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Abstract

A generic, fast and asymptotically efficient method for parametric estimation is
described. It is based on the projected stochastic gradient descent on the log-
likelihood function corrected by a single step of the Fisher scoring algorithm.
We show theoretically and by simulations that it is an interesting alternative to
the usual stochastic gradient descent with averaging or the adaptative stochastic
gradient descent.
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1 Introduction

The stochastic gradient descent [1] for finding the root of a given functional is a widely
used method in statistical learning. In the parametric estimation setting, this method
leads to a (strongly) consistent estimator but which is not asymptotically efficient in
term of converging rate or in term of asymptotic variance depending on the condi-
tions retained. For sublinear functionals, consistency has been shown with probabilistic
arguments in [2–4] and asymptotic normality in [5–8]. For more general functionals,
the ordinary differential equation method has been developed [9, 10] with a bound-
edness assumption of the random sequence. In order to avoid this quite restrictive
assumptions, truncated (or projected) stochastic gradient descent has been proposed
[11, 12].

The stochastic gradient descent has been improved in two direction to obtain a
statistical procedure with optimal asymptotic rate and variance. On the one hand, the
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stochastic gradient with averaging has been studied [13–15]. On the other hand, the
adaptative stochastic gradient [16, 17] has been suggested.

In this paper, we propose a fast and asymptotically efficient alternative to averaging
or adaptivity. It is based on the one-step procedure.

The one-step procedure was initially considered in [18] for the estimation of param-
eters in independent and identically distributed (i.i.d.) samples. In this procedure,
an initial guess estimator is proposed which is fast to be computed but not asymp-
totically efficient. Then, a single step of the gradient descent method is done on the
log-likelihood function in order to correct the initial estimation and reach asymptotic
efficiency. With some recent developments, the one-step procedure has been success-
fully generalized to more sophisticated statistical experiments as diffusion processes
[19, 20], ergodic Markov chains [21], inhomogeneous Poisson and Hawkes counting
processes [22, 23], fractional Gaussian and stable noises observed at high frequency
[24, 25].

In the following, Section 2 is dedicated to notations and known results of conver-
gence rates for stochastic gradient descent (SGD), stochastic gradient descent with
averaging (AVSGD), adaptative gradient descent (ADSGD) and maximum likelihood
estimation (MLE). The main result on (strong) consistency and asymptotic normal-
ity of the one-step procedure in the multidimensional parameter setting is given in
Section 3. Monte Carlo simulations are done in Section 4 to assess the performance
of the proposed statistical procedure (OSSGD) in comparison with SGD, AVSGD,
ADSGD and MLE in terms of computation time and asymptotic variance for samples
of finite size.

2 Notations

In our parametric estimation problem, the observation sample is denoted X(n) =
(X1, . . . , Xn) and is composed of independent and identically distributed random vari-
ables. The probability density f(·, u) (with respect to some σ-finite measure) of X1 is
parametrized by u ∈ Θ ⊂ Rp where Θ is an open set. The true parameter ϑ ∈ Θ is to
be estimated.

The estimation problem of the unknown parameter ϑ can be seen as finding the
minimum of an unknown function G(u) = Eϑ (− log f(X1, u)) or the root of its
gradient

M(u) = Eϑ (−∇u log f(X1, u)) . (1)

The standard statistical procedure to estimate the parameter ϑ is the maximum
likelihood estimator (MLE) defined by

ϑ̂n = argmax
u∈Θ

1

n

n∑
i=1

log f(Xi, u). (2)

Under regularity assumptions, the MLE is consistent, asymptotically normal

√
n
(
ϑ̂n − ϑ

)
=⇒ N (0, I(ϑ)−1)
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where I(ϑ) stands for the Fisher information matrix

I(ϑ) = −Eϑ

[
∇2

u,u log f (X1, ϑ)
]

(3)

and asymptotically efficient in the minimax sense [26]. Here =⇒ is the convergence in
law as n → ∞. But the MLE is generally not in a closed form and its approximation
by a classical gradient descent method can be time consuming for large samples. The
moment estimator, which is an other generic methodology, when it has closed-form,
is generally not asymptotically efficient [26].

Consequently, the Robins-Monro algorithm [1] could be considered to find this
root. It is defined recursively by

ϑi+1 = ϑi − γi(−∇u log f(Xi+1, ϑi)), 0 ≤ i ≤ n− 1,

where (γi)i is the step sequence and ϑ0 is the initial value (it may be random but
square integrable) of the procedure.

In our estimation problem, the functional M is generally not sublinear and the
sequence (ϑi)i cannot be considered as bounded in probability. For instance, direct
computations when the distribution of X1 is exponential of rate parameter ϑ give

M(u) =
1

ϑ
− 1

u
, u > 0.

Consequently, projected stochastic gradient descent will be considered in the
following. Namely,

ϑi+1 = ΠK [ϑi − γi(−∇u log f(Xi+1, ϑi))] , 0 ≤ i ≤ n− 1, (4)

where ΠK is the projection onto the constraint set K = {u : aj ≤ uj ≤ bj} for −∞ <
aj < bj <∞, j = 1, . . . , p. It can be reformulated as

ϑi+1 = ϑi − γi(−∇u log f(Xi+1, ϑi)) + γiZi, 0 ≤ i ≤ n− 1, (5)

where γiZi is the shortest Euclidian length to take back ϑi − γi(−∇u log f(Xi+1, ϑi))
to the constraint set K if it is not in K.

Under general assumptions, this procedure leads to a strongly consistent estimator
[12] for

γi ≥ 0,
∑
i

γ2i <∞ and
∑
i

γi = ∞, (6)

that is ϑn −→ ϑ as n → ∞ with probability one. This algorithm is fast but is not
asymptotically efficient, neither in terms of converging rate nor in terms of asymptotic
variance. For the sequence γi = i−r and r ∈ (1/2, 1), it leads to an asymptotically
normal estimator for which

n
r
2 (ϑn − ϑ) =⇒ N

(
0,

1

2
Ip

)
(7)
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where Ip stands for the p×p identity matrix. It is worth mentioning that the asymptotic
variance does not depend on ϑ in the i.i.d. setting.

It had also been shown that the stochastic gradient descent with γi = ci−1 and

c >
1

2λmin(I(ϑ))
, (8)

where λmin(A) is the lowest eigenvalue of the matrix A, is asymptotically rate efficient
but is still not asymptotically variance efficient with

√
n (ϑn − ϑ) =⇒ N

(
0, c2I(ϑ)(2cI(ϑ)− Ip)

−1
)
.

The constraint (8) depends on the unknown parameter and cannot be used in practice.
Consequently, in order to speed up the estimation convergence rate in (7), two

methods are classically used: averaging and adaptivity.

2.1 Averaging

The averaging method was proposed (see [12, 13, 15]) to reach variance efficiency with

ϑn =
1

n

n∑
i=1

ϑi.

This estimator is consistent, asymptotically normal with efficient rate and variance,
namely √

n
(
ϑn − ϑ

)
=⇒ N (0, I(ϑ)−1

).

2.2 Adaptivity

In the simple setting of i.i.d. samples, the adaptative stochastic gradient descent writes

ϑ̃i+1 = ϑ̃i − i−1I(ϑ̃i)−1
(
−∇u log f(Xi+1, ϑ̃i)

)
, 0 ≤ i ≤ n− 1.

When the classical assumptions are fulfilled, it leads also to a consistent and asymptot-
ical normal estimators with optimal limit variance (see [27] and the references therein),
namely √

n
(
ϑ̃n − ϑ

)
=⇒ N (0, I(ϑ)−1

).

3 One-step correction

In order to improve the convergence rate of the gradient descent algorithm, we pro-
pose in the following the one-step procedure starting from an initial guess estimator
taken from the projected stochastic gradient algorithm. This procedure is shown to
be faster than the classical computation of the MLE but still asymptotically efficient.
It is an interesting alternative to the stochastic gradient algorithm with averaging or
adaptative gradient descent and shows nice properties also on samples of finite size.
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In the one-step estimation procedure, the estimation ϑn given at step n by the
projected stochastic gradient descent (2) is corrected by

ϑ∗n = ϑn + I(ϑn)−1 · 1
n

n∑
i=1

∇u log f(Xi, ϑn). (9)

It leads to a consistent, asymptotically normal and asymptotically efficient estimator
of ϑ (see Theorem 1 below).

In the following, we recall the slow convergence of the projected stochastic gradient
descent in the multidimensional setting which is the initial guess estimator in the
one-step procedure.

Let Yi = ∇u log f(Xi+1, ϑi) and Ej the conditional expectation with respect to
the σ-algebra generated by {ϑ0, (Yi, i < j)}. Let γi = i−r and r ∈ (1/2, 1) in the
algorithm (4). The classical assumptions are formulated in [12, Section 10.4 p. 341],
namely

A.1 The true value ϑ is in the interior of the constraint set K and ϑn → ϑ as n → ∞
with probability one;

A.2 For small ρ > 0,
{
YnI{|ϑn−ϑ|≤ρ}

}
is uniformly integrable and there is a function g

such that for |ϑn − ϑ| ≤ ρ,
EnYn = g(ϑn);

A.3 There exists a constant 0 < C <∞ such that for small ρ > 0,

sup
n

En|Yn|2I{|ϑn−ϑ|≤ρ} < C w.p.1;

A.4 There is a Hurwitz matrix A such that

g(u) = A(u− ϑ) + o(|u− ϑ|).

The following proposition gives the n
r
2 -consistency of the initial guess estimator

which is the first key ingredient in order to prove our next Theorem 1.

Proposition 1 ([12]). Under aforementioned assumptions, the sequence n
r
2 (ϑn − ϑ)

is tight.

Remark 1. Additive assumptions in order to fullfill A.1 are given in [12, Section 5.2
p 125].

Remark 2. Additive assumptions to obtain the asymptotic normality,

n
r
2 (ϑn − ϑ) =⇒ N

(
0,

1

2
Ip

)
, (10)

are given in [12, Section 10.2 p. 329].
This algorithm is fast but is not asymptotically efficient, neither in terms of

converging rate nor in terms of asymptotic variance. In order to obtain asymptotic nor-
mality with optimal rate and variance for the one-step corrected projected stochastic
gradient descent, we also suppose that
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A.5. The matrix valued function I(ϑ) is Lipschitz continuous, i.e. there exists a constant
L > 0 such that

∥I(x)− I(y)∥m ≤ L∥x− y∥, x, y ∈ Θ,

where ∥·∥m and ∥·∥ stand for Euclidean norms in the space of matrices and vectors
respectively.

With this condition, we can state the main result:

Theorem 1. The sequence (ϑ∗n, n ≥ 1) of one-step estimators of ϑ defined by (9) is
consistent and asympotically normal, i.e.

√
n(ϑ∗n − ϑ) =⇒ N (0, I(ϑ)−1). (11)

It is worth emphasizing that both speed and asymptotic variance are improved in
this one-step procedure due to the regularity of the Fisher information matrix.

Proof. The proof is postponed in Appendix A.

4 Simulations

The joint estimation of the shape parameter α and scale parameter β is considered
in the statistical experiment generated by a sample X(n) = (X1, X2, . . . , Xn) of i.i.d.
Gamma random variables whose probability density function is given by

f(x) =
βα

Γ(α)
xα−1 exp(−βx), x > 0.

Let us denote ϑ = (α, β). In this statistical experiment, the sequence of maximum

likelihood estimators (ϑ̂n)n≥1 of ϑ is not in a closed-form. The sequence of MLE
satisfies √

n
(
ϑ̂n − ϑ

)
→ N

(
0, I(ϑ)−1

)
,

where

I(ϑ) =

(
ψ(2)(α) − 1

β

− 1
β

α
β2

)
.

Here, ψ(n) is the polygamma functions (see [28, Section 6.4.1, page 260]) defined by
ψ(n)(α) = ∂n

∂αn log Γ(α).
The different estimators (MLE, SGD, OSSGD, AVSGD, ADSGD) have been com-

pared in terms of variance and computation time on B = 2 × 103 Monte Carlo
simulations for samples of size n = 2 × 104. The SGD is done with γi = i−r where r
is chosen to be equal to 0.6. It is worth mentioning that the results are similar for all
values of 1

2 < r < 1.
We can see on Figure 1 that the optimal variance is reached for the OSSGD (as for

the MLE, AVSGD and ADSGD) that naturally overperforms the non-optimal variance
of the slowly converging SGD. It is worth noting the relative bias for samples of finite
size of the AVSGD when the initial value ϑ0 is fixed.
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In terms of computation time, the OSSGD (as the AVSGD) is more than 3 times
faster than the MLE. In comparison, the ADSGD is more than two times faster.

For these reasons, the fast and asymptotically efficient OSSGD is a proper
alternative to the averaged and the adapted stochastic gradient descent methods.

MLE SGD OSSGD AVSGD ADSGD
time (s) 198.22 63.87 64.25 64.22 88.20

It can also be noticed that, for the specific case of the estimation of the param-
eters in the Gamma distribution, moment estimators [29] or other original explicit
estimators [30] could have been considered as initial guess estimation in the one-step
procedure instead of the SGD.

5 Conclusion

In this paper, we propose to apply the one-step procedure to the slowly converging
stochastic gradient descent in order to improve the convergence rate and reach asymp-
totical efficiency. It is a fast and asymptotically efficient alternative to averaging or
adaptivity.

The one-step procedure for the stochastic gradient descent is considered here in the
i.i.d. setting but it will be extended in a further work to the regression setting (linear
regression, logistic regression (see also [31] for an adaptative procedure), generalized
linear models) for larger applications.

A One-step procedure

For an observation sample (X1, . . . , Xn), let us denote ℓn(u) =
∑n

i=1 log f(Xi, u).
Recall that ϑ is the true parameter and

ϑ∗n = ϑn + I(ϑn)−1 · 1
n
∇uℓn(ϑn), n ≥ 1. (12)

Consistency:

The consistency of the sequence of initial guess estimators gives, as n→ ∞, ϑn −→ ϑ in
probability. Since Eϑ∇uℓn(ϑ) = 0, the uniform law of large numbers gives, as n→ ∞,

1

n
∇uℓn(ϑn) −→ 0Rp

in probability. The uniform continuity of the Fisher information matrix gives the
result. Since the initial stochastic gradient descent is also strongly consistent [12], we
can also obtain the strong consistency with the strong law of large numbers.
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Fig. 1 Statistical errors renormalized by
√
n for MLE, SGD, OSSGD, AVSGD and ADSGD for

n = 2 × 104 and B = 2 × 103 Monte-Carlo simulations. Theoretical optimal variance (in red) and
variance of SGD (in blue) are superimposed.
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Asymptotic normality:

From (12), we have

√
n (ϑ∗n − ϑ) =

√
n (ϑn − ϑ) + I(ϑn)−1 · 1√

n
∇uℓn(ϑn).

The mean-value theorem gives

∇uℓn(ϑn) = ∇uℓn(ϑ) +

∫ 1

0

∇2
u,uℓn (ϑ+ τ(ϑn − ϑ)) dτ · (ϑn − ϑ)

and

√
n (ϑ∗n − ϑ) = n

r
2

{
Ip + I(ϑn)−1 1

n

∫ 1

0

∇2
u,uℓn (ϑ+ τ(ϑn − ϑ)) dτ

}
n

r
2 (ϑn − ϑ)n

1
2−r

+ I(ϑn)−1 · 1√
n
∇uℓn(ϑ), (13)

where Ip is the p× p identity matrix.
The central limit theorem gives, as n→ ∞,

1√
n
∇uℓn(ϑ) =⇒ N (0, I(ϑ))

in law and the proper convergence of the second term in the r.h.s. of Equation (13).
Considering the first right-hand term, we have that (ϑn)n≥1 is n

r
2 -consistent by

assumption and n
1
2−r → 0, as n→ ∞, for 1

2 < r ≤ 1. Then, we need to show that

n
r
2

(
Ip + I(ϑn)−1 1

n

∫ 1

0

∇2
u,uℓn (ϑ+ τ(ϑn − ϑ)) dτ

)
= n

r
2A

is bounded in probability as n→ ∞ with

A = I(ϑn)−1

(
I(ϑn) +

1

n

∫ 1

0

∇2
u,uℓn (ϑ+ τ(ϑn − ϑ)) dτ

)
= I(ϑn)−1 ·

(
[I(ϑn)− I(ϑ)] +

[
1

n
∇2

u,uℓn(ϑ) + I(ϑ)
]

+
1

n

∫ 1

0

[
∂2

∂ϑ2
ℓn (ϑ+ τ(ϑn − ϑ))−∇2

u,uℓn(ϑ)

]
dτ

)
.

The second terms in the r.h.s. converges to zero at rate
√
n. The Lipschitz continu-

ity of the Fisher information allows to control the first and third terms by C∥ϑn − ϑ∥
where C is a generic constant. Since (ϑn)n≥1 is n

r
2 -consistent, the quantity n

r
2A is

bounded in probability as n→ ∞. The Slutsky theorem gives the final result.
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