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Abstract. Let Dk denote the maximum degree of regularity of the equation x1 +· · ·+
xk − y1 − · · · − yk = bk as bk runs over the positive integers. The Fox and Kleitman
conjecture, stating that Dk should equal 2k − 1, has been confirmed by Schoen and
Taczala (Moscow J. Combin. Number Theory 7 (2017) 79–93). Their proof is achieved
by generalizing a theorem of Eberhard et al. (Ann. Math. 180 (2014) 621–652) on sets
with doubling constant less than 4. Using much simpler methods and a result of Lev in
additive combinatorics, our main result here is that the degree of regularity of the same
equation for the specific value bk = ck−1 = lcm{i : i = 1, . . . , k − 1} is at least k − 1.
This shows in a simple and explicit way that Dk behaves linearly in k.
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1. Introduction

For a given a1, . . . , ak and b in the set Z of integers, we consider the linear diophantine
equation L:

k∑

i=1

ai xi = b.

Following [9], given n ∈ N+, the set of positive integers, equation L is said to be
n-regular if, for every n-coloring of N+, there exists a monochromatic solution x =
(x1, . . . , xk) ∈ N

k+ to L .
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The degree of regularity of L is the largest integer n ≥ 0, if any, such that L is n-regular.
This (possibly infinite) number is denoted by dor(L). If dor(L) = ∞, then L is said to be
regular.

A well-known and challenging conjecture (known as Rado’s boundedness conjecture)
due to Rado [9] states that there is a function r : N+ → N+ such that, given any n ∈ N+
and any equation α1x1 + · · · + αn xn = 0 with integer coefficients, if this equation is
not regular over N+, then it fails to be r(n)-regular. Even though there is a more general
version, we state it here for a single homogeneous equation, as it has been proved by Rado
[9] that if the conjecture is true for a single equation, then it is true for a system of finitely
many linear equations, and as Fox and Kleitman [4] have shown, if the conjecture is true
for linear homogeneous equations, then it is true for all linear equations.

The first nontrivial case of the conjecture has been proved by Fox and Kleitman [4] by
establishing the bound r(3) ≤ 24. In the same paper [4], the authors made the following
conjecture for a very specific linear diophantine equation.

Conjecture 1.1. Let k ≥ 1. There exists an integer bk ≥ 1 such that the degree of regularity
of the 2k-variable equation Lk(bk),

x1 + · · · + xk − y1 − · · · − yk = bk

is exactly 2k − 1.

Fox and Kleitman [4] proved the following result, showing that 2k − 1 is best possible
in this context.

PROPOSITION 1.2

For any b ∈ N+, the equation Lk(b) is not 2k-regular.

When k = 2, Adhikari and Eliahou [1] proved the Fox–Kleitman conjecture by estab-
lishing the following more general result,

Theorem 1.3 [1]. For all positive integers b, we have

dor(L2(b)) =
⎧
⎨

⎩

1 if b ≡ 1 mod 2,

2 if b ≡ 2, 4 mod 6,

3 if b ≡ 0 mod 6.

A shorter proof of the above has been given in [2].
Though the full conjecture of Fox and Kleitman [4] has been very recently established by

Schoen and Taczala in [10] by generalizing a theorem of Eberhard et al. [3] in Theorem 3.3
of section 3, we give a very short proof of the fact that, writing ck−1 = lcm{i : i =
1, 2, . . . , k − 1}, the equation Lk(ck−1) is (k − 1)-regular. Apart from giving a lower
bound for the degree of regularity of Lk(bk) for the particular value bk = ck−1, our much
simpler proof (which uses a result of Lev [7]), nonetheless achieves the correct order of
magnitude, with a linear constant of 1 rather than the precise value 2, which is much
improved as compared to earlier knowledge (as has been mentioned in [4], from a result
of Strauss [11], it followed that, for an appropriate bk , the equation Lk(bk) was �(log k)-
regular). Note that when k = p is a prime, then k − 1 is the exact degree of regularity of
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L(ck−1), since there is no monochromatic solution to L(cp−1) for the p-coloring given by
congruence mod p. We also show that, apart from the first few values k ≤ 5, it suffices
to color the first ck−1 + 1 positive integers to find a monochromatic solution to L(ck−1),
with the solution occurring in the densest color class.

We now state the following result which was established in [2].

Theorem 1.4 [2]. We have dor(L3(24)) = 4.

Thinking that it is worth recording, a very simple proof of Theorem 1.4 needing only
Kneser’s theorem will be given in the next section.

We observe that the proof of the Fox–Kleitman conjecture by Schoen and Taczala and
our proofs of Theorem 1.4 and Theorem 3.3 are by applications of results from additive
combinatorics.

In what follows, for integers a, b with a ≤ b, the set of integers x with a ≤ x ≤ b
will be denoted by the integer interval [a, b]. For a finite set A ⊆ Z, we shall write
diam A = max A − min A to denote the diameter of A. Given two subsets A and B from
an additive abelian group, we let A + B = {a + b : a ∈ A, b ∈ B} denote their sumset
and A − B = {a − b : a ∈ A, b ∈ B} denote their difference set. If n ≥ 0 is an
integer, then n A = A + . . . + A︸ ︷︷ ︸

n

denotes the n-fold iterated sumset, where 0A := {0},
while n · A = {na : a ∈ A} denotes the dilation of A.

Let G be an abelian group and let A, B ⊆ G be nonempty subsets. We let H(A) = {h ∈
G : h+ A = A} denote the stabilizer of A, which is a subgroup of G. Note that H = H(A)

is equivalent to H being the maximal subgroup for which A is a union of H -cosets. The
set A is called periodic if H(A) is nontrivial, and otherwise is called aperiodic. We will
make use of Kneser’s theorem (see [5, Chapter 6]), which states that |A + B| ≥ |A + H |+
|B + H | − |H | for H = H(A + B). Equivalently, |A + B| ≥ |A| + |B| − 1 when A + B
is aperiodic. Iterating Kneser’s theorem gives |∑n

i=1 Ai | ≥ ∑n
i=1 |Ai + H | − (n − 1)|H |

for H = H(
∑n

i=1 Ai ).

2. dor(L3(24)) = 4

For the sake of completeness, we now give an expanded version of the proof of Proposi-
tion 1.2 due to Fox and Kleitman [4] which says that for any b ∈ N+, the equation Lk(b)

is not 2k-regular.

Proof. If b is not a multiple of k, then considering the coloring given by the residue class
modulo k, there is no monochromatic solution to the equation Lk(b) and the equation not
even being k-regular, we are through.

So, we assume that b is a multiple of k and consider the following 2k-coloring of N+:
for 1 ≤ i ≤ 2k, the set of integers colored i is defined to be

Xi =
⋃

j≥0

([
(i − 1)b/k + 1, ib/k

] + 2bj
)
.

Now, the set Xi − Xi is independent of i . Since the set k(X1 − X1) = ⋃
j∈Z([−b +

k, b − k] + 2 jb) is a union of translates of [−b + k, b − k] by integer multiples of 2b, it
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cannot contain b. Therefore, for any i, 1 ≤ i ≤ 2k, k(Xi − Xi ) does not contain b. This
shows that Lk(b) is not 2k-regular. �

We proceed to prove that dor(L3(24)) = 4 using Kneser’s theorem. Since 5 does not
divide 24, considering the mod 5 coloring shows that L3(24) is not 5-regular, and hence
we only have to show that L3(24) is 4-regular, which in turn will follow from the result
below and the pigeonhole principle. That result was first stated and proved in [2].

Theorem 2.1. For any subset X ⊂ [0, 32] of cardinality |X | = 9, we have

24 ∈ 3(X − X).

Proof. Suppose the result is not true and let X ⊂ [0, 32] be a counterexample.
Thus, writing S = X − X , we have

24 /∈ S + S + S.

Since 0 ∈ S, this implies that none of the numbers 8, 12, 24 are in S.
If 4 ∈ S, then none of the numbers 16, 20, 28, 32 are in S. Therefore, 4 ∈ S would

imply S ∩[0, 32]∩4Z = {0, 4}. Hence, 4 ∈ S = X − X implies that, for all i = 0, 1, 2, 3,

|X ∩ (4N + i)| ≤ 2

and hence |X | ≤ 8, a contradiction to our assumption.
Therefore, none of the numbers 4, 8, 12 nor 24 are in S.
From the above observation, the difference between consecutive elements of Xi :=

X ∩ (4Z + i), for any i ∈ [0, 3] is at least 16. Thus, if |Xi | ≥ 3, then this is only possible
if i = 0 and X0 = {0, 16, 32}. Since |X | ≥ 9 ensures by the pigeonhole principle that
|Xi | ≥ 3 for some i , we must have |X1| = |X2| = |X3| = 2 and X0 = {0, 16, 32}.

Now, X0 ⊂ X , and therefore it follows that {16, 32} ⊂ S.
Since 24 = 20 + 20 − 16 = 28 + 28 − 32, it follows that 20, 28 /∈ S and hence

S ∩ 4N ∩ [0, 32] = {0, 16, 32}.

Therefore,

X = {0, 16, 32} ∪ {a, a + 16} ∪ {b, b + 16} ∪ {c, c + 16},

where a ≡ 1 (mod 4), b ≡ 2 (mod 4), c ≡ 3 (mod 4) and 1 ≤ a, b, c ≤ 15.

Writing Y = X∩[0, 15], we have Y = {0, a, b, c}. Let A = (Y −Y )+(Y −Y )+(Y −Y ).
Since Y − Y ⊂ [−15, 15], we have

A ⊂ [−45, 45].

Suppose there exists α ∈ A with α ≡ 8 (mod 16). Since A = −A, we may assume
α ∈ {8, 24, 40}.

If α = 24, then 24 ∈ A ⊂ S + S + S, and we are through.
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If α = (y1 − y′
1) + (y2 − y′

2) + (y3 − y′
3) = 8 with yi , y′

i ∈ Y , then y1 + 16 ∈ X and

α + 16 = (y1 + 16 − y′
1) + (y2 − y′

2) + (y3 − y′
3) = 24 ∈ S + S + S,

and once again we are through.
Finally, if α = 40, then observing that y′

1 + 16 ∈ X , we have

α − 16 = (y1 − (y′
1 + 16)) + (y2 − y′

2) + (y3 − y′
3) = 24 ∈ S + S + S.

Therefore, if we can show that A contains an element ≡ 8 (mod 16), the theorem will
be proved.

For a subset Z ⊆ Z, let Z̄ ⊆ Z/16Z denote its image modulo 16. Now, considering Y
modulo 16 as a subset of Z/16Z, Ȳ has 4 elements and 0 ∈ Ā. If Ā is periodic, it must
contain 8 as all nontrivial subgroups of Z/16Z contain 8.

Otherwise, Ā is aperiodic and hence Kneser’s theorem (see remarks after the statement
of Kneser’s theorem in Sect. 6.1 in [5]) implies

| Ā| ≥ 6|Ȳ | − 6 + 1 = 24 − 6 + 1 = 19,

which is not possible. �

3. The equation Lk(ck−1)

Here we improve upon the result of Strauss, mentioned in the Introduction, by establishing
that, for some integer bk , the degree of regularity of the equation Lk(bk): (x1 − y1)+· · ·+
(xk − yk) = bk is at least k − 1. Specifically, we show that this holds with bk = ck−1 =
lcm{i : i = 1, 2, . . . , k − 1}.

The following is a result of Lev (Corollary, [7]). Here, the case h = 1 is trivial.

Theorem A. Let A ⊆ Z be a finite set of integers with |A| ≥ 2 and gcd(A − A) = 1. Let
s = � diam A−1

|A|−2 � (for |A| ≥ 3), and set s = 1 for |A| = 2. Let h1, h2 ≥ 0 be integers with
h := h1 + h2 ≥ 1.

(1) If h ≤ s, then |h1 A − h2 A| ≥ h(h+1)
2 |A| − h2 + 1.

(2) If h ≥ s, then |h1 A − h2 A| ≥ s(s+1)
2 |A| − s2 + 1 + (h − s) diam A.

The following is a basic consequence of the pigeonhole principle [8, Lemma 1].

Lemma 3.1. Let A ⊆ Z be a finite, nonempty set of integers with diam A ≤ 2|A| − 2. Let
e = 2|A| − 2 − diam A. Then

[−e, e] ⊆ A − A.

Using the above, we can prove the following lemma.

Lemma 3.2. Let n > r ≥ 1 be integers. Suppose X ⊆ Z is a subset of integers with
|X | ≥ n + 1, diam X ≤ rn and d = gcd(X − X). Then

dZ ∩ [−rdn, rdn] ⊆ (r + 1)X − (r + 1)X.
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Proof. Observing that the lemma is translation invariant, we may w.l.o.g. assume 0 =
min X . If r = 1, then X = [0, rn] = [0, n], in which case (r + 1)X − (r + 1)X =
2X − 2X = [−2n, 2n], and the lemma holds. Therefore, we may assume r ≥ 2, and thus
|X | ≥ n + 1 ≥ r + 2 ≥ 4. Let N = max X = diam X ≤ rn.

Suppose d ≥ 2. Then all elements of X will be divisible by d (in view of 0 ∈ X ). Let X ′ =
1
d · X = {x/d : x ∈ X} and observe that gcd(X ′ − X ′) = 1 with X ′ ⊆ [0, � rn

d �] ⊆ [0, rn]
and |X ′| = |X | ≥ n + 1. Consequently, if we knew the lemma held whenever d = 1, then
we could apply this case to X ′ to conclude that [−rn, rn] ⊆ (r +1)X ′−(r +1)X ′, implying
(by multiplying everything by d) that dZ∩[−rdn, rdn] ⊆ (r +1)X −(r +1)X , as desired.
So we see that it suffices to consider the case when d = 1, i.e., when gcd(X − X) = 1,
which we now assume.

Since |X | ≥ n + 1, N ≤ rn, and n > r ≥ 2, we have

s :=
⌊

N − 1

|X | − 2

⌋
≤ N − 1

|X | − 2
≤ N − 1

n − 1
≤ rn − 1

n − 1
< r + 1. (1)

Consequently, applying Theorem A to X (using h = h1 = r + 1 and h2 = 0), we find that

|(r + 1)X | ≥ s(s + 1)

2
|X | − s2 + 1 + (r + 1 − s)N .

Note that diam
(
(r + 1)X

) = (r + 1)N , (s + 1)(|X | − 2) ≥ N , N ≥ s(n − 1) + 1 and
r ≥ s. Thus

M : = 2|(r + 1)X | − 2 − diam
(
(r + 1)X

) = 2|(r + 1)X | − 2 − (r + 1)N

≥ s(s + 1)(|X | − 2) + 2s + (r + 1 − 2s)N

≥ s N + 2s + (r + 1 − 2s)N = 2s + (r + 1 − s)N

≥ 2s + (r + 1 − s)(s(n − 1) + 1).

The above bound is quadratic in s with the coefficient of s2 negative (since n > 1). The
bound for M is thus minimized at a boundary value for s. As a result, since 1 ≤ s ≤ r in
view of (1), we conclude that M ≥ rn + 2 > 0. Hence we can apply Lemma 3.1 using
A = (r +1)X to conclude that [−rn, rn] ⊆ [−M, M] ⊆ (r +1)X −(r +1)X , completing
the proof. �

The least common multiple of the first r integers has been well studied. Bounds from
Hong and Feng [6] give

cr := lcm{i : i = 1, 2, . . . , r} ≥ 2r−1,

for instance, while the first few values are easily computed to be c1 = 1, c2 = 2, c3 = 6,
c4 = 12, c5 = 60, c6 = 60, and c7 = 420.

Theorem 3.3. Let k ≥ 2 be an integer and let ck−1 = lcm{i : i = 1, 2, . . . , k − 1}. Then
the equation

(x1 − y1) + · · · + (xk − yk) = ck−1

is (k − 1)-regular.
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Proof. Let r = k − 1 ≥ 1, c = cr for r ≥ 5, c = 3cr = 3c2 when r = 2 and let c = 2cr

for r ≤ 4 with r �= 2. Thus cr is divisible by every integer from [1, r ] and n := c
r > r

(in view of the basic lower bound mentioned above for cr as well as the first few explicit
values given above). Let χ : [1, c + 1] → [1, r ] be an arbitrary r -coloring. We will show
that there is a monochromatic solution to the equation (x1 − y1) + . . . + (xk − yk) = cr ,
which will show the equation to be r -regular, as desired.

Observe that [1, c+1] = [1, rn+1] with n = c
r > r . Thus, by the pigeonhole principle,

there is a monochromatic subset X ⊆ [1, rn + 1] with |X | ≥ n + 1 ≥ r + 2 ≥ 3 and
diam X ≤ rn. Let d = gcd(X − X). Then X ⊆ [1, rn + 1] is contained in an arithmetic
progression with difference d. However, since |X | ≥ n+1, this is only possible if d ∈ [1, r ].
Thus d | cr by construction with cr ≤ c = rn, ensuring that cr ∈ dZ ∩ [1, rn]. Applying
Lemma 3.2 to X now yields cr ∈ (r + 1)X − (r + 1)X = k X − k X . Thus there are
x1, . . . , xk, y1, . . . , yk ∈ X such that (x1 − y1) + . . . + (xk − yk) = cr = ck−1, and since
all elements in X are monochromatic, this provides a monochromatic solution, completing
the proof. �
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