

 

Scheme 1. Radical generation with Type I and Type II photoinitiators 

 If the multicomponent approach is appealing for the design of high-performance 

photoinitiating systems, the main drawback of this strategy remains besides the complexity of 

the elaboration of the photocurable resins. This is particularly true in the case of four-

component photoinitiating systems.[270] Beyond the complexity of the formulations, 

efficiency of the multicomponent systems can be drastically reduced in viscous resins in which 

the mobility of the different partners is considerably reduced. Probability of intermolecular 

interactions is thus adversely affected. With aim at simplifying the composition of the 

photocurable resins while favoring interactions between the photosensitizers and the different 

additives, the combination of an iodonium salt and a photosensitizer within a unique molecule 

constitutes an appealing approach.[271,272] Additionally, by the proximity of the two partners 

(electron donor and acceptor), efficiency of the photoinduced electron transfer can be 

optimized. At present, examples of iodonium salts linked to chromophores are still scarce in 

the literature, even if the cationic polymerization of epoxides with diaryliodonium salts was 

reported as soon as 1977 by Crivello and coworkers.[36] In 1978, the same authors examined 

the photosensitization of iodonium salts with dyes such as Acridine Orange, Acridine Yellow, 



Phosphine R, Benzoflavin and Setoflavin T (See Figure 2), enabling to promote the cationic 

polymerization of epoxides in the near UV/visible range.[273] Indeed, if diaryliodonium salts 

are efficient cationic photoinitiators, these structures mainly absorb in the UV-C range (i.e. 

220–280 nm), thus requiring a photosensitizer in order to be activable in the visible range. Since 

these pioneering works done by Crivello and coworkers, photochemistry of diaryliodonium 

salts has been extensively studied.[274–281] Numerous and sometimes unexpected 

photosensitizers have been used, as exemplified by acylphosphine oxides,[282] 9,10-

phenanthrenequinone, [283] dimethyl-p-toluidine,[284,285] indole,[286] 

anthraquinone[287,288] and polymethine dyes.[18,289–291] Photosensitization from the UV 

range up to the near-infrared region has thus be explored. From the mechanistic viewpoint, 

iodonium salts can decompose via a homolytic or a heterolytic cleavage upon light irradiation, 

according to the two mechanisms depicted in the Scheme 2.[292–294] In the case of the 

homolytic cleavage, radicals and superacids can be simultaneously formed in the presence of 

a hydrogen donor, enabling to initiate the free radical polymerization (FRP) of acrylates and 

the cationic polymerization (CP) of epoxides. In the case of a heterolytic cleavage, only 

superacids are produced. 

 

Scheme 2. Photodissociation of iodonium salts by the two possible mechanisms: heterolytic 

and homolytic. 

However, photosensitization is based on an intermolecular process that can be 

adversely affected if viscous resins are used. Still based on photosensitization, interaction 

between the two partners can be greatly improved by the design of monocomponent 

photoinitiating systems in which the intramolecular electron transfer is totally independent of 



the concentration, the viscosity of the resin, or the rate constant of interaction. Modification of 

diaryliodonium salts in order to improve their reactivities was notably examined by Liska and 

coworkers and a series of phenylethynyl onium salts was notably proposed as cationic 

photoinitiators.[295] Investigation of the side-products of the reaction revealed the 

dissociation of the  onium salts to occur on the phenylethynyl side, producing phenylethynyl 

cations capable to initiate the cationic polymerization of epoxides. However, aside from this 

example of modification of the carbon-iodine bond reported by Liska and coworkers, chemical 

engineering on diaryliodonium salts was mostly carried out on the phenyl side with the 

introduction of chromophores as peripheral groups. Indeed, if the modification of the carbon-

iodine bond can be extremely complex, introduction of peripheral groups on one to the two 

phenyl rings of diaryliodonium is much easier. Besides, at present, none of these 

monocomponent iodonium salt-chromophore systems have been commercialized yet, thus 

evidencing that the synthesis of such conjugates is not an easy task. In fact, the main drawback 

of this approach can be summarized in a few words: the use of low-yielding reactions. In this 

review, an overview of the different iodonium salt-chromophore conjugates reported to date 

is provided. Numerous comparisons will be established with photoinitiating systems where 

the two partners (i.e. the chromophore and the iodonium salt) are not covalently linked to each 

other. It has to be noticed that iodonium salts have been the most extensively studied onium 

salts for photopolymerization. In the family of onium salts, sulfonium salts are also excellent 

photoinitiators and their reactivities are comparable to that of iodonium salts. Besides, only 

few monocomponent systems have been reported to date with these structures and to the best 

of our knowledge, only two examples of monocomponent systems have been designed with 

1,3,5-triphenyl-2-pyrazoline[296] and phenyldialkyl groups[297] as the chromophores. This 

lack of structures can be confidently assigned to synthetic issues limiting the availability of 

structures. 

 

Figure 2. The first dyes used as photosensitizers by Crivello and coworkers for the 

sensitization of diaryliodonium salts. 

2. Monocomponent photoinitiating systems based on iodonium salt-chromophore 

conjugates. 



 2.1. Iodonium salts with electron-donating groups. 

 Diaryliodonium salts exhibit an absorption strongly centered in the UV range, with an 

absorption not extending beyond 300 nm. In order to redshift the absorption towards the 

visible range, Crivello and coworkers introduced in 1993 different substituents on 

diaryliodonium salts in order to redshift their absorptions (See Figure 3).[298] The direct 

sensitization of the iodonium salts by light and by the intermediate of thioxanthones (2-

chlorothioxanthone (CTX),[299] 2-isopropylthioxanthone (ITX), 3-carboethoxy-7-

methylthioxanthone (ETX), 1-carboethoxy-3-nitrothioxanthone (T1), 1 carboxy-3-

chlorothioxanthone (T2), 1-carboethoxy-3-phenylsulfonylthioxanthone (T3), N-allyl-3,4-

imidothioxanthone (T4)) was investigated (See Figure 3).    

 
Figure 3. A series of iodonium salts substituted with various groups and the different 

thioxanthones used for the sensitization. 



 As shown in the Figure 4, introduction of electron-donating groups in Iod4 and Iod5 

redshifted the absorption of the diaryliodonium salts (λ = 264 and 240 nm in methanol for Iod4 

and Iod5 respectively), compared to the parent structure i.e. Iod1 (λ = 227 nm in methanol). 

The opposite situation was found upon introduction of electron-withdrawing groups, as 

exemplified with Iod2 (λ = 215 nm in methanol) for which a blueshift of the absorption 

maximum was determined in solution.   

 
Figure 4. UV-visible absorption spectra of Iod1-Iod5 in methanol. Reproduced with 

permission of Ref.[298] 

 When tested as photoinitiators for the cationic polymerization (CP) of bisphenol-A-

diglycidyl ether (DGEBA) and 3,4-epoxycyclohexylmethyl-3’,4'-epoxycyclohexanecarboxylate 

(CADE) upon irradiation with an 80-W mercury lamp, the following order of polymerization 

rates was determined Iod5 > Iod1 > Iod3 > Iod2 > Iod4, perfectly fitting with the amount of 

superacid released by the different iodonium salts (See Figure 5). Besides, a slightly different 

order of reactivity was found concerning the final monomer conversions and this order of 

reactivity was dependent of the monomer used. Thus, in the case of CADE, the following order 

of reactivity could be determined (Iod5 > Iod3 > Iod1 > Iod2 > Iod4), whereas the following one 

was established for DEGBA (Iod1 > Iod3 > Iod5 > Iod2 > Iod4). The most reactive iodonium 

salts were thus identified as being the unsubstituted Iod1 and the two methyl substituted Iod3 

and Iod5. 



 

Figure 5. Polymerization profiles obtained during the CP of DGEBA (A) and CADE (B) upon 

irradiation with an 80-W mercury lamp. Reproduced with permission of Ref.[298] 

 Noticeably, the cyclic diaryliodonium salt Iod4 only furnished low monomer 

conversions with DEGBA and CADE, assigned to its low ability to produce superacids. In fact, 

a competition between two reaction pathways was suggested by the authors. Due to the steric 

hindrance generated by the biaryl group, concomitant occurrence of an addition on the 

monomer in competition with a reduction process of the iodonium salt  was proposed (See 

Scheme 3). 

 

Scheme 3. The two possible reaction pathways reducing the reactivity of Iod4. 

 Sensitization of the iodonium salts by different thioxanthones was also examined. As 

specificities, absorptions of thioxanthones are located in the 250-270 nm range with a long tail 

extending up to 350-450 nm (See Figure 6).  



 

Figure 6. UV-visible absorption spectra of 1) T1, 2) T2, 3) T3, 4) T4. Reproduced with 

permission of Ref.[298] 

 Here again, compared to DEGBA, higher monomer conversions were obtained with 

CADE, resulting from the simultaneous presence of two cycloaliphatic epoxy groups that are 

more reactive than the vinyl ether group. Noticeably, a low monomer conversion was obtained 

with Iod2 when sensitized by thioxanthones, and this unexpected result was assigned to a 

competition occurring for light absorption between the iodonium salt and the thioxanthones, 

adversely affecting the photosensitization process (See Figure 7). By photosensitization with 

thioxanthones, Iod1 outperformed the other iodonium salts in two-component 

thioxanthone/Iod systems. High monomer conversion obtained with Iod1 was assigned to the 

high reactivity of the phenyl radicals produced by photoinduced electron transfer and 

decomposition of the iodonium salt. In the case of Iod2-Iod5, electronic effects generated by 

the different substituents (electron donating or electron accepting groups) negatively 

impacted the reactivity of the radicals formed after photolysis of the iodonium salts. From 

these different experiments, it was thus concluded that the unsubstituted iodonium salt was 

the best cationic photoinitiator of the series.  

 



 

Figure 7. Polymerization profiles determined during the CP of DEGBA and CADE using 1) 

1, 2) 2, 3) 3, 4) 4, 5) 5. Reproduced with permission of Ref.[298] 

2.2. Fluorenone derivatives 

In 2001, Schröder and coworkers developed a monocomponent system in which the 

diaryliodonium moiety was covalently linked to the fluorenone group.[300] Fluorenone was 

selected as the photosensitizer for this assembly due to the perfect adequation of its absorption 

with that of the emission of the high-pressure mercury lamp. Choice to combine the iodonium 

salt with fluorenone in (9-oxo-9H-fluoren-2-yl)phenyl iodonium hexafluoroantimonate(V) 

(FL-I-Ph SbF6) was also motivated by the respective positions of the triplet excited states of 

fluorenone (222 kJ/mol) and the iodonium salt (267 kJ/mol) impeding the triplet sensitization 

of the iodonium salt by fluorenone (See Figure 8).[275] Only a photoinduced electron transfer 

can occur. Goal of this study was also to investigate which decomposition products could form 

during photolysis. Surprisingly, this iodonium salt i.e. FL-I-Ph SbF6 exhibited a strong 

sensitivity to moisture. Indeed, by adding 1 wt% water in acetone and by introducing 1 wt% 

photoinitiator, 44% of the iodonium salt was decomposed by this small water content after 20 

min. A higher stability was determined in the solid state. When stored as a solid and under 

air, only 10% of the iodonium salt was decomposed after eleven months of storage. Under a 

water saturated atmosphere, 44% of the iodonium salt was hydrolyzed after only two days, 

evidencing its strong sensitivity to moisture. 

 

Figure 8. Chemical structure of FL-I-Ph SbF6. 

 Interestingly, by replacing the hexafluoroantimonate anion by a chloride anion, the 

resulting iodonium salt proved to be totally insensitive against moisture. Photolysis 



experiments done in acetonitrile revealed the photolysis to occur on the fluorenone side. 

Indeed, after irradiation, fluorenone and iodobenzene were identified as the main photolysis 

products. No presence of benzene could be detected after photolysis by nuclear magnetic 

resonance (NMR). From the photolysis experiments, it was concluded that no intramolecular 

energy transfer from the excited fluorenone towards the iodonium salt was occurring and that 

presence of the fluorenone moiety was destabilizing the C-I bond so that a specific 

fragmentation on the fluorenone side could happen. CP of CADE done upon irradiation with 

a mercury lamp revealed FL-I-Ph SbF6 to outperform Iod1 alone or by photosensitization with 

anthracene (See Figure 9). Comparisons of the monomer conversions obtained upon 

sensitization of Iod1 by fluorenone or 2,2-dimethoxyethanone revealed the monomer 

conversion to be lower than that obtained with the hybrid structure FL-I-Ph SbF6. 

Improvement of the monomer conversion with FL-I-Ph SbF6 compared to that of the 

bimolecular dye/Iod1 system was assigned to an efficient photoinduced electron transfer from 

the fluorenone moiety to the iodonium moiety due to its close proximity. The high sensitivity 

of FL-I-Ph SbF6 to moisture was confirmed during the polymerization experiments, with a 

severe reduction of the CADE conversion with the exposure time of the resin to water. 

 

Figure 9. Polymerization profiles of CADE using FL-I-Ph SbF6 (1 wt%), Iod1 (1 wt%) and 

Iod1/anthracene (1%/1% w/w). Reproduced with permission of Ref.[300] 

2.3. Benzophenone derivatives 

 In 1996, Salazar Mendoza and coworkers proposed an iodonium salt bearing a 

benzophenone moiety as the side group (See Figure 10).[301] Benzophenone is a popular 

photosensitizer for onium salts.[132,302–304] p-Benzoyldiphenyliodonium 

hexafluorophosphate PhCOPhI+Ph PF6 notably exhibited an absorption maximum at 342 nm 

in methanol, close to that of benzophenone (330 nm). Based on its absorption, 

photopolymerization tests were done under UV light with this hybrid structure. Interestingly, 

comparison of the photoinitiating ability of the monocomponent PhCOPhI+Ph PF6 and the 

two-component photoinitiating PhCOPh/Ph2I+ PF6 system revealed the bimolecular 

sensitization system to give lower monomer conversions during the FRP of methyl 

methacrylate (MMA). Notably, after 3 min. of irradiation, a MMA conversion of 7% was 

FL-I-Ph SbF6
Iod1+ anthracene
Iod1



obtained with the bimolecular system contrarily to 30% for the monocomponent system at 

similar concentrations. Investigation of the photodecomposition of the monocomponent 

system revealed 4-iodobenzophenone to be identified as the unique side-product of the 

photocleavage, therefore evidencing a selective dissociation of the iodonium salt on the phenyl 

side. 

 

Figure 10. Chemical structure of PhCOPhI+Ph PF6. 

 

2.3. Benzylidene derivatives 

 With aim at redshifting the absorption of iodonium salts towards the visible range, an 

interesting strategy was proposed by Ortyl and coworkers in 2021.[41] They notably 

investigated the introduction of different groups on the iodonium scaffold and varied the 

number of electron-donating and electron-accepting groups so that a structure/performance 

relationship could be established. In this first work, the asymmetric substitution of the 

iodonium salts was examined (See Figure 11). A push-pull system was notably introduced on 

one of the two aromatic rings of the diaryliodonium salt. By the concomitant presence of an 

electron donor and an electron accepting on the same aromatic ring, an electronic 

delocalization could be produced in close vicinity of the iodonium moiety and shift the 

absorption towards the visible range. 

 



 

Figure 11. Chemical structures of iodonium salt based on benzylidene derivatives. 

Reproduced with permission of Ref. [41] 

 More precisely, modification of the benzylidene core in alpha, beta positions as well 

as on the benzylidene core was studied (See Figure 12). 

 

Figure 12. The different chemical modifications done on the benzylidene-based iodonium 

salts in alpha, beta-positions or on the phenyl ring. 

 Interestingly, by the concomitant presence of an electron donating and accepting group 

on [3-(2,2-dicyanovinyl)-4-methoxyphenyl]phenyliodonium hexafluorophosphate (α-CN-PI), 

a significant red-shift of the absorption could be observed with regards to the parent structure 



diphenyliodonium hexafluorophosphate (Iod1) (See Figure 13). Thus, a shift of the absorption 

maxima from 230 nm for Iod1 up to 350 nm for α-CN-PI could be determined, resulting from 

the intramolecular push-pull effect. Noticeably, if a redshift of the absorption was found, no 

improvement of the molar extinction coefficient could be evidenced between Iod1 and α-CN-

PI. 

 

Figure 13. Comparison of the absorption spectra of Iod1 and α-CN-PI in acetonitrile. 

Reproduced with permission of Ref. [41] 

 The different chemical modifications done on this series of photoinitiators revealed the 

cyano groups in alpha-position to cause the highest redshift of the absorption compared to the 

ester or the methylsulfonyl groups (α-SO2Me-PI, α-COOMe-PI and α-2-COOEt-PI). An 

opposite situation was found for all beta-substituted derivatives for which a significant blue 

shift of the absorptions compared to that observed for the alpha-substituted ones could be 

determined. This is directly related to the fact that the electron-withdrawing groups were 

introduced in none-conjugated positions with regards to the electron donors. The most blue-

shifted absorption was found for β-OMe-PI at 252 nm in acetonitrile. By introducing methoxy 

groups on the aryl group, a redshift of the absorption could be detected resulting from the 

excellent electron donating ability of the methoxy groups, improving the electronic 

delocalization and reducing the HOMO-LUMO gaps (See Table 1). 

 

 

 

 

 

 

(Iod1)

Iod1



Table 1. Absorption properties of the different benzylidene-based iodonium salts, at the 

absorption maximum, at 365 and 405 nm in acetonitrile. 

photoinitiators λmax [nm] εmax 

 [M-1·cm-1] 

ε365 nm 

 [M-1·cm-1] 

ε405 nm 

 [M-1·cm-1] 

α-CN-PI 350 7900 6250 350 

α-SO2Me-PI 343 6080 3370 210 

α-COOMe-PI 342 8800 5000 260 

α-2-COOEt-PI 308 6100 200 0 

β-Me-PI 312 3600 0 0 

β-OMe-PI 252 20000 0 0 

β-Ph-PI 309 11450 1240 0 

Ar-2,4-OMe-PI 360 17000 16650 1300 

Ar-2,6-OMe-PI 295 12100 1580 150 

Ar-2,4,6-OMe-PI 347 14100 9500 480 

Comb-Me-PI 305 8400 1450 0 

Comb-OMe-PI 253 19700 110 0 

Comb-CN-PI 392 8300 5600 7700 

Comb-Ph-PI 297 14100 6400 550 

 

Photolysis experiments done in acetonitrile revealed α-2-COOEt-PI to furnish the 

slowest photolysis rate of the series of iodonium salts. In the case of β-OMe-PI, no photolysis 

was detected at all. These two iodonium salts were also identified as being the worse 

photoinitiators during the polymerization experiments, consistent with their poor photolysis 

behaviors. The fastest photolysis was detected for Ar-2,4-OMe-PI which is also the iodonium 

salt furnishing the best monomer conversions. Overall, a good adequation between photolysis 

experiments and photoinitiating abilities could be evidenced with these different iodonium 

salts. Determination of the quantum efficiency of acid generation revealed the aryl ring-

modified derivatives Ar-2,4-OMe-PI and Ar-2,4,6-OMe-PI, and the combined modification 

derivative Comb-CN-PI to give quantum efficiency values higher than 1.5%. For all the others, 

lower values were obtained. Low ability to produce superacids was assigned to the presence 

of a double bond and strong electron-accepting groups in the benzylidene chromophores 

lowering the quantum efficiency as previously reported in the literature.[305] Besides, 

presence of these groups is required to get an absorption centered in the near UV/visible range 

and the best compromise was thus obtained for the aryl ring-modified derivatives for which 

the highest quantum efficiency values of superacid generation could be determined. 

Investigation of the cationic polymerization of triethylene glycol divinyl ether (TEGDVE) in 

thin films and in laminate upon irradiation at 365 nm revealed the β-position-modified 

derivatives to give the longest induction time and the lowest monomer conversions (See Table 

2).  



Table 2. Induction times and monomer conversions obtained during the CP of TEGDVE and 

CADE upon irradiation at 365 and 405 nm. 

 TEGDVE CADE 

 LED@365 nm LED@405 nm LED@365 nm LED@405 nm 

Compounds τinda [s] FCb [%] τinda [s] FCb [%] τinda [s] FCb [%] τinda [s] FCb [%] 

 α-Position-Modified Derivatives of New Cationic Photoinitiators 

α-CN-PI 6 91 16 88 17 41 64 28 

α-SO2Me-PI 3 89 - n.p.c 7 44 - n.p. 

α-COOMe-PI 5 88 - n.p. 8 41 - n.p. 

α-2-COOEt-PI 35 91 - n.p. 31 42 - n.p. 

 β-Position-Modified Derivatives of New Cationic Photoinitiators 

β-Me-PI 110 41 - n.p. 94 27 - n.p. 

β-OMe-PI - n.p. - n.p. - n.p. - n.p. 

β-Ph-PI 51 86 - n.p. 65 43 - n.p. 

 Aryl Ring-Modified Derivatives of New Cationic Photoinitiators 

Ar-2,4-OMe-PI 5 92 6 88 15 44 40 41 

Ar-2,6-OMe-PI 16 92 108 23 29 38 - n.p. 

Ar-2,4,6-OMe-PI 17 92 - n.p. 56 45 - n.p. 

 Combined Modification Derivatives of New Cationic Photoinitiators 

Comb-Me-PI 36 84 - n.p. 49 51 - n.p. 

Comb-OMe-PI - n.p. - n.p. - n.p. - n.p. 

Comb-CN-PI - n.p. - n.p. - n.p. - n.p. 

Comb-Ph-PI 10 94 - n.p. 18 42 - n.p. 
a: induction time b: monomer conversion determined after 300 s of irradiation c: no 

polymerization. 

 

 In terms of monomer conversion, the best TEGDVE conversions were determined for 

the aryl ring-modified derivatives, peaking at 92% for the three salts after 300 s of irradiation. 

At 405 nm, only few salts could initiate the CP of TEGDVE, consistent with their light 

absorption properties. By replacing TEGDVE by 3,4-epoxycyclohexylmethyl 3,4-

epoxycyclohexanecarboxylate (CADE) as the monomer, a severe reduction of the monomer 

conversion could be determined. As interesting feature, a significant increase of the 

fluorescence was detected during the cationic polymerizations of vinyl and epoxy monomers 

with α-CN-PI at 365 nm, enabling in turn to monitor the monomer conversion by fluorescence 

measurements. This photoinitiator can thus act as an initiator but also as a fluorescent probe 

enabling to visualize acid generation during the photolysis of the initiator (See Figure 14). To 

explain this enhancement of the fluorescence properties during photopolymerization, a 

phenomenon comparable to that observed with aggregation-induced emission (AIE) 

fluorophores for which the restriction of intramolecular motions enhances the 

photoluminescence properties.[306–309] 

 



 

Figure 14. Fluorescence spectra determined during the CP of TEGDVE with α-CN-PI upon 

exposure to LED@365 nm. Reproduced with permission of Ref. [41] 

 In 2022, the same group investigated the design of symmetrically substituted iodonium 

salts.[40] The strategy previously used for the design of asymmetrically structures was newly 

applied, with the modification of the benzylidene core in alpha and beta-positions, but also on 

the aromatic rings (See Figure 15).  

 

Figure 15. The different symmetrically substituted iodonium salts based on the benzylidene 

core. Reproduced with permission of Ref.[40]. 

Compared to the previous asymmetrical benzylidene derivatives (See Figure 11) that 

sometimes exhibited a weak absorption at 405 nm, absorption properties of the symmetrical 

structures were boosted in terms of molar extinction coefficients. The highest molar extinction 

coefficient was determined for β-Me-PI-s, peaking at 36 700 M-1.cm-1 at 250 nm (See Table 3).  



Table 3. Comparison of absorption properties of asymmetrical and symmetrical benzylidene-

based and diaryliodonium iodonium salts in acetonitrile. 

 

Iodonium salt λmax 

[nm] 

εmax 

[M-1.cm-1] 

ε365 nm 

[M-1.cm-1] 

Ia 365 nm ε405 nm 

[M-1.cm-1] 

Ia 405 nm 

Iod1 228 14600 0 0 0 0 

Asymmetrical Benzylidene-Based Iodonium Salts 

α-CN-PI-a 350 7900 6250 43% 350 8% 

α-SO2Me-PI-a 343 6080 3370 24% 210 5% 

α-COOMe-PI-a 342 8800 5000 30% 260 0% 

β-Me-PI-a 312 3600 0 0.4% 0 27% 

Ar-2,4-OMe-PI-a 360 17000 16650 78% 1300 3% 

Ar-2,6-OMe-PI-a 295 12100 1580 13% 150 3% 

Symmetrical Benzylidene-Based Iodonium Salts 

α-CN-PI-s 353 13400 11860 66% 997 20% 

α-SO2Me-PI-s 340 12100 6670 50% 270 7% 

α-COOMe-PI-s 340 14000 8485 50% 300 8% 

α-Me-PI-s 260 27300 350 4% 0 0% 

β-Me-PI-s 250 36700 610 6% 0 0% 

Ar-2,4-OMe-PI-s 364 30900 30800 94% 4300 58% 

Ar-2,6-OMe-PI-s 297 19600 3750 28% 405 8% 

Ia 365 nm : amount of emitted light absorbed by the 25 μm thick layer. Ia 405 nm : amount of 

emitted light absorbed by the 25 μm thick layer. 

As the main finding, iodonium salts modified with methyl substituents (i.e. α-Me-PI-s 

and β-Me-PI-s) exhibited the most blueshifted absorptions of the series, evidencing the 

detrimental effect of this substitution. This negative impact was also confirmed during the 

photolysis experiments, with no noticeable changes of the absorption intensities. In the case of 

α-CN-PI-s and Ar-2,4-OMe-PI-s, noticeable changes of the absorption spectra could be 

evidenced in acetonitrile with the formation of a photoproduct  whose structure could be 

identified on the basis of previous works done by Neckers and coworkers concerning the 

photolysis of iodonium salts.[310] This photoproduct is notably issued from radical 

recombination subsequent to the photodissociation of the C−I bond (See Figure 16).    

 

Figure 16. Photoproduct formed during the photolysis of iodonium salt. Reproduced with 

permission of Ref.[40]. 



 By theoretical calculations, the bond dissociation energy from the C-I bond could be 

calculated and determined as ranging between 38 and 51 kcal/mol (See Table 4). These values 

are greatly lower than that of benchmark iodonium salts such as HPI for which a BDE of 73 

kcal/mol was calculated.[311] It was thus concluded that the presence of the push-pull 

structure was greatly contributing to lower the BDE. Quantum efficiencies of acid generation 

comparable to that determined for the previous asymmetrical iodonium salts were 

determined. Theoretical calculations also revealed the dissociation of the iodonium salts to be 

favorable from the singlet excited state.  

Table 4. Bond dissociation energies determined by theoretical calculations for symmetrically 

substituted iodonium salts. 

Iodonium salt C-I BDE (kcal/mol) 

α-CN-PI-s 45.51 

α-SO2Me-PI-s 45.78 

α-COOMe-PI-s 50.60 

α-Me-PI-s 38.45 

β-Me-PI-s 49.66 

Ar-2,4-OMe-PI-s 50.99 

Ar-2,6-OMe-PI-s 45.83 

 

 Determination of their photoinitiating abilities during the CP of TEGDVE and CADE 

revealed the symmetrical structures to give slightly lower monomer conversions than the 

asymmetrical ones. Here again, in this series of iodonium salts, the methyl-modified 

symmetrical iodonium salts were unable to initiate any polymerization processes at 405 nm, 

evidencing the negative impact of this substitution. Parallel to the decrease of the monomer 

conversions during the CP of TEGDVE and CADE, an elongation of the induction time was 

also determined, evidencing that the push-pull effect was more important in the asymmetrical 

structures than in the symmetrical ones. 

 

 

 

 

 

 

 

 



Table 5. Monomer conversions determined after 300 s of irradiation at 365 and 405 nm during 

the CP of TEGDVE and CADE. 

 TEGDVE CADE 

 LED@365 nm LED@405 nm LED@365 nm LED@405 nm 

Compounds τinda [s] FCb [%] τinda [s] FCb [%] τinda [s] FCb [%] τinda [s] FCb [%] 

 α-Modified Symmetrical Iodonium Salts 

α-CN-PI-s 2 81 4 85 3 54 82 38 

α-SO2Me-PI-s 40 8 35 12 n.p. n.p. n.p. n.p. 

α-COOMe-PI-s 2 89 20 81 7 47 136 25 

 Methyl-Modified Symmetrical Iodonium salts 

α-Me-PI-s 48 85 n.p. n.p. 18 41 n.p. n.p. 

β-Me-PI-s 26 81 n.p. n.p. 15 51 n.p. n.p. 

 Aryl Modified Derivatives of New Cationic Photoinitiators 

Ar-2,4-OMe-PI 5 92 6 88 15 44 40 41 

Ar-2,6-OMe-PI 16 92 108 23 29 38 - n.p. 

Ar-2,4,6-OMe-PI 17 92 - n.p. 56 45 - n.p. 

 Combined Modified Symmetrical Iodonium salts 

Ar-2,4-OMe-PI-s 4 87 <1 88 5 41 43 34 

Ar-2,6-OMe-PI-s 27 79 4 46 18 31 n.p. n.p. 
a τind : induction time, b FC : final conversion c n.p. : no polymerization. 

2.4. Coumarin derivatives 

 In 2015, Ortyl and coworkers investigated for the first time coumarin-derived 

iodonium salts i.e. P3C-P and P3C-Sb (See Figure 17).[33] Especially, influence of the 

counteranion on the photoinitiating ability of these monocomponent systems was studied. 

Choice of coumarin as the chromophore was notably justified by its strong absorption centered 

in the near-UV/visible range but also for its almost colorless structure, enabling to produce 

colorless coatings.[182,186,187,193,195] 

 
Figure 17. Chemical structures of coumarin-based iodonium salts. 

 The two salts exhibited an absorption maximum located at 347 nm (ε = 17 000 M-1.cm-

1) in acetonitrile with an absorption extending up to 410 nm. In this context, polymerization 



tests could be performed at 385 nm but also at 405 nm, using CADE as the monomer. As 

anticipated, P3C-Sb furnished the highest monomer conversion during the CP of TEGDVE at 

405 nm (I = 100 mW/cm²), together with a high rate of polymerization. A conversion of 69% 

was reached after 800 s of irradiation, higher than that obtained with P3C-P (50%). This 

difference of reactivity is directly related to the nucleophilicity of the anions. Indeed, the 

hexafluoroantimonate anion is less nucleophilic than the hexafluorophosphate one so that 

lower interactions exist between the cation and the anion, favoring the reactivity of the 

iodonium salt. This difference of reactivity between P3C-P and P3C-Sb was considerably 

reduced at 385 nm (I = 500 mW/cm²) (47% for P3C-P and 55% for P3C-Sb) (See Figure 18 and 

Table 6) and assigned to a better adequation between the emission of the light source and the 

absorptions of the iodonium salts. The use of more energetic photons was also favorable to 

reduce the influence of the counter-anion on the photoinitiating ability. Besides, P3C-Sb 

remained more reactive than P3C-P. Tack-free coatings exhibiting an excellent photobleaching 

could be obtained with the two coumarin derivatives. It has to be noticed that photobleaching 

during the polymerization process is actively researched, considering that visible light 

photoinitiating systems are colored systems that are often responsible from an undesired color 

for the final coatings.[256] 

 

Figure 18. Photopolymerization profiles of CADE under air, LED@385 nm (I = 500 mW/cm²) 

using (1) P3C-P (1 wt %), (2) P3C-Sb (1 wt %). Reproduced with permission of Ref. [33] 

Table 6. CADE final conversion (FC) obtained under air upon exposure to different LEDs for 

800 s in the presence of the four different PIs. For the LED@385nm operating at 500 mW/cm², 

the conversions are given for 200 s of irradiation. 

PIs 
LED (385nm) 

 
LEDs 

I = 25mW/cm2 I = 500mW/cm2  405 nm   

P3C-P (1 wt%) 47% 39%   50%   

P3C-Sb (1 wt%) 55% 55%   69%   

Iod1 (1 wt%) npa npa   npa   

a no polymerization (<5%). 
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 Noticeably, if the CADE conversion was insensitive to the concentration of P3C-Sb (less 

than 2% variations), a different situation was found for P3C-P. In this case, by increasing the 

photoinitiator content from 0.5 wt% to 1 wt% and 2 wt%, the conversion increased from 37 to 

50 and finally 65% at 2 wt%. Presence of a dark polymerization was also evidenced. After 200 

s of irradiation, the light was switched off and due to a living polymerization process, the 

polymerization of CADE could continue. If the monomer conversion was lower than 5% after 

1800 s with P3C-P, this value increased up to 18% for P3C-Sb in the same conditions. This 

behavior was assigned to the lower nucleophilicity of the SbF6- counter anion, once again 

favoring the polymerization process. The preparation of interpenetrated polymer networks 

(IPNs) using a CADE/TMPTA blend (50%/50% w/w) in laminate upon irradiation at 405 nm 

proved to be feasible. In these conditions, the final monomer conversions determined for 

CADE and TMPTA were not significantly affected by the iodonium salt used for 

photopolymerization. Tack free coatings could be obtained. By theoretical calculations, the 

photodissociation of the iodonium salts was investigated. Based on the BDE, a more favorable 

cleavage of the iodonium salts on the phenyl side was evidenced (See Figure 19). Considering 

the different of BDEs (46.66 and 61.37 kcal/mol), a rather selective I-Ph cleavage reaction can 

occur. This result was confirmed by electron spin resonance (ESR) experiments which 

confirmed the formation of phenyl radicals. 

 

Figure 19. The two possible dissociation pathways with P3C salts. Reproduced with 

permission of Ref. [33] 

 The possibility to initiate free radical processes with P3C-Sb was confirmed with the 

polymerization of a model methacrylic dental resin based on the mixture of three monomers, 

namely bisphenol A glycidyldimethacrylate (BisGMA) (50 wt%), triethylene glycol 

dimethacrylate (TEGDMA) (25 wt%) and 2-hydroxyethyl methacrylate (HEMA) (25 

wt%).[312] For these experiments, a light-emitting diode polywave (Bluephase, Ivoclar 

Vivadent, 1100 mW/cm²) was used so that conditions typically used by dentists could be 

reproduced. By using a three-component photoinitiating system based on camphorquinone 

(CQ) (0.4 wt%), P3C-Sb (2 wt%) and a tertiary amine i.e. ethyl 4-dimethylaminobenzoate 
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(EDAB) (0.8 wt%), no improvement of the monomer conversion was detected during the FRP 

of the methacrylic resin, compared to the reference CQ/EDAB system. However, a lower 

sensitivity to the solvent residue was clearly evidenced. Notably, in the case of ethanol, a 

severe inhibitory effect was detected with the reference CQ/EDAB system which was not 

observed with the ternary photoinitiating system. Jointly, an improvement of the monomer 

conversion was determined, highlighting the interest of this iodonium salt for dental 

applications. More recently, P3C-Sb was revisited for the development of new routes for the 

synthesis of polyalkenamers and polyolefin elastomers.[313] Easily processible elastomers 

could be prepared using this photoinitiator. In light of these different applications devoted to 

P3C-Sb, Ortyl and coworkers investigated a new series of coumarin-based iodonium salts in 

which electron donating and accepting groups were introduced in para-position of the phenyl 

ring (See Figure 20).  

 

Figure 20. Chemical structures of coumarin-based iodonium salts with phenyl ring 

substituted in para-position. 

This chemical modification was not investigated in the previous works.[314] From the 

absorption viewpoint, presence of these groups did not modify the absorption spectra of the 

different salts, the absorption being dominated by the coumarin moiety (See Figure 21). For 

the different iodonium salts, an absorption maximum located at ca. 350 nm was determined 

in acetonitrile. 

 



 

Figure 21. UV-visible absorption spectra of the coumarin-based iodonium salts in 

acetonitrile. Reproduced with permission of Ref. [314] 

 Examination of the contour plots of the frontier orbitals revealed the HOMO energy 

level to be centered on the coumarin moiety whereas the LUMO energy level was centered on 

the carbon-iodine bond. As previously determined by theoretical calculations, lower BDE were 

determined for the dissociation of the phenyl-I bond compared to the coumarin-I bond (See 

Figure 22). Selectivity of this dissociation was confirmed by ESR experiments, enabling to 

evidence the formation of para-substituted aryl radicals.  

 

Figure 22. BDE determined for the two carbon-I bonds. Reproduced with permission of Ref. 

[314] 

Examination of their photoinitiating abilities during the CP of CADE at 365 nm 

revealed P3C-P to furnish the highest final monomer conversion (59% conversion after 800 s). 

Here again, Ortyl and coworkers demonstrated the detrimental impact of the substitution of 

iodonium salts with electron donating or accepting groups. In this series of coumarin-based 

iodonium salts, the best candidate was again the iodonium salt capable to produce phenyl 

P3C-P

P3C-P



radicals. Concerning the iodonium salts bearing electron donating groups, (7-methoxy-4-

methyl-2-oxo-chromen-3-yl)-(p-tolyl)iodonium hexafluorophosphate (7M-Me-P) and (4-

isopropylphenyl)-(7-methoxy-4-methyl-2-oxo-chromen-3-yl)iodonium hexafluorophosphate 

(7M-iPr-P) could furnish monomer conversions slightly lowered compared to that of P3C-P 

(40 and 53% respectively). In the case of the two salts bearing electron accepting groups ((4-

cyanophenyl)-(7-methoxy-4-methyl-2-oxo-chromen-3-yl)iodonium hexafluorophosphate 

(7M-CN-P) and (7-methoxy-4-methyl-2-oxo-chromen-3-yl)-(4-nitrophenyl)iodonium 

hexafluorophosphate (7M-NO2-P), only low monomer conversions were obtained (21 and 29% 

respectively). These results were assigned to the ability of these salts to facilely protonate 

during photolysis so that this protonation was competing with the generation of photoacids 

and thus negatively impact the addition of superacids on monomers for photoinitiation. 

2.5. BODIPY derivatives 

Up to now, all monocomponent systems based on iodonium salts were designed to 

exhibit an absorption centered in the near UV/visible range. In 2021, Ortyl and coworkers 

developed a series of panchromatic structures comprising a BODIPY as the chromophore and 

differing by the counter-anions (See Figure 23).[31] 

 

Figure 23. Chemical structures of BOPIDY-based iodonium salts. 

 All BODIPY-based iodonium salts exhibited a broad absorption extending between 250 

and 600 nm, making these compounds promising candidates for photoinitiation processes 

done at 365, 405, 420, 450, 455, 470, 490, 505 and 530 nm (See Figure 24 and Table 7). High 

molar extinction coefficients at the absorption maxima could be determined, ranging between 

28 076 M-1.cm-1 for B-IOD-TsO up to 31 620 M-1.cm-1 for B-IOD-PF6. 



 

Figure 24. UV-visible absorption spectra of BODIPY-based iodonium salts recorded in 

acetonitrile. Reproduced with permission of Ref. [31] 

Table 7. Optical characteristics of the different iodonium salts at the absorption maximum 

and at different irradiation wavelengths. 

 λmax 

(nm) 

εmax 

(M-1.cm-1) 

ε365 ε405 ε420 ε450 ε455 ε470 ε490 ε505 ε530 

chromophore used to conjugate iodonium salts 

B-1 486 22115 2955 547 1070 6399 9025 15332 21585 7703 149 

Cationic photoinitiators 

B-IOD-TSO 474 28076 3861 4257 7145 19209 21218 27227 22515 11979 2997 

B-IOD-PF6 476 31620 4204 4657 7699 20412 22442 30047 21650 11454 5536 

B-IOD-SbF6 475 30869 3950 4629 7570 20040 22122 29748 20393 10770 4057 

B-IOD-CF3SO3 474 28599 3757 4461 7308 19165 21012 27663 18677 10021 4089 

 

 Photolysis experiments done in acetonitrile revealed the photolysis rates to be directly 

related to the molar extinction coefficients of the different salts at the different irradiation 

wavelengths. Besides, no photolysis could be detected at 530 nm, resulting from the low 

absorption of the different iodonium salts at this specific wavelength (See Figure 25). Influence 

of the anions on the photolysis rates could also be detected, evidencing the different 

nucleophilicities of the anions. By increasing the size of the anions, a reduction of the 

nucleophilicity was obtained, speeding up the photolysis process. This trend was confirmed 

during the polymerization experiments. 



 

Figure 25. Dependence A/A0 at 476 nm during the photolysis of B-IOD-PF6 upon irradiation 

with different diodes emitting at 365 nm, 405 nm, 420 nm, 455 nm, 470 nm, 490 nm, 505 nm, 

and 530 nm. Reproduced with permission of Ref. [31] 

 Investigation of the fragmentation mechanism by theoretical calculations revealed the 

photodissociation to occur preferentially on the phenyl side due to a lower BDE (32.44 kcal/mol 

vs. 69.25 kcal/mol on the BODIPY side) (See Figure 26). These results are consistent with the 

previous trends determined for asymmetrically substituted iodonium salts. 

 

 

Figure 26. Dissociation mechanism of the BODIPY-based iodonium salts. Reproduced with 

permission of Ref. [31] 



 As the main findings of these investigations, the CP of CADE and TEGDVE revealed 

the monomer conversions to correlate well with the molar extinction coefficients at the 

irradiation wavelengths. A perfect correlation between the intensity of the light source and the 

monomer conversions could also be determined. In this context and considering that the 

difference of light intensities used, the highest monomer conversions were obtained at 405 nm 

and 450 nm (I = 22.8 mW/cm²), with CADE conversions of 79 and 70% respectively after 900 s 

of irradiation. In the case of TEGDVE, higher monomer conversions were obtained and 

conversions higher than 90% could be obtained upon irradiation between 365 and 455 nm (See 

Table 8). Here, a dark polymerization process could be detected. Using B-IOD-PF6 as the 

photoinitiator (3 wt%) and upon irradiation at 505 nm for 200 s, an additional CADE 

conversion of 7.5% could be detected after the light was switched off for 700 s. In previous 

works, the following scale of reactivity depending on the counter-anions used was established 

for iodonium salts comprising fluorinated anions: BF4- < PF6- < AsF6- < SbF6- < B(C6F5)4- < 

Ga(C6F5)4-.[315] In the present case, SbF6- being the less nucleophilic anion, the highest 

monomer conversion was logically obtained with the iodonium salt comprising this anion (See 

Figure 27 for TEGDVE and CADE). Conversely, due to the high nucleophilic character of the 

tosylate group, the lowest monomer conversion was obtained for the iodonium salt 

comprising this anion.  

Table 8. Monomer conversions obtained during the CP of CADE and TEGDVE using B-Iod-

PF6 (3 wt%) with different light sources. 

monomer ε 

(M-1.cm-1) 

Light sources Intensity of 

LEDs (mW/cm²) 

Conversion (%) 

CADE 4204 365 nm HP 22.8 64.6 

CADE 4657 405 nm HP 22.8 79.0 

CADE 20412 450 nm HP 22.8 70.0 

CADE 30047 470 nm 12.9 57.2 

CADE 11454 505 nm 7.9 63.0 

TEGDVE 30047 470 nm 12.9 83.4 

TEGDVE 22442 455 nm 12.9 90.8 

TEGDVE 7699 420 nm 12.9 92.8 

TEGDVE 4657 405 nm 12.9 88.7 

TEGDVE 4204 365 nm HP 12.9 90.8 

TEGDVE 21650 490 nm 5.1 90.5 

TEGDVE 5536 530 nm 6.9 81.6 

TEGDVE 22454 505 nm 7.9 69.3 

 

 



 

Figure 27. Polymerization profiles of: (A) TEGDVE and (B) CADE upon irradiation at 470 nm 

using BODIPY-based iodonium salts differing by the counter-anions. Reproduced with 

permission of Ref. [31] 

 Finally, interest of these mono-component structures was confirmed by comparing the 

monomer conversions obtained with B-1 and Iod1 and the corresponding monocomponent 

system B-IOD-PF6 at different wavelengths. By adjusting the concentration so that the 

polymerization experiments were carried out at the same absorbance, an improvement of the 

monomer conversion by ca 5% could be obtained with the mono-component system, 

demonstrating that the photoinduced electron transfer was facilitated in the case of 

intramolecular interactions between the iodonium salt and the photosensitizer.  

2.6. Iodonium salts derived from natural dyes. 

 The design of photoinitiators derived from natural dyes is an active research field 

considering that these chromophores are issued from renewable sources and can be more 

biocompatible and less toxic than artificial dyes produced by the chemical industries.[316] In 

2021, Xiao and coworkers investigated the design of iodonium salt using an anthraquinone 

and a flavone derivative as the chromophore (See Figure 28).[317] Choice of these 

chromophores was notably motivated by the excellent performances obtained in 

multicomponent photoinitiating systems.[108,287,288,318–321] From the absorption 

viewpoint, these two dyes are ideal candidates for the design of colorless coatings. Indeed, as 

shown in Figure 29, absorptions of Iod2’ and Iod3’ are centered in the near UV range, with a 

tail extending up to 450 nm. Absorption maxima located at 336 and 344 nm were determined 

in acetonitrile. Light sources emitting in the 250-650 and 320-480 nm range were selected as 

the irradiation sources for photopolymerization. Compared to Iod1, a significant enhancement 

of the molar extinction coefficient in the 300-450 nm range was detected for Iod2’ and Iod3’, 

what is beneficial for radical generation. During the FRP of TMPTA, logically, higher 

monomer conversions were obtained with Iod2’ and Iod3’ (33 and 46%) compared to Iod1 

(31%) upon irradiation in the 250-650 nm range. By irradiating in the 320-480 nm, a reduction 



of the TMPTA conversion was logically observed, resulting from a reduction of the absorption 

properties. Thus, conversions of 18, 18 and 41% were determined for Iod1, Iod2’ and Iod3’ 

respectively. In order to improve the monomer conversion, addition of a tertiary amine such 

as ethyl dimethylaminobenzoate (EDAB) enabled to significantly improve the monomer 

conversion, increasing to 25, 30 and 40% in the same irradiation conditions (320-480 nm range). 

Improvement of the monomer conversion with EDAB was assigned to the formation of a 

charge transfer complex (CTC) with the iodonium salts, improving the light absorption 

properties. In order to extend the sensitization up to 500 nm, camphorquinone was used as the 

photosensitizer. Noticeably, upon irradiation at 465 nm with a LED, the two-component 

CQ/Iod3’ furnish similar conversion than the reference CQ/Iod1 system (31% TMPTA 

conversion after 300 s). Conversely, a lower monomer conversion was obtained with Iod2 

(28%). Finally, by using three component CQ/Iod/EDAB system and still by irradiating at 465 

nm, an improvement of the monomer conversion was obtained resulting from the concomitant 

light absorption by camphorquinone but also by the CTC Iod/EDAB (See Figure 29). Thus, 

conversions of 36, 32 and 36% were obtained with the three-component photoinitiating 

systems prepared with Iod1, Iod2’ and Iod3’ respectively. 

 

Figure 28. Chemical structures of the anthraquinone and flavone-based iodonium salts 

investigated by Xiao and coworkers. 

 

Figure 29. UV-visible absorption spectra of Iod1, Iod2’ and Iod3’ in acetonitrile. Reproduced 

with permission of Ref. [317] 
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Figure 30. TMPTA conversions determined upon irradiation at 465 nm using (A) Two-

component CQ/Iod systems and (B) Three-component CQ/Iod/EDAB photoinitiating systems. 

Reproduced with permission of Ref. [317] 

2.7. Iodonium salts based on naphthalimides. 

 Naphthalimides have been extensively studied for the design of photoinitiating 

systems and a wide range of structures have been proposed by Lalevée and coworkers. [45–

62] Capitalizing on these works, in 2016, the elaboration of a monocomponent system was 

examined and an iodonium-naphthalimide conjugate was proposed (See Figure 31).[32] Here 

again, the chromophore was precisely selected in order the iodonium salt to exhibit an 

absorption centered in the near UV/visible range and thus to be only slightly colored. As 

shown in the Figure 32, an absorption maximum at 340 nm was determined in acetonitrile. 

 

Figure 31. Chemical structures of Napht-Iod and thianthrenium (Thian).  
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Figure 32. UV-visible absorption spectra of Naphth-Iod (3), Iod (1) and Thian (2) in 

acetonitrile. Reproduced with permission of Ref. [32] 

 The cationic polymerization of a representative diepoxide monomer i.e. CADE 

revealed Napht-Iod to be capable to act as a monocomponent system. A CADE conversion of 

40% after 800 s of irradiation at 365 nm was obtained using Napht-Iod (1 wt%). Upon addition 

of water acting as a hydrogen donor (1 wt%), this value increased up to 50%. These values are 

greatly higher than that obtained with the reference photoinitiator, namely thianthrenium 

(Thian) (20% conversion) or Iod1 for which no conversion was detected due to the lack of 

absorption at 365 nm. By theoretical calculations, determination of the two BDEs (47.6 and 61.7 

kcal/mol) revealed the photocleavage to occur on the phenyl side, as observed for the other 

asymmetrically substituted iodonium salts (See Figure 34). 

 

Figure 33. Photopolymerization profiles of CADE under air upon irradiation at 365 nm; (1) 

Naphth-Iod (1% w); (2) Naphth-Iod/water (1/1% w/w); (3) Thian (1% w/w); (4) Iod1 (1% w/w). 

Reproduced with permission of Ref. [32] 
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Figure 34. The two possible cleavage processes in Naphth-Iod with the associated C-I Bond 

Dissociation Energy (BDE). Reproduced with permission of Ref. [32] 

 In 2020, the same authors investigated the influence of the counter-anions on the 

photoinitiating ability of the iodonium salts (See Figure 35).[34] As observed by Ortyl and 

coworkers, the highest monomer conversions were obtained with the salts 3 and 6 bearing an 

hexafluorophosphate or a hexafluoroantimonate anion. 

 

Figure 35. Chemical structures of iodonium salts 2-6. 

2.8. New approaches towards monocomponent iodonium salts. 

 In the aforementioned examples, the design of monocomponent photoinitiating 

systems has been achieved by chemical engineering on the diaryliodonium salt. However, 

photoinitiators obtained using this approach have never been used in industries, their 

syntheses being difficult, requiring numerous synthetic steps and in turn furnishing costly 

compounds. With aim at developing more simple synthetic approaches, metathesis which 

consists in exchanging an anion for another one was proposed as soon as 2015 by Lalevée and 

coworkers. Uing this approach, anions capable to act as photosensitizers could be used as 

counteranions. This strategy was notably applied to two polyoxometalates that were used as 

anions for Iod1. Two salts were prepared, namely [(SiMo12O40)4-](Ph2I+)4 and [(W10O32)4-](Ph2I+)4 

(See Figure 36).[322] For comparison, two onium salts were investigated, namely 

[(SiMo12O40)4-](TH)4 and [(W10O32)4-](TH)4 comprising arylthianthrenium as the cation. Indeed, 

arylthianthrenium salts are extensively used in industry and thus constitute excellent 

candidates for elaborating monocomponent photoinitiating systems.[323–325] In these 

structures, the two polyoxometalates exhibited the dual role of anions ensuring the neutrality 

of the salts but also as the photosensitizers for the iodonium or the arylthianthernium salts. 

Cleavage B

BDE=61.7 kcal/mol
Cleavage A

BDE=47.6 kcal/mol



 

Figure 36. Chemical structures of onium salts in which polyoxometalates have been used as 

counteranions and as photosensitizers. Reproduced with permission of Ref. [322] 

 From the absorption viewpoint, use of polyoxometalates did not modify the positions 

of the absorption maxima compared to that of the commercially available iodonium and 

thianthrenium salts (See Table 9). However, a 6-fold increase of the molar extinction 

coefficients were obtained for the modified onium salts, what is beneficial for the 

photochemical reactivity. In this series of salts, SiMo12-Iod only exhibited a low solubility in 

acetonitrile so that the molar extinction coefficient could not be determined for this salt. For 

the different polymerization experiments, a Xe-Hg lamp was used due to its UV centered 

emission. 

Table 9. Molar extinction coefficients of the different POM/onium salts determined at max in 

acetonitrile. 

 abs (nm) ε (M-1.cm-1) 

SiMo12-Iod 225 n.d. 

SiMo12-TH 253 83440 

W10O32-Iod 227 68461 

W10O32-TH 255 85920 

Iod 229 15052 

TH 255 17656 

 

Investigation of the photolysis of the onium salts in solution revealed the photolysis of 

the polyoxomolybdates to be faster than that of the polyoxotungstates. The formation of the 

classical photoproducts resulting from the photolysis process was detected by UV-visible 

absorption spectroscopy (See equations 2a-2c, 2a’-2b’). 



[(POM)4-](Ph2I+)4 → *[(POM)4-](Ph2I+)4   (hν)    (1) 

*[(POM)4-](Ph2I+)4 → [(POM) 3-](Ph2I+)3...Ph2I●   (2a) 

[(POM) 3-](Ph2I+)3...Ph2I●  → [(POM) 3-](Ph2I+)3 + Ph● + Ph-I  (2b) 

Ph2I+ → Ph● + Ph-I●+    (hν)      (2c) 

 [(POM)4-](thS+Ar)4 → *[(POM)4-]( thS+Ar)4   (hν)   (1’) 

*[(POM)4-](thS+Ar)4 → [(POM) 3-](thS+Ar)3... thS●Ar   (2a’) 

[(POM) 3-](thS+Ar)3... thS●Ar  → [(POM) 3-](thS+Ar)3 + Ar● + thS (2b’) 

thArS+ → Ar● + thS●+    (hν)      (2c’) 

 Interest of these modified onium salts was notably demonstrated during the FRP of 

TMPTA. As shown in the Figure 37B, SiMo12-TH could furnish a TMPTA conversion of 53% 

after 1000 s of irradiation with a Xe-Hg lamp contrarily to only 17% for the benchmark 

thianthrenium salt. Among the salts investigated, SiMo12-Iod proved to be the most reactive 

one, giving a final monomer conversion of 74% after 1000 s. Improved reactivity of the 

modified onium salts was confirmed during the CP of CADE. Thus, conversions of 43 and 35% 

were respectively determined for SiMo12-Iod and Iod at similar iodonium concentrations. The 

same holds for the thianthrenium salts. Thus, conversions of 44 and 38% were measured after 

1000 s of irradiation with SiMo12-TH and TH. Conversely, W10O32-TH only exhibited a low 

reactivity during the CP of CADE (25% conversion) and these results are consistent with the 

photolysis experiments demonstrating slower photolysis kinetics for polyoxotungstates 

compared to polyoxomolybdates. 

 

 

Figure 37. Photopolymerization profile of TMPTA in laminate upon the Xe-Hg lamp 

exposure (110 mW/cm²) in the presence of (A) SiMo12-Iod (2%, w/w) and (B) (1) SiMo12-TH 

(1%, w/w); (2) TH salt (0.3% w/w). Reproduced with permission of Ref. [322] 
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Conclusion 

 The design of monocomponent photoinitiating systems based on iodonium salts has 

greatly evolved over the years. If the covalent linkage of chromophores has been extensively 

studied, new emerging strategies have emerged such as the use of “intelligent” counteranions 

capable to absorb this. Using this approach, the desired monocomponent iodonium salt can be 

obtained. As drawback, the chromophore used for metathesis must be negatively charged. At 

present, several new and innovative research directions exist. Notably no iodonium salts 

activable with sunlight has been reported to date. Besides, it could constitute an interesting 

approach for developing low cost photopolymerization processes. Similarly, the design of 

water-soluble iodonium salts is still lacking for performing the FRP of (meth)acrylates in safer 

conditions. However, by developing such structures, the access of hydrogels could be possible. 

Even if the design of monocomponent photoinitiating systems is actively researched, easiness 

of synthesis should also be considered. Indeed, even if highly efficient, iodonium-based 

monocomponent systems will never be used in industry if their synthesis is too complex and 

the synthetic cost too high.  
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