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TAME ALGEBRAS HAVE DENSE g-VECTOR FANS

PIERRE-GUY PLAMONDON AND TOSHIYA YURIKUSA,
WITH AN APPENDIX BY BERNHARD KELLER

Abstract. The g-vector fan of a finite-dimensional algebra is a fan whose
rays are the g-vectors of its 2-term presilting objects. We prove that the g-
vector fan of a tame algebra is dense. We then apply this result to obtain
a near classification of quivers for which the closure of the cluster g-vector
fan is dense or is a half-space, using the additive categorification of cluster
algebras by means of Jacobian algebras. As another application, we prove that
for quivers with potentials arising from once-punctured closed surfaces, the
stability and cluster scattering diagrams only differ by wall-crossing functions
on the walls contained in a separating hyperplane. The appendix is devoted
to the construction of truncated twist functors and their adjoints.
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1. Introduction

In the theory of cluster algebras, g-vectors (introduced in [FZ07]) play an impor-
tant role: they endow the cluster algebra with principal coefficients with a grading,
and are computationally lighter than cluster variables.

The g-vectors of a cluster algebra are the rays of a fan Fg
cluster whose cones are

generated by compatible g-vectors. As a consequence of results of [DWZ10], this
fan is essential, rational, polyhedral and simplicial. The fan of g-vectors plays an
important role in the theory and appears in different guises in the literature: it
appears in the tropical cluster X -variety (or cluster Poisson variety) of [FG09]; it is
a subfan of the underlying fan of the cluster scattering diagram of [GHKK18] and
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2 PIERRE-GUY PLAMONDON AND TOSHIYA YURIKUSA

of the stability scattering diagram of [Bri17]; for cluster algebras of finite type, it
is a complete fan [FZ03], and is the normal fan of a polytope called the generalized
associahedron [CFZ02, HPS18, AHBHY18, BDM+17, PPPP19].

A related notion in representation theory is the g-vector fan Fg
2-silt of 2-term

silting complexes over a finite-dimensional algebra Λ. It follows from the work
of [AIR14] that the fan Fg

2-silt is an essential, rational, polyhedral, simplicial fan,
and from [DIJ19] that it is complete if and only if the algebra Λ is τ -tilting finite.

In this paper, we are interested in the case where the g-vector fans are not
complete, but dense in the real space Rn which contains them. An algebra such
that Fg

2-silt is dense was called g-tame in [AY20]. Our main result is the following.

Theorem 1.1 (Theorem 4.1). Let Λ be a finite-dimensional basic algebra over an
algebraically closed field. If Λ is tame, then its fan Fg

2-silt is dense in Rn. In other
words, if Λ is tame, then Λ is g-tame.

Theorem 1.1 was previously known for path algebras of extended Dynkin type by
the results of [Hil06]; for representation-finite algebras by [DIJ19] (and in fact for
any τ -tilting finite algebra, even if it is not tame); for Jacobian algebras associated
to triangulated surfaces by [Yur20] (tame or not); for gentle algebras by [AY20]; and
for special biserial algebras by [AY20] and [ADI20], both using different methods.

We note that the converse of Theorem 1.1 is false: the quiver associated with
a triangulation of a torus with one boundary component and one marked point
on it admits a wild potential by [GLFS16], even though its g-vector fan is dense
by [Yur20]. The class of g-tame algebras is thus strictly larger than that of tame
algebras.

The related notion of τ -tilting tameness was introduced in [BST19]: an algebra
is τ-tilting tame if the closure Wall of the union of the walls containing non-trivial
stability conditions in Rn has measure zero. Using recent results, it is not hard to
see that τ -tilting tameness implies g-tameness: by [Asa19, Theorem 3.17], Wall is
the complement of the union of the interior of the maximal cones of Fg

2-silt, so if

the latter is not dense, Wall contains the cone generated by an open subset of Rn,
and so has infinite measure. We conjecture that τ -tilting tameness is equivalent
to g-tameness. This, combined with Theorem 1.1, would imply that tame algebras
are τ -tilting tame, as conjectured in [BST19, Conjecture 3.22]. We do not discuss τ -
tilting tameness further in this paper.

We provide two applications of Theorem 1.1. The first is a near classification of
quivers Q whose cluster algebras have dense g-vector fans. We say that a quiver Q
is cluster-g-dense in that case, and half cluster-g-dense if the closure of both its
cluster fan and that of Qop are half-spaces.

Corollary 1.2 (Theorem 5.17). Let Q be a quiver without loops and 2-cycles.
Assume that Q is not mutation equivalent to X6, X7 (see Theorem 5.7) or Km,
with m ≥ 3 (see Example 5.4). Then Q is mutation-finite if and only if it is
cluster-g-dense or half cluster-g-dense. In this case,

• Q is half cluster-g-dense if it arises from a triangulation of a closed surface
with exactly one puncture, and

• Q is cluster-g-dense otherwise.

We conjecture that X6 and X7 behave no differently.

Conjecture 1.3. (1) The g-vector fan in type X6 is dense.
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(2) The closure of the g-vector fan in type X7 is a half-space.

We prove Corollary 1.2 by applying Theorem 1.1 and a result of [GLFS16]
that states that all mutation-finite quivers admit a tame non-degenerate poten-
tial, except for X6, X7 and Km, with m ≥ 3. We note that Corollary 1.2 was
already known for quivers of Dynkin type [FZ03], extended Dynkin type [Hil06]
and of surface type [Yur20]; thus the novelty here is the inclusion of the quivers of

type E
(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 .

The second application is a consequence of an argument due to L. Mou [Mou19]
to get information on a conjecture of [KS14].

Theorem 1.4 (Theorem 6.9). Let Q be a quiver without loops and 2-cycles, and
let W be a non-degenerate potential on it. Let DQ be the cluster scattering di-
agram of Q, and let DJ(Q,W ) be the stability scattering diagram of the Jacobian
algebra J(Q,W ) (see Section 6).

(1) If Q is cluster-g-dense, then the cluster scattering diagram DQ is equal to
the stability scattering diagram DJ(Q,W ).

(2) If Q is half cluster-g-dense, then DQ and DJ(Q,W ) only differ by functions
on walls in the separating hyperplane.

This allows to obtain new information on the scattering diagrams of cluster
algebras from once-punctured closed surfaces.

Corollary 1.5. For a cluster algebra arising from a once punctured closed surface,
the two scattering diagrams only differ by functions on the walls of the separating
hyperplane.

We note that Conjecture 1.3, together with Theorem 1.4, would imply similar
results in types X6 and X7. Cases where the two scattering diagrams are known to
differ by central elements are Jacobian algebras admitting a green-to-red sequence
and the Jacobian algebra of a once-punctured torus [Mou19], and examples arising
from del Pezzo surfaces [BMP20]; the latter reference also contains example of
scattering diagrams for which the property does not hold, as explained for example
in the lecture [Bou20] by Pierrick Bousseau.

The proof of Theorem 1.1 relies on two main ingredients. On one hand, it
uses in an essential way the results on generic decompositions of g-vectors ob-
tained in [DF15, Pla13] and their more precise formulation for tame algebras shown
in [GLFS20] (see Theorem 3.8). On the other hand, it relies on an operation CylX
on the objects of the homotopy category Kb(proj Λ). The operation CylX is remi-
niscent of a spherical twist with respect to an object X [ST01], with the important
caveat that CylX is not an auto-equivalence; in fact, it is not even a functor. The
main difficulty in our proof of Theorem 1.1 is to show that CylX , despite not being
as good as a twist functor, behaves nicely enough on a subcategory of Kb(projΛ).

Our strategy is similar to (and partly inspired by) the one used in [AY20], where
Theorem 1.1 is proved for completed gentle algebras by using the geometric model
of [OPS18]. The idea there is to notice that the boundary of the g-vector fan is
governed by the g-vectors of band objects, which correspond to closed curves in the
geometric model, and to approach this boundary by inflicting successive Dehn twists
on arcs with respect to those closed curves. Our operators CylX should be seen
as an “algebraic counterpart” of these Dehn twists, and indeed the two notions
coincide in the case of gentle algebras. Under suitable vanishing conditions, the
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action of the operator CylX coincides with that of a truncated dual twist functor
as constructed in the appendix.

This paper is organized as follows. In Section 2, we collect definitions and results
on generic decomposition of g-vectors and varieties of representations of an algebra
which will be needed in the paper. In Section 3, we define the g-vector fan of 2-
term silting objects of an algebra, and we state a result of [GLFS20] on the generic
decomposition of g-vectors for tame algebras (Theorem 3.8). In Section 4, we
introduce the operator CylX and prove Theorem 1.1. We then apply our results
to the density of g-vector fans of cluster algebras in Section 5 and to scattering
diagrams in Section 6.

Notations and conventions

In this paper, k will always denote an algebraically closed field. All modules
will be right modules unless stated otherwise. Arrows in a quiver are composed
from right to left, as are morphisms in a category. The suspension functor of a
triangulated category will always be denoted by Σ. In any category C, the set of
morphisms from an object A to an object B will be denoted by HomC(A,B), or
sometimes (A,B) to save space. A general element of a (quasi-projective) variety
will always mean an element of a dense open subset of the variety.

2. Recollections on g-vectors and varieties of representations

In this section, we fix a finite-dimensional basic k-algebra Λ.

2.1. Generic decomposition of g-vectors. Denote by Λ =
⊕n

i=1 Pi a decom-
position of Λ as direct sum of pairwise non-isomorphic indecomposable projec-
tive right Λ-modules. We will denote by Kb(projΛ) the homotopy category of
bounded complexes of finitely generated projective right Λ-modules. We denote
by K [−1,0](projΛ) the full subcategory whose objects are complexes concentrated
in degrees −1 and 0. An object P in K [−1,0](projΛ) will be denoted by

P = P−1
f−→ P 0;

by abuse of terminology, we will sometimes identify the object P with the mor-
phism f .

The Grothendieck group of the triangulated category Kb(projΛ) will be de-
noted by K0(projΛ); we note that it is a free abelian group with basis the images
of the indecomposable projectives P1, . . . , Pn. The image of an object X in the
Grothendieck group will be denoted by [X ]. The basis [P1], . . . , [Pn] gives a natural
identification of K0(proj Λ) with Zn, which we will often use implicitly.

Definition 2.1. A g-vector is an element of K0(projΛ). The g-vector of an ob-
ject P of K [−1,0](projΛ) is the element [P ] ∈ K0(projΛ).

For any g ∈ K0(projΛ), we let P
g+ and P g− be the unique finitely generated pro-

jective modules without common non-zero direct summands (up to isomorphism)
such that g = [P g+ ]− [P g− ].

Definition 2.2. Let g,g′ ∈ K0(projΛ). We denote by e(g,g′) the minimal value
of

dimHomKb(projΛ)(P,ΣP
′),

where P and P ′ are objects of K [−1,0](projΛ) such that [P ] = g and [P ′] = g′.
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The following result is due to H. Derksen and J. Fei [DF15, Theorem 4.4]. We
use the formulation given in [Pla13, Theorem 2.7].

Theorem 2.3 (Generic decomposition of g-vectors). Any g ∈ K0(projΛ) can be
written as

g = g1 + . . .+ gr,

where

(1) for each i ∈ {1, . . . , r}, a general element of HomΛ(P
(gi)− , P (gi)+) is inde-

composable;
(2) for each i, j ∈ {1, . . . , r} with i 6= j, we have that e(gi,gj) = 0.

Moreover, the elements g1, . . . ,gr are unique for these properties (up to re-ordering),
and a general element of HomΛ(P

g− , P g+) is a direct sum of elements in

HomΛ(P
(g1)− , P (g1)+), . . . ,HomΛ(P

(gr)− , P (gr)+).

Definition 2.4. Let g ∈ K0(projΛ). The decomposition of g given in Theorem 2.3
is the generic decomposition of g. If r = 1, then g is generically indecomposable.

2.2. Varieties of representations and generically τ-reduced components.
Since k is algebraically closed and Λ is basic, we can assume that Λ is the quotient
of the path algebra of a finite quiver Q by an admissible ideal I (see, for instance,
[ASS06]). Let e1, . . . , en be the paths of length 0 corresponding to the vertices of Q;
we can assume that Pi = eiΛ for each i ∈ {1, . . . , n}. Let S1, . . . , Sn be the simple
tops of P1, . . . , Pn, respectively.

We denote by modΛ the category of finitely generated right Λ-modules, and
by K0(modΛ) its Grothendieck group. Note that K0(modΛ) is a free abelian
group, and that [S1], . . . , [Sn] form a basis for it. Finally, let

K0(modΛ)⊕ :=
{ n∑

i=1

ai[Si] | a1, . . . , an ∈ Z≥0
}
.

Definition 2.5. A dimension vector is an element of K0(modΛ)⊕. The dimension
vector of a module M is the element [M ] ∈ K0(modΛ)⊕.

For any d ∈ K0(modΛ)⊕, we let

repd(Q
op) :=

⊕

α∈Q1

Homk(k
dt(α) , kds(α)).

It is an affine space whose points correspond to representations of the quiver Qop

with dimension vector d. Inside it is the Zariski-closed subset repd(Λ) of repre-
sentations satisfying the relations in the ideal I; points in repd(Λ) correspond to
right Λ-modules M such that [M ] = d.

The affine algebraic group GLd :=
∏
i∈Q0

GLdi(k) acts on repd(Λ) by

(gi)i∈Q0 · (fα)α∈Q1 = (gs(α)fαg
−1
t(α))α∈Q1 .

The GLd-orbits of repd(Λ) are in bijection with isomorphism classes of right Λ-
modules with dimension vector d. The orbit of a point M will be denoted by OM .
By abuse of notation, we will identify a point M in repd(Λ) with the module that
it represents.

Let Z be an irreducible component of repd(Λ). It is known that Z is stable
under the action of GLd, and that for any point M ∈ Z,

codimZ OM ≤ dimk Ext
1
Λ(M,M) ≤ dimk HomΛ(M, τM),
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where τ is the Auslander–Reiten translation (here, the first inequality follows from
Voigt’s lemma [Gab74, Proposition 1.1] and the second one from the Auslander–
Reiten duality [ASS06, Theorem IV.2.13]). The following definition is a dual-
ized version of the notion of strongly reduced component which was introduced
by C. Geiss, B. Leclerc and J. Schröer in the context of additive categorification of
cluster algebras and of G. Lusztig’s dual semicanonical bases.

Definition 2.6 (Section 7.1 of [GLS12]). Let d be a dimension vector. An irre-
ducible component Z of repd(Λ) is generically τ-reduced if, for a general M ∈ Z,
we have that

codimZ OM = dimk HomΛ(M, τM).

The next result states that generically τ -reduced components are parametrized
by g-vectors (in the case of τ -rigid modules, this result is due to [DK08]; see
also [DF15] for generic decompositions of projective presentations).

Theorem 2.7 (Theorem 1.2 of [Pla13]). Let g ∈ K0(projΛ). There is an open
dense subset U of HomΛ(P

g− , P g+) such that

(1) there is a dimension vector d ∈ K0(modΛ)⊕ such that for any f ∈ U , we
have that [Coker f ] = d;

(2) the union of the orbits of the cokernels of all f ∈ U is a dense subset of a
generically τ-reduced component Z of repd(Λ).

Moreover, all generically τ-reduced components arise in this way, and two vec-
tors g,g′ ∈ K0(projΛ) give rise to the same generically τ-reduced component if
and only if their generic decompositions are the same, up to non-positive generi-
cally indecomposable terms.

3. g-vector fans and tame algebras

3.1. g-vector fans. The g-vectors of presilting objects of Kb(projΛ) are arranged
into a structure called a simplicial fan. We recall here the main definitions on fans,
and refer to [Zie95] for a general treatment.

Definition 3.1. Let d ∈ Z>0.

(1) For any non empty subset X of Rd, a supporting hyperplane of X is a
hyperplane H of Rd such that H ∩ X is non-empty and such that X is
contained in one of the two half-spaces defined by H .

(2) A polyhedral cone in Rd is a set of the form

C(c1, . . . , cr) =
{ r∑

i=1

λici | λi ∈ R≥0 for all i
}
,

where c1, . . . , cr are vectors in Rd. Equivalently, a polyhedral cone is the in-
tersection of finitely many linear half-spaces. The dimension ofC(c1, . . . , cr)
is the dimension of the vector space spanned by c1, . . . , cr. A coneC(c1, . . . , cr)
is simplicial if c1, . . . , cr are linearly independent.

(3) The faces of a polyhedral cone C(c1, . . . , cr) are its intersections with its
supporting hyperplanes. A ray of a cone is a face of dimension 1; a facet is
a face of codimension 1.

(4) A polyhedral fan in Rd is a set F of polyhedral cones in Rd such that
• if C ∈ F , then any face of C is in F ; and
• the intersection of two cones in F is a face of both.
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(5) A polyhedral fan is simplicial if all its cones are simplicial. It is complete
if the union of its cones is Rd. It is essential if it contains the cone {0}.

The following follows from the fundamental results of τ -tilting theory, see [AIR14].

Theorem 3.2 ([AIR14]). Let Λ be any basic finite-dimensional k-algebra. Then
the g-vectors of indecomposable presilting objects of K [−1,0](projΛ) are the rays
of an essential simplicial polyhedral fan whose maximal cones are C(g1, . . . , gn),
where g1, . . . , gn are the g-vectors of pairwise non-isomorphic indecomposable ob-
jects S1, . . . , Sn such that S =

⊕n
i=1 Si is a silting object.

Definition 3.3. The simplicial polyhedral fan described in Theorem 3.2 is the
2-term silting g-vector fan of Λ, and it is denoted by Fg

2-silt(Λ).

3.2. Tame algebras. The main class of algebras that we will study is the following.

Definition 3.4. The algebra Λ is tame if for any dimension vector d, there are k[t]-
Λ-bimodules M1, . . . ,Mm(d) such that

(1) for all i ∈ {1, . . . ,m(d)}, the module Mi is free of finite rank as a k[t]-
module;

(2) all but finitely many indecomposable Λ-modules of dimension vector d have
the form

k[t]/(t− λ)⊗k[t] Mi

with i ∈ {1, . . . ,m(d)} and λ ∈ k.

For a givenMi, the family of indecomposable Λ-modules of the form k[t]/(t−λ)⊗k[t]
Mi will be called a 1-parameter family of indecomposable modules.

We will be using an important result on tame algebras, due to W. Crawley-
Boevey.

Theorem 3.5 (Theorem D of [CB88]). Let Λ be a tame algebra. Then for any
dimension vector d, all but finitely many isomorphism classes of Λ-modules L of
dimension vector d satisfy τL ∼= L.

3.3. Generic decomposition of g-vectors for tame algebras. In this section,
we state a theorem due to C. Geiss, D. Labardini-Fragoso and J. Schröer[GLFS20].
We first recall some definitions.

Definition 3.6. An object X of Kb(projΛ) is presilting if HomKb(projΛ)(X,X [i])

vanishes for all i > 0. It is called silting if, moreover, it generates Kb(projΛ) as a
triangulated category.

Definition 3.7. A Λ-module is a brick if its endomorphism algebra is isomorphic
to the base field k.

Theorem 3.8 ([GLFS20]). Let Λ be a tame algebra, and let g ∈ K0(projΛ) be
a g-vector. Then the generic decomposition of g has the form

g = g1 + . . .+ gr + h1 + . . .+ hs,

where r, s ≥ 0 and

(1) for i ∈ {1, . . . , r}, the vector gi is generically indecomposable and such that
for a general f in HomΛ(P

(gi)− , P (gi)+), the object f of K [−1,0](projΛ) is
presilting;
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(2) for j ∈ {1, . . . , s}, the vector hj is generically indecomposable and there is

a dense open subset U of HomΛ(P
(hj)− , P (hj)+) such that the cokernels of

morphisms in U form a 1-parameter family of indecomposable Λ-modules
which are bricks and are isomorphic to their own Auslander-Reiten trans-
late. Moreover, e(hj ,hj) = 0.

Theorem 3.8 was announced and its proof outlined in a lecture by J. Schröer
at MFO in January 2020. It is contained in [GLFS20], where it is formulated in
terms of generically τ -reduced components. The above formultation in terms of
generic decomposition of g-vectors can be obtained by combining Theorem 3.2 and
Section 4.2 of [GLFS20] together with [DF15, Theorem 4.4] and [Pla13, Theorem
1.2]. We include a complete proof here for the convenience of the reader.

Proof. Assume first that g is generically indecomposable. Let Z be the irreducible
component of repd(Λ) obtained by taking the closure of the union of the orbits of
cokernels of generic elements in HomΛ(P

g− , P g+). By Theorem 2.7, the compo-
nent Z is generically τ -reduced.

Since Λ is tame, there exist k[t]-Λ-bimodules M1, . . . ,Mm(d), free of rank 1
as k[t]-modules, such that almost all indecomposable Λ-modules of dimension vec-
tor d are isomorphic to

k[t]/(t− λ)⊗k[t] Mi

for some λ ∈ k and some i ∈ {1, . . . ,m(d)}. Each Mi induces a morphism of
varieties

φi : A
1 → repd(Λ)

sending λ ∈ A1 to a point corresponding to the module k[t]/(t−λ)⊗k[t]Mi. Since A
1

is irreducible, the image of each φi either is contained in Z or has empty intersection
with Z. Assume that the indices for which the image of φi is contained in Z
are 1, . . . ,m′.

For each i ∈ {1, . . . ,m′}, consider the morphism

ψi : GLd × A1 −→ Z
(g, λ) 7−→ g · φi(λ).

By our assumptions on Z, the union of the images of the ψi is dense in Z. Therefore,
there is an ℓ ∈ {1, . . . ,m′} such that the image of ψℓ is dense in Z.

Let L be a generic point in the image of ψℓ; we shall make a small abuse of
notation and denote by L the corresponding Λ-module. Assume that L = ψℓ(g, λ).
Then ψℓ(GLd ×{λ}) is the orbit OL of L in Z. Since ψℓ(GLd ×A1) is dense in Z,
it is of codimension 0. Thus, OL is of codimension 0 or 1 in Z.

Case 1: codimZ OL = 0. Since Z is generically τ -reduced, we have the equal-
ities dimHomΛ(L, τL) = codimZ OL = 0. Therefore, L is τ -rigid. Since the pro-
jective presentations of τ -rigid modules are 2-term presilting objects, this shows
that generic elements in the space HomKb(proj Λ)(P

g− , P g+) is presilting. Thus g
satisfies condition (1) of the Theorem.

Case 2: codimZ OL = 1. In this case, since Z is generically τ -reduced, we
get that dimHomΛ(L, τL) = 1. In particular, Z contains infinitely many orbits.
By [CB88, Theorem D], since L is generic, we get that τL is isomorphic to L.
Therefore dimHomΛ(L,L) = 1, and L is a brick. Thus to show that g satisfies
condition (2) of the Theorem, all that remains is to see that e(g,g) = 0.
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Let (f1, f2) be a generic element of HomΛ(P
g− , P g+)×HomΛ(P

g− , P g+). Then

e(g,g) = dimHomKb(projΛ)(f1,Σf2)

= dimHomΛ

(
Coker (f2), τCoker (f1)

)

= dimHomΛ

(
Coker (f2),Coker (f1)

)
,

where the second equality is by [Pla13, Lemma 2.6] and the third one by [CB88, The-
oremD]. Letting Li = Coker (fi) for i ∈ {1, 2}, it suffices to show that HomΛ(L2, L1) =
0.

The following argument was suggested to us by A. Skowroński and G. Zwara.
Since L1 and L2 are bricks (as proved above), we have that

radEndΛ(L1) = 0 = radEndΛ(L2).

Since the function (X,Y ) 7→ dim radΛ(X,Y ) is upper semicontinuous on Z, this
implies that for generic L1 and L2, we have that radΛ(L2, L1) = 0. Since L1 and L2

are indecomposable and non isomorphic, this in turn implies that HomΛ(L2, L1) =
0.

This proves that e(g,g) = 0.

The theorem is now proved for a generically indecomposable g. If g is generically
decomposable, simply apply the above to each term of its generic decomposition,
and the theorem is proved. �

We will need a technical corollary of Theorem 3.8.

Corollary 3.9. Let Λ be any algebra satisfying conditions (1) and (2) of Theo-
rem 3.8. Then

(1) for j ∈ {1, . . . , s} and a general

h ∈ HomΛ(P
(hj)− , P (hj)+),

the space HomKb(projΛ)(h,Σh) is one-dimensional;
(2) for i ∈ {1, . . . , r}, j ∈ {1, . . . , s} and a general

(g, h) ∈ HomΛ(P
(gi)− , P (gi)+)×HomΛ(P

(hj)− , P (hj)+),

all morphisms in HomKb(projΛ)(g, h) factor through an object of add (ΣΛ);
(3) for j, ℓ ∈ {1, . . . , s}, and a general

(h, h′) ∈ HomΛ(P
(hj)− , P (hj)+)×HomΛ(P

(hℓ)− , P (hℓ)+),

all morphisms in HomKb(projΛ)(h, h
′) factor through an object of add (ΣΛ).

Proof. To prove (1), we note that

HomKb(projΛ)(h,Σh) ∼= HomΛ(H
0 h, τ H0 h) (by [Pla13, Lemma 2.6])

∼= HomΛ(H
0 h,H0 h) (since H0 h ∼= τ H0 h by [CB88])

∼= k (since H0 h is a brick).

The proof of (2) is similar:

HomKb(projΛ)(g, h)/(ΣΛ) ∼= HomΛ(H
0 g,H0 h)

∼= HomΛ(H
0 g, τ H0 h) (since H0 h ∼= τ H0 h by [CB88])

∼= HomKb(projΛ)(h,Σg) (by [Pla13, Lemma 2.6])
∼= 0,
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where (ΣΛ) is the subspace of morphisms factoring through add (ΣΛ). Finally, (3)
is proved as follows:

HomKb(projΛ)(h, h
′)/(ΣΛ) ∼= HomΛ(H

0 h,H0 h′)

∼= HomΛ(H
0 h, τ H0 h′) (since H0 h′ ∼= τ H0 h′ by [CB88])

∼= HomKb(projΛ)(h
′,Σh) (by [Pla13, Lemma 2.6])

∼= 0.

�

3.4. g-tame algebras. The property that we wish to study is encapsulated in the
following definition. Let Λ be a finite-dimensional algebra over a field k. We denote
by F̄g

2-silt(Λ) the closure of the union of the cones of the 2-term silting g-vector fan
Fg

2-silt(Λ).

Definition 3.10 ([AY20]). The algebra Λ is g-tame if F̄g
2-silt(Λ) = Rn.

In Section 5, we will need the following property of g-tame algebras.

Proposition 3.11. Let e be an idempotent of Λ. If Λ is g-tame, then so is Λ/(e).

Proof. Let |e| = n − m. Suppose that Λ/(e) is not g-tame. Then by [Asa19,
Theorem 3.17], there is some m-dimensional cone C in K0(projΛ/(e)) ≃ Rm such
that there is a non-zero θ-semistable (Λ/(e))-module M(θ) for any θ ∈ C ∩ Qm.
Let φ : K0(projΛ) ≃ Rn → Rm be a natural coordinate projection. Then M(θ)Λ
is a φ−1(θ)-semistable Λ-module. Thus there is a non-zero θ′-semistable Λ-module
for any θ′ ∈ φ−1(C) ∩ Qn, where φ−1(C) is an n-dimensional cone in K0(projΛ).
By [Asa19, Theorem 3.17] again, Λ is not g-tame. �

4. Density of the 2-term silting g-vector fan

Our main theorem is the following.

Theorem 4.1. Let Λ be a tame basic finite-dimensional k-algebra, and let n be the
rank of its Grothendieck group. Then any vector of Qn is in the closure F̄g

2-silt of
the union of the cones of the 2-term silting g-vector fan Fg

2-silt. In particular, Λ
is g-tame.

This section is devoted to the proof of Theorem 4.1.

4.1. Cylinders. The proof of Theorem 4.1 involves a variation on the notion of
spherical twist.

Definition 4.2. Let T be an essentially small, Hom-finite, Krull-Schmidt, trian-
gulated category with suspension functor Σ. Let X be an object of T . For any
object U of T , choose a basis (f1, . . . , fd) of the space HomT (U,X) and a triangle

Σ−1Xd −→ CylX U −→ U
f−→ Xd,

where f =




f1
f2
...
fd


. The object CylX U is the cylinder of U with respect to X .
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Remark 4.3. (1) The object CylX U is only defined up to (non-unique) iso-
morphism. Moreover, we do not define an action of CylX on morphisms,
so it is not a functor.

(2) The morphism U
f−→ Xd is functorial in U . Indeed, the functor

HomT (?, X) : T → (mod k)op

admits the right adjoint D(?)⊗kX ∼= Homk(?, X), and the morphism U
f−→

Xd is then the unit of adjunction

IdT −→ Homk (HomT (?, X), X)

applied to U .
(3) Our definition of CylX is similar to, but different from, the (dual) definition

of the twist TwX (or spherical twist if X is a spherical object) [ST01,
Definition 2.7]. Indeed, the latter involves the morphisms in every degree
from U to X , while the definition of CylX U only involves the morphisms
in degree 0.

(4) In the Appendix A, Bernhard Keller constructs a truncated version t0X of
the twist functor. Applying Example A.2(2) to the case where A = Λ, we
get that the truncated twist functor t0X and the operator CylX act in the
same way on certain objects; this happens, for instance, in the setting of
Lemma 4.5.

4.2. Commuting cylinders. The first key lemma in the proof of Theorem 4.1 is
a condition for cylinders to commute.

Lemma 4.4 (Commuting cylinders). Let T be an essentially small, Hom-finite,
Krull-Schmidt, triangulated category with suspension functor Σ. Let X and Y be
non-isomorphic indecomposable objects of T , and let U be any object of T . Assume
that the following hold:

(1) HomT (X,ΣY ) = HomT (Y,ΣX) = 0;
(2) for any morphism φ ∈ HomT (U,X) and any morphism ψ ∈ HomT (X,Y ),

the composition ψφ vanishes;
(3) for any morphism φ′ ∈ HomT (U, Y ) and any morphism ψ′ ∈ HomT (Y,X),

the composition ψ′φ′ vanishes.

Then CylX CylY U is isomorphic to CylY CylX U .

Proof. Let

Σ−1Xd −→ CylX U
x−→ U

f−→ Xd and Σ−1Y e −→ CylY U
y−→ U

g−→ Y e

be the triangles defining CylX U and CylY U . Applying HomT (−, Y ) to the first
triangle, we get the exact sequence

HomT (X
d, Y ) → HomT (U, Y )

x∗

−→ HomT (CylX U, Y ) → HomT (Σ
−1Xd, Y ).

By (2), the leftmost morphism vanishes. By (1), the space HomT (Σ
−1Xd, Y ) van-

ishes. Therefore HomT (U, Y )
x∗

−→ HomT (CylX U, Y ) is an isomorphism.
By applying HomT (−, X) to the second triangle above, and using (3) instead of

(2), we get that HomT (U,X)
y∗−→ HomT (CylY U,X) is also an isomorphism.
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Since x∗ is an isomorphism, we get that (g1x, . . . , gex) is a basis of HomT (CylX U, Y ),
and so the defining triangle for CylY CylX U is isomorphic to

Σ−1Y e −→ CylY CylX U −→ CylX U
gx−→ Y e.

Similarly, since y∗ is an isomorphism, we get that the defining triangle for CylX CylY U
is isomorphic to

Σ−1Xd −→ CylX CylY U −→ CylY U
fy−→ Xd.

Finally, applying the octahedral axiom to the composition gx yields an octahedron

ΣCylY CylX U

CylX U Y e

Xd

U

ΣCylY U

+
✔✔
✔✔
✔✔
✔✔

		✔✔
✔✔
✔✔
✔✔

aa❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈❈

::tttttttttttttttttttt ��

gx //
+
❱❱❱❱

❱

**❱❱❱❱

x

��✴
✴✴
✴✴
✴✴
✴✴
✴

g

88qqqqqqqqqqqqqqqqqqqqq

jj

f

cc●●●●●●●●●●●●●●●●●●●●●●

+
Σ(fy)oo

−Σy+

		

Thus we have a triangle

Σ−1Xd −→ CylY CylX U −→ CylY U
fy−→ Xd.

Comparing with the previous triangle (whose last morphism was also fy), we get
that the objects CylX CylY U and CylY CylX U are isomorphic. �

4.3. Rigid cylinders. The second key lemma in the proof of Theorem 4.1 is a
condition for cylinders of rigid objects to be rigid in the category K [−1,0](proj Λ).

Lemma 4.5 (Rigid cylinders). LetH be an indecomposable object of K [−1,0](projΛ)
such that HomKb(proj Λ)(H,ΣH) is one-dimensional, and let U be another object

of K [−1,0](projΛ) satisfying the following:

(1) U is rigid, that is, HomKb(projΛ)(U,ΣU) = 0;
(2) HomKb(projΛ)(H,ΣU) = 0;
(3) for any non-zero g ∈ HomDΛ(ΣH, νH) the induced morphism

HomKb(projΛ)(U,ΣH)
g∗−→ HomDΛ(U, νH)

is injective, where ν = −⊗LΛ DΛ is the Nakayama functor.

Then CylΣH U is in K [−1,0](proj Λ) and also satisfies (1), (2) and (3).

Proof. The triangle Hd −→ CylΣH U −→ U
f−→ ΣHd shows that the object CylΣH U

is in K [−1,0](projΛ), since this category is closed under extensions. Moreover, it
induces the following commutative diagram with exact rows and columns (where
we write (A,B) instead of HomKb(projΛ)(A,B)).
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(Hd, U) (Σ−1U,U)

(ΣHd,ΣHd) (U,ΣHd) (CylΣH U,ΣH
d) (Hd,ΣHd) (Σ−1U,ΣHd)

(ΣHd,ΣCylΣH U) (U,ΣCylΣH U) (CylΣH U,ΣCylΣH U) (Hd,ΣCylΣH U) (Σ−1U,ΣCylΣH U)

(ΣHd,ΣU) (U,ΣU) (CylΣH U,ΣU) (Hd,ΣU) (Σ−1U,ΣU)

All spaces in the rightmost column vanish. Indeed, the top one vanishes by condi-
tion (1), and all others vanish since for any pair objects A and B in K [−1,0](projΛ),
the space (Σ−1A,ΣB) vanishes. Moreover, the spaces (U,ΣU) and (Hd,ΣU) of the
bottom row vanish by conditions (1) and (2). Therefore, the space (CylΣH U,ΣU)
vanishes as well.

By construction, any morphism from U to ΣH factors through f . Thus the
map (ΣHd,ΣHd) → (U,ΣHd) in the second row is surjective, and so the one
immediately to its right vanishes. This implies that (CylΣH U,ΣH

d) → (Hd,ΣHd)
is an isomorphism.

Using the above information, the commutative diagrams simplifies considerably.

(Hd, U) 0

(ΣHd,ΣHd) (U,ΣHd) (CylΣH U,ΣH
d) (Hd,ΣHd) 0

(ΣHd,ΣCylΣH U) (U,ΣCylΣH U) (CylΣH U,ΣCylΣH U) (Hd,ΣCylΣH U) 0

(ΣHd,ΣU) 0 0 0

0 ∼

We are now ready to prove that CylΣH U satisfies properties (1) to (3).

Proof of (2). To prove that (H,ΣCylΣH U) vanishes, it suffices to prove that the

map (Hd, U)
f∗−→ (Hd,ΣHd) in the rightmost non-zero column is surjective. Ap-

plying the duality D, this is equivalent to showing that the map D(Hd,ΣHd)
Df∗−−−→

D(Hd, U) is injective. Applying the properties of the Nakayama functor ν, this is

equivalent to proving that the map (ΣHd, νHd)
f∗

−→ (U, νHd) is injective.
Now, (H,ΣH) is one dimensional, and therefore, so is (ΣH, νH). Let g be a non-

zero element in (ΣH, νH); it is unique up to rescaling. An element φ of (ΣHd, νHd)
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can be viewed as a d × d matrix with multiples of g as entries, say φ = (φi,jg)i,j .
Then

f∗(φ) = φf =



φ1,1g · · · φ1,dg
...

. . .
...

φd,1g · · · φd,dg






f1
...
fd


 =




∑d
i=1 φ1,igfi

...∑d
i=1 φd,igfi


 =



g
(∑d

i=1 φ1,ifi
)

...

g
(∑d

i=1 φd,ifi
)


 .

Thus f∗(φ) vanishes if and only if g
(∑d

i=1 φj,ifi
)
vanishes for all j ∈ {1, . . . , d}. By

condition (3), this only happens if
(∑d

i=1 φj,ifi
)
vanishes for all j. Since the fi are

linearly independent, this is only possible if all φi,j vanish. Thus f
∗(φ) = 0 implies

that φ = 0, and f∗ is injective. By the above, this shows that the map (Hd, U)
f∗−→

(Hd,ΣHd) is surjective, and so (H,ΣCylΣH U) vanishes.

Proof of (3). As above, let g be a non-zero element of (ΣH, νH) (it is unique up
to rescaling). There is a bifunctorial non-degenerate bilinear form

(−,−) : (A,B)× (B, νA) → k,

where A,B can be any objects of Kb(projΛ) (see, for instance, [Hap88]). In par-
ticular, if h is a non-zero element of (H,ΣH), then (h, g) 6= 0, since (H,ΣH) is
one-dimensional and the form is non-degenerate. But the bifunctoriality of the bi-
linear form implies that (h, g) = (idH , gh). Thus gh 6= 0. This implies that the

map (H,ΣH)
g∗−→ (H, νH) is injective.

We wish to prove that (CylΣH U,ΣH)
g∗−→ (CylΣH U, νH) is injective. Consider

the following commutative diagram with exact rows:

(ΣHd,ΣH) (U,ΣH) (CylΣH U,ΣH) (Hd,ΣH)

(ΣHd, νH) (U, νH) (CylΣH U, νH) (Hd, νH)

f∗
0

g∗ g∗

f∗

The uppermost, leftmost morphism is surjective since all morphisms from U to ΣH
factor through f ; thus the upper middle map is zero and the upper, rightmost map
is injective. The rightmost vertical morphism is injective by the above. Thus the

map (CylΣH U,ΣH)
g∗−→ (CylΣH U, νH) is injective.

Proof of (1). As a consequence of (2) proved above, we get a commutative square

(U,ΣHd) (CylΣH U,ΣH
d)

(U,ΣCylΣH U) (CylΣH U,ΣCylΣH U)

0

where the top map is zero and the left and bottom maps are surjective. Thus the
composition of the top and right morphism is both zero and surjective. Thus the
space (CylΣH U,ΣCylΣH U) vanishes.

�
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4.4. g-vectors of cylinders.

Lemma 4.6. Let H be an indecomposable object of K [−1,0](proj Λ) such that (H,ΣH)
is one-dimensional, and let U be another object of K [−1,0](projΛ). Then for anym ∈
Z>0, the object CylmΣH U is in K [−1,0](projΛ), and if d = dim(U,ΣH), then

[CylmΣH U ] = [U ] +md[H ].

Proof. The triangle Hd → CylΣH U → U → ΣHd implies that the object CylΣH U
is in K [−1,0](projΛ), since this category is closed under extensions. It also implies
that [CylΣH U ] = [U ] + d[H ]. Applying the functor (−,ΣH), we get an exact
sequence

(ΣHd,ΣH) (U,ΣH) (CylΣH U,ΣH) (Hd,ΣH) (Σ−1U,ΣH).0

Since (Σ−1U,ΣH) = 0, we deduce that (CylΣH U,ΣH) and (Hd,ΣH) are isomor-
phic. Thus dim(CylΣH U,ΣH) = d. From there, we apply induction on m to get
the desired equality. �

Lemma 4.7. Under the hypotheses of Lemma 4.4, if dX = dim(U,X) and dY =
dim(U, Y ), then

[CylX CylY U ] = [U ]− dX [X ]− dY [Y ] ∈ K0(T ).

Proof. In the proof of Lemma 4.4, we have obtained triangle Σ−1XdX → CylX U →
U → XdX and Σ−1Y dY −→ CylY CylX U −→ CylX U

gx−→ Y dY . It follows from them
that [CylX U ] = [U ] − dX [X ] and [CylY CylX U ] = [CylX U ] − dY [Y ]. Since the
object CylY CylX U is isomorphic to CylX CylY U by Lemma 4.4, we get the desired
result. �

Lemma 4.8. Let Λ be any finite-dimensional algebra, and let H1, . . . , Hs be objects
of K [−1,0](projΛ) such that

• for each i ∈ {1, . . . , s}, the object H = Hi satisfies the hypotheses of
Lemma 4.6;

• for each pair of disctinct i, j ∈ {1, . . . , s}, the objects X = ΣHi and Y =
ΣHj satisfy the hypotheses of Lemma 4.4.

Let U be an object of K [−1,0](projΛ), di = dim(U,ΣHi), and a1, . . . , as ∈ Z>0.
Then CylasΣHs

· · ·Cyla1ΣH1
U is an object of K [−1,0](projΛ), and

[CylasΣHs
· · ·Cyla1ΣH1

U ] = [U ] +

s∑

i=1

aidi[Hi].

Proof. Apply Lemmas 4.6 and 4.7, and induction on s. �

4.5. Proof of density. We now turn to the proof of Theorem 4.1. Assume that Λ
is tame. Let g ∈ Qn. To prove that g is in the closure F̄g

2-silt(Λ), it suffices to prove
that it is true for a positive scalar multiple of g. Thus, up to positive rescaling, we
can assume that g ∈ Zn.

We apply Theorem 3.8 to g, and let

g = a1g1 + . . .+ argr + b1h1 + . . .+ bshs

be the generic decomposition of g. Here, we have grouped the terms so that i 6= j
implies gi 6= gj and hi 6= hj , with all ai and bi in Z>0.
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If s = 0 (that is, if no term of the form hi appears in the generic decomposition
of g), then g ∈ Fg

2-silt(Λ) and there is nothing to prove. Assume then that s > 0.
Note that, by [CILFS15, Theorem 6.1], this implies that r < n.

For any i ∈ {1, . . . , s}, let Hi be a generic object with g-vector hi.

Lemma 4.9. The objects H1, . . . , Hs satisfy the hypotheses of Lemma 4.8.

Proof. To prove that each Hi satisfies the hypotheses of Lemma 4.6, one simply
notes that dim(Hi,ΣHi) by Corollary 3.9(1).

Let us prove that the hypotheses of Lemma 4.4 are satisfied with X = ΣHi

and Y = ΣHj . Condition (1) is satisfied since hi and hj are two distinct terms in
the generic decomposition of g.

To prove condition (2), recall from Corollary 3.9(3) that any morphism from Hi

to Hj factors through add (ΣΛ). Thus any morphism from ΣHi to ΣHj factors
through add (Σ2Λ), which implies that precomposing it with a morphism from U
to ΣHi will give zero. Thus (2) is satisfied.

The proof of condition (3) of Lemma 4.4 is similar. �

Let G be a presilting object whose g-vector is a1g1 + . . . + argr. Let G′ be its
Bongartz co-completion, defined by the triangle

Λ −→ G′′ −→ G′ −→ ΣΛ

where the left-most morphism is a left addG-approximation of Λ. By the dual
of [Jas15, Definition-Proposition 4.9], the object G′ ⊕ G is a silting object in the
category K [−1,0](projΛ).

Lemma 4.10. Taking U = G′ and H = Hi (for i ∈ {1, . . . , s}), conditions (1) to
(3) of Lemma 4.5 are satisfied. Moreover, the space HomKb(projΛ)(G

′,ΣHi) does
not vanish.

Proof. That (1) is true follows from the fact that G′ is presilting. Applying the
functor HomKb(proj Λ)(Hi,−) to the triangle defining G′, we get an exact sequence

HomKb(projΛ)(Hi,ΣG
′′) → HomKb(projΛ)(Hi,ΣG

′) → HomKb(projΛ)(Hi,Σ
2Λ).

The left term vanishes since HomKb(projΛ)(Hi,ΣG) does, and the right term van-

ishes since Λ and Hi are in K
[−1,0](proj Λ). Thus HomKb(proj Λ)(Hi,ΣG

′) = 0, and
condition (2) is true.

To prove condition (3), let g be a non-zero morphism from ΣHi to νHi. Then the

map (ΣΛ,ΣHi)
g∗−→ (ΣΛ, νHi) is injective. Indeed, note that taking the cohomology

in degree −1 yields isomorphisms

HomKb(proj Λ)(ΣΛ,ΣHi) ∼= HomΛ(Λ, H
0Hi)

and

HomKb(projΛ)(ΣΛ, νHi) ∼= HomΛ(Λ, H
−1νHi).

But by Theorem 3.8(2),H0Hi and H
−1νHi

∼= τH0Hi are isomorphic as Λ-modules.
Moreover, the morphism g induces a non-zero morphism H−1g : H0Hi → H−1νHi,
which must thus be an isomorphism since these two isomorphic modules are bricks.

Therefore, if f : ΣΛ → ΣHi is a morphism such that gf = 0, thenH−1g◦H−1f =
0, and since H−1g is an isomorphism, then H−1f = 0, and so f = 0 by the above.

Consider now the commutative diagram with exact rows
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(ΣΛ,ΣHi) (G′,ΣHi) (G′′,ΣHi)

(ΣG′′, νHi) (ΣΛ, νHi) (G′, νHi)

g∗ g∗

Now, (G′′,ΣHi) vanishes since (G,ΣHi) does, and (ΣG′′, νHi) is isomorphic to the
space D(Hi,ΣG

′′), which also vanishes. Thus the bottom middle map is injective
and the top middle map is surjective. The left vertical map is injective by the
above. This implies that the right vertical map is injective, so condition (3) is
proved. This also implies that the top middle map has to be injective, and is thus
an isomorphism. Thus (G′,ΣHi) is isomorphic to (ΣΛ,ΣHi), which is non-zero.

�

Lemma 4.11. Let U be an object of K [−1,0](projΛ) and i ∈ {1, . . . , s}. If (G,ΣU) =
(U,ΣG) = 0, then (G,ΣCylΣHi

U) = (CylΣHi
U,ΣG) = 0.

Proof. Simply apply (G,−) and (−,ΣG) to the triangle

Hd
i → CylΣHi

U → U → ΣHd
i .

�

We can now prove that the g ∈ Zn chosen at the begining of this section is
in F̄g

2-silt(Λ), thus finishing the proof of Theorem 4.1. For each i ∈ {1, . . . , s},
let di = dim(G′,ΣHi). By Lemma 4.10, the di are non-zero. Let d =

∏s
i=1 di, and

let ei =
d
di

for each i.
The, combining Lemmas 4.10, 4.5, 4.9 and 4.4, we get that

CylbsesΣHs
· · ·Cylb1e1ΣH1

G′

is a presilting object in K [−1,0](projΛ). Moreover,

G⊕d ⊕ CylbsesΣHs
· · ·Cylb1e1ΣH1

G′

is presilting by Lemma 4.11. Now, using Lemma 4.8, we get that

[G⊕d ⊕ CylbsesΣHs
· · ·Cylb1e1ΣH1

G′] = d[G] + [G′] +

s∑

i=1

bieidi[Hi]

= d([G] +

s∑

i=1

bi[Hi]) + [G′]

= dg + [G′].

Similarly, for any m ∈ Z>0, we have that

G⊕dm ⊕ CylmbsesΣHs
· · ·Cylmb1e1ΣH1

G′

is a presilting object whose g-vector is mdg + [G′].
The vector g is in the line at the limit of those generated by mdg + [G′] as m

goes to infinity. Since each mdg+ [G′] is the g-vector of a presilting objects, these
vectors are in the fan Fg

2-silt(Λ). Thus g ∈ F̄g
2-silt(Λ). This finishes the proof of

Theorem 4.1.



18 PIERRE-GUY PLAMONDON AND TOSHIYA YURIKUSA

5. Density of g-vector fans for cluster algebras and Jacobian

algebras

In this section, we apply our results above to the g-vector fans arising from the
theory of cluster algebras.

5.1. g-vectors for cluster algebras and Jacobian algebras. We first recall
the definition of g-vectors for cluster algebras [FZ07].

Definition 5.1 (Proposition 6.6 of [FZ07]). Let Q be a quiver without loops and 2-
cycles, and let Q0 = {1, . . . , n} be the set of its vertices. Let Qprin be the quiver
obtained by adding a vertex i′ and an arrow i′ → i for every vertex i of Q. The g-
vectors for the cluster algebras of type Q are obtained by the following mutation
rule:

(1)
(
Qprin, (e1, ..., en)

)
is a g-vector seed, where ei is the elementary vector

of Zn in coordinate i;
(2) if

(
R, (g1, ...,gn)

)
is a g-vector seed, then for any vertex k ∈ {1, . . . , n},

the mutation µk
(
R, (g1, ...,gn)

)
=
(
R′, (g′1, ...,g

′
n)
)
is also a g-vector seed,

where

g′k =






gℓ if ℓ 6= k;

−gk +
∑n
i=1[bi,k]+gi −

∑n
j=1[bj,k]+




b1,j

b2,j
...

bn,j




if ℓ = k,

where bi,j = #{arrows i→ j in R}−#{arrows j → i in R}, and where [z]+ =
max(z, 0) for any real number z.

The vectors gi that appear in any g-vector seed obtained by successive mutations
of the initial seed

(
Qprin, (e1, ..., en)

)
are the g-vectors for the cluster algebra of

type Q; g-vectors belonging to a common seed are compatible.

The compatibility relation for g-vectors allows one to organize them in a fan;
this follows from the proof of conjectures in [FZ07].

Theorem 5.2 (Consequence of Theorem 1.7 of [DWZ10]). Let Q be a quiver with-
out loops and 2-cycles. Then the g-vectors of cluster variables of A(Q) are the
rays of a simplicial polyhedral fan whose maximal cones are generated by sets of
compatible g-vectors.

Definition 5.3. The simplicial polyhedral fan described in Theorem 5.2 is called
the cluster g-vector fan associated with Q, and it is denoted by Fg

cluster(Q). We
also denote by F̄g

cluster(Q) the closure of the union of the cones of Fg
cluster(Q).

Example 5.4. Let m ∈ Z≥1 and Km be an m-Kronecker quiver, that is,

Km := [ 1
...

//

// 2 ],

where there are m arrows between vertices 1 and 2. In particular, K1 is of type
A2 and K2 is a Kronecker quiver. The cluster g-vector fan Fg

cluster(Km) is well
known and given as in Figure 1. Here Fg

cluster(Km) contains infinitely many rays

converging to the rays r± of slope (−m ±
√
m2 − 4)/2 for m ≥ 2. If m = 2, then
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r+ = r−

r−

r+

Fg
cluster(K1) Fg

cluster(K2) Fg
cluster(K3)

Figure 1. Cluster g-vector fans Fg
cluster(Km)

r+ = r−. If m ≥ 3, then r+ 6= r− and the interior of the cone spanned by r+ and
r− is the complement of F̄g

cluster(Km).

Second, we recall Jacobian algebras [DWZ08]. A potential W of Q is a (possibly
infinite) linear combination of cycles in Q. The pair (Q,W ) is called a quiver with
potential. For a cycle α1 · · ·αm in Q and an arrow α of Q, we define

∂α(α1 · · ·αm) :=
∑

i:αi=α

αi+1 · · ·αmα1 · · ·αi−1.

By linearity, this defines the cyclic derivative ∂α(W ) of a potential W of Q. For a
quiver with potential (Q,W ), the Jacobian algebra J(Q,W ) is a quotient algebra
of the complete path algebra of Q by the closure of the ideal generated by the set
{∂αW | α ∈ Q1}. We say that a potential W of Q is Jacobi-finite if J(Q,W ) is
finite-dimensional.

The mutation µk(Q,W ) in direction k is defined as an analogue of mutations
of quivers. We refer to [DWZ08] for details. A potential W of Q is called non-
degenerate if every quiver with potential obtained from (Q,W ) by any sequence
of mutations has no 2-cycles. In this case, we have µk(Q,W ) = (µkQ,W

′) for a
non-degenerate potential W ′ of µkQ. If W is Jacobi-finite, then so is W ′ [DWZ08].
In this section, we mainly study non-degenerate Jacobi-finite potentials.

On the other hand, mutations are defined for 2-term silting complexes in [IY08].
Let 2-silt+ J(Q,W ) (resp., 2-silt− J(Q,W )) be a subset of 2-siltJ(Q,W ) consisting
of objects obtained from J(Q,W ) (resp., ΣJ(Q,W )) by all sequences of mutations.
The Jacobian algebra J(Q,W ) associated with a quiver with non-degenerate Jacobi-
finite potential (Q,W ) gives a categorification of the associated cluster algebra
A(Q). In particular, the following result is due to the authors [AIR14, Corollary
4.8], [FK10, Theorem 6.3] and [CIKLFP13, Corollary 3.5] (see also [Yur20, Theorem
4.4]).

Theorem 5.5 (Additive categorification of cluster algebras). Let Q be a quiver
without loops and 2-cycles. Let W be a non-degenerate Jacobi-finite potential of Q.

(1) There is a bijection

2-silt+ J(Q,W ) ↔ {g-vector seeds of Q}
that sends J(Q,W ) to the initial g-vector seed for Q and commutes with
mutations. In particular, it preserves their cones of g-vectors.
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(2) There is a bijection

x(−) : 2-silt
− J(Q,W ) ↔ {g-vector seeds of Qop}

that sends ΣJ(Q,W ) to the initial g-vector seed for Qop and commutes
with mutations. In particular, the cone of g-vectors associated to U ∈
2-silt− J(Q,W ) is the negative of the cone of g-vectors associated to xU .

Theorem 5.5 immediately implies that the set

2-silt± J(Q,W ) := 2-silt+ J(Q,W ) ∪ 2-silt− J(Q,W )

is independent of the choice of non-degenerate Jacobi-finite W .

Corollary 5.6. Let Q be a quiver without loops and 2-cycles. Let W and W ′ be
non-degenerate Jacobi-finite potentials of Q. Then there is a bijection

2-silt± J(Q,W ) ↔ 2-silt± J(Q,W ′)

that sends J(Q,W ) to J(Q,W ′) (resp., ΣJ(Q,W ) to ΣJ(Q,W ′)) and commutes
with mutations. In particular, it preserves their cones of g-vectors.

5.2. Mutation-finite quivers. In the rest of this section, we fix a quiver Q with-
out loops and 2-cycles. We say that Q is

- mutation equivalent to Q′ if Q is obtained from Q′ by a sequence of mutations;
- mutation-finite if there are only finitely many quivers mutation equivalent to Q.

Felikson, Shapiro and Tumarkin [FST12] classified mutation-finite quivers, see
also [FST08, Section 12].

Theorem 5.7. [FST12, Theorem 6.1] A mutation-finite quiver Q is one of the
followings:

• an m-Kronecker quiver Km with m ≥ 3;
• a quiver defined from a triangulated surface (see [FST08]);

• a quiver mutation equivalent to one of the quivers Ei, Ẽi, E
(1,1)
i , X6 and

X7 for i ∈ {6, 7, 8} as in Figure 2.

Remark 5.8. (1) The quivers Km, Ei and Ẽi are acyclic.

(2) The Jacobian algebras J and cluster categories associated with E
(1,1)
i ,

called tubular quivers, were studied in [BG12, BGJ13, GGS15]. In par-
ticular, it follows from [BKL10, Theorem 8.6] that any two silting objects
of K [−1,0](projJ) are connected by a sequence of mutations, see [BG12,
Section 3].

(3) Derksen and Owen [DO08] found the quivers X6 and X7 as new mutation-
finite quivers.

Jacobian algebras associated with mutation-finite quivers satisfy some properties.

Theorem 5.9. [GLFS16] A quiver Q is a mutation-finite one that is not mutation
equivalent to one of the quivers X6, X7 and Km with m ≥ 3 if and only if there is
a non-degenerate Jacobi-finite potential W of Q such that J(Q,W ) is tame.

Note that, for example, such potential W of acyclic quivers in Theorem 5.9 is
zero. In other cases, such potentials W were given in [LF09, LF16] for quivers
defined from triangulated surfaces; in [GGS15, Lad11] for tubular quivers.
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Figure 2. Exceptional quivers

Proposition 5.10. Suppose that Q is mutation-finite except for mutation equiva-
lence classes of X6 and X7. Let W be a non-degenerate Jacobi-finite potential of
Q. If Q is not defined from a triangulated surface with exactly one puncture, then
any two silting objects in K [−1,0](projJ(Q,W )) are connected by a sequence of
mutations, that is, 2-siltJ(Q,W ) = 2-silt+ J(Q,W ). Otherwise, 2-siltJ(Q,W ) =
2-silt+ J(Q,W ) ⊔ 2-silt− J(Q,W ).

Proof. By the assumption and Theorem 5.7, Q is mutation equivalent to one of the
following quivers: an acyclic quiver; a quiver defined from a triangulated surface;
a tubular quiver. For each case, the assertions follow from [BMR+06, Proposition
3.5]; [Yur20, Corollary 1.4]; Remark 5.8(2). �

Corollary 5.11. Suppose that Q is mutation-finite except for mutation equivalence
classes of X6 and X7. Let W and W ′ be non-degenerate Jacobi-finite potentials of
Q. Then there is a bijection

2-siltJ(Q,W ) ↔ 2-siltJ(Q,W ′)

that sends J(Q,W ) to J(Q,W ′) and commutes with mutations. In particular, it
preserves their cones of g-vectors.

Proof. The assertion follows from Corollary 5.6 and Proposition 5.10. �
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5.3. g-tame Jacobian algebras. In order to apply the categorification of cluster
algebras to the study of the closure of their g-vector fans, we need to study g-vector
fans for finite-dimensional Jacobian algebras.

Lemma 5.12. If (Q,W ) is a quiver with potential such that J(Q,W ) is g-tame,
then so is µk(Q,W ) (if it is defined).

Proof. The transformation of mutations for g-vectors is piecewise linear. Thus it
preserves g-tameness. �

We note that the proof of Lemma 5.12 applies even if the Jacobian algebra J(Q,W )
is infinite-dimensional.

We now give a near classification of quivers admitting a potential such that the
corresponding Jacobian algebra is g-tame.

Theorem 5.13. Suppose that Q is not mutation equivalent to one of the quivers
X6, X7 and Km with m ≥ 3. Then Q admits a non-degenerate potential W such
that J(Q,W ) is g-tame if and only if it is mutation-finite. Moreover, a Jacobian
algebra for the quiver Km is not g-tame for m ≥ 3.

Proof. For Q = Km, the assertion follows from Example 5.4. Suppose that Q is not
mutation equivalent to one of the quivers X6, X7 and Km. When Q is mutation-
finite, then Q admits a potential W such that J(Q,W ) is g-tame by Theorems 4.1
and 5.9. When Q is not mutation-finite, Q is mutation equivalent to a quiver Q′

with full subquiverKm form ≥ 3. Namely, there is an idempotent e of J(Q′,W ) for
any non-degenerate potential W of Q′ such that J(Q′,W )/(e) ≃ J(Km, 0) = kKm.
Proposition 3.11 implies that J(Q′,W ) is not g-tame. Mutating back to Q, we
obtain the result by Lemma 5.12. �

Corollary 5.14. Suppose that Q is not mutation equivalent to one of the quivers
X6 and X7. If J(Q,W ) is g-tame for some non-degenerate potential W , then it
is g-tame for any non-degenerate Jacobi-finite potential.

Proof. If J(Q,W ) is g-tame, then by Theorem 5.13, Q is mutation-finite. The
assertion then follows from Corollary 5.11. �

5.4. Cluster algebras with dense g-vector fans. We now wish to apply our
knowledge of g-vector fans for Jacobian algebras to those of cluster algebras. To
this end, the following definition will be useful.

Definition 5.15. We say that Q is cluster-g-dense if F̄g
cluster(Q) = Rn. We say

that Q is half cluster-g-dense if F̄g
cluster(Q) and F̄g

cluster(Q
op) are closed half-spaces

in Rn.

In the same as Lemme 5.12, (half) cluster-g-denseness is mutation-invariant. In
particular, it gives a new class of cluster algebras, called (half) g-dense cluster
algebras. It is clear that the associated finite-dimensional Jacobian algebras are
g-tame.

Lemma 5.16. If Q is (half) cluster-g-dense, then for any non-degenerate Jacobi-
finite potential W , the algebra J(Q,W ) is g-tame.

Proof. The assertion follows from Theorem 5.5. �
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We give a near classification of (half) cluster-g-dense quivers, the only open cases
being the mutation equivalence classes of X6 and X7. It is a stronger statement of
Theorem 5.13.

Theorem 5.17. Suppose that Q is not mutation equivalent to one of the quivers
X6, X7 and Km with m ≥ 3. Then Q is cluster-g-dense or half cluster-g-dense if
and only if it is mutation-finite. In this case, Q is half cluster-g-dense if and only
if it is defined from a triangulated surface with exactly one puncture. On the other
hand, Km is not (half) cluster-g-dense for m ≥ 3.

Proof. The assertions follow from Proposition 5.10, Theorems 5.5(1) and 5.13 if Q
is mutation-finite except for one defined from a triangulated surface with exactly
one puncture. In which case, it was proved in [Yur20, Theorem 1.2].

On the other hand, [Mul16, Theorem 33] implies that a quiver with full subquiver
Km for m ≥ 3 is not (half) cluster-g-dense. Thus it is given by the same way as
the proof of Theorem 5.13 that non-mutation-finite quivers are not (half) cluster-
g-dense. �

We conjecture that X6 and X7 should not be exceptions to Theorem 5.17. It is
known that:

(1) [Mil17] If Q is mutation equivalent to the quiver X6, then there is a cluster
whose cone of g-vectors is Rn≤0;

(2) [Sev14] If Q is mutation equivalent to the quiver X7, then Fg
cluster(Q) is

contained in some open half-space in Rn.

Therefore, the following seems natural.

Conjecture 5.18. (1) The quiver X6 is cluster-g-dense.
(2) The quiver X7 is half cluster-g-dense.

Remark that the Jacobian algebras associated withX6 andX7 are wild [GLFS16].
Thus we cannot apply Theorem 4.1 for these classes.

The above allows us to give a partial converse to Lemma 5.16.

Corollary 5.19. Suppose that Q is not mutation equivalent to one of the quivers
X6, X7 and Km with m ≥ 3. Then the following are equivalent:

(1) Q is mutation-finite;
(2) Q admits a non-degenerate potential W such that J(Q,W ) is g-tame;
(3) Q is cluster-g-dense or half cluster-g-dense.

Moreover, Km with m ≥ 3 is mutation-finite, but not (half) cluster-g-dense and
the unique potential 0 on Km is such that J(Km, 0) is not g-dense.

Proof. The assertions follow from Theorems 5.13 and 5.17. �

6. Scattering diagrams

Our work in this paper allows for a modest contribution to the question of the
equivalence between the cluster and the stability scattering diagrams for (half)
cluster-g-dense quivers; our result will follow by using an argument due to L. Mou.
The statement of the result, however, requires some recollections on scattering
diagrams which will occupy us for the beginning of the section. We refer to [Bri17,
GHKK18, Mou19] for scattering diagrams.
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6.1. Consistent scattering diagrams. LetN ≃ Z⊕n be a free abelian group. Fix
a basis (e1, . . . , en) of N . We use the notations M = HomZ(N,Z), MR =M ⊗Z R,

N⊕ :=

{ n∑

i=1

aiei | ai ∈ Z≥0

}
and N+ := N⊕ \ {0},

and consider an N+-graded Lie algebra

g =
⊕

d∈N+

gd.

First, we define g-scattering diagrams for g with finite support, that is,

#Supp(g) <∞, where Supp(g) := {d ∈ N+ | gd 6= 0}.
In this case, g is nilpotent and there is a unipotent algebraic group G such that
exp : g → G is a bijection.

For a cone σ ⊂MR, there is a Lie subalgebra

gσ :=
⊕

d∈N+∩σ⊥

gd ⊂ g,

where σ⊥ := {d ∈ N | m(d) = 0 for any m ∈ σ}.
Let P be a finite subset of N+. For a partition P = P+ ⊔ P0 ⊔ P− with P0 6= ∅,

there is a cone

{m ∈MR | m(P+) > 0,m(P0) = 0,m(P−) < 0} ⊂MR.

The set of all such cones forms a polyhedral fan SP inMR. Cones with codimension
one are called walls. We denote by W(S) the set of walls of S.

Definition 6.1. Suppose that g has a finite support S = Supp(g). A g-scattering
diagram is a pair D = (SS , φD) with function φD : W(SS) → G such that for
σ ∈ W(SS), φD(σ) ∈ exp(gσ).

Second, we consider the consistency of a g-scattering diagram D = (SS , φD)
for g with finite support S = Supp(g). A D-generic curve is a smooth curve
γ : [0, 1] → MR such that

(1) the endpoints γ(0) and γ(1) lie in cones of SS with dimension n,
(2) γ does not intersect cones of SS with codimension at least two,
(3) γ and walls of SS intersect transversally.

Then there are finitely many points 0 < t1 < · · · < tl < 1 and walls σ1, . . . , σl ∈
W(SS) such that γ(ti) ∈ σi and for t ∈ [0, 1] \ {t1, . . . , tl}, γ(t) lie in cones of SS

with dimension n. We define the path-ordered product

ΦD(γ) := φD(σl)
ǫl · · ·φD(σ1)

ǫ1 ∈ G,

where ǫi ∈ {1,−1} is the negative of sign of the derivative of γ(t) at t = ti. We
say that two g-scattering diagrams D1 and D2 are equivalent if any D1-generic and
D2-generic curve γ satisfies ΦD1(γ) = ΦD2(γ).

Definition 6.2. We say that a g-scattering diagramD is consistent if anyD-generic
curves γ1 and γ2 with same endpoints satisfy ΦD(γ1) = ΦD(γ2).

Let D be a consistent g-scattering diagram. For cones σ1 and σ2 of SS with
dimension n, we define

ΦD(σ1, σ2) := ΦD(γ),
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where γ is any D-generic curve with γ(0) ∈ σ1 and γ(1) ∈ σ2. It does not depend
on γ.

Finally, we define (consistent) g-scattering diagrams for a general g. We define
a map δ : N → Z by (di) 7→

∑n
i=1 di. Let g>k :=

⊕
δ(d)>k gd be a Lie subalgebra

of g. Then g≤k := g/g>k is a nilpotent Lie algebra with finite support and there
is the corresponding unipotent algebraic group G≤k. There is a bijection as sets
between

ĝ := lim
←−
k

g≤k and Ĝ := lim
←−
k

G≤k.

For i > j and a g≤i-scattering diagram Dg≤i = (S, φ), we have a g≤j-scattering

diagram πij∗ (Dg≤i) = (S, πijφ), where πij is a natural homomorphism from G≤i to

G≤j .

Definition 6.3. A g-scattering diagram is a sequence of g≤k-scattering diagrams
(D≤k)k≥1 such that πij∗ (D

≤i) is equivalent to D≤j for i > j. We say that it is
consistent if so is D≤k for any k ≥ 1.

Remark that a consistent g-scattering diagram is considered as the pair (S, φ)
consisting of the collection S of certain cones, that is not rational polyhedral in
general, and a function φ : S → Ĝ (see [Mou19, Remark 2.26]).

In this section, our main subjects of study are cluster scattering diagrams and
stability scattering diagrams. To define them, the following result plays an impor-
tant role.

Theorem 6.4. [Bri17, Proposition 3.4][KS14, Theorem 2.1.6] There is a bijection

between the set of equivalence classes of consistent g-scattering diagrams and Ĝ as
sets.

We denote by Dg = (D≤kg )k≥1 the consistent g-scattering diagram corresponding

to g ∈ Ĝ.

6.2. Cluster scattering diagrams. Let Q be a quiver without loops and 2-cycles
and |Q0| = n. Assume that N has a skew-symmetric form {−,−} : N × N → Z

given by

{ei, ej} := #{arrows from j to i in Q} −#{arrows from i to j in Q}
and g is skew-symmetric, that is, if {d1, d2} = 0 for d1, d2 ∈ N , [gd1 , gd2 ] = 0.

For m ∈MR, there is a decomposition

g = gm+ ⊕ gm0 ⊕ gm− ,

where

gm± :=
⊕

d∈N+:±m(d)>0

gd and gm0 :=
⊕

d∈N+:m(d)=0

gd.

We denote by Ĝm• the subgroup of Ĝ induced by gm• for • ∈ {+,−, 0}. This gives

a unique decomposition of Ĝ ∈g = gm+ · gm0 · gm− , where gm• ∈ Ĝm• . Thus there is a

projection map πm : G→ Ĝm0 given by g 7→ gm0 . Moreover, for a map p∗ : N →M
given by d 7→ {d,−}, there is a decomposition

g
p∗(d)
0 = g

||
d ⊕ g⊥d ,
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where g
||
d :=

⊕∞
k=1 gkd. This naturally gives group homomorphisms rd : Ĝ

p∗(d)
0 →

Ĝ
||
d and ψd := rdπp∗(d) : Ĝ→ Ĝ

||
d .

Proposition 6.5. [KS14, Proposition 3.3.2] The map

ψ := (ψd)d∈N+:primitive : Ĝ→
∏

d∈N+:primitive

Ĝ
||
d

is a bijection as sets.

Set the skew-symmetric N+-graded Lie algebra

g = gcl :=
⊕

d∈N+

Qxd with [xd1 , xd2 ] = {d1, d2}xd1+d2 for d1, d2 ∈ N+.

Definition 6.6. Let g = (gd) ∈
∏
d∈N+:primitive Ĝ

||
d given by

gd =





exp

(
∞∑

k=1

(−1)k−1xksi

k2

)
if d = ei,

id otherwise.

Then the corresponding consistent gcl-scattering diagram DQ := Dψ−1(g) is called
the cluster scattering diagram associated with Q.

6.3. Stability scattering diagrams. Let J be a Jacobian algebra, and denote
by K0(mod J) ≃ Zn = N its Grothendieck group. In this subsection, we recall the
stability scattering diagram associated with J . We refer to [Bri17] for the details.

Let M(J) be the moduli stack associated with mod J . There is a decomposition

M(J) =
∐

d∈N⊕

M(J)d,

where M(J)d is the moduli stack of J-modules with dimension d. Let K(St/C) be
the Grothendieck ring of stacks over C. The Grothendieck group K(St/M(J)) of
stacks over M(J) is an N⊕-graded K(St/C)-algebra. Since there is a unique ring
homomorphism from K(St/C) to Q(t) sending the classes of smooth projective
varieties to their Poincaré polynomials, we have an N⊕-graded Q(t)-algebra

H(J) := K(St/M(J))⊗K(St/C) Q(t),

called the motivic Hall algebra associated with J . For d ∈ N⊕, let H(J)d be the
subspace of H(J) generated by elements with form [X → M(J)] factoring through
the inclusion from M(J)d to M(J). Then

gHall(J) :=
⊕

d∈N+

H(J)d

is an N+-graded Lie algebra with commutator bracket. We have an element of the
prounipotent algebraic group exp(ĝHall(J))

1M(J) := [M(J)
id→ M(J)] ∈ 1 + ĝHall(J) ≃ exp(ĝHall(J)).

The consistent gHall-scattering diagram D1M(J)
is called the Hall algebra scattering

diagram associated with J .
Define a subalgebra

Creg(t) := C[t, t−1][(1 + t2 + · · ·+ t2k)−1 | k ≥ 1] ⊂ C(t).
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We denote by greg(J) ⊂ gHall(J) the Creg(t)-submodule generated by [X → M(J)]
with algebraic variety X .

Theorem 6.7 ([Joy08, Bri17]). Any Hall algebra scattering diagram is a greg(J)-
scattering diagram. Moreover, there is an N+-graded Lie algebra homomorphism

I : greg(J) → gcl.

Definition 6.8. The consistent gcl-scattering diagram DJ := I(D1M(J)
) is called

the stability scattering diagram associated with J .

6.4. Cluster/Stability scattering diagrams. Let Q be a quiver without loops
and 2-cycles and W a non-degenerate potential of Q. We state the main result of
this section.

Theorem 6.9. (1) If Q is cluster-g-dense, then the cluster scattering diagram
DQ is equivalent to the stability scattering diagram DJ(Q,W ).

(2) If Q is half cluster-g-dense, then DQ and DJ(Q,W ) only differ by functions
on walls in the separating hyperplane.

To prove Theorem 6.9, we need some preparations. Set J = J(Q,W ) and g =

gcl. We only need to compare two consistent g≤k-scattering diagrams D
≤k
Q =

(S≤kQ , φ≤kQ ) and D
≤k
J = (S≤kJ , φ≤kJ ) for any k ≥ 1. Note that g≤k has finite support.

We can consider Fg
cluster(Q) ∪ (−Fg

cluster(Q
op)) as a fan in MR ≃ Rn. For a wall

σ ⊂ d⊥0 of Fg
cluster(Q) ∪ (−Fg

cluster(Q
op)), where d0 ∈ N+ is primitive, let

φ(σ) = exp

(
∞∑

k=1

(−1)k−1xkd0

k2

)
∈ Ĝ.

For a projection map pk : Ĝ→ G≤k, we define a fan Fg
k (Q) consisting of cones σ of

Fg
cluster(Q) ∪ (−Fg

cluster(Q
op)) such that pkφ(σ) is not trivial. In particular, it has

two cones

M±
R

:= {m ∈MR | ±m(ei) ≥ 0 for any i} ⊂MR.

Theorem 6.10. [Mou19, Theorem 4.25] The fan Fg
k (Q) is a common subfan of

S
≤k
Q and S

≤k
J such that φ≤kQ (σ) = φ≤kJ (σ) = pkφ(σ) for any σ ∈ W(Fg

k (Q)).

We are ready to prove Theorem 6.9. For any wall σ ∈ W(S≤kQ ), there are two

cones σ+, σ− ∈ G≤kQ with dimension n such that σ+ ∩ σ− = σ since S
≤k
Q is a finite

fan. If Q is cluster-g-dense, then Φ
G≤k

Q

(M+
R
, σ+) and Φ

G≤k

Q

(M+
R
, σ−) are products

of some functions on Fg
k (Q). Thus so is Φ

G≤k

Q

(σ+, σ−). On the other hand, there

is a D
≤k
Q -generic curve from σ+ to σ− that intersects only one wall σ. Thus we

have Φ
G

≤k

Q

(σ+, σ−) = φ
G

≤k

Q

(σ)ǫ for some ǫ ∈ {1,−1}. Therefore, for any wall

σ ∈ W(S≤kQ ), φ
G≤k

Q

(σ) is a product of some functions on Fg
k (Q).

Similarly, we have that, for any wall σ ∈ W(S≤kJ ), φ
G≤k

J

(σ) is a product of some

functions on Fg
k (Q). Consequently, Theorem 6.10 implies Theorem 6.9(1).

Suppose that Q is half cluster-g-dense with the separating hyperplane d⊥ for
d ∈ N+. If σ does not lie on d⊥, then we have φ

G≤k

Q

(σ) = φ
G≤k

J

(σ) in the same

way as above. Thus Theorem 6.9(2) holds.
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Appendix A. Truncated twist functors, by Bernhard Keller

A.1. Construction. We refer to [Kel06] for the terminology and notation that
we will use for dg (=differential graded) categories. Let k be a commutative ring
and S, T k-linear triangulated categories with dg enhancements Sdg and Tdg. Let
s : S → T be a triangle functor induced by a dg functor sdg : Sdg → Tdg. Assume
that s admits a right adjoint r : T → S. Let there be given a t-structure with
truncation functor τ≤0 on S.
Proposition A.1. a) There is a triangle functor t : T → T admitting a dg

enhancement and fitting into a functorial triangle

sr // 1T // t // Σsr .

b) There is a k-linear functor t0 : T → T fitting into a functorial triangle

sτ≤0r // 1T // t0 // Σsτ≤0r.

The functor t is called the twist functor and t0 the truncated twist functor asso-
ciated with s.

Examples A.2. (1) Let A be a dg category and X an object of its derived

category DA. We can take S = Dk, T = DA and s =?
L
⊗
k
X : Dk → DA

with right adjoint

r = RHomA(X, ?) : DA → Dk.
We get a twist functor tX and a truncated twist functor t0X fitting into
functorial triangles

RHomA(X, ?)
L
⊗
k
X // 1DA // tX //

and

τ≤0(RHomA(X, ?))
L
⊗
k
X // 1DA // t0X // .

(2) With A, X and S as in example (1), we can take T = (DA)op. We have
an adjoint pair

(DA)op

s=RHomA(?,X)

��
Dk.

RHomk(?,X)=r

OO
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This leads to the following functorial triangles in DA:

// tX // 1DA // RHomk(RHomA(?, X), X)

and

// t0X // 1DA // RHomk(τ≤0 RHomA(?, X), X).

Proof of the Proposition. a) This is well-known, cf. for example [AL17]: One shows
that one can replace Tdg and Sdg with quasi-equivalent dg categories such that sdg
admits a dg adjoint functor rdg.

b) Let us fix sdg and rdg as in a). From now on, we suppress the subscript ‘dg’
on these functors. Let Mdg be the dg category whose objects are the triples

(U, V, f : sV → U)

where U is in T , V in S and f : sV → U is a closed morphism of degree 0 in Sdg.
By definition, the morphism complex between two objects (U, V, f) and (U ′, V ′, f ′)
is the cylinder over the morphism

[f∗,−f ′ ◦ s(?)] : Tdg(U,U ′)⊕ Sdg(V, V ′) → Tdg(sV, U ′).
Thus, closed morphisms of degree 0 are triples (u, v, h) such that u : U → U ′ is
closed in Tdg, v : V → V ′ is closed in Sdg and we have

u ◦ f − f ′ ◦ s(v) = d(h)

so that we have a homotopy commutative square

sV

s(v)

��

f //

h

""❉
❉

❉
❉ U

u

��
sV ′

f ′
// U ′.

Composition is defined in the natural way. The projection functor P : Mdg → Tdg
takes a triple (U, V, f) to U . It is easy to see that it has a fully faithful right dg
adjoint Pρ taking U to (U, rU, srU → U), where the last arrow is the adjunction
morphism, and a fully faithful left dg adjoint Pλ taking U to (U, 0, 0 → U). The
functor I taking V to (0, V, sV → 0) identifies Sdg with the kernel of P . We can
construct the dg twist functor t as the composition

Tdg
Pρ // Mdg

cone // Tdg.

Now let M = H0(Mdg). We have a recollement

S M T .I

Iρ

Iλ

P

Pρ

Pλ

Let S≤0 be the left aisle of the given t-structure on S. Using Théorème 1.4.10 of
[BBD82] or directly, we see that M admits a t-structure whose left aisle M≤0 has
the objects (U, V, f) such that V ∈ S≤0. The corresponding morphism τ≤0 → 1M
is given on an object (U, V, f) by (U, τ≤0V, g), where g is the composition

sτ≤0V
sc // sV

f // U
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for any closed morphism c lifting the adjunction morphism τ≤0V → V . We obtain
the truncated twist functor t0 as the composition

T Pρ // M
τ≤0 // M≤0

cone // T .

�

A.2. Adjoints. We keep the assumptions and notations of the preceding section.
Suppose that s : S → T admits a left adjoint l : T → S and that the inclusion
S≤0 → S also admits a left adjoint τ ′≤0 (for example, this holds if k is a field and

S = Dk is endowed with the canonical t-structure).

Proposition A.3. a) The twist functor t admits a left adjoint t′ fitting into
a functorial triangle

Σ−1sl → t′ → 1T → sl.

b) The truncated twist functor t0 admits a left adjoint t′0 fitting into a func-
torial triangle

Σ−1sτ ′≤−1l → t′0 → 1T → sτ ′≤−1l.

Examples A.4. We keep the notations of Examples A.2. We suppose that k is a
field.

(1) Suppose that X ∈ DA is an object such that the homology of X(A) is
of finite total dimension for all A ∈ A. Put D = Homk(?, k). Then for
U ∈ DA and V ∈ Dk, we have canonical isomorphisms

RHomA(U, V ⊗X) = RHomA(U,Homk(DX,V )) = Homk(U
L
⊗
A
DX,X).

We get functorial triangles

// t′ // 1DA // (?
L
⊗
A
DX)⊗X

and

// t′0 // 1DA // (τ ′≤−1(?
L
⊗
A
DX))⊗X.

(2) Let T ⊆ DA be a Hom-finite triangulated subcategory and X an object
in T such that the homology of X(A) is of finite total diemsnion for each
A ∈ A. Let

s = Homk(?, X) : Db(k) → T op.

Then for U in T and V in Db(k), we have

(DA)op(U,Homk(V,X)) = (DA)(Homk(V,X), U)

= (DA)(X ⊗DV,U)

= (DA)(DV ⊗X,U)

= (Dk)(DV,RHomA(X,U))

= (Dk)(DRHomA(X,U), V ).
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Thus, the functor s : Db(k) → T admits l = DRHomA(X, ?) as a left
adjoint and we get functorial triangles

// t′ // 1T // DRHomA(?, X)⊗X

and

// t′0 // 1T // τ ′≤−1(DRHomA(?, X))⊗X.

Proof of the Proposition. Part a) is well-known, cf. for example [AL17]. Let us
prove part b). For objects U,U ′ of T , we abbreviate

(U,U ′) = RHomTdg(U,U
′)

and similarly

(V, V ′) = RHomSdg (V, V
′)

for objects V, V ′ of S. Let U and U ′ be objects of T . We have natural isomorphisms

HomT (t
′0U,U ′) ∼−→ H0(Cyl((sτ ′≤−1lU,ΣU

′) → (U,ΣU ′)))
∼−→ H0(Cyl((τ ′≤−1lU,ΣrU

′) → (U,ΣU ′)))
∼−→ H0(Cyl((τ ′≤−1lU, τ≤−1ΣrU

′) → (U,ΣU ′))).

Here the last isomorphism holds because we have isomorphisms

HomS(τ
′
≤−1lU, τ≤−1ΣrU) ∼−→ HomS(τ

′
≤−1lU,ΣrU)

and

HomS(Στ
′
≤−1lU, τ≤−1ΣrU) ∼−→ HomS(Στ

′
≤−1lU,ΣrU).

We continue the chain of isomorphisms with

H0(Cyl((τ ′≤−1lU, τ≤−1ΣrU
′) → (U,ΣU ′))) ∼−→ H0(Cyl((lU,Στ≤0rU

′) → (U,ΣU ′)))
∼−→ H0(Cyl(U,Σsτ≤0rU

′) → (U,ΣU ′)))
∼−→ HomT (U, t

0U ′).

This shows the claim. �
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of Jacobian algebras. Advances in Mathematics, 290:364–452, 2016.

[GLFS20] Christof Geiss, Daniel Labardini-Fragoso, and Jan Schröer. Schemes of modules over
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