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ON THE DEGREE OF REGULARITY OF A PARTICULAR LINEAR EQUATION

There are many interesting results and open questions regarding the degree of regularity of Diophantine equations. The Fox and Kleitman conjecture [5] concerning the maximum degree of regularity of the equation x1 +

. We here consider the problem of finding the degree of regularity of some specializations of the above equation.

Introduction

For given a 1 , . . . , a k and b in the set Z of integers, we consider the linear Diophantine equation L:

k i=1 a i x i = b.
Following [START_REF] Rado | Studien zur Kombinatorik[END_REF], given n ∈ N + , the set of positive integers, equation L is said to be n-regular if, for every n-coloring of N + , there exists a monochromatic solution x = (x 1 , . . . , x k ) ∈ N k + to L. The degree of regularity of L is the largest integer n ≥ 0, if any, such that L is n-regular. This (possibly infinite) number is denoted by dor(L). If dor(L) = ∞, then L is said to be regular.

A well-known and challenging conjecture (known as Rado's Boundedness Conjecture) due to Rado [START_REF] Rado | Studien zur Kombinatorik[END_REF] states that there is a function r : N + → N + such that, given any n ∈ N + and any equation α 1 x 1 + • • • + α n x n = 0 with integer coefficients, if this equation is not regular over N + , then it fails to be r(n)-regular. Even though there is a more general version, we state it here for a single homogeneous equation, as it has been proved by Rado [6] that if the conjecture is true for a single equation, then it is true for a system of finitely many linear equations, and as Fox and Kleitman [START_REF] Fox | On Rado's Boundedness Conjecture[END_REF] have shown, if the conjecture is true for a linear homogeneous equation, then it is true for any linear equation.

The first nontrivial case of the conjecture has been proved by Fox and Kleitman [START_REF] Fox | On Rado's Boundedness Conjecture[END_REF] by establishing the bound r(3) ≤ 24. In the same paper [START_REF] Fox | On Rado's Boundedness Conjecture[END_REF], the authors made the following conjecture for a very specific linear Diophantine equation.

Conjecture 1.1. Let k ≥ 1. There exists an integer b k ≥ 1 such that the degree of regularity of the 2k-variable equation L k (b k ), Fox and Kleitman [START_REF] Fox | On Rado's Boundedness Conjecture[END_REF] had proved the following.

x 1 + • • • + x k -y 1 -• • • -y k = b k ,
Proposition 1.2. For any b ∈ N + , the equation L k (b) is not 2k-regular.
After some initial results ([1], [START_REF] Adhikari | Equation-regular sets and the Fox-Kleitman conjecture[END_REF]) for small values of k, the full conjecture of Fox and Kleitman has been very recently established by Schoen and Taczala in [START_REF] Schoen | The degree of regularity of the equation n i=1 xi = n i=1 yi + b[END_REF] by generalizing a theorem of Eberhard, Green and Manners [START_REF] Eberhard | Sets of integers with no large sum-free subset[END_REF].

In [3], Bialostocki et al. considered equation L, that is k i=1 a i x i = b,
where k i=1 a i = 0 and b = 0. Among other things, the paper [START_REF] Bialostocki | On the degree of regularity of some equations[END_REF] 

established dor(x 1 + x 2 -2y 1 = b) under the condition x 1 < y 1 < x 2 .
Here in Section 4, following some line of arguments in [START_REF] Adhikari | On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation[END_REF], we furnish a somewhat different proof for the result on dor(x 1 + x 2 -2y 1 = b); because of Proposition 1.2, the result here is unconditional.

The Equation

x 1 + x 2 -2y 1 = b
As mentioned in the introduction, Bialostocki et al. [START_REF] Bialostocki | On the degree of regularity of some equations[END_REF] established dor(

x 1 + x 2 -2y 1 = b), under the condition x 1 < y 1 < x 2 .
Here, following the line of arguments in [START_REF] Adhikari | On a conjecture of Fox and Kleitman on the degree of regularity of a certain linear equation[END_REF], we give a proof of the following. 

x 1 + x 2 -2y 1 = b.
For all positive integers b, we have

dor(L (b)) =      1 if b ≡ 1 (mod 2), 2 if b ≡ 2, 4 (mod 6), 3 if b ≡ 0 (mod 6). Proof. Because of Proposition 1.2, dor(L (b)) ≤ dor(L 2 (b)) ≤ 3. Again, since L (b) is solvable in N + , we have 1 ≤ dor(L (b)). Thus, 1 ≤ dor(L (b)) ≤ 3.
The proof will be complete with the following observations. Observation 1. Consider the 2-coloring of N + given by coloring each integer according to its residue class modulo 2. Let (λ 1 , λ 2 , λ 3 ) be a monochromatic solution to L (b) under this coloring.

This will imply

λ 1 + λ 2 -2λ 3 ≡ 0 (mod 2).
Therefore, if b is odd, there cannot be a monochromatic solution in N Since, for any 2-coloring of N + , at least two elements in the set {b + 1, h + 1, 1} must be of the same color, at least one of the above three solutions must be monochromatic, and hence dor(L (b)) ≥ 2 when b is even. Observation 3. If b ≡ 0 (mod 3), then coloring each integer according to its residue class modulo 3 gives a coloring of N + for which there cannot be any monochromatic solution to L (b), and hence dor(L (b)) ≤ 2 in this case.

Observation 4. Here we consider the case b ≡ 0 (mod 6). Since the sum of coefficients is zero, it is easy to see that if L ( 6) is proved to be 3-regular, then so is L (b).

Let c : N + → {0, 1, 2} be an arbitrary 3-coloring of N + . Consider the following families of special solutions to L (6) parametrized by a ∈ N + :

(a + 6, a, a), (a + 5, a + 1, a), (a + 4, a + 2, a), (a + 3, a + 3, a), (a + 8, a, a + 1), (a + 1, a + 9, a + 2).

The underlying sets for each of these solutions can be assumed to be multi-chromatic, and thus all sets from E = {a, a+3}, {a, a+6}, {a, a+2, a+4}, {a, a+1, a+5}, {a, a+1, a+8}, {a+1, a+9, a+2} , where a ranges through N + , are multi-chromatic sets under c.

As just observed, the integer a must be colored distinctly from both a+3 and a+6. Moreover, if c(a + 6) = c(a + 3), then we would obtain the monochromatic solution (a + 6, a + 6, a + 3). It follows that {c(a), c(a + 3), c(a + 6)} = {0, 1, 2} = {c(a + 3), c(a + 6), c(a + 9)}, with the second equality following by the same argument used for the first, only replacing a by a + 3. Hence c(a) = c(a + 9).

Thus the color of an integer only depends on its residue class modulo 9. So, denoting the elements of Z/9Z by 0, 1, . . . , 8 and their respective colors under c by c 0 , c 1 , . . . , c 8 (with indices modulo 9), we may depict the distribution of colors by the following table:
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{c i , c i+2 , c i+4 } ≥ 2, ( 1 
)
{c i , c i+1 , c i+5 } ≥ 2, ( 2 
)
{c i , c i+1 , c i+2 } ≥ 2. ( 3 
)
We may assume that the first column (c 0 , c 3 , c 6 ) of C is equal to (0, 1, 2) and the table is as follows:

Table 2 0 c 1 c 2 1 c 4 c 5 2 c 7 c 8
The second and third columns of C being permutations of its first column, there are nine possible pairs holding the remaining two 0's in C: Hence none of the pairs from (4) can equal (0, 0), contradicting that the two remaining 0's in C must lie in one of the pairs from (4).
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Theorem 2 . 1 .

 21 Consider the equation L (b):

  3 + and hence dor(L (b)) = 1 in this case.

Observation 2 .

 2 Let b be even and write h = b/2 with h ∈ N + . The following three vectors in N 3 + are solutions to L (b): (b + 1, 1, 1), (h + 1, h + 1, 1), (b + 1, b + 1, h + 1).

(c 1

 1 , c 2 ), (c 1 , c 5 ), (c 1 , c 8 ); (c 4 , c 2 ), (c 4 , c 5 ), (c 4 , c 8 ); (4) (c 7 , c 2 ), (c 7 , c 5 ), (c 7 , c 8 ). However, recalling that c 0 = 0, we have {c 0 , c 1 , c 2 } ≥ 2 by (3), {c 0 , c 1 , c 5 } ≥ 2 by (2), {c 8 , c 0 , c 1 } ≥ 2 by (3); {c 0 , c 2 , c 4 } ≥ 2 by (1), {c 4 , c 5 , c 0 } ≥ 2 by (2), {c 8 , c 0 , c 4 } ≥ 2 by (2); {c 7 , c 0 , c 2 } ≥ 2 by (1), {c 5 , c 7 , c 0 } ≥ 2 by (1), {c 7 , c 8 , c 0 } ≥ 2 by (3).

Table 1 .

 1 The color table C c 0 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8