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Abstract

This work is based on the variational principle for magnetic field lines introduced
in 1983 by Cary and Littlejohn. The action principles for magnetic field lines and
for Hamiltonian mechanics are recalled to be analogous. It is shown that the first
one can be rigorously proved from first principles without analytical calculations.
Not only the action principles are analogous, but also a change of canonical coor-
dinates is recalled to be equivalent to a change of gauge. Furthermore, using the
vector potential makes obvious the freedom in the choice of “time” for describ-
ing Hamiltonian dynamics. These features may be used for a new pedagogical
and intuitive introduction to Hamiltonian mechanics. In the context of confined
magnetic fields, the action principle for magnetic field lines makes practical cal-
culations simpler and safer, with an intuitive background and allowing to keep a
high degree of generality, as shown in the practical example of the calculation of
the width of a magnetic island, analytically derived without any need of abstract
Fourier components and independently of the choice of coordinates. Moreover,
a new formula provides explicitly the Boozer and Hamada magnetic coordinates
from action-angle coordinates.

Keywords: magnetic field lines, variational principle, Hamiltonian mechanics,
magnetic coordinates
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1 Introduction

Magnetized plasmas are ubiquitous in space and astrophysics, and are also artificially
produced for the development of thermonuclear fusion by magnetic confinement. If
the Larmor radius may be neglected, a low-energy charged particle follows a magnetic
field line (B-line) in the absence of other forces. For finite Larmor radius, B-lines still
strongly constrain the dynamics, especially if they wrap on nested toroidal magnetic
surfaces, as usually wanted in developing fusion devices. This fact has generated a huge
literature about these lines to describe both the case where they do lie on such surfaces,
providing good confinement, and the case where they do not, bringing magnetic chaos
and a related transport. In the fusion context, this topic is in particular of paramount
interest for the control of edge localized modes by magnetic chaos in tokamaks Kim
et al (2010); Canik et al (2010); Kirk et al (2010); Orlov et al (2010), a relaxation
phenomenon susceptible to harm ITER plasma facing components.

In this frame, this review paper shows how Hamiltonian mechanics tools can be
applied to the study of magnetic fields principally in toroidal geometry. This is impor-
tant, since a natural tendency for people interested in B-lines in a given device, is to
describe them by using directly the magnetic field (D’haeseleer et al (2012); Boozer
(2005); White (2013), chapter 3 of Hazeltine and Meiss (1992)), instead of the vec-
tor potential, that permits to deal with the magnetic field line problem in the frame
of Hamiltonian mechanics. Unfortunately, overlooking the genuine Hamiltonian char-
acter of these lines, often led to wrong results (8 wrong papers quoted in Park et al
(2008) and 6 in Kaleck (1999)).

To the contrary, the review paper shows that working with the vector potential A
is very efficient, and, maybe surprisingly, simpler than using the magnetic field, which
means also the use of general coordinate systems, and their covariant and contravariant
representations of vectors in physical space, as done in D’haeseleer et al (2012); Boozer
(2005); White (2013), and in chapter 3 of Hazeltine and Meiss (1992), and in an
ICTP course Kikuchi (2012). This simplicity stems from the fact that the variational
principle for B-lines is written with the vector potential (the Aharonov-Bohm effect in
quantum mechanics further indicates the importance of A). The review starts with an
innovative pedestrian, yet rigorous, derivation of B-line equations from this variational
principle. Indeed, the action principle for B-lines can be proved from Stokes theorem
applied to the circulation of A. This principle was sketched in equation (1.3) of the
chapter by Morozov and L. S. Solov’ev in Sagdeev and Leontovich (1966). It was
introduced four decades ago Cary and Littlejohn (1983) in the very educated language
of noncanonical Hamiltonian mechanics, which probably did not help making it very
popular, with the above quoted negative consequences (for a more recent introduction,
see chapter 9 of Hazeltine and Meiss (1992)).

Then the paper recalls the analogy of the action principle for B-lines and of that
for Hamiltonian mechanics Pina and Ortiz (1988). With beautiful formal aspects: not
only the action principles are analogous, but also a change of canonical coordinates
is shown to be equivalent to a change of gauge Elsasser (1986). Furthermore, using
the vector potential makes obvious the freedom in the choice of “time” for describing
Hamiltonian dynamics. After introducing the above basic concepts, the paper proposes
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a methodology in order to minimize the work necessary to answer a theoretical or
modeling problem about B-lines, analytically or numerically.

The tools introduced in the first part of the review are used in a second one to
solve typical problems faced by people in the fusion community, as calculating the
width of a magnetic island. The above-mentioned errors on treating resonant magnetic
perturbations are explicitly corrected by using an invariant magnetic flux, which is
proportional to the magnetic flux through a ribbon whose edges are the B-lines related
to the O and X points of the corresponding magnetic island. In turn, the island width
can be expressed in terms of the latter flux, which provides the first expression of this
width avoiding abstract Fourier components and obviously independent of the choice
of coordinates. Simplifications result from substituting heavy approximate analytical
calculations by simple numerical estimates provided by any validated computer code
computing B-lines; in particular to compute the width of a magnetic island in a simpler
way than previous work Cary and Hanson (1991); Kaleck (1999); Bécoulet et al (2008);
Cahyna et al (2009). Moreover, the action-angle formalism enables the derivation of a
simple formula providing explicitly the Boozer and Hamada coordinates, well-known
in the fusion community.

While relying upon conceptual tools of modern theoretical physics, the review
paper uses elementary mathematics, so as to be accessible to non-specialists and to
experimentalists wanting to model their results; in particular, the symplectic structure
underlying Hamiltonian mechanics Arnol’d (2013) is only alluded to. Furthermore,
most calculations are set in a series of appendices, so as to make the body of the
review short and easily readable.

In contrast with other action principles, that for B-lines can be proved without any
calculation. This suggests a natural spinoff. Thanks to the above-mentioned beautiful
formal aspects and a generalization of the above method, the review paper proposes an
alternative, intuitive, way to introduce Hamiltonian mechanics from B-lines “mechan-
ics”. In particular, using the vector potential makes obvious the freedom in the choice
of “time” and “energy” in the Hamiltonian description of mechanics.

In conclusion, this review paper promotes overlooked treasures about B-lines
(essentially references Cary and Littlejohn (1983); Pina and Ortiz (1988); Elsasser
(1986)) in order to enable simple and safe practical calculations. There is some beauty
in the approach, which may provide a new pedagogical and intuitive introduction to
Hamiltonian mechanics. This review paper is organized as follows. Section 2 recalls
the variational principle for magnetic field lines, and introduces a new derivation of it
from first principles. Section 3 provides a translation of the principle into a Hamilto-
nian description by recalling that the action principles for magnetic field lines and for
Hamiltonian mechanics are analogous. It also suggests a new pedagogical and intu-
itive introduction to this mechanics based on magnetic lines “mechanics”. Section 4
introduces action-angle coordinates for magnetic systems, which correspond to the
classical magnetic coordinates. It derives a new explicit formula for those of Boozer
and Hamada. Section 5 shows that the variational principle makes practical calcula-
tions about magnetic field lines simpler and safer, with an intuitive background. In
particular, with a new analytical result: the width of a magnetic island is proportional
to the square root of an invariant flux related to this island, the magnetic flux through
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a ribbon whose edges are the field lines related to the O and X points of the island.
The same analytical calculation provides a simple way to compute numerically the
width of a magnetic island. Also to apply Chirikov resonance overlap criterion. Section
6 provides the conclusion.

2 Variational principle for magnetic field lines

Magnetic field lines are usually viewed as a whole, possibly parametrized by a curvilin-
ear abscissa. However, when computing one, it is convenient to consider this abscissa
as a time, and the line as the orbit of a flow. A corresponding variational principle
was introduced Cary and Littlejohn (1983), which uses the action

S(x; x0,x1) =

∫ x1

x0

A(x) · dx, (1)

=

∫ λ1

λ0

(
A[x(λ)] · dx

dλ

)
dλ, (2)

where the integral runs between points x0 and x1 of a magnetic field line; equation
(2) uses a curvilinear abscissa λ and λ0 and λ1 are the abscissas of the end points x0

and x1.
In previous papers Cary and Littlejohn (1983); Elsasser (1986), the variational

principle for magnetic field lines was first postulated, and then proved to be right by
showing one can derive from it the usual equations defining these lines; this is recalled
in Section 2.2. However, Section 2.1 first provides a new intuitive, yet rigorous, proof
of the principle using Stokes theorem, which avoids any calculation.

2.1 New intuitive physical approach using Stokes theorem

Figure 1 (a) displays a blue segment L of magnetic field line bounded by points r1 and
r2. It is weakly distorted into the green segment L′. The difference δS between the
actions computed for L and L′ corresponds to the circulation of the potential vector
along the oriented circuit C indicated by red arrows. Stokes theorem implies that δS
is the magnetic flux across this circuit.

Figure 1 (a) also displays a flux tube Tε with a small radius ε about L enclosing the
weakly distorted segment L′. We assume this segment to make at most N turns about
L. Since L′ is confined into Tε, the magnetic flux δS across circuit C is smaller than
N times the flux across Tε. The latter is of order ε2. So is δS. Since L′ corresponds
to a variation of L of order ε, δS is second order in this variation. Therefore, S is
stationary along any magnetic field line.

Figure 1 (b) displays a blue segment L, which is not a magnetic field line. It
intersects a magnetic field line at a point here named P. The segment [r3, r4] of L
includes P. Q is a point of the straight line passing per P and perpendicular to the
plane defined by L and the tangent at P of the magnetic field line. The length of
segment PQ (perpendicular to both L and the B-line) is assumed to be of order ε.
We define the green path made of the straight segment going from r3 to Q and of the
straight segment going from Q to r4. The difference δS between the actions computed
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Fig. 1 A physical intuitive approach to the variational principle for magnetic field lines.

for L and for its small perturbation going along the green path is again the circulation
of the potential vector along the oriented circuit C indicated by red arrows. Stokes
theorem implies that δS is the magnetic flux across this circuit. Since L is not tangent
to the field line at P, this flux is of order ε, i. e. of the same order as the variation of
L. Therefore, the action S is not stationary along any curve that does not coincide
with a magnetic field line.

As a result of these discussions, action S is stationary on a path, if and only if
it is a segment of magnetic field line. This defines the stationary-action principle for
magnetic field lines. We stress that the above discussions of figures 1 (a) and (b)
were performed with the usual assumption that the variation of the integration path
vanishes at end points.

The first part of the proof is performed with a typical deformation L′. Some excep-
tional ones come with a vanishing δS that does not give any information on the field
line trajectory and are therefore not interesting for the proof of the variational princi-
ple. As an example, this is the case for a purely toroidal magnetic field and an L′ inside
a surface made up of neighboring field lines. Such a vanishing δS can also occur in
the usual derivation of Euler-Lagrange equations by specific choices of displacements.
Indeed, one can write

δS =

∫ t1

t0

δL(q̇,q, t) dt (3)

=

∫ t1

t0

[∂L
∂q
· δq +

∂L

∂q̇
· δq̇
]

dt (4)

5



=

∫ t1

t0

[∂L
∂q
· δq +

d

dt

(∂L
∂q̇
· δq
)
− d

dt

∂L

∂q̇
· δq
]

dt (5)

=
[∂L
∂q̇
· δq
]t1
t0

+

∫ t1

t0

[∂L
∂q
− d

dt

∂L

∂q̇

]
· δq dt (6)

=

∫ t1

t0

[∂L
∂q
− d

dt

∂L

∂q̇

]
· δq dt, (7)

where the fully integrated term in the penultimate equation vanishes because the
displacements vanish at t0 and t1. The last equation shows that an appropriate choice
of δq can make the integral vanish even if the bracket is non zero. However, the bracket
must vanish if the integral is zero for any δq. This leads to Euler-Lagrange equations.

2.2 Previous derivations

The variational principle for magnetic field lines was first intuitively introduced with-
out a proof in a 1966 paper by Morozov and L. S. Solovèv (equation (1.3) of Sagdeev
and Leontovich (1966)). The rationale was that a mass-less particle in a vanishing
electric field follows magnetic field lines. Now, the action for this motion is the inte-
gral over time of A.v, where v is the particle velocity. Setting dx = vdt yields the
action integral (1). Therefore, the principle can be intuitively deducted, while this is
not generally the case for other variational principles.

Subsequent derivations introduce a curvilinear abscissa λ and write the action as
in equation (2),

S(x; x0,x1) =

∫ λ1

λ0

(
A[x(λ)] · dx

dλ

)
dλ, (8)

where λ0 and λ1 are the abscissas of the end points of the first integral.
The stationary action principle for the field line flow can then be written as

δS = δ

∫ x1

x0

A(x) · dx = 0 (9)

= δ

∫ λ1

λ0

(
A(x(λ)) · dx

dλ

)
dλ = 0 (10)

with the usual requirement that the arbitrary variation δx(λ) of the trajectory vanishes
at the end points x0 = x(λ0) and x1 = x(λ1). If the stationary action principle holds,
then magnetic field line equations must be derived from equation (10).

In 1983, Cary and Littlejohn Cary and Littlejohn (1983) focused on the impor-
tant practical case where λ is one of the coordinates. Using general coordinates
xi = (x1, x2, x3), say λ = x3 (for instance the toroidal angle in a tokamak). Then, (10)
becomes

0 = δ

∫ x3
1

x3
0

dx3 L(x,
dx

dx3
, x3) (11)
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L(x,
dx

dx3
, x3) = A1(x)

dx1

dx3
+A2(x)

dx2

dx3
+A3(x) = Ai(x)

dxi

dλ
, (12)

where the form of the Lagrangian of the magnetic system is emphasized. The last
expression of equation (12) writes the Lagrangian in a more compact form using the
covariant components Ai = A · ei of the vector potential and Einstein’s convention
of summation over repeated indices. The corresponding Euler-Lagrange equations,
solution of the stationary principle δS = 0, are

∂L

∂xj
− d

dx3

∂L

∂(dxj/dx3)
= 0, j = 1, 2. (13)

If the xi’s are Cartesian coordinates, these equations yield

dx1

B1
=

dx2

B2
=

dx3

B3
, (14)

which are the equations defining the magnetic field lines from the contravariant com-
ponents of the magnetic field, defined as Bi = B · ∇xi, since equations (14) are
equivalent to the condition of collinearity between the velocity vector dx/dλ and B.
This proves that magnetic field line equations can indeed be derived from principle
(9) or (10). Equations (14) are valid in any coordinate system, not only in Cartesian
coordinates. In deriving them from equations (12) and (13), the general relation that
links the covariant components Ai of the vector potential and the contravariant ones
of the magnetic field in any coordinate system must be used. Extended calculations
can be found in appendix A.

In 1986, Elsässer Elsasser (1986) proved again the validity of the variational prin-
ciple for magnetic field lines showing in an algebrical way that equation (10) is true if
and only if (

∇×A
)
× dx(λ)

dλ
= 0 (15)

which means that ẋ ≡ dx/dλ is parallel to B = ∇×A, as required for magnetic field
lines (extended proof in appendix B).

3 Translation into a Hamiltonian description

In section 2 the existence of a variational principle for magnetic field lines was proved.
Here, Section 3.1 recalls the equivalence between the variational principle for magnetic
field lines and that for their Hamiltonian mechanics showing that magnetic field lines
in physical space are analogous to the flow of a dynamical system with one degree
of freedom in phase space. The identification between canonical variables (p, q, t) and
magnetic ones follows, intending for magnetic variables the space coordinates x and the
covariant components of the vector potential A. Section 3.2 recalls then the equivalence
between canonical and gauge transformations. To conclude, going beyond the physical
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meaning of magnetic fluxes and field lines, Section 3.3 proposes a way of teaching
Hamiltonian mechanics from magnetic lines “mechanics”.

3.1 Equivalence between the variational principles for
magnetic field lines and for their Hamiltonian mechanics

The possibility of a Hamiltonian description of magnetic field line is intuitively natu-
ral, since the conservation of magnetic flux is analogous to that of phase space volume
(Liouville theorem). It was introduced more than seventy years ago Kruskal (1952);
Kerst (1962); Gelfand et al (1962); Whiteman (1977); Boozer (1983); Cary and Little-
john (1983). It is at the root of a large contribution of plasma physics to Hamiltonian
mechanics Escande (2018).

This section shows the equivalence between the variational principle for magnetic
field lines in physical space expressed in equation (9) and that for their Hamiltonian
dynamics in phase space, obtaining the identification between canonical and magnetic
variable as proved by Piña and Ortiz in 1988 Pina and Ortiz (1988).

The canonical equations of aN degree of freedom mechanical system can be derived
from the variational principle, where q̇ = dq/dt,

0 = δ

∫ t1

t0

L(q̇,q, t)dt = δ

∫
(dS) (16)

L(q̇,q, t) =
[
p · q̇−H(p,q, t)

]
(17)

Or, equivalently,

0 = δ

∫ t1

t0

[
p · dq−H(p,q, t)dt

]
(18)

where (p,q) are the canonical variables (N -vectors), L(q̇,q, t) the Lagrangian and
H(p,q, t) the Hamiltonian of the system. The differential of the action, dS = [p ·dq−
H(p,q, t)dt] is called Poincaré-Cartan integral invariant (Arnol’d (2013)). Indeed, the
corresponding Euler-Lagrange equation, solution of (16) or (18),

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (19)

yields the canonical equations of motion in phase space:

dq

dt
=
∂H

∂p
(20)

dp

dt
= − ∂H

∂q
. (21)

In the same way, as proved in Section 2, magnetic field line equations can be derived
from the variational principle (9), that we now write in an arbitrary coordinate system
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x = (x1, x2, x3) as

0 = δ

∫
Aidx

i . (22)

This expression uses the classical covariant expression of the dot product and Einstein
convention of summation over repeated indexes (i = 1, 2, 3). The vector potential is
always defined up to a gauge transformation defined by Ai 7→ A′i = Ai + ∂iG (or
A 7→ A′ = A+∇G) where G is an arbitrary scalar function of the spatial coordinates,
being B = ∇ ×A = ∇ ×A′. Since an axial gauge, for which Ai = 0 for one of the
indexes, can be always chosen, one term in the sum of equation (22) can be killed.
Here we take A1 = 0. Then, principle (22) becomes

dS = A2 dx2 +A3 dx3, (23)

0 = δ

∫
(dS) . (24)

With the choice of an axial gauge, principle (22) for magnetic field lines has the same
structure as principle (18) for N = 1 degree of freedom mechanical system. Therefore,
one can identify canonical and magnetic variables. Going back to the particular choice
A1 = 0, from pdq −Hdt = α(A2dx2 +A3dx3) the identifications result:

p = αA2(x1, x2, x3) (25)

q = x2 (26)

H(p, q, t) = −αA3(x1, x2, x3) (27)

t = x3 (28)

where α is an arbitrary constant. The relation p = αA2(x1, x2, t) must be inverted
(possibly only locally) in order to write x1 = x1(x2, p, t), and therefore the Hamiltonian
as a function of the canonical variables, H = H(p, q, t).

A mere change of the indices of the coordinates enables to deal with gauge A2 = 0
or A3 = 0. Therefore, we anticipate the important result discussed in the next section,
that different choices of gauge correspond to different sets of canonical variables. More-
over, the freedom in the definition of a Hamiltonian for magnetic field lines is even
larger, since coordinates 2 and 3 can be exchanged in equation (23) defining a dynamics
where the new Hamiltonian corresponds to the previous −p, the new p is the previous
−H, the new time is q, and the new q is t. This highlights an aspect of the freedom
in the definition of a Hamiltonian for magnetic field lines: the canonical momentum p
and the Hamiltonian can exchange their role, which corresponds to inverting the roles
of p q̇ and −H in equation (17) or of pdq and H dt in equation (18). With a caveat,
yet: an arbitrary choice of time does not guarantee magnetic field lines to be fully
parametrized by such a time. A full parametrization requires a “reasonable” choice
of coordinates, for instance some kind of toroidal angle in a tokamak or a stellarator,
and of poloidal angle in a reversed field pinch must be used as a time. This limits the
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freedom in the choice of the Hamiltonian and therefore in the identifications between
canonical and magnetic coordinates.

This derivation of a Hamiltonian for B-lines is shorter and simpler than the stan-
dard one in Boozer (2005). Indeed, the latter requires to compute with coordinates,
to introduce a symplectic form of the magnetic field for specific ones, and to prove
orthogonality properties of the covariant and contravariant basis vectors. Finally, the
present derivation uses a variational principle with an intuitive physical basis, while
providing a way of generating a Hamiltonian for field lines in very general coordinates.

3.2 Equivalence between change of gauge and of canonical
transformation

The previous section shows that different choices of gauge correspond to different sets
of canonical variables. In reality, the link between gauge and canonical variables is
stronger. This section shows that gauge transformations are nothing but canonical
transformations, as proved by Elsässer in 1986 Elsasser (1986).

First of all we show that Hamiltonian flows are independent not just of canonical
transformation of coordinates, but also of gauge transformation. Identification (25)-
(28) implies a new way to write the Lagrangian in (17):

α(A2 ẋ2 +A3 ẋ3) = pq̇ −H(p, q, t). (29)

where ẋi = dxi/dt with the identification t = x3. We remind that identifications (25)-
(28) assume the gauge A1 = 0, so in the left hand side of last equation A1 is absent

because of the chosen axial gauge. Note moreover that ẋ3 = dt/dt = 1. Under a gauge
transformation, the vector potential transforms as

A 7→ A +∇G (30)

Ai 7→ Ai +
∂G

∂xi
(31)

where function G(x) is a scalar, and ∇G is its gradient. Then, if a change of gauge is
applied, the Lagrangian in equation (29) becomes

α(A2 ẋ2 +A3 ẋ3 +
∂G

∂xi
ẋi) = pq̇ −H(p, q, t) + α

dG

dt
, (32)

where the summation over partial derivatives of G of the left hand side is written in
a more compact form in the right hand side. So a gauge transformation adds to the
Lagrangian the total derivative of a scalar function G, and to the Poincaré-Cartan
form the total differential dG of the same function. Both variational principles (18)
and (22) are therefore not affected by gauge transformations (due to the vanishing
variation of the position at the boundaries, δG = 0), and so are not canonical equations
of motion and magnetic field line equations.

To show the equivalence between gauge and canonical transformations, we now
apply the same gauge transformation, defined by function G(x), before and after the
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canonical transformation (p, q, t) 7→ (P,Q, t) defined by

p =
∂F

∂q
, P =

∂F

∂Q
, H ′ = H +

∂F

∂t
, (33)

where F is an arbitrary function of (q,Q, t) (see appendix C for the definition of
a canonical transformation). This means performing the gauge transformation in
the (p, q) coordinates with G(p, q, t) and the gauge transformation in the (P,Q)
coordinates with G(P,Q, t):

pq̇ −H(p, q, t) + α
dG(p, q, t)

dt
= PQ̇−H ′(P,Q, t) +

dF (q,Q, t)

dt
+ α

dG(P,Q, t)

dt
.(34)

We now link the canonical transformation and the subsequent gauge transforma-
tion by

F (q,Q, t) + αG[P (q,Q, t), Q, t] = 0 (35)

where P (q,Q, t) is defined by equation (33). Equation (34) becomes

pq̇ −H(p, q, t) +
dG(p, q, t)

dt
= PQ̇−H ′(P,Q, t). (36)

This means thatG[P (q,Q, t), Q, t] is the generating function of the reciprocal canonical
transformation

(P,Q) 7→ (p, q) (37)

H ′ 7→ H. (38)

Therefore, equation (35) enables the two-way translation of any gauge transformation
into a canonical one.

3.3 Teaching Hamiltonian mechanics from magnetic lines
“mechanics”

A typical textbook of classical mechanics, starts with Newton’s laws, introduces the
energy as the sum of a kinetic and a potential part, and then the variational principle
with a Lagrangian, which is the difference of these two parts. Then the Hamiltonian
is introduced as energy, the sum of these two parts, and the canonical equations of
motions are derived from the corresponding expression of the Lagrangian (equations
(16) and (17)). This sets in the mind of students that, in Hamiltonian mechan-
ics, the Hamiltonian is the energy, and p is a momentum. In reality, the version of
the variational principle provided by equation (18) uses the Poincaré-Cartan integral
invariant

p · dq−H(p,q, t)dt, (39)
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whose scalar components may be swapped Arnol’d (2013). Therefore, any pi may be
taken as the Hamiltonian and qi as the time. Furthermore, another invariant can be
obtained by subtracting d(p ·q) to the first one, −d(p ·q)−Hdt, which enables any qi

to be taken as the Hamiltonian and pi as the time. This flexibility is very useful. For
instance for the description of the motion of electrons in a traveling wave tube, where
it is convenient to use the position along the tube as time Ruzzon et al (2012). It was
essential to the development of neo-adiabatic theory, which deals with the jumps of
an adiabatic invariant at slow separatrix crossings (see section 8.1 of Escande (2018)
and references therein).

If, in contrast with what is done in section 3.1, the variational principles for mag-
netic field lines is introduced first, and then that for their Hamiltonian mechanics,
the above flexibility for the choice of Hamiltonian is obvious, since it stems from the
arbitrariness in the choice of coordinates for describing the vector potential. Further-
more, the action principle for magnetic field lines can be introduced in the pedestrian
way of section 2.1 without calculations, while that for Hamiltonian mechanics is more
abstract and requires analytical calculations. Finally, the somewhat abstract change
of canonical coordinates can be made more concrete by showing it is nothing but a
change of gauge (section 3.2).

This suggests teaching Hamiltonian mechanics from magnetic lines “mechanics”.
The Poincaré-Cartan integral invariant would be first introduced for a one-degree-of-
freedom time-dependent Hamiltonian and then generalized to higher dimensions.

4 Action-Angle coordinates for magnetic systems

This section focuses on toroidal magnetic configurations for magnetic confinement like
the tokamak, the stellarator and the reversed field pinch. We first introduce a general
expression of the potential vector using the toroidal and poloidal fluxes, whose com-
plete derivation can be found in appendix E. Then, we specify to the case where the
magnetic field is regular, i.e. where there are conserved magnetic flux surfaces on which
magnetic field lines flow. This corresponds to the case of a time independent Hamilto-
nian and bounded energy surfaces. We introduce corresponding action-angle variables,
called magnetic coordinates in the fusion context. For the sake of completeness, a gen-
eral derivation of action-angle variables for any one-degree-of-freedom Hamiltonian
system is provided in appendix D. We then show that the Boozer and Hamada mag-
netic coordinates used to describe MHD equilibria can be explicitly computed using
the action-angle formalism.

4.1 Explicit magnetic fluxes

For the tokamak, the stellarator and the reversed field pinch, one can use the natural
cylindrical coordinates (r, θ, ϕ), but other poloidal and toroidal angles may be more
convenient to emphasize the symmetries of the system. For instance, if there is a
helical symmetry or quasi-symmetry with poloidal and toroidal periodicity (m0, n0),
the helical angle u = m0θ− n0ϕ may be used instead of θ. In the general x = (r, θ, ϕ)
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coordinates, the potential vector can be written as

A = ψt∇θ/2π − ψp∇ϕ/2π. (40)

and the corresponding magnetic field, B = ∇×A, as

B = ∇ψt ×∇θ/2π −∇ψp ×∇ϕ/2π, (41)

which is a formulation, called canonical form, valid for any divergence free field on a
torus. Here ψt is a toroidal magnetic flux, i. e. the magnetic field integrated over the
cross section of a constant-ψt torus; ψp is a poloidal magnetic flux, i. e. the poloidal flux
that goes through the hole in a constant-ψp torus. These two types of tori do not need
to be identical and in general ψt = ψt(x) and ψp = ψp(x) can define different surfaces
for a constant ψt and a constant ψp. These fluxes define the same flux surfaces if the
magnetic field is regular (i.e. if there are magnetic flux surfaces), and magnetic field
lines wrap on sets of nested tori. In this case ψt = ψt(ψp) and each of the two magnetic
fluxes can be used as the radial variable which identifies magnetic flux surfaces, instead
of the generic cylindrical coordinate r. The definition of the coordinate system in
which ψt = ψt(ψp) (named action-angle system) is given in the next section and more
discussion on the physical meaning of magnetic fluxes can be found in appendix E.
From here on, the case of a one to one relation between fluxes will be emphasized by
the use of capital letters, ψT and ψP .

In the following, we take the toroidal flux as the radial coordinate, playing the role
of the canonical momentum, as generally done for the tokamak and the stellarator.
Then the poloidal flux is intended as a function of (ψt, θ, ϕ) (or ψT in the case of a
regular magnetic field configuration), implying a change of coordinates from (r, θ, ϕ). θ
and ϕ are arbitrary poloidal and toroidal angles, except for the requirement B·∇ϕ 6= 0,
in order to be able to use ϕ to follow a given magnetic field line. Note that this condition
is also required to define a good change of coordinates, with a non-zero Jacobian,
from the (r, θ, ϕ) to (ψt, θ, ϕ) coordinates. Indeed, from equation (41), 2πB.∇ϕ =
∇ψt.(∇θ ×∇ϕ), and the latter quantity is the inverse of the Jacobian of the change
of coordinates from Cartesian ones to (ψt, θ, ϕ), as can be shown for instance by using
successively equations (A4), (A7), and (A2) of Boozer (2005).

We note that, because of toroidal field reversal, the choice of the toroidal flux
as a radial coordinate is not a good choice for the magnetic field of a reversed field
pinch: the opposite choice must be done, choosing the poloidal coordinate as the radial
coordinate, but all the following calculations can be trivially rephrased.

4.2 Magnetic or action-angle coordinates

Conserved flux surfaces have their equivalent in the bounded constant energy surfaces
of a time independent Hamiltonian. In the case of a regular magnetic field, therefore,
new angle variables can be defined exploiting the symmetries of the system, having
their equivalent in the action-angle coordinates of a Hamiltonian system. We remind
here that in the following we use the toroidal flux as radial coordinate, and the general
poloidal and toroidal (θ, ϕ) angle coordinates to start with.
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We use equivalence (25)-(28), coming from the choice of the axial gauge A1 =
0, between canonical and magnetic coordinates, and here reported using also the
magnetic fluxes according to expression (40),

p = αA2 = ψt (42)

q = x2 = θ (43)

H = −αA3 = ψp(ψt, θ, ϕ) (44)

t = x3 = ϕ (45)

where we assume α = 2π. We now assume that the Ai’s (i.e. the fluxes) do not
depend on x3 = ϕ, which makes the Hamiltonian time-independent. In agreement
with equations (42)-(45), we take x2 = θ, and H(ψt, θ) = ψp(ψt, θ). Then, this enables
to define ψt(E, θ) by inverting E = H(ψt, θ).

Then, we define action-angle variables (ψT , ζ) for the magnetic system, using their
definition given by equations (D30) and (D38), which yields

ψT (E) =
1

2π

∮
ψt(E, θ) dθ (46)

G(θ, ψT ) =

∫ θ

θ0

ψt[E(ψT ), θ′] dθ′ (47)

ζ(θ, ψT ) =
∂G

∂ψT
=

∫ θ

θ0

∂ψt[E(ψT ), θ′]

∂ψT
dθ′. (48)

Identifications (42)-(45), valid for the general (p, q, t) = (ψt, θ, ϕ) toroidal coordi-
nates, can now be written for action-angle variables (P,Q, t) = (ψT , ζ, ϕ):

P = αAζ = ψT (49)

Q = x2 = ζ (50)

H = −αAϕ = ψP (ψT ) = E(ψT ) (51)

t = x3 = ϕ (52)

again assuming α = 2π.
Equation of motion (D39) defines the constancy of ψT on each flux surface, whereas

equation (D40) provides the equation defining the magnetic field lines:

dψT
dϕ

= 0 (53)

dζ

dϕ
= ι(ψT ) =

dψP
dψT

. (54)

This implies that, when using action-angle coordinates, both magnetic fluxes (the
action and the Hamiltonian of the system) are constant of the motion, i.e. are con-
stant on magnetic flux surfaces. Moreover, magnetic field lines written in action-angle
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coordinates are straight lines in the (ζ, ϕ) plane. Therefore, action-angle coordinates
are the well-known magnetic coordinates, named also flux or straight-field-line coordi-
nates in the fusion community. The frequency ι is called the rotational transform. Its
inverse is called safety factor, usually indicated with the symbol q (we avoid using it
to avoid any confusion with a canonical variable). Both ι and its inverse, as well as
the magnetic fluxes, can be used to label magnetic flux surfaces.

According to identifications (49)-(52), the vector potential can be written in a way
similar to (40), but for magnetic coordinates x = (ψT , ζ, ϕ)

2πA = ψT ∇ζ − ψP ∇ϕ (55)

where ψP = ψP (ψT ). With respect to equation (40), constant fluxes on magnetic
flux surfaces are used, the toroidal angle ϕ is kept fixed, but the poloidal angle θ is
substituted for the “straight” poloidal angle ζ.

We are now interested in a change of magnetic coordinates from (ψT , ζ, ϕ) to
(ψT , ζN , ϕN ). For convenience for the following calculations, we define it implicitly by

ζ = ζN + f(ψT , ζN , ϕN ), (56)

ϕ = ϕN + g(ψT , ζN , ϕN ), (57)

where both poloidal and toroidal angle are transformed and f and g are arbitrary
functions on each flux surface. The toroidal flux coordinate is therefore kept constant
in this change. Setting these expressions for ζ and ϕ into equation (55), we find the
relations between the functions f and g so that (ζN , ϕN ) are magnetic coordinates,
which means A can be written as in (55) also in the new coordinates. It results in

2πA = ψT ∇ζN − ψP ∇ϕN + F, (58)

F = ∇(fψT − gψP ) + (ιg − f)∇ψT . (59)

Of course A is defined up to a gauge, defined in equation (30). In order for F to be
a gradient, ιg − f must be a function of ψT . We call it h(ψT ). If F is a gradient, a
change of gauge can be performed by adding its opposite in equation (58), which yields
equation (55) written for the (ζN , ϕN ) magnetic coordinates. Therefore, equations
(56)-(57) define a change of magnetic coordinates if and only if

f = ιg − h(ψT ), (60)

with h(ψT ) an arbitrary function. Since there is a lot of freedom in the definitions of
g and h, there are infinitely many systems of magnetic coordinates. In appendix F
extended calculations proving these results are provided.

It is worth noting that the change of magnetic coordinates (56)-(57) is not a change
of canonical coordinates. According to equation (58) with F a gradient, the Hamil-
tonian stays the same in the new coordinates. In particular equation (60) shows that
equation (54) stays correct in these coordinates.

Among the most common sets of magnetic coordinates used in the fusion commu-
nity are the Hamada Hamada (1962), Boozer Boozer (1981) and Pest Grimm et al
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(1983) coordinates. Pest coordinates are defined as the straight-B-line coordinates in
which the toroidal angle corresponds to the geometrical one. Therefore, straight-B-line
coordinates obtained from equations (46)-(48) are the Pest coordinates if the ignorable
coordinate ϕ coincides with the geometrical toroidal angle. Any other set of magnetic
coordinates needs to change both the angular coordinates, as shown in equations (56)-
(57). A clear definition of the symmetry angle ϕ in an axisymmetric system can be
found for instance in chapter 6 of D’haeseleer et al (2012), where the symmetry flux
coordinates in a tokamak are described: the ϕ = constant surfaces are vertical surfaces
so that ∇ϕ points in the symmetry direction and the ϕ-coordinate curves (produced
when only ϕ is allowed to vary while the other two coordinates are held fixed) are cir-
cles whose tangents points in the symmetry direction requires eϕ ∝ ∇ϕ. Being R the
distance from the major symmetric axis to a point on the flux surface, |∇ϕ| = 1/R.
Hamada and Boozer coordinates are defined in the next section.

For people aware of action-angle variables, the proof of existence of magnetic coor-
dinates as action-angle variables of the Hamiltonian defining magnetic field line is a lot
shorter than the specific proof using the Clebsch representation of the magnetic field
(see for instance section 4.B.1 of Cary and Brizard (2009); with the caveat that a minus
sign must be added in the right hand side of its equation (4.43)). Using action-angle
variables also puts magnetic coordinates in a wider and more fundamental perspective.

4.3 Boozer and Hamada coordinates

We now focus on magnetic coordinates used to describe MHD equilibria. Such
equilibria are defined by

j×B = ∇p, (61)

where j is the current density, and p in this context indicates the kinetic pressure.
Because of this equation, ∇p is perpendicular to both B and j, so the pressure p is
constant along both B and j-lines. Magnetic field lines, where the rotational transform
ι is irrational, wrap densely on the corresponding magnetic surfaces. Therefore, p is
constant over such surfaces. If p is a smooth function, this property carries over to
all real numbers. Because p is constant along both B and j-lines, magnetic surfaces
coincide with current-density surfaces. Considering force free equilibria, i. e. ∇p = 0,
magnetic field lines are parallel to current-density lines; when ∇p 6= 0 they are not,
but still lie on flux surfaces.

Two types of magnetic coordinate systems are commonly used to describe MHD
equilibria: Hamada coordinates Hamada (1962) and Boozer coordinates Boozer (1981).
In Hamada coordinates, both the magnetic field lines and current lines correspond-
ing to the considered MHD equilibrium are straight. In Boozer coordinates, both the
magnetic field lines corresponding to the MHD equilibrium are straight and the dia-
magnetic lines, i.e. the integral lines of ∇p×B. The derivation of these two kinds of
magnetic coordinates can be found for instance in appendix B of Cary and Brizard
(2009), where these coordinates are defined also from the specific form of their Jaco-
bian (J ∝ 1 defines Hamada coordinates, whereas J ∝ B−2 defines Boozer ones).
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Analytical calculations involving these coordinates are simplified by the technique
introduced in Pustovitov (1998b,a, 1999).

We now show that the action-angle approach enables a simple explicit definition
of these specific coordinates from equation (60), that does not use at all the magnetic
field or magnetic equations.

4.3.1 Hamada coordinates

Equation (41), written for the magnetic field, is said canonical form and can be gen-
eralized to any divergence free field on a torus. In MHD, the divergence of j vanishes,
as does that of the magnetic field. This makes natural the application of the above
formalism to j. Because j ∼ ∇ × B, now B plays the previous role of A. Naturally,
there is no gauge invariance for B, but if we are interested in the current lines only,
we do not care about the exact magnetic field producing j, and we may again use the
freedom of adding a gradient, now to B, which makes j invariant. It is worth not-
ing that this fact is implicit in the Clebsch representation of the current in equation
(B2) of Cary and Brizard (2009). Moreover, to define action-angle coordinates, the
Hamiltonian of the magnetic system (the component B3 of the magnetic field when
studying j-lines) needs to be time independent, which is true in toroidal systems when
the canonical time is associated to the toroidal angle ϕ. The gauge transformation to
define the axial gauge B1 = 0 is ”time“ independent, so that action-angle formalism
can indeed be applied to look for straight j-lines. Hamada coordinates can be defined
following a list of steps.

• On magnetic flux surfaces, straight magnetic field lines coordinates (ψT , ζ, ϕ) are
defined in equations (46)-(48) from the action-angle formalism. Hamada coordinates
can then be defined from general magnetic coordinates (ψT , ζ, ϕ) using equations
(56)-(57) and (60):

ζH(ψT , θ) = ζ(θ, ψT ) + ι(ψT ) g(ψT , ζ(θ, ψT ), ϕ)− h(ψT ), (62)

ϕH(θ, ϕ, ψT ) = ϕ+ g(ψT , ζ(θ, ψT ), ϕ). (63)

• Exploiting the canonical form for j, the equivalent of equations (46)-(48) can be used
to define action-angle variables for the current line “dynamics” on magnetic flux
surfaces (when magnetic flux surfaces exist, we remind the equivalence of magnetic
and current density flux surfaces due to equation (61)). Adding a prime to all
quantities related to the current dynamics, and noting that B plays the previous
role of A, the canonical form for j = ∇×B/µ0 can be written as

(2π/µ0) B = ψ′t∇θ − ψ′p∇ϕ (64)

2π j = ∇ψ′t ×∇θ −∇ψ′p ×∇ϕ (65)
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where quantities ψ′t and ψ′p define the “current density fluxes” in the general toroidal
coordinates x = (ψ′t, θ, ϕ):

ψ′i =

∫
j · dΣ =

1

µ0

∫
Σ(l)

(∇×B) · dΣ =
1

µ0

∮
l

B · dj =

{ 2π
µ0
Bθ (i = t)

2π
µ0
Bϕ (i = p)

(66)

where the definition of the flux of j through a surface Σ, Ampère’s law and Stokes
theorem have been used in equation (66). Last equality uses B1 = 0 and the defini-
tion of poloidal or toroidal surface, as done for the derivation of the magnetic fluxes
in appendix E.1.
We now use the equivalence of magnetic and current density flux surfaces and we
keep in mind that we use the same x spatial coordinates for magnetic and current
lines; in particular x3 = ϕ. The definition of straight current density lines on mag-
netic flux surfaces and their rotational transform follow from equations (46)-(48)
and (53)-(54) :

ψ′T (E) =
1

2π

∮
ψ′t(E, θ) dθ (67)

ζ ′(θ, ψ′T ) =

∫ θ

θ0

∂ψ′t[θ, x
2(θ, ψ′T )]

∂ψ′T
dθ (68)

ι′(ψ′T ) =
dζ ′

dϕ
=

dψ′P
dψ′T

(69)

The fluxes ψ′T (ψ′P ) define the “current surfaces”.
• Because Hamada coordinates define both straight B and j-lines, equations similar

to (62)-(63) can be written to define the same Hamada coordinates from straight
current lines coordinates (ζ ′, ϕ). We distinguish the new definition of Hamada
coordinates from the previous one by adding a prime to ψT , ζ, ι, g, and h.

• Equating the two formulations of Hamada coordinates yields an expression of these
coordinates as a function of general straight magnetic field and straight current
density lines, here indicated by the symbols (ψT , ζ, ϕ) and (ψ′T , ζ

′, ϕ) respectively.
Equating the right hand sides of the two sets of equations for Hamada coordinates,
and remembering that ζ = ζ(ψT , θ), ι = ι(ψT ), g = g(ψT , ζ(θ, ψT ), ϕ), h = h(ψT ),
and the same for prime quantities, yields

ζ + ι g − h = ζ ′ + ι′ g′ − h′ (70)

g = g′ (71)

where we used that the initial toroidal angle is the same in both cases. The second
equation enables substituting g′ for g in the first one, which yields

(ι′ − ι) g = ζ − ζ ′ + h− h′. (72)
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This enables the calculation of g which is found independent of the toroidal angle,

g(ψT , ζ(θ, ψT )) =
ζ − ζ ′ + h− h′

(ι′ − ι)
. (73)

Setting g in equations (62) and (63), gives a simple explicit expression for Hamada
coordinates (ψT , ζH , ϕH) as a linear combination of action-angle coordinates for B
and j:

ζH(θ, ψT ) =
ι′(ζ − h)− ι(ζ ′ − h′)

ι′ − ι
, (74)

ϕH(θ, ϕ, ψT ) = ϕ+
ζ − ζ ′ − h+ h′

ι′ − ι
. (75)

These coordinates have some freedom due to the arbitrary functions h(ψT ) and
h′(ψ′T ). This freedom corresponds to the integration constants present when using
magnetic differential equations to define Hamada coordinates.

4.3.2 Boozer coordinates

Boozer coordinates can be computed in the same way. Indeed, diamagnetic lines are
the integral lines of ∇ψT ×B, which is colinear to q = ∇p×B, since the gradient of
the scalar pressure p is colinear with that of ψT (∇p ‖ ∇ψT ). Now, q is a divergence
free vector like B Pustovitov (1999). Indeed, ∇.(∇p×B) = B .∇×∇p−µ0∇p . j = 0,
since ∇p = j×B and j = ∇×B/µ0. Furthermore, q×B = −B2∇p which is similar
to equation (61), which implies that p is constant along q lines. Therefore, q can be
dealt with like we did previously with B and j. Naturally, to fit with diamagnetic
“dynamics”, in this calculation all primes become double primes, and index H becomes
index B for “Boozer”. In this way ψ”T and ψ”P are the fluxes defining the surfaces
where diamagnetic q-lines lays. Again, a one to one correspondence between ψ”T and
ψT is expected, so Boozer coordinates define a frame of reference in which both B and
q lines are straight.

5 Calculations made easier with the action principle

This section deals with the effect of a small resonant perturbation to a regular magnetic
field. Subsection 5.1 defines the corresponding perturbed Hamiltonian. Subsection 5.2
introduces an invariant flux related to a magnetic island, useful to express its width as
shown in Subsection 5.3. Subsection 5.4 shows how to compute numerically a magnetic
island width from experimental data, and subsection 5.5 how to derive from this
Chirikov overlap parameter when several resonant perturbations are present.

5.1 Small resonant perturbation of a regular magnetic field

We now consider the effect of a small resonant perturbation of a regular magnetic
field, associated to a “time” independent Hamiltonian H0. Such a field is defined by
the existence of magnetic flux surfaces and by a one to one relation between ψT and
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ψP when using action-angle coordinates. Using ψT as the radial coordinate identifying
magnetic flux surfaces, we take ψP = ψP (ψT ), or H0 = H0(p). In the following we
use the notation x = (ψT , θ, ϕ) = (p, q, t) for the action-angle coordinates defined on
H0 flux surfaces. It is worth noting that these are not magnetic coordinates for the
perturbed Hamiltonian.

The perturbation δB(ψT , θ, ϕ) of the regular magnetic field is provided by a pertur-
bation δA(ψT , θ, ϕ) of both components of the potential vector. However, in appendix
G, it is shown that, whatever be the perturbation of the toroidal flux, an appropri-
ate redefinition of this variable enables considering the magnetic perturbation to bear
only on the poloidal flux. Then, using equation (40), the perturbation to the vector
potential is defined by

δA = −δψP ∇ϕ/2π, (76)

where δψP is a function of (ψT , θ, ϕ), or, equivalently, of the canonical variables
(p, q, t). This perturbation to the vector potential turns out to be a perturbation to
the Hamiltonian (44), which is defined by

H = H0 +H1 (77)

H0 = ψP (ψT ) (78)

H1 = δψP (ψT , θ, ϕ). (79)

In the following we consider the case where H1 consists in a single helical Fourier
component, δψP = H1,m0,n0

(p) cos(m0θ−n0ϕ), which is resonant at a value of p = ψT
defined by ι(p0) = n0/m0. The classical local reduction of the Hamiltonian to a pen-
dulum Hamiltonian close to p0 is performed in appendix H. It proves the existence of
a magnetic island that develops around the unperturbed resonant flux surface defined
by ι(p0). Defining the helical angle u = m0θ−n0ϕ, its X-point corresponds to uX = 0

and its O-point to uO = π if dι(p0)
dp H1,m0,n0(p0) > 0, and the opposite otherwise. In the

following, results from appendix H will be used also to compute the magnetic island
width.

The following calculations are rephrased in appendix I in the case of a perturbation
bearing on both magnetic fluxes.

5.2 Invariant flux related to a magnetic island

Physical quantities, like the width of a magnetic island, cannot depend on the choice
of the coordinates. They must therefore be related to invariants under change of coor-
dinates or gauge transformations. In this section we use the definition of the action
for magnetic field lines and Stokes theorem, that implies the equivalence between the
action along a closed circuit (circulation of A) and the magnetic flux through any sur-
face having the oriented circuit as a boundary. This mathematics will be used to prove
the existence of a magnetic flux, defined for each magnetic island through the ribbon
defined by the O and X points, which is invariant under change of coordinates. This
flux is the analogous of the flux Φ defined in Park et al (2008), whose resonant Fourier
components are proved to be the same in each set of magnetic coordinates, and the
island width results ∼

√
(|Φmn|). The explicit definition of Φ is given in appendix I.1.
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Fig. 2 Helical ribbon defining the ΦOX flux. In red and blue the closed orbits defined by the O and
X-point of a (m0 = 1, n0 = 1) magnetic island, respectively. Their intersections o and x in a poloidal
section are indicated. The magnetic island separatrix is indicated in green.

We compute the action along the closed orbit O, corresponding to the center of
the magnetic island. According to equations (23)-(28), it is

SO =
1

2π

∫
O

[pdθ −H(p, q, ϕ)dϕ]. (80)

Since the perturbation is small, along O and X it is true to lowest order that p = p0,
dθ/dϕ = ι(p0), and u0 = m0θ − n0ϕ = ±π (see appendix H). Assuming that m0 and
n0 are mutually relatively prime, ϕ varies by 2m0π along O and θ varies by 2n0π.
This yields

SO = m0[p0ι(p0)−H0(p0)−H1,m0,n0(p0) cos(uO)]. (81)

Its geometrical meaning is explained in appendix I to be the helical flux through
the surface defined by the O-point. Similarly, the action SX along the closed orbit
corresponding to the X-point of the magnetic island is given by equation (81) where
cos(uO) becomes cos(uX) = − cos(uO). Consequently,

SO − SX = −2 cos(uO)m0H1,m0,n0
(p0) = 2m0sgn[

dι(p0)

dp
]|H1,m0,n0

(p0)|, (82)

where the last expression results from equation (H77).
The geometrical meaning of the SO − SX flux can be understood from Figure 2,

which displays the closed orbits O, in red, and X, in blue, for a (m0 = 1, n0 = 1)
magnetic island whose separatrix is indicated in green. It displays their intersections
o and x in a poloidal section. We now compute the action corresponding to the closed
path starting at o, following O with a growing ϕ up to reaching back o, then going
from o to x in the poloidal section along the red segment ox, then following X with a
decreasing ϕ up to reaching back x, then finishing by going from x to o in the poloidal
section along blue segment ox. Stokes theorem implies that this action is nothing but
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the magnetic flux ΦOX through any oriented ribbon whose edges are the oriented
closed orbits corresponding to the O and X-point. Since the two contributions to this
action corresponding to ox cancel because they are opposite, this magnetic flux is

ΦOX = SO − SX . (83)

As a consequence, as expected, the width of the magnetic island is not related to
the specific choice of toroidal coordinates, but is defined by a coordinate-independent
magnetic flux with a simple geometrical definition. In particular, it does not depend on
the choice of the radial coordinate. The single helical Fourier component introduced
above verifies |H1,m0,n0

(p0)| = |ΦOX |/2m0.
By inverting the roles of ψT and ψP , equation (82) becomes

SO − SX = −2 cos(uO)n0H
′
1,m0,n0

(ψP0) = 2n0sgn[
dqs(ψP0)

dψP
]|H′1,m0,n0

(ψP0)|, (84)

where ψP0 is the resonant value of ψP defined by qs(ψP0) = m0/n0 with qs = 1/ι the
safety factor, and H ′1,m0,n0

(ψP ) is the resonant contribution in the Hamiltonian with
the inverted roles of ψT and ψP . This shows that m0H1,m0,n0

(p0) = n0H
′
1,m0,n0

(ψP0).
The existence of a coordinate-independent magnetic flux related to a magnetic

island that correctly estimates its width was already proved in Park et al (2008) by
using a magnetic differential equation and by performing explicit changes of magnetic
coordinates with the corresponding Jacobians. The above path, based on the action for
magnetic field lines, avoids using coordinates and Jacobians, and leads to an expression
for the invariant flux in terms of a magnetic flux through an explicit surface: the ribbon
defined by the periodic orbits related to the O and X points. Appendix I discusses
previously introduced coordinate-independent fluxes and shows their interpretation as
helical fluxes.

Reference Park et al (2008) quotes eight papers (its references 11-13 and 15-19)
where the resonant Fourier components of the magnetic field were mistakenly consid-
ered as almost invariant when going to magnetic coordinates. Reference Kaleck (1999)
quotes six papers (its references 5, 7-9, 12, 13) where the same mistake was made.
Figure 4 of Park et al (2008) shows this can be wrong by a factor 3. This shows
how useful is the use of the potential vector and of the corresponding Hamiltonian
description of magnetic field lines to find out the right invariants.

If on top of the single helical component considered at the end of section 5.1 there
is another non-resonant one, say H1,m,n(p) cos(mθ−nϕ), when performing the integral
of equation (80), this component adds a non-vanishing contribution to SO. In this
case, therefore, SO cannot be estimated by an integration over a single period of O,
as done in equation (80). When performing the integration over N periods of O, we
get NSO, plus an oscillating term, that stays bounded when N grows. Dividing by
N the integral over N periods of O, we get SO, plus a contribution vanishing for N
large. Therefore, in an experimental case where there is more than one component in
the Fourier series of H1 in θ and ϕ, SO can be estimated by this method.
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5.3 Width of a magnetic island

We refer to appendix H for the calculation of the island width in terms of the Hamil-
tonian perturbation, and to the results of the previous section to express it in terms
of the invariant island flux defined in equation (83).

Equation (H75) of appendix H shows that the magnetic island half -width in units
of p0 (i.e. of a flux) is

∆p = ∆ψT = 2

√√√√∣∣∣∣∣H1,m0,n0
(p0)

dι(p0)
dp

∣∣∣∣∣ = 2

√√√√∣∣∣∣∣ 2ΦOX

m0
dι(p0)

dp

∣∣∣∣∣, (85)

where the last expression is obtained through Eqs. (82) and (83). It is worth noting
that this width is defined even if the island is washed out by chaos.

The equivalent expression in units of ψP0 (i.e. of the poloidal flux), valid when the
poloidal flux ψP is taken as radial coordinate and obtained by inverting the roles of ψT
and ψP in equation (40) and by replacing factor 1/2π in the latter expression, yields

∆ψP = 2

√√√√∣∣∣∣∣H ′1,m0,n0
(ψP0)

dqs(ψP0)
dψP

∣∣∣∣∣ = 2

√√√√∣∣∣∣∣ 2ΦOX

n0
dqs(ψP0)

dψP

∣∣∣∣∣, (86)

where the last expression is obtained through equation (84). For instance, equation
(86) must be used for the reversed field pinch in the domain where the toroidal field
reverses, since ψT does not evolve monotonically radially there, which invalidates the
derivation leading to equation (85).

It is worth noting that the above second expressions of island widths involve an
explicit magnetic flux instead of an abstract Hamiltonian perturbation.

The calculations of appendix H assume the magnetic shears dι(p0)
dp and dqs(ψP0)

dψP
=

− 1
ι(p0)2

dι(p0)
dp do not vanish. When these quantities diminish, the island width increase.

The above calculations make sense only when the island domain does not overlap a
flux surface with a vanishing shear.

Finally, the island width computed in terms of flux can be translated into the
geometric width of a pendulum-like eye-of-cat through the equations defining magnetic
surfaces. Formula (85) agrees with equation (1.44) of White (2013) and with equation
(7.2.8) of Wesson and Campbell (2011); equation (20) of chapter 9 of Hazeltine and
Meiss (1992) yields a result

√
2 larger.

5.4 Numerical calculation of a magnetic island width from
experimental data

The calculation of a magnetic island width from experimental data can be done by
using equation (85) or (86), where the actions along the closed orbit O and X are com-
puted by performing the integration over several periods of these orbits, as indicated
in the last paragraph of section 5.2. Furthermore, the ΦOX flux can also be computed
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directly from formulas (82) or (84) when the resonant components of the perturba-
tion are known. An example is given in appendix I.2 using data from the RFX-mod
Reversed Field Pinch experiment Sonato et al (2003).

Previously, the calculation of this width from experimental data was performed
in at least two ways. A first one starts with the calculation of A by a Biot-Savart
calculation in cylindrical coordinates (R,Z, ϕ) Kaleck (1999); Bécoulet et al (2008);
Cahyna et al (2009). Then, the toroidal spectra of the three cylindrical components
of A is calculated, and from them are computed the corresponding components of
the magnetic field perturbation so as to satisfy numerically the condition ∇ · B =
0. Then, the radial component of B, and its poloidal and toroidal Fourier spectra
are computed, before making calculations involving metric coefficients, which provide
finally the island width.

A second type of calculation of magnetic island width is performed by computing
numerically magnetic field lines from the knowledge of the magnetic field Cary and
Hanson (1991). First the O-point of the island of interest is identified. The full-orbit
tangent map related to the O-point of the island of interest is then computed by
integrating the differential equations for the derivative of the “equations of motion” of
the field line. Two eigenvectors are then computed by diagonalizing matrices obtained
from this map. This yields the rotation frequency in the center of the island, and then
the shear of magnetic field lines. This is finally set into a formula providing the island
width.

In view of the many steps of these techniques, it might be worthwhile checking
the accuracy of the simple estimate in terms of action integrals indicated above. This
could be done by dealing with synthetic magnetic data produced from a Hamiltonian
enabling an analytical calculation of island widths from equation (85) or (86).

5.5 Resonance overlap

If several resonant perturbations are present in an experiment, Chirikov resonance
overlap criterion Chirikov (1979) can be applied from the experimental data about the
magnetic field. One can use engineer coordinates like (z,R, φ) or (r, θ, φ), and choose φ
as time when dealing with the tokamak. Then, magnetic field lines can be numerically
computed by using a symplectic code and the Hamiltonian description of field lines
provided by equations (25)-(28).

If possible, first plot the Poincaré map without perturbation to make sure there
is no spurious chaos due to the algorithm (in particular due to time discretization).
Then, plot the Poincaré maps including the successive resonant perturbation you want
to analyze. Measure the normalized width of the resonances. Then Chirikov overlap
parameter can be computed for any couple of resonance amplitudes. There is no need
of a high precision, since the criterion is approximate, and only gives an order of
magnitude estimate.

Chirikov criterion can be applied in the following way: plot the Poincaré map
corresponding to the experimentally measured magnetic field, and identify the loca-
tion of the periodic orbits corresponding to the resonances whose overlap is to be
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checked. Then, compute the width of the resonances from the technique of the pre-
ceding subsection. Then Chirikov overlap parameter can be computed for any couple
of resonances.

Chirikov criterion is a very useful rule of thumb. In reality the threshold for large
scale chaos (or “stochasticity”) depends on two features of the overlapping resonances;
the ratio of their amplitudes and that of the number of island chains. This was shown
in figure 2.19 of Escande (1985). We use the notations of this reference where k is
the ratio of the number of island chains, M and P are the normalized amplitudes of
the resonances, such that Chirikov overlap parameter is s = 2

√
(M) + 2

√
(P ). The

smallest threshold corresponds to s = 0.7 for k = 1 and ρ = 1 with ρ =
√

(M/P ).
The threshold corresponds to s = 1 for k = 1 and ρ ' 3, and for ρ = 1 and k ' 4. The
increase of the threshold when ρ becomes large or small is natural. Indeed, if one of
the resonances has a vanishing amplitude, no chaos will occur whatever big is s. The
increase of the threshold when k becomes large or small is natural too. Indeed, if a
resonance has many islands along a single one of the other resonance, the effect of the
former on the dynamics of the latter is a fast perturbation, which can be averaged out.

Chirikov criterion can be interpreted as a criterion of heteroclinic intersection, i.
e. of intersection of the stable manifold of an X-point of the first resonance with the
unstable manifold of an X-point of the second resonance, and vice-versa (see section
7 of Escande (2018)). Indeed, the part of these manifolds close to the corresponding
X-point can be approximated by the separatrix corresponding to the resonance alone.
Therefore resonance overlap is an approximation of heteroclinic intersection.

Section III of reference Elsasser (1986) points out the difficulty of choosing relevant
resonances to use Chirikov criterion when many resonances with close values of m/n
are present. Empirically, one can apply it to the largest islands in Poincaré maps. This
choice can be often justified by the Hamiltonian version of renormalization theory for
Kolmogorov-Arnold-Moser tori Escande (1985). Indeed, the largest islands often cor-
respond to the dominant current perturbations. Then islands with higher values of m
or n turn out to be the “daughters” of the large ones, and belong in the large islands
of the smaller scales of phase space exhibited by the renormalization “microscope”.
A pedagogical introduction to these concepts can be found in section 5 of Escande
(2018). Finally, it is worth noting, that when the amplitude of a magnetic perturba-
tion increases, there may be a collision of the O and X-points of the corresponding
magnetic island (inverse saddle-node bifurcation) canceling the separatrix and leading
to a strong resilience to chaos Escande et al (2000).

Finally, it is worth noticing that numerical calculations are so handy, that it may
be more reliable to compute a threshold of chaos this way than to compute it by
applying Chirikov criterion numerically, or analytically after painstaking uncontrolled
approximations.

6 Conclusion

This review paper proceeded as follows. It recalled the variational principle for mag-
netic field lines and showed it can be intuitively deducted. It introduced a new
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derivation of it from first principles, using Stokes theorem and avoiding analytical cal-
culations, and recalled previous ones using such calculations. It was recalled that the
action principles for magnetic field lines and for Hamiltonian mechanics are analogous.
Also that a change of gauge is equivalent to a canonical transformation. Action-angle
coordinates were introduced for magnetic systems, which correspond to the so-called
magnetic coordinates. A new formula was derived providing explicitly the Boozer
and Hamada magnetic coordinates from such coordinates. Then practical calculations
about magnetic field lines were shown to be simpler and safer, with an intuitive back-
ground. In particular, with a new analytical result: the width of a magnetic island is
proportional to the square root of an invariant flux related to this island, the magnetic
flux through a ribbon whose edges are the field lines related to the O and X points
of the island. This is the first expression of this width avoiding abstract Fourier com-
ponents and obviously independent of the choice of coordinates. The same analytical
calculation provides a simple way to compute numerically the width of a magnetic
island. Also to apply Chirikov resonance overlap criterion.

It was also shown that the pedestrian derivation of the action principle for mag-
netic field lines suggests a new pedagogical and intuitive introduction to Hamiltonian
mechanics: teaching it from magnetic lines “mechanics”. There would be some beauty
in the approach, in particular because of the equivalence of change of gauge and of
canonical transformation. Also because it provides a natural unification of the many
Hamiltonians describing the same dynamics, which broadens the freedom for practi-
cal applications. As a result, this review brings a further element of the contribution
of plasma physics to nonlinear dynamics and chaos Escande (2016, 2018). Also, more
generally to mechanics, when including the capability of the N-body description of the
plasma to enable a reductionist approach to kinetic problems, in contrast to most of
the rest of physics Escande et al (2018).

The review shows that important simplifications are brought by working with the
vector potential, i.e. in a geometrical way avoiding the use of specific coordinates, and
respecting the symplectic background of the dynamics. This philosophy is also present
in the description of particle dynamics with the Lagrangian derivation of a guiding
center equation of motion Littlejohn (1983), which involves the use of the Lie trans-
form technique Littlejohn (1982), which is also at the basis of the modern derivation
of gyrokinetic theory Hahm (1988); Hahm et al (1988); Brizard and Hahm (2007), and
of the development of various gyrokinetic simulation codes Garbet et al (2010). Fur-
ther developments along these lines are noncanonical guiding-center theory Cary and
Brizard (2009), Hamiltonian formulations of quasilinear theory for magnetized plas-
mas Brizard and Chan (2022), with an extension for inhomogeneous plasmas Dodin
(2022). Also a gauge-free electromagnetic gyrokinetic theory where the gyrocenter
phase-space transformation are expressed in terms of the perturbed electromagnetic
fields, instead of the usual perturbed potentials Burby and Brizard (2019). Finally,
Tronko and Chandre (2018) shows how to account for various orderings of the small
parameter associated with spatial inhomogeneities of the background magnetic field
and that characterizing the small amplitude of the fluctuating fields. This review paper
and the above references contribute to making plasma physics a fundamental science.
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Appendices.

Appendix A Euler-Lagrange equations for
magnetic field lines

In section 2 it has been shown that the Euler-Lagrange equations yield the equations
defining the magnetic field lines when the Lagrangian of the magnetic system is used.
In this appendix we explicitly derive the magnetic field line equations from the Euler-
Lagrangian ones, recalling first the Lagragian of the system:

L(x,
dx

dx3
, x3) = A1(x)

dx1

dx3
+A2(x)

dx2

dx3
+A3(x) = Ai(x) ẋi, (A1)

where x = (x1, x2, x3) are the spatial coordinates, x3 being the coordinate that
parametrizes the magnetic field line, and the Ai’s the covariant components of the
vector potential. The last expression of equation (A1) writes the Lagrangian in a more
compact form using the Einstein’s convention of summation over repeated indices and
ẋi = dxi/dx3. The corresponding Euler-Lagrange equations are

∂L

∂xj
− d

dx3

∂L

∂ẋj
= 0, j = 1, 2. (A2)

With L given by equation (A1),

∂L

∂xj
=
∂Ai
∂xj

ẋi (A3)

∂L

∂ẋj
= Ai δ

i
j (A4)

where δij = 1 when i = j and null otherwise. The second term of the left hand side of
equation (A2) can then be written as

d

dx3

∂L

∂ẋj
=

dAi
dx3

δij =
∂Ai
∂xk

dxk

dx3
δij =

∂Aj
∂xk

dxk

dx3
j = 1, 2 (A5)
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so the Euler-Lagrange equations (A2) assume the form

∂Ai
∂xj

dxi

dx3
− ∂Aj
∂xk

dxk

dx3
= 0, j = 1, 2. (A6)

Expanding the summations over repeated indexes, equations (A6) yield

0 =
∂A1

∂xj
dx1

dx3
+
∂A2

∂xj
dx2

dx3
+
∂A3

∂xj
−
(∂Aj
∂x1

dx1

dx3
+
∂Aj
∂x2

dx2

dx3
+
∂Aj
∂x3

)
, j = 1, 2. (A7)

To recognize the magnetic field line equations in equations (A7), one needs the gen-
eral relations linking the covariant components Ai of the vector potential and the
contravariant ones of the magnetic field from the definition of the curl in generic
curvilinear coordinates:

Bi =
1
√
g
εijk

∂Ak
∂xj

(A8)

where εijk = ±1, depending on the order of the indexes, and 1/
√
g is the Jacobian of

the coordinate system. Using definitions (A8) we can explicitly write the contravariant
components of the magnetic field, as

√
gB1 =

(∂A3

∂x2
− ∂A2

∂x3

)
,
√
gB2 =

(∂A1

∂x3
− ∂A3

∂x1

)
,
√
gB3 =

(∂A2

∂x1
− ∂A1

∂x2

)
(A9)

Using equations (A9) in equations (A7) yield

dx1

B1
=

dx3

B3
for j = 1 (A10)

dx2

B2
=

dx3

B3
for j = 2 (A11)

which are equations (14) defining the magnetic field lines. Note that these relations
are valid in any coordinate system, and that one does not really need to compute the
related Jacobian. This finally proves that magnetic field line equations can indeed be
derived from a stationary action principle.

Appendix B Elsässer’s derivation of the variational
principle for magnetic field lines

Magnetic field line equations can be derived from a variational principle, as shown
in section 2. Here another proof of the variational principle for magnetic field lines is
given following Elsässer’s derivation.

In the following the fields A(x) and B(x) are always taken at x = x(λ) even when
this is not explicitly stated.

0 = δ

∫ λ1

λ0

dλ
[
A(x) · ẋ

]
(B12)
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=

∫ λ1

λ0

dλ δ
[
A · ẋ

]
(B13)

=

∫ λ1

λ0

dλ
[
δA · ẋ + A · δẋ

]
(B14)

=

∫ λ1

λ0

dλ
[(
∇ · δx

)(
A · ẋ

)
+
(
A · δẋ

)]
(B15)

=

∫ λ1

λ0

dλ
[(
∇ · δx

)(
A · ẋ

)]
−
∫ λ1

λ0

dλ
[(
∇ · ẋ

)
A · δx

]
(B16)

=

∫ λ1

λ0

dλ
[
∇(A · ẋ)− (∇ · ẋ)A

]
· δx (B17)

Therefore

0 =
[
∇(A · ẋ)− (∇ · ẋ)A

]
(B18)

= ẋ×
[
∇×A

]
x≡x(λ)

(B19)

which is equivalent to equation (15) as requested. This ends the proof, but we now
make more precise some of its steps. Between (B14) and (B15) the general relation

δA(x) =
∂A

∂x
δx = (∇ · δx) A . (B20)

is used; between (B15) and (B16) there is an integration by parts, remembering that

δẋ ≡ δ(∂x

∂λ
) =

∂

∂λ
(δx) ; (B21)

between (B16) and (B17) δx is highlighted in the equation. Finally, between (B18) and
(B19) the classical formula for the gradient of a scalar product between two general
vectors and the fact that x(λ) is independent of space are used:

∇(A · ẋ) = A× (∇× ẋ) + ẋ× (∇×A) + (A · ∇)ẋ + (ẋ · ∇)A. (B22)

Appendix C Canonical transformations

Here we recall a classical way of defining a canonical transformation. The variational
principle expressed by equations (16) and (17) for the one-degree-of-freedom case
related to magnetic field lines yield

0 = δ

∫ t1

t0

[pq̇ −H(p, q, t)]dt (C23)
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where q̇ = dq/dt. For the same lines and another set (P,Q) of canonical coordinates,
this equation becomes

0 = δ

∫ t1

t0

[PQ̇−H ′(P,Q, t)]dt, (C24)

where H ′ is the corresponding Hamiltonian and Q̇ = dQ/dt. One way for both
variational principles to be satisfied is to have

pq̇ −H(p, q, t) = PQ̇−H ′(P,Q, t) +
dF

dt
, (C25)

where F is an arbitrary function of the coordinates, called generating function of the
canonical transformation. We now specify it by considering F as a function of (q,Q, t).
Then, equation (C25) becomes

pq̇ −H(p, q, t) = PQ̇−H ′(P,Q, t) +
∂F

∂q
q̇ +

∂F

∂Q
Q̇+

∂F

∂t
(C26)

so (
p− ∂F

∂q

)
q̇ −

(
P +

∂F

∂Q

)
Q̇+

(
H ′ −H − ∂F

∂t

)
= 0, (C27)

which implies

p =
∂F

∂q
, P = −∂F

∂Q
, H ′ = H +

∂F

∂t
. (C28)

By subtracting d(pq)
dt in the left hand side of equation (C25), and/or d(PQ)

dt in the
right hand side of the same equation, one can define three other generating functions
with arguments (p,Q, t), (P, q, t), or (p, P, t). The above canonical transformations
extend naturally to Hamiltonians with more degrees of freedom.

It is worth noting that Hamiltonian motion may be considered as a canonical
transformation. Indeed, consider the transformation from [p(t), q(t)], to [p(t+T ), q(t+
T )] where T is an arbitrary time. It is canonical, since there is a Hamiltonian describing
the dynamics of [p(t+ T ), q(t+ T )]: the same as that for [p(t), q(t)]. This is the basis
of Lie perturbation theory where T is considered as infinitesimal Cary (1981).

Appendix D Action-angle variables for
one-degree-of-freedom Hamiltonians

Canonical equations of motion, dq/dt = ∂H/∂p and dp/dt = − ∂H/∂q, imply that
the total time derivative of a one-degree-of-freedom time-independent Hamiltonian
H(p, q) vanishes, dH/dt = 0. Therefore, H(p, q) is a constant of the motion and
defines constant energy surfaces in phase space: H(p, q) = E. In this case it is always
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possible defining new canonical coordinates (P,Q) such that the new momentum is
some function of E, P = f(E), and a constant of the motion too. In such a case,
H ′ = H ′(P ): the evolution of P is ruled by

dP

dt
=

df

dE

dE

dt
= −∂H

′

∂Q
, (D29)

where the last expression results from the canonical equation of motion for P . Since
E is a constant, the second expression vanishes, which implies H ′ does not depend on
Q. This means that H ′ = H ′(P ), ending the proof.

If energy surfaces H(p, q) = E are bounded in phase space, so is the range of
variation of q on any of them, defining a periodic motion. In this case the new (P,Q) =
(I, ζ) canonical variables defined by H ′ = H ′(P ) are called action-angle variables. For
a given value of E, we define the corresponding action as

I(E) =
1

2π

∮
p(q, E) dq, (D30)

where the integration runs over the related whole range of variation of q. Because of the
conservations of area in canonical transformations, this definition of I is independent
from the choice of canonical coordinates. The conjugate variable, ζ, can be defined
from the relation between canonical variables using equation (C25), by setting Q = ζ,
P = I, and F = −ζI + G(q, I), where G is the generating function of the canonical
transformation. Then, equation (C25) becomes

pq̇ −H(p, q) = −ζİ −H ′(I, ζ) +
∂G

∂q
q̇ +

∂G

∂I
İ, (D31)

so (
p− ∂G

∂q

)
q̇ +

(
ζ − ∂G

∂I

)
İ +H ′ −H = 0, (D32)

Which implies

p =
∂G

∂q
, (D33)

ζ =
∂G

∂I
, (D34)

H ′ = H . (D35)

Equation (D33) implies

G(q, I) =

∫ q

q0

p(q′, I) dq′, (D36)
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which provides the transformation rules

p(q, I) =
∂G

∂q
=

∫ q

q0

∂p

∂q
(q, I) dq (D37)

ζ(q, I) =
∂G

∂I
=

∫ q

q0

∂p

∂I
(q, I) dq . (D38)

Equation (D35) implies that the change of canonical variables (p, q) 7→ (I, ζ) is a
change of coordinates that does not perturb the constant energy surfaces in phase
space.

Canonical equations of motion are very simple in action-angle coordinates. Because
of equation (D30), the action is constant along any orbit of constant energy E

dI

dt
= −∂H

∂ζ
= 0 . (D39)

The motion of ζ is ruled by

dζ

dt
=

dH

dI
≡ ω(I) = const . (D40)

Equations (D30) and (D33) imply the range of ζ is

∆ζ =
∂

∂I

∫
p(q, E) dq = 2π, (D41)

where the integral runs over the range of q, and the right hand side results from the
definition of I, equation (D30). Because of this range, ζ is called angle. It evolves
linearly in time with the frequency ω(I).

A word of caution is of order for systems with a separatrix. Indeed the partial
derivative with respect to I is not defined at an X-point. So does ζ. In reality, a
separatrix separates orbits with different topologies, which implies a discontinuity of
the definition of the action when crossing it. Away from a separatrix, the integral in
equation (D30) turns out to be a curvilinear integral on a closed orbit.

We conclude mentioning that the action defined in equation (16) and the one in
equation (D30) defining the canonical momentum in action-angle coordinates are not
physically related, except for their dimensions.

Appendix E Intuitive physical approach to the
vector potential

Any divergence free field (like the magnetic field B) in a torus can be written in its
canonical form, as showed in section 4.1,

B = ∇ψt ×∇θ/2π −∇ψp ×∇ϕ/2π, (E42)
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where x = (ψt, θ, ϕ) are general toroidal coordinates. A similar form can be used for
the vector potential A,

A = ψt∇θ/2π − ψp∇ϕ/2π +∇G , (E43)

that can be always defined up to a gauge, which means up to the gradient of a scalar
function here named G, irrelevant for the corresponding magnetic field, B = ∇×A.

Here we show the equivalence between the covariant components of the vector
potential and the magnetic fluxes. We first remind the definition of covariant com-
ponents of a vector, defined by A = Ai∇xi, where the ∇xi are the gradients of the
spatial coordinates. We use an intuitive physical approach, and in particular Stokes
theorem that states the equivalence between a circulation and a flux:∮

l

A · dl =

∫
Σ

(∇×A) · dΣ (E44)

being Σ any surface having the oriented circuit l as a boundary. If A is the vector
potential, the circulation of A along l immediately implies the flux of the magnetic
field B = ∇×A through Σ.

In different frame of references, fluxes assume different physical meaning depending
on the definition of the surface Σ through which they are computed, see for example
Predebon et al (2016). In the more general definition, poloidal and toroidal fluxes are
the fluxes across some surface Σ defined by fixed values of the chosen angle θ or ϕ.
We anticipate that only in magnetic (or action-angle) coordinates Σ represents the
magnetic flux surfaces.

In section E.1 we prove that function Ai(x) is a measure of the poloidal/toroidal
flux across the surface defined by Σ = Ai(x) = constant, which in general does not
correspond to a magnetic flux surface, and without a clear geometric interpretation.
In particular, in general toroidal coordinates (x1, x2, x3) = (r, θ, ϕ) and choosing the
axial gauge A1 = 0, it is true that:

• A2 = ψt/2π: the A2 = Aθ component is a measure (up to 2π) of the toroidal flux
ψt across the surface defined by Σ = Aθ(r, θ, ϕ) = constant at ϕ = constant.

• A3 = −ψp/2π: the A3 = Aϕ component is a measure (up to −2π) of the poloidal
flux ψp across the ribbon bounded by the magnetic axis and the surface defined by
Σ = Aϕ(r, θ, ϕ) = constant at θ = constant. Equivalently, the A3 component can
be defined as a measure (up to 2π) of the poloidal flux across the disk outside the
surface Σ at θ = constant.

When magnetic flux surfaces exist, they are defined by function Σ = H(p, q) =
ψp(r, θ) = constant, but not by Σ = ψt(r, θ), as shown in section E.1. Only choosing
magnetic (or action-angle) coordinates, defined in section 4.2, magnetic flux surfaces
are well defined by both the magnetic fluxes, Σ = H(I) = ψP (ψT ), that can be used
as flux-surface labels. Following the method described in section E.1, and choosing the
axial gauge A1 = 0 and magnetic coordinates x = (ψT , ζ, ϕ), one can prove that:
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• A2 = ψT /2π: I(ψT ) = Aζ(ψT ) is a measure (up to 2π for the Aζ component of A)
of the toroidal flux ψT across magnetic flux surfaces at ϕ = constant.

• A3 = −ψP /2π: H(I) = Aϕ(ψT ) are a measure (up to −2π for Aϕ) of the poloidal
flux ψP across the ribbon bounded by the magnetic axis and the magnetic flux
surfaces at ζ = constant.

Magnetic coordinates therefore define the only coordinate systems in which the mag-
netic fluxes assume the usual meaning of fluxes through magnetic flux surfaces. In
addition to the results reported in this review, knowing the relationship between mag-
netic fluxes and the Ai components allows to tackle the study of physical problems
in a geometrical way. The transformation rules of the covariant components of a vec-
tor have been used for example to study the relationship between the Fourier spectra
of the magnetic fluxes in different frame of reference defined by magnetic coordinates
Predebon et al (2016).

E.1 Magnetic fluxes in general toroidal coordinates

Let us compute the toroidal flux ψt(r, θ) using its general definition for a time-
independent Hamiltonian system, for which the Ai’s components do not depend on
time (here identified by the toroidal angle ϕ):

ψt =

∫
Σ(ϕ)

B · dΣ(ϕ) =

∫
Σ(ϕ)

(∇×A) · dΣ =

∮
∂Σ(ϕ)

A · dl (E45)

=

∫ 2π

0

Aθ(r, θ) dθ (E46)

= 2π Aθ(r, θ) = ψt(r, θ) (E47)

The definition of the toroidal flux and Stokes theorem have been used in the first line.
The symbol Σ(ϕ) defines the surfaces at ϕ = constant, and the elementary surface
element is dΣ(ϕ) =

√
g∇ϕdr dθ, where

√
g is the inverse of the Jacobian of the

coordinate system. The line element is defined by dl = dxiei, where the ei’s are the
tangent basis vectors. Because of the constancy of the toroidal angle ϕ and of the
choice A1 = Ar = 0 for the axial gauge, we obtain equation (E46). Equation (E47) can
be true if and only if we consider the flux through the surface Σ = Aθ(r, θ) = constant.
This ends the explanation of the physical meaning of Aθ.

The poloidal flux can be written in the same way:

ψdp =

∫
Σ(θ)

B · dΣ(θ) =

∫
Σ(θ)

(∇×A) · dΣ =

∮
∂Σ(θ)

A · dl (E48)

=

∫ 2π

0

Aϕ(r, θ) dϕ (E49)

= 2πAϕ(r, θ) = −H(p, q) (E50)

where the symbol ψdP has been introduced for the poloidal flux through a disk defined
outside the surface Σ(θ) (w.r.t the magnetic axis). The symbol Σ(θ) defines the surfaces
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at θ = constant, and dΣ(θ) =
√
g∇θ dr dϕ. Equivalences in equation (E50) are written

reminding identification (27), and are true if and only if in equation (E49) we consider
the flux through the surface Σ = Aϕ(r, θ) = constant = −H(p, q), defining magnetic
flux surfaces.

It is worth noting that the circulation in dϕ, at the θ = constant angle, defines the
ribbon outside the Σ(θ) surface, and that is why the symbol ψdp has been introduced.
The relation with the poloidal flux ψp inside the flux surface can be found in chapter
4 of D’haeseleer et al (2012), which states the complementarity of the two poloidal
fluxes with respect to the total one. In the case where magnetic coordinates are used,
each of the two fluxes can be chosen to label magnetic flux surfaces, but ψdp has the
disadvantage of decreasing radially outward. Therefore, calling ρ any label of magnetic
flux surfaces, it is natural to choose ρ = ψP or ρ = −ψdP .

Appendix F Change of coordinates between
magnetic coordinates

We showed in appendix E the equivalence between the covariant components of the
vector potential and the magnetic fluxes, as introduced also in section 4. In general,
ψt = ψt(x) and ψp = ψp(x) are poloidal and toroidal fluxes that do not define mag-
netic flux surfaces. Magnetic flux surfaces exist only in integrable systems, and are
defined by H(p, q) = constant. Only when using magnetic (or action-angle) coordi-
nates to describe the system, magnetic flux surfaces are equivalently defined by both
the magnetic fluxes, for which ψP = ψP (ψT ) holds. Capital letters are used to dis-
tinguish them from the more general ψp(x) and ψt(x) fluxes with a less geometrical
intuitive definition (see appendix E).

Here we prove the relations defining the change of coordinates between magnetic
coordinates, considering that the vector potential can be written in the form

A = ψT ∇θ/2π − ψP ∇ϕ/2π , (F51)

where ψP = ψP (ψT ), if and only if a set of magnetic coordinates is chosen.
In particular we prove that equations (56)-(57), here reported

ζ = ζN + f(ψT , ζN , ϕN ), (F52)

ϕ = ϕN + g(ψT , ζN , ϕN ), (F53)

define the change of coordinates between magnetic coordinates, from (ζ, ϕ) to
(ζN , ϕN ), if and only if functions f and g are linked by equation (60):

f = ιg − h(ψT ) . (F54)

We prove it showing that if A can be written in its general form (E43) for the
fluxes ψP (ψT ), both in (ψT , ζ, ϕ) and (ψT , ζN , ϕN ) coordinates, then equation (F54)
must be valid: the following equations are derived simply using equation (E43) in the
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magnetic coordinates (ψT , ζ, ϕ), their relation with the (ψT , ζN , ϕN ) coordinates, and
the definition of the gradient of a function:

2πA = ψT∇ζ − ψP∇ϕ = (F55)

= ψT

(
∇ζN +∇f

)
− ψP

(
∇ϕN +∇g

)
= (F56)

= ψT

(
∇ζN +

∂f

∂ψT
∇ψT +

∂f

∂ζN
∇ζN +

∂f

∂ϕN
∇ϕN

)
+ (F57)

− ψP

(
∇ϕN +

∂g

∂ψT
∇ψT +

∂g

∂ζN
∇ζN +

∂g

∂ϕN
∇ϕN

)
= (F58)

= ψT∇ζN − ψP∇ϕN + F (F59)

where

F =
(
ψT

∂f

∂ψT
−ψP

∂g

∂ψT

)
∇ψT +

(
ψT

∂f

∂ζN
−ψP

∂g

∂ζN

)
∇ζN+

(
ψT

∂f

∂ϕN
−ψP

∂g

∂ϕN

)
∇ϕN
(F60)

In order to reduce equation (F59) - written in the (ψt, ζN , ϕN ) coordinates - to the
general form in equation (E43), function F must be the gradient of some function G:
let us say F = ∇G(ψT , ζN , ϕN ), with F given in equation (F60). Therefore it results:

∂G

∂ψT
=

∂

∂ψT

(
ψT f − ψP g)− f + ιg (F61)

∂G

∂ζN
=

∂

∂ζN

(
ψT f − ψP g) (F62)

∂G

∂ϕN
=

∂

∂ϕN

(
ψT f − ψP g) (F63)

where ι = dψP /dψT is the rotational transform of the configuration and the fluxes
depend on the radial variable only. For equations (F61)-(F63) to be compatible, (ιg−f)
in equation (F61) must be a function of ψT only: ιg− f = h(ψT ), which ends the first
part of the proof.

Vice versa (only if ), one can prove that if equation (F54) holds, then A can be writ-
ten in its canonical form. Applying equations (F52)-(F53) together with equation (F54)
in equation (F55), one obtains the canonical form for A in (ψT , ζN , ϕN ) coordinates
with

G =
(
ιψT − ψP

)
g −

∫
ψT

∂h

∂ψT
dψT (F64)

This is in agreement with what already found in equation (F61) and ends the proof.
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Appendix G Perturbation of the vector potential

A perturbation to a regular magnetic field involves the perturbation of both the
poloidal and the toroidal magnetic fluxes through magnetic flux surfaces. Using
expression (40) for A, its perturbation can be written as

δA = δψT ∇θ/2π − δψP ∇ϕ/2π, (G65)

where we consider both δψT and δψP are function of the coordinates x = (ψT , θ, ϕ).
Here we prove that, whatever the perturbation to the toroidal flux δψT , there exists

an appropriate redefinition of this variable that permits to consider the perturbation
to be only on the Hamiltonian of the system (the poloidal flux), as written in equation
(77).

Let ψ′T = ψT + δψT and define δψ′T (ψ′T , θ, ϕ) = ψT − ψ′T , which leads to the
redefinition of the radial coordinate ψT = ψ′T + δψ′T . The perturbed potential vector
A + δA, written as a function of ψ′T , is

A′ = ψ′T ∇θ/2π − ψ′P (ψ′T + δψ′T , θ, ϕ)∇ϕ/2π, (G66)

where ψ′P = ψP (ψ′T + δψ′T ) + δψP (ψ′T + δψ′T , θ, ϕ). We now define ∆ψP (ψ′T , θ, ϕ) =
ψ′P (ψ′T , θ, ϕ) − ψP (ψ′T ), in order to write an expression for A′ that highlights a
perturbation only of the poloidal flux

A′ = ψ′T ∇θ/2π − [ψP (ψ′T ) + ∆ψP (ψ′T , θ, ϕ)]∇ϕ/2π. (G67)

This shows the perturbed magnetic field can always be defined by a perturbation of
the poloidal flux only. The memory of the change in ψT is lost when going to the
Hamiltonian and using canonical coordinates, where it corresponds to a conjugate
momentum with the same name p. In the literature, for practical purposes, often
people perturb directly the Hamiltonian, which hides the actual change in the potential
vector, as done in equation (77).

Appendix H Magnetic island width

Small perturbations of an integrable magnetic field open magnetic islands around
the magnetic flux surface where the perturbation is resonant. By definition, resonant
magnetic flux surfaces are identified by a rational value of the rotational transform,
ι(ψT ) = n0/m0. Magnetic perturbations resonant on this surface have the form
H1,m0,n0

(p0) cos(m0θ − n0ϕ). Using identities (25)-(28) between magnetic fluxes and
canonical coordinates, we define p0 as the value of the canonical momentum (or
toroidal flux) on the resonant flux surface defined by ι(p0) = n0/m0, the canonical
variable q as the poloidal angle θ and the canonical time as the toroidal angle ϕ.

We recall here that any small resonant magnetic perturbation can be described
by a Hamiltonian formally identical to the Hamiltonian of a simple pendulum. Two
equivalent demonstrations of this fact are provided in the next subsections.
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H.1 Pedestrian calculation

In this subsection the pendulum Hamiltonian is derived from the canonical equations
of motion.

Let p be the value of the toroidal flux (canonical momentum) of a magnetic flux
surface very near to the resonant one defined by p0. Let δp = p − p0, and expand
Hamiltonian (77) in δp next to p0. Since the width of the magnetic island in δp will
turn out to scale like

√
H1,m0,n0

(p0), considered as small, this expansion must be done
up to order 2 in δp. This yields the reduced Hamiltonian

Hr(δp, θ, ϕ) = H0(p0) + ι(p0)δp+
1

2

dι(p0)

dp
δp2 +H1,m0,n0(p0) cos(m0θ− n0ϕ), (H68)

from which we deduce the canonical equation of motion by using identities (20,21)

θ̇ =
dθ

dt
=
∂Hr

∂p
= ι(p0) +

dι(p0)

dp
δp (H69)

ṗ =
dp

dt
= −∂Hr

∂q
= m0H1,m0,n0

(p0) sin(m0θ − n0ϕ) (H70)

θ̈ = m0
dι(p0)

dp
H1,m0,n0

(p0) sin(u), (H71)

Hr does not depend separately on θ and ϕ, but only on their helical composition.
In order to recognize the Hamiltonian Hp of the pendulum, the helical angle u =
m0θ − n0ϕ must be introduced.

This yields ü = m0q̈ = m2
0

dι(p0)
dp H1,m0,n0

(p0) sin(u), which results from the
combination of the canonical equations

u̇ = p′ (H72)

ṗ′ = m2
0

dι(p0)

dp
H1,m0,n0

(p0) sin(u), (H73)

of the pendulum Hamiltonian

Hp(p
′, u) =

1

2
p′2 +m2

0

dι(p0)

dp
H1,m0,n0

(p0) cos(u). (H74)

For the general pendulum Hamiltonian H = Gp2/2− F , where G and F characterize
the kinetic and potential energy respectively, the half width of the separatrix of the
pendulum in phase space is W/2 = 2

√
F/G. The half width of the separatrix of the

pendulum in equation (H74) is

∆p′ = 2

√∣∣∣∣m2
0

dι(p0)

dp
H1,m0,n0

(p0)

∣∣∣∣. (H75)
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Equations (H69) and (H74), together with the definition of the helical angle u and of

the toroidal angle ϕ as canonical time t, imply p′ = m0q̇−n0 = m0(ι(p0)+ dι(p0)
dp δp) −

n0. Therefore the width in p′ translates in an island width in units of p, which is

m0
dι(p0)

dp smaller, and given by equation (85) here recalled

∆p = ∆ψT = 2

√√√√∣∣∣∣∣H1,m0,n0(p0)
dι(p0)

dp

∣∣∣∣∣ . (H76)

Note that the island width is proportional to the square root of the perturbation of
the Hamiltonian, and therefore of the perturbation of a magnetic flux, and not to a
perturbation of a component of the magnetic field.

The X and O points correspond to the extrema of the perturbation of the Hamil-
tonian respectively. The X-point corresponds to uX = 0 and the O-point to uO = π if
dι(p0)

dp H1,m0,n0(p0) > 0 and the opposite otherwise. This implies

cos(uO)H1,m0,n0
(p0) = −sgn[

dι(p0)

dp
]|H1,m0,n0

(p0)|. (H77)

H.2 Calculation with a canonical change of variables

In this subsection the Hamiltonian of the pendulum is obtained through a canonical
change of coordinates, that highlights the helical symmetry of the system. We trans-
form Hamiltonian (77) by a canonical change of variables from (p, θ) to (P, u) defined
by the generating function G(P, θ, ϕ) = P (m0θ − n0ϕ) + p0θ. This yields

u =
∂G

∂P
= m0θ − n0ϕ (H78)

p =
∂G

∂θ
= m0P + p0, (H79)

which implies P = (p− p0)/m0 and the new Hamiltonian

H ′(P, u, ϕ) = H +
∂G

∂ϕ
= H0(p0) +

m2
0

2

dι(p0)

dp
P 2 +H1,m0,n0

(p0) cos(u), (H80)

which is again a pendulum Hamiltonian with other units for P , except for the dynam-
ically irrelevant H0(p0) term. This yields again the magnetic island width equation
(85) with the same values of u as above for the O-point and X-point respectively.

Appendix I Generalization of the magnetic island
width formula

Perturbation δB(ψT , θ, ϕ) of a regular magnetic field is provided by a perturbation
δA(ψT , θ, ϕ) of both the components of the vector potential (the third one being

39



killed by choosing an axial gauge). Section 5.1 considers the case where an appropriate
redefinition of the toroidal flux enables considering the magnetic perturbation to bear
only on the poloidal one, as shown in appendix G. Here we obtain the same results
as section 5.2, considering the perturbation on both the fluxes. Covariant components
of A and magnetic fluxes are identified remembering the results of appendix E, ψt =
2πAθ and ψp = −2πAϕ.

A general perturbation can be decomposed in a whole spectrum of Fourier com-
ponents. We consider the case of a single Fourier component perturbation to the
equilibrium magnetic field whose magnetic flux surfaces are defined by the equilib-
rium fluxes ψP (ψT ). We consider that x = (ψT , θ, ϕ) are magnetic coordinates for the
equilibrium field, so the perturbed fluxes can be written as

ψt(ψT , θ, ϕ) ' ψT + ψm0,n0

t (ψT ) eiu + c.c. = 2πAθ (I81)

ψp(ψT , θ, ϕ) ' ψP (ψT ) + ψm0,n0
p (ψT ) eiu + c.c. = −2πAϕ (I82)

where m0 and n0 define, respectively, the poloidal and toroidal periodicity of the single
perturbation and u = m0θ−n0ϕ defines the helical angle. Being Fourier components,
ψm0,n0

t (ψT ) and ψm0,n0
p (ψT ) are complex functions, and c.c. means the complex con-

jugate. Note moreover that capital letter T is used to indicate the equilibrium toroidal
flux, used as radial coordinate, whereas the lowercase letters t and p are used for the
perturbed fluxes. Clearly, equation (I82) correspond to equation (77).

Using both equations (I81)-(I82), we compute the SO flux introduced in section
5.2, as

SO =
1

2π

∫
O

[pdθ −H(p, q, ϕ)dϕ] =

∫
O

[Aθdθ +Aϕdϕ] (I83)

which is a line integral along the line defined by the O-point of the (m0, n0) island
developed around the resonant surface defined by ι(ψT ) = dψP /dψT = n0/m0. The
SX flux is defined in an analogous way along the line defined by the X-point. We
show that they are the helical fluxes through the flux surface defined by the O and
X-point respectively. Their difference, the ΦOX flux, can be written in terms of the
perturbation to the helical flux, and is defined as the flux through the ribbon defined
by the extremal points of the island.

In computing SO, we assume that m0 and n0 are mutually relatively prime, ϕ
varies by 2πm0 along O and θ varies by 2πn0, while uO = 0, π. This yields

SO =
1

2π

[
ψT + ψm0,n0

t (ψT ) eiuO

] ∫
O

dθ − 1

2π

[
ψP + ψm0,n0

p (ψT ) eiuO

] ∫
O

dϕ+ c.c.(I84)

=
[
n0ψT −m0ψP

]
+
[
n0ψ

m0,n0

t −m0ψ
m0,n0
p

]
eiuO + c.c. (I85)

where all radial functions must be evaluated on the rational surface defined by ι =
n0/m0. Introducing the helical flux

ψh(ψT , u) = m0ψp − n0ψt , (I86)
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SO in equation (I85) can be written in terms of this flux as

−SO = ψH(ψT ) + ψm0,n0

h (ψT ) eiuO + c.c. = ψh(ψT , u) (I87)

where ψH is related to the equilibrium fluxes. To compute correctly the amplitude and
phase of the Fourier component of the helical flux, ψm0,n0

h (ψT ) = |ψm0,n0

h | ei φ
m0,n0
h , as

a function of the poloidal and toroidal ones, formulas for the sum of complex numbers
must be used.

The computation of the SX flux follows the same steps, with uO being substituted
by uX , remembering that the X-point corresponds to uX = 0, π and the O-point to
uO = π, 0 depending on the sign of the magnetic shear (see appendix H). This yields

SO − SX = 4 sgn
[ dι

dψT

]
|ψm0,n0

h | cos(φm0,n0

h ) (I88)

where, again, all radial functions must be evaluated on the resonant surface.
Let us now compare equations (82) and (I88) for ΦOX = SO−SX , the first obtained

considering the perturbation to the vector potential to bear on the poloidal flux only
as defined by equation (76), the latter considering perturbations (I81)-(I82) to both
the fluxes. One can immediately note a simple change in the notation between the
two equations, where p = ψT and p0 is the equilibrium toroidal flux on the resonant
surface. Moreover, to derive equation (82) the phase of the single Fourier components
of the perturbation has been neglected. This cannot be done in the case where both
fluxes are perturbed.

More interesting is to note that both equations express the ΦOX flux in terms of
the perturbation to a helical flux:

ΦOX = 2sgn
[ dι

dψT

]
ψm0,n0

h (ψT ) (I89)

where

ψm0,n0

h (ψT ) = |ψm0,n0

h | ei φ
m0,n0
h + c.c (I90)

= 2 |ψm0,n0

h | cos(φm0,n0

h ) . (I91)

Expressing the helical flux perturbation in terms of the perturbation to the poloidal
and toroidal fluxes using definition (I86), it is straightforward to see that equation
(I91) reduces to

ψm0,n0

h (ψT ) = 2m0

∣∣ψm0,n0
p

∣∣ cos(φm0,n0

ψp
) (I92)

if the perturbation is considered to the Hamiltonian ψp only. This shows that equation
(I88) reduces to equation (82) in this case, considering also that |H1,m0,n0 | = 2 |ψm0,n0

p |
for the chosen definitions of the perturbations, and this ends the proof.
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I.1 Previously introduced coordinate-independent fluxes

Equation (14) of reference Boozer (2005) considers the Fourier component

√
g δB · ∇ψ = bmn sin(nϕ−mθ), (I93)

written in our notations for the magnetic coordinates x = (ψ, θ, ϕ) with Jacobian
1/
√
g. It computes from it the corresponding island half-width (16), which is exactly

equation (85), if one identifies |bmn| and 2|ΦOX |. This proves |bmn| to be a coordinate-
independent flux.

Another example can be found in reference Park et al (2008) which considers under
equation (12) the single Fourier component

√
g δB · ∇ψ = Φmn exp (mθ − nϕ) + c.c., (I94)

of a flux Φ written in our notations. It proves the resonant |Φmn| to be coordinate
independent, being the same in each set of magnetic coordinates. It is straightforward
to show that |Φmn| = |bmn|/2π = |ΦOX |/π.

The definition of the curl in generic curvilinear coordinates, Bi = 1√
g εijk

∂Ak

∂xj ,

permits to express the flux Φ through the covariant components of the potential vec-
tor or, equivalently, the magnetic fluxes. Einstein’s convention has been used in the
expression for the curl of A, where εijk = ±1, depending on the order of the indexes.
This yields

Φ =
√
g δBψ = −

(∂Aθ
∂ϕ
− ∂Aϕ

∂θ

)
= − 1

2π

(∂ψt
∂ϕ

+
∂ψp
∂θ

)
(I95)

Using definitions (I81) and (I82) for the fluxes around the resonant surfaces and the
definitions ψh = m0ψp − n0ψt of the helical flux and u = m0θ − n0ϕ of the helical
angle, equation (I95) can be written as

Φ ' Φm0,n0
(ψ) ei u + c.c. = − i

2π
(m0ψ

m0,n0
p − n0ψ

m0,n0

t ) ei u + c.c. (I96)

showing that, as the ΦOX flux defined in this review, the flux Φ defined in Park et al
(2008) can be defined through the perturbation to the helical flux, i. e. the flux due
to the radial perturbation to the magnetic field. The definition of ΦOX through the
helical flux perturbation is proved in equation I89.

I.2 An example: numerical calculation of a magnetic island
width from RFX-mod experimental data

RFX-mod device Sonato et al (2003) is a large toroidal RFP device with major radius 2
m and minor radius of about 0.5 m operating in Padova, Italy. RFX-mod experimental
data have been used here to compute the width of a (m0, n0) = (1, 7) core magnetic
island applying the formula given by the last equality of equation (85) which involves
the computation of the ΦOX flux.
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Fig. I1 Poincaré plot of a (m0, n0) = (1, 7) magnetic island from RFX-mod experimental data.

In RFX-mod, many Fourier components of a perturbation can be reconstructed
for both the poloidal and toroidal magnetic fluxes from the solutions of Newcomb-like
equations in toroidal geometry Zanca and Terranova (2004). Considering just the single
helical deformation related to the island periodicity, perturbed magnetic fluxes can be
written as in equations (I81)-(I82), with p = ψt and H = ψp. The ΦOX = SO − SX
flux in equation (85) is here calculated using equation (I88), derived in appendix I
considering the perturbation to both the fluxes, and not just on the Hamiltonian as
done in deriving the analogous equation (82). The equilibrium fluxes, p0 = ψT (r) and
H0 = ψP (r), are known as a function of the radius r of the unperturbed circular
magnetic flux surfaces and this is used to get the final island width in units of lengths:

∆r =
(dψT

dr

)−1

∆p (I97)

As a practical example we choose an island whose width can be also measured
from the Poincaré plot in figure 6 of Predebon et al (2018) and here reported in figure
I1 on a horizontal plane. Both, the island width computed from equation (I97) and
with a ruler from the Poincaré plot, give an island width of about 12 cm, confirming
the applicability and the correctness of the method proposed in section 5.3.
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