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Introduction

Friction dampers are widely used in axial turbomachinery components to reduce vibration amplitudes and therefore to increase high frequency fatigue life of blades and disks. The analysis of such systems is difficult due to the nonlinear nature of the friction law. Nevertheless, fr om an industrial point of view, it becomes necessary to be able to conduct analysis in order to optimize friction dampers.

Numerical integration methods, although very effective to handle multiple sticking and complicated damping laws, lead to prohibitive computational effort if parametric studies and frequency response curves are to be obtained within the design process. If one is only interested in the stationary behaviour under periodic loading, frequency domain methods are more suited.

The harmonic balance method (Nayfeh and Mook [START_REF] Nayfeh | Nonlinear Oscillations[END_REF]) has been applied to study friction damping in turbine blades by Griffin [START_REF] Griffi N | Friction Damping of Resonant Stresses in Gas Tur bine Engine Airfoils[END_REF]. Although computationally efficient, this method assumes the response to be limited to a single harmonic approxi mation. The results are adequate for continuous slip motion, but not for stick-slip motion where higher harmonics become important.

Multiharmonics methods have been introduced by various researchers. Lau and Cheung [START_REF] Lau | Amplitude Incremental Variational Principal for Nonlinear Vibration of Elastic System[END_REF]. Lau et al. [START_REF] Lau | Variable Parameter Incrementation Metbod for Dynamic Instability of Linear and Non linear System[END_REF][START_REF] Lau | Incremental Harmonic Balance Method With Multiple Time Scales for Nonlinear Aperiodic Vibrations[END_REF], proposed an incremental harmonic balance (IHB) method to solve nonlinear periodic and quasi periodic vibrations of continuous systems.

Pierre, Ferri and DoweU [START_REF] Pierre | Multi-Harmonic Analy sis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method[END_REF] extended the JHB method to ana lyse the steady state response of systems with dry friction. Ferri [START_REF] Ferri | On the Equivalence of tbe Incremental Harmonic Balance Method and the Harmonic Balance-Newton Raphson Method[END_REF] showed the equivalence between the IHB method and the Galerkin/Newton-Raphson (GNR) method proposed by Urabe [START_REF] Urabe | Galerkin' s Procedure for Nonlinear Periodic Systems[END_REF] to analyse non linear periodic systems. More recently, sev eral authors as Ling and Wu (9), Cameron and Griffin [JO]. Cardona et al. [START_REF] Cardona | A Multihar monic Method for Non-Linear Vibration Analysis[END_REF]. improved the numerical efficiency of the IHB/GNR method by the introduction of the FFT algorithm. However, concerning the application of these methods to industrial cases, with many degrees of freedom, very few work has been published.

The purpose of this paper is to apply the GNR method with FFT algorithm to predict the forced response of turbomachinery blades with friction dampers in an efficient way. The size reduc tion of the system to be solved has been performed in two steps, first by a Craig-Bampton component mode synthesis and second by a condensation technique in the frequency domain on the non linear degrees of freedom only. The accuracy of the method is discussed and the results are compared with experiments conducted on a cantilever beam with a dry friction damper attached. Finally, the application of the method to a model fan blade is presented.

Theory

Finite element models of blades usually comprise a great number of degrees of freedom ( dof). thus to simulate forced response with friction dampers, one has first to tackle the prob lem of model reduction. Dowell [ 12) proposed a component mode analysis with the modes of the structure without dampers. In order to handle systems of smaller size, we prefer to use a Craig-Bampton component mode synthesis, where the retained dof include those where frictional forces are applied. In this paper, those dof are called nonlinear dof. The set of retained dof may be restricted to the only non linear ones, but may include others where one wishes to know the displacement with out using a restitution procedure. The influence on the results of the r etained dof choice will be discussed later. The condensed mass and stiffness matrices are given directly by the finite ele ment code after component mode synthesis.

The forced response with friction is computed with a GNR method using FFT algorithm. The system of equations of motion can be represented by:

l(x(t)) -f(t) -g(x, x) = 0 ( I)
where L( . ) is the differential operator representing the linear term, f(t) is the external forcing te1m, g(x, x) represents the nonlinear friction force and x(I) is the system response. All are vector functions.

It has been shown by Korkmaz et al [START_REF] Korkmaz | Theoreti cal Dynamic Analysis of a Cantilever Beam Damped by a Dry Friction Damper[END_REF], among others, that for a friction damper, stick-slip mechanism is the most efficient in reducing amplitude. As a classical friction Jaw is able to reproduce stick-slip well, it has been used throughout this work.

Thus when sliding occurs between the two dof i and j. the fri ction force acting on the dof i is:

g'(x, xY) = -8d sgn i:if if .xu * 0
where xii = t1ij, and 8d is given by a coefficient of friction times normal force to the sliding surfaces.

For numeri cal purposes, the friction law g has been approxi mated by: = -8d sgn j;V if I xlil > ll.

where A is a numerical parameter.

If we assume the solution to be:

x(t) = � (! X co + i Xc,, cos nwt + Xs11 sin nwt ) (2) 7r 2 11�1
the Galerkin procedure leads to the spectral form of (1 ) (see references 9, 10 and 11, for more details) :

A• X -F -G(X) = 0 (3) 
where the matrix A and the vector F are easily obtained from L and f. X is the vector given by:

The vector G(X) is given by: where and GT(X) = (G�0, G�i. G'J' i. ... , G��. G'{N) r2ir lw

Gc .. (X) = Jo cos (nwt)g(x)dt f2ir lw

Gs,,(X) = 0 sin (nwt)g(x)dt

The solution vector X of Eq. ( 3) is found by an iterative Newton-Raphson procedure. If we write the residual vector R(X) as:

R(X) = A•X-F-G(X)
the iterative system to be solved is:

J(X)•!:.X = -R(X) (4) 
where !:.X is the increment of the displacement vector X to be found and J ( X) is the jacobian matrix:

J(X) = 8R =A -

ao ax ax

In order to calculate G(X) and 8G/8X by numerical FFT, the functions are discretised with NP points per period (NP > 2N, N = number of harmonics) :

!:.t = � wNP xk = x(k!:.t) k from 0 to NP-1 ik = i(k!:.t) j ( ,ij ) 1 ,ij ' f 8 k xk = -gd-xk 1 A. I .x f I > A
Each component i of Gc11(X) and Gs11(X) is approximated by:

G�n(X) = L cos _!!__ nk gi(x f ) NP-1 ( 2 )
k�o NP These terms are zero if the dof i is not affected by friction.

The matrix 8G/ 8X is composed of (2N + 1) x (2N + 1) block matrices of dimensions p x p where p is the number of dof of the initial temporal system. 8Gc11I 8Xcm is the p x p block corresponding to the line c n and to the column cm. The other generic blocks are: BGs,,I 8X,m, 8G,n18Xcm• 8Gcn18X,m.

The only non-zero terms of these matrices correspond to those affected by friction. For example, the generic term i, j of the first block matrix is numerically calculated by: en

I cos -nk --.- 8Gj ex) NP -L (27r ) 8g' k •c.x' k u) 8x fm k�o NP 8X {,m
The expression of the differential terms is not straightforward, it is obtained by: 8gt = 8gt. a.x f 8x {,,, a.x f 8X !,,,

Since:

dxk = -L -n srn -nk d(X e n -X {,,,) ,ij W 2 ( N , ( 27r ) j .
7r n�1

NP we can write:

( 27r ) . . )

+ n cos NP nk d(X � . . -X f11) 8x f mw2 ( • ( 27r k )) --. =--sm -m . 8X {,m 7r 
NP So, we obtain:

8G�,, _ mw 2 ( N �i ( 27r k ) . ( 27r . k ) 8gi) --. --- "°' cos -n sm -m -.. 8X {,m 7r M NP NP 8.X f = mw _.::'.._ I, sin _!!__ k(n + m) � ( NP-I ( 2 ) 8 j 27r M NP 8 .Xf --L sm -k(n -m) -. . W NP-1 , ( 27r ) 8gi) 27r M NP 8 .Xf
In prac�ice, we begin by numerically calculating the terms 8gi/8x% for k varying from 0 to NP-1, with the formulas:

1 8g� = 8 .x f -g d � =0 if if l x f I ::5 A. l x f I > A.
The terms 8G�11/ 8X 1m can then be calculated, for n and m varying from 1 to N, by using an FFT algorithm.

In order to reduce even more the computational time, the iterative system ( 4) is reduced to the non linear dof only, i.e. the dof affected by friction. The solution vector X can be partitioned according to the linear and non linear dof as X = ( X 1 11 , X111) , and the system ( 4) can be written:

It follows immediately that it is equivalent to solve one system of smaller size: and to restore the linear dof by: !:.X1 n = J b, 1 (R1 n -11 11,111!:.X .. 1 )

This reduction technique is specially interesting when the number of normal modes and retained linear dof of the compo nent mode synthesis is important. 

Experiment

In order to gain a better understanding of friction damping and to have experimental data to validate numerical methods, a simple experiment has been realized for a cantilever beam excited by an electrodynamic shaker and damped by a dry fric tion damper. A brief description of the experimental set up and of the results will be given here. The reader is referred to Kork maz et al. [START_REF] Korkmaz | Analyse Dynamique Experimentale d'une Poutre Amortie par un Amortisseur a Frottement Sec[END_REF] for more details. The design of the friction dampers is shown in Fig. 2. A friction damper is applied against each of the two plates fixed to the beam, in order to preserve symmetry. It is possible to apply a variable normal load on the contact area of each damper.

An electrodynamic shaker is attached to the beam at a dis tance of 1.28 m from the clamped end.

Accelerometers are placed on the beam, perpendicular to span, at the friction damper (point 2) and at the shaker (point 1) locations. Measurements. A normal load FN is applied on the fric tion dampers. Then the beam is excited with a periodic force P cos (wt), whose frequency is swept over a given range.

Measurements have been done for several levels of excitation force P and normal loads FN. For all measurements, the transfer functions between the excitation force P and the responses at The beam tested previously has been chosen for the validation of the computations.

Validation has been conducted as follows:

-Creation of the Finite Element Model.

-Creation of 6 reduced models (1 or 2 retained dof, 1, 3 or 10 normal modes), which have been compared to the Finite Element Model with respect to eigen-frequencies and mode shapes predictions.

-Analysis of the multiharmonic, friction damped, forced re sponse. The influence of the reduction technique and the number of harmonics has been studied.

-Analysis of the temporal, friction damped, forced response. Component Mode Synthesis. The choice of the retained dof is an important step in the model reduction. The smallest set of retained dof is composed of those where friction dampers apply. In our beam case, this set is reduced to a single translation dof and is called setl. For large structures, to avoid a lengthy displacement restitution procedure, one may wish to retain addi tional dof where the displacement is to be known. For our beam, we add to set l the displacement at the shaker location, to form the set2. We performed several component mode syntheses (CMS), with 1, 3 and 10 normal modes (NM), for setl and set2.

Finite Element

The 6 reduced models obtained, have been compared to the initial Finite Element Model for two eigenvalue analyses. One with a spring of value equal to 2.4 x 10 7 N Im attached at the damper location and the other with the displacement at the same location free to move. These configurations are called hereafter respectively fixed and free boundary conditions. The eigen frequencies obtained with the various models are presented on table 1. The modal displacement ratio (u2/ u3) X 100 for these models is reported on table 2, where u2 and u3 are respectively the displacements perpendicular to span at the damper location and at the free end of the beam.

To analyse the first beam mode forced response, one may think that the 1 NM models are pertinent. The 10 NM setl Harmonic Analysis. We chose to simulate forced response with friction damping for the first mode. This mode has been chosen because we have experimental results. The results ob tained with the reduced models presented previously, will be compared with one another, in order to evaluate the effective ness of the component mode synthesis technique, combined with friction modeling. Then the influence of the number of harmonics in the response will be studied.

We analyse the beam in the configuration that leads to the results presented on Fig. 4 for the excitation force levels P of 0.938 N, 25 N and 38.438 N. When we simulate the forced response with a single harmonic, all models give equivalent results. The values of u 1 IP X 105 over the frequency range of 20 Hz to 40 Hz are plotted on Fig. 5 and the maxima are reported in table 3. On Fig. 5, the results of all models superimposed the reference model (10 NM set 1) results, except for the 1 NM set 1 model. In fact, we saw that this model does not represent perfectly the modal displacement at the damper location for the free and fixed boundary conditions (see Table 2). In the follow- ing part of this work, the 1 NM set 2 model will be used to study the fi rst mode forced response.

We can say that component modes synthesis is an effi cient way to reduce the initial Finite Element model for studying forced response with dry friction. Nevertheless it is necessary to check the reduced models ability to represent the eigen fre quencies and mode shapes of the initial model for the free and fi xed boundary conditions. We find that, for our case studies, small size models are sufficient.

The influence of the harmonics number has been studied for the first mode. The results are presented on Table 4 and on Figs. 6 and7. We see that the number of harmonics has a great influence on the response when stick-slip occurs. We find for P = 25 N a 35 percent difference on the maximum response amplitude when computing the response with a single harmonic or with seven harmonics.

Finally the frequency response functions have been computed for all experimental excitation force levels with seven or nine harmonics. These curves are presented Fig. 8 and are to be compared with those of experimental results shown in Fig. 4. We can say that the results agree quite well. The computational time (CPU time) is much more dependent on the system size to be solved than on the harmonics number. We fi nd, as an average, that the resolution of a system with 3 equations needs 30 percent of the CPU time required for 11 equations, whereas a one harmonic analysis needs 70 percent of the CPU time required for a seven harmonics analysis.

Temporal Analysis. Temporal analyses have been con ducted with the initial Finite Element model. The steady state responses have been compared with the experimental and multi harmonics (GNR) method results. The computed values are presented on Table 5.

We can first note that the GNR method fits very well with Time Integration method except for low excitation forces. How ever these low excitation responses do not correspond to the highest effi ciency of friction dampers and are of minor interest from a design point of view. The correlation with experimental results is acceptable and the discrepancies are due to modelisa tion, not to numerical methods.

Application

The method is now applied to a model fan blade, damped by a blade to ground damper and excited by a concentrated periodic force. The blade root is clamped and the first flexion Results. Figure 10 shows, for a fixed excitation force, the displacement amplitude at the blade tip as a function of excita tion frequency for different normal forces (from 0 to Fl) ap plied at the frictional damper. A single harmonic approximation for the response has been considered in these computations. We note that for the normal forces Fl and 0, the frequencies at which the amplitudes are maximum correspond to the first eigen frequencies of the blade, for fixed and free conditions at damper location. Numerical results correlate qualitatively well with using component modes synthesis and to perform the eigen frequencies analysis as well as the nonlinear temporal computa tions.

Conclusions

A numerical method to study the forced response of blades with friction dampers has been presented. This method com bines a multiharmonic analysis with a Craig-Hampton compo nent mode synthesis and is easy to use for industrial analysis as presented here for a fan blade. It allows damper optimization within the design process.

The accuracy of the method has been tested on a cantilever beam. It has been shown that, with component mode synthesis, small size reduced models are able to represent properly the structure dynamics for friction damping analysis. Higher har monics of the response greatly influence the result of the GNR method, specially when stick-slip occurs. A 35 percent differ ence has been found, in one case, on the displacement amplitude between a one and a seven harmonics analysis. As the highest effectiveness of a friction damper is obtained when stick-slip is present, multiharmonic analysis is of great interest if one wants to optimize dampers. In most of the useful configurations, the analysis with seven harmonics fits reasonably well with temporal analysis and with experimental results.
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 1 Fig. 1 Beam and dampers overview

  Experimental set up. The beam, represented in Fig. l, is a straight iron tube of 1.33 m length, with a rectangular cross section of 0.08 m by 0.04 m and a thickness of 0.002 m. Two very stiff plates are fixed to the beam at a distance of 0.318 m from the clamped end.
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 23 Fig.2Friction damper mechanism
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 184 Fig. 4 Experimental frequency response functions for the first beam mode

  Model. A finite element model of the beam with I 0 beam elements has been done. Additional lumped pa rameters have been added to represent the mass ( 2 kg) and inertia ( 8.5 X 10-4 kg.m2) of the added plates and the moving mass of the shaker (0.133 kg). The stiffness of the friction dampers is equal to 2.4 x 107 Nim. The material properties of the beam are: Young's modulus E = 2.0 X 1011 Pa, Poisson's ratio v = 0.3 and mass density p = 7800 kg/m 3• The sliding and sticking eigen-frequencies of the model have been found to be respectively 25.4 Hz and 35.9 Hz. The agreement with the experimental results is acceptable. Structural damping for the first mode was estimated to be e = 1.95 per cent when the damper is sticking (35.9 Hz) and e = 2.55 per cent when the damper is sliding (25.4 Hz). Rayleigh damping was then assumed in the form a K + {3 M where a = 2.6 x 1 o-s and {3 = 7.49.

Fig. 5

 5 Fig. 5 Model influence on the first beam mode forced response
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 163578 Fig. 6 Influence of the harmonics number on the first beam mode forced response P = 38.438 N

Fig. 9

 9 Fig. 9 Fan blade FEM component tests in progress. Detailed comparison of results will be reported elsewhere.Throughout this work, the general purpose Finite Element software code SAMCEF was used to obtain the reduced models

  Fig. 10 Numerical frequency response function for the first blade mode

Table 1

 1 Eigenfrequencies (Hz); Mode 1-damper location free or fixed

			free	fixed
	Full FEM		25.40	35.91
		1NM	25.40	35.91
	CMS set 1	3NM	25.40	35.91
		10NM	25.40	35.91
		1NM	25.40	35.92
	CMS set 2	3NM	25.40	35.92
		10NM	25.40	35.92

Table 2

 2 Displacement ratio u2/u3 x 100; Mode 1-damper location

	free or fixed			
			free	fixed
	Full FEM		8.982	1.440
		1NM	8.970	1.439
	CMS set 1	3NM	8.982	1.440
		10NM	8.982	1.440
		1NM	8.981	1.439
	CMS set 2	3NM	8.982	1.440
		10NM	8.982	1.440

Table 3

 3 Model influence on the first beam mode forced response Max(u1/P x 10 5 ) m/N over 20Hz-40Hz

	p		CMS set 1		CMS
					set 2
		1 NM	3NM	10NM	1NM
	0.938N	38.2	38.2	38.2	38.5
	25.0N	4.9	5.1	5.1	5.1
	38.438N	11.4	12.2	12.2	12.1

Table 4

 4 Influence of the harmonics number on the first beam mode

	forced response			
	Max(u1/P x 105 ) m/N over 20Hz-40Hz
	p	0.938N	25.0N	38.438N
	1H	38.46	5.07	12.11
	3H	38.46	7.57	13.67
	5H	38.46	7.24	14.83
	7H	38.46	6.84	14.95

Table 5

 5 Analysis and experiment comparison for the first beam mode

	forced response			
	5 ) m/N over 20Hz-40Hz GNR Max(u1/P x 10 Time lnteg. Exp. p 0.938N 38.46 36.70 36.10
	25.0N	6.84	6.84	7.89
	34.375N	11.45	11.49	9.31
	38.438N	14.95	14.90	14.00