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ABSTRACT

This paper is devoted to the analysis of an experimental bladed disk with contact and friction in the blade roots.
The impact of this non linearity on the forced response of the assembly is numerically investigated using a
multiharmonic balance method. The full-size finite element model is reduced using a component modes synthesis
method and taking centrifugal stiffening into account so as to obtain reduced models of the disk and of the blades.
The blade frequency mistuning is measured and introduced in the model. With Coulomb's law of friction, a
sensitivity analysis is performed in which the influences of the excitation level and of the rotational speed are
studied. The numerical results are compared with the experimental results.

INTRODUCTION

Turbomachine bladed disks are subjected to fluctuating aerodynamic forces. If the resulting vibration is excessive,
wear and high cycle fatigue of the blading may be encountered, eventually leading to failure. Therefore, the
validation of the design has to include an accurate prediction of the actual vibration levels, especially near the
natural frequencies. The forced response of a practical bladed disk is substantially affected by structural damping,
aerodynamic damping and friction contacts between its components, but the complex and non linear nature of
these mechanisms makes them difficult to model.

Devices with friction dampers are commonly used in bladed disks. Conjointly, the study of their effect on the
forced response was the object of numerous papers (see e.g. [1]). Blade root damping however received less
attention. Nonetheless some numerical studies revealed that energy dissipation at the blade root could be
significant [2][3]. The experimental results of [4] showed that a decrease of the total amount of damping (i.e. sum
of material damping and blade root damping) is to be expected as the rotational speed is increased. Sliding
distances are small in blade roots and moreover only part of the contact interface may slip. Predicting correctly
this microslip requires a good knowledge of the stress distribution over the contact surface. Unfortunately, very
fine meshes are necessary to correctly estimate the high stress gradients. This was shown in papers [5][6] where
static loading of dovetail attachments is studied. The effect of centrifugal loading on blade root stresses was also
investigated in papers [7][8] and the numerical results were confronted with photoelasticity experimental results.

In this paper an experimental bladed disc is studied. It supports four blades through dovetails attachments. The
eight root flanks are the contact interfaces retained in the numerical calculations. Since the normal load on the
contact surfaces is not known and vary during vibration, microslip models such as the one proposed in [9] are not
applicable. On the other hand fine finite elements meshes of the contact interface make the dynamic
computations too long. Therefore, a compromise is found and 24 contacts nodes per flank are retained in the
numerical investigations. The Dynamic Lagrangian mixed Frequency–Time method (DLFT) [10][2] is used to
calculate the harmonic response of the bladed disk with Coulomb's friction and unilateral contact in the blade
roots. The confrontation with the experimental results reveals that the numerical method is able to predict the
main trends over the rotational speed range studied.
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NOMENCLATURE

M, C, K : mass, damping and stiffness matrices
Kc, Kg, Kt : centrifugal, geometrical and tangent stiffness matrices
q : vector of displacements
Fc : vector of contact forces
Fex : vector of external forces
Ua : voltage applied to the piezoelectric ceramic
d31 : piezoelectric charge constant of the piezoelectric ceramic
S1 : area of the cross section of the piezoelectric ceramic
Y11 : Young modulus of the piezoelectric ceramic
e : thickness of the piezoelectric ceramic
l1 : length of the piezoelectric ceramic
Kp : stiffness of the piezoelectric ceramic
Ks : local stiffness of the structure at the location of the piezoelectric ceramic
F1 : force applied by the piezoelectric actuator on the blade
ξ : material equivalent viscous damping ratio
µ : coefficient of friction

EXPERIMENTAL SETUP

Schematic views of the test bench used can be seen in Fig 1. The rotating disk supports four blades and is placed
in a vacuum chamber so as to minimize the effects of aerodynamic forces. The results presented below are
obtained with a pressure of 21 mbar. Different rotational speeds can be chosen up to 5000rpm. Two rotating
blades are excited by means of piezoelectric devices, which can be seen in Fig 3. The piezoelectric ceramics are
insulated from the blades thanks to a special adhesive and were placed on high strains regions of the first
bending mode. The two piezo-actuated blades are also equipped with strain gauges. The blade root is linked to
the disk via a dovetail type attachment (see Fig 2 b)).

         
                                              a)                                                                                           b)

Fig 1. Schematic views of the test bench a) transverse view, b) frontal view.

NUMERICAL MODEL

Finite element model

A numerical model of the bladed disk was created. The four blades and the disk were meshed using second order
tetrahedral elements (i.e. 10 nodes per element). The mesh can be seen in Fig 2. The shaft was modeled with
beam elements. Rigid body elements were used to link the shaft and the three dimensional mesh of the disk. The
two bearings were modeled with axial and radial linear springs.



The commercial FE code Samcef is used to carry out the preliminary linear calculations. The model is divided into
five substructures: one for each blade and one for the disk-shaft assembly. The number of degrees of freedom
(dofs) is reduced according to the Craig & Bampton component modes synthesis method [11]. The reduced basis
of one blade encompasses the dofs of the nodes involved in contact, the dofs necessary to represent the piezo
actuators and the strain gauges and three modal dofs. The contact nodes used in the present study can be seen
in Fig 2 b). The reduced basis of the disk-shaft assembly encompasses the disk contact nodes and 18 modal
dofs. The natural frequencies obtained with the reduced model and those obtained with the full-size model were
compared in order to validate the reduced model. At the present stage, rotation is taken into account but the
frictional contact non-linearity is not considered: the contact interfaces are assumed to be perfectly welded. Under
this assumption the mass matrix M and the tangent stiffness matrix Kt for each substructure are computed and
retrieved. The tangent stiffness matrix can be decomposed as

= − +t c gK K K K , (1)

where K is the structural stiffness and Kc is the centrifugal stiffness. The term -Kc is a stiffness correction due to
the expression of the equations of motion in the rotating frame and is responsible for a softening effect. Kg is the
geometric stiffness matrix which represents the stiffening of the substructure under the rotation-induced stresses.
For each substructure, the equations to be solved are written in the reduced basis as

+ + + =t c exMq Cq K q F F , (2)

where Fex stands for the external forces, Fc represents the contact forces and C is a Rayleigh damping matrix.
The gyroscopic matrix is not taken into account. Indeed, the results shown in this paper are computed for
particular modes of the structure where there is no shaft bending. In this case, it was verified that the forced
response computed with the gyroscopic matrix is only very slightly modified. The natural frequencies are shifted
by less than 0.01%. These results are in agreement with [12], where using a Ritz method, it was found that the
modes of a rotating radial beam were not affected by the Coriolis acceleration.

    
                                                  a)                                                                                         b)

Fig 2. Numerical model : a) mesh of the disk and the four blades, b) localization of the contact nodes on
the blade root : 8x3=24 nodes on each flank.

Frequency mistuning measurement

The word mistuning refers to the small variations of the blade dynamic behavior (natural frequencies and mode
shapes). The mistuning between the blades is unavoidable because of manufacturing tolerances and material
discrepancies. Furthermore, in the presented experiment, two blades are equipped with excitation and
measurement devices, while the two others are not. It is important to include mistuning in the numerical
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calculations, since it is known to substantially affect the modes and the forced response of bladed disks [13]. The
blades were weighed so as to update the density of each blade finite element model. The frequency mistuning
was also measured. A laser vibrometer was used to measure the impulse response of the four blades. The
corresponding test bench is shown in Fig 3. As the frequency depends on boundary conditions, the same
tightening torque of 10 Nm was imposed in each case to the screw. The reproducibility of the measure was
verified. The mean frequencies found are gathered in Table 1. These results suggest a stiffening effect brought by
the piezoelectric ceramics. The stiffness updating was carried out considering only the first bending mode of the
blade because this mode is dominant in the modes of the whole bladed disk that are studied below. The shaft and
disk models were also updated. Impulse responses of the shaft-disk assembly without the blades were measured
at rest. The found natural frequencies were used to update the corresponding model. In particular, the bearing
spring constants had to be adjusted.

Fig 3. Frequency mistuning measurement with laser vibrometry. Photo of blade 1 : piezo actuators and
strain gauges are not used in this test.

Blade 1 Blade 2 Blade 3 Blade 4

Normalized frequency 0.964 0.972 0.941 0.949

Frequency deviation +0.8% +1.6% -1.6% -0.8%

Table 1. Measured frequencies of the first bending mode and deviation between each blade frequency and
the average frequency

Piezoelectric excitation modeling

The piezoelectric actuators are modeled with the simple unidirectional model shown in Fig 4. The load is assumed
to be transmitted to the structure via the two extremes points A and B. The force produced by the actuator when a
voltage Ua is applied to the electrodes can be written as [14]

∆= − 31 1 1111 1
1 1

1

,a

d S YY S
F l U

l e
(3)

where d31 is the piezoelectric charge constant of the ceramic, S1 is the area of the cross section, Y11 is the Young
modulus of the ceramic in direction 1. e, l1 and ∆l1 are respectively the thickness of the ceramic, the length of the
ceramic and the elongation in direction 1. The stiffness of the piezo actuator between points A and B is denoted
Kp :
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If Ks is the local stiffness of the structure in direction 1 at the location of the actuator, then F1 can also be
expressed as

∆= −1 1sF K l . (5)

Combining equations (3),(4) and (5), a simple expression of the excitation force as a function of the applied
voltage is obtained :

= −
⎛ ⎞
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e
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Each blade is equipped with two actuators (i.e. one on each side of the airfoil)  fed by out of phase sinusoidal
voltages. It is necessary to keep 2 nodes per actuator in the reduced basis in order to use the proposed model.

Fig 4. Model of piezoelectric excitation.

Nonlinear analysis

The steady-state solutions of equations with contact forces (2) are sought with the Dynamic Lagrangian mixed
Frequency–Time method (DLFT) [10][2]. This is a multiharmonic balance method. The non linear problem is
formulated in the frequency domain and the contact forces are computed in the time domain with a prediction-
correction method [2]. One important feature of the DLFT is the ability to take into account directly the laws of
unilateral contact and Coulomb friction. It is not necessary to smooth them or to introduce normal and tangential
contact springs. Three dimensional node-to-node contact elements are used. They take into account the variable
normal load at the blade root and the 2D stick-slip motion. In the present study, there are 192 contact elements
which represents 384 contact nodes and 1152 nonlinear degrees of freedom. With the linear dofs added, the total
size of the problem is 1290. The size of the system to be solved by the nonlinear solver is actually 576. This is
achieved by performing two exact reductions in the frequency domain. In the first one, only the 1152 degrees of
freedom involved in the contact elements are retained. Further factor two reduction is obtained by writing the
problem in terms of relative displacements. The computations are performed in two steps. The first step is the
determination of the sliding displacement in the blade root due to the centrifugal load. The found position is then
used as a starting point for the calculation of the forced response.

RESULTS

The experimental and numerical forced responses presented in this section were obtained by analyzing a narrow
excitation frequency range which includes 2 resonance peaks. For this two resonant modes, the strain energy is
mainly localized in a single blade which vibrates according to its first bending mode. In mode 1, blade 1 has the
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greatest vibration amplitude among the four blades whereas the amplitude of blade 2 is much lower and blade 1
and 2 vibrate in phase. In mode 2, vibration is mainly localized in blade 2 with blade 1 and 2 vibrating out of
phase. The excitation was applied to blade 2 only.

Fig 5 shows the experimental and numerical harmonic responses for 4 different levels of excitation. The numerical
responses were obtained with a friction coefficient of µ = 0.08 and an equivalent viscous damping ratio ξ = 0.075
% due to material damping. This damping ratio is defined by the linear case were all the contact elements are
stuck (i.e. no energy dissipation due to friction). ξ is assumed to be independent of the strain amplitude and of the
rotational speed. The values of ξ and µ were chosen so as correctly represent the total amount of damping over
the rotational speed range. Under these assumptions, Fig 5. shows a good agreement between experimental and
numerical results. A small frequency shift of 0.2% is noticed when Ua is increased from 10V to 80V, which is not
exactly reproduced by the simulation. The phase diagrams of Fig 5 should be seen bearing in mind that the strain
gauge of blade 1 is mounted on the suction side of the airfoil and that the strain gauge of blade 2 is mounted on
the pressure side. Therefore, mode 1 is effectively an in phase mode and mode 2 an out of phase mode.

                                             a)                                                                                        c)

                                               b)                                                                                      d)

Fig 5. Numerical and experimental forced responses at Ω=3000 rpm : a) vibration level of blade 1, b)
phase of blade 1, c) vibration level of blade 2, d) phase of blade 2.



The numerical results of Fig 5 were computed with one harmonic. The influence of the number of harmonics
retained is presented in Fig 6 b). Retaining more than 3 harmonics does not seem to improve the convergence. A
maximum discrepancy of 5% is found between the results obtained with 1 harmonic and 5 harmonics. Fig 6 a)
shows how blade root friction affect the harmonic response. In this case, the maximum vibration level is found to
be noticeably lower than when friction is not considered.

                                             a)                                                                                         b)

Fig 6. Numerical forced responses with Ω=3000 rpm and Ua=80V: a) comparison between the all stuck
case (linear) and the stick-slip case , b) effects of the number of harmonics retained.

The experiments and the computations were carried out at 4 rotational speeds : 2000, 3000, 4000 and 5000 rpm.
Fig 7 shows the evolution of the resonant frequency for mode 2 over the speed range. This result is obtained with
a low excitation level so as to minimize the frequency shift due to the nonlinearity. The numerically predicted
centrifugal stiffening is in close agreement with the experiment. The maximum measured and numerical strains
are plotted as a function of rotational speed in Fig 8 and Fig 9 shows the corresponding equivalent viscous
damping. Energy dissipation is shown to increase with the level of excitation both in experiments and
computations.

It is interesting to discuss the results obtained for the two extremes spinning speeds, i.e. 2000 rpm and 5000 rpm.
Fig 9 a) shows that the total amount of damping predicted by the simulation at 2000 rpm is overestimated for the
maximum excitation level. This is a case where frictional damping is predominant over material damping. This
suggests that the friction coefficient value used in the computations may be too low. The value µ = 0.08 indeed
seems low, even if the blade roots are covered with a solid lubricant. The computations carried out at 5000 rpm
revealed that only few contact elements were sliding and with a very low amplitude, which means that there is
almost no amplitude reduction due to friction. This suggests the material damping in the computations (ξ = 0.075
%) may be overestimated since the computed strains are lower than the measured strains.

The previous observations lead us to discuss the validity of some assumptions made in the proposed numerical
model. Each contact interface is modeled with 24 contact elements. References [5] [6] show that a much finer
discretization is required to accurately predict the stress distribution. This means that there is probably a
difference between the predicted localization of the sliding dissipation and the real one. Microslip and the energy
dissipations associated with it are difficult to model. Maybe the friction law used should be more precise for small
sliding distances and velocities.
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Fig 7. Numerical and experimental resonant frequencies for Ua=10V.

Fig 8. Numerical and experimental maximum vibration levels of blade 2.

CONCLUSION

The effect of blade root friction on the forced response of bladed disks was investigated both numerically and
experimentally. A complete model of the test bench was built. Its size was reduced with the Craig & Bampton
component modes synthesis method. Centrifugal stiffening and blade mistuning were taken into account. The
friction contact problem is solved in the frequency domain with an efficient multiharmonic balance method.

A sensitivity analysis was performed where the excitation level and the rotational speed were varied. The
numerical and experimental results were systematically compared. The numerical model was shown to reproduce
the main trends. Some possible causes of the remaining deviations were discussed.
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Fig 9. Numerical and experimental equivalent viscous damping ratio.
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