Riemannian Locally Linear Embedding with Application to Kendall Shape Spaces - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Riemannian Locally Linear Embedding with Application to Kendall Shape Spaces

Résumé

Locally Linear Embedding is a dimensionality reduction method which relies on the conservation of barycentric alignments of neighbour points. It has been designed to learn the intrinsic structure of a set of points of a Euclidean space lying close to some submanifold. In this paper, we propose to generalise the method to manifold-valued data, that is a set of points lying close to some submanifold of a given manifold in which the points are modelled. We demonstrate our algorithm on some examples in Kendall shape spaces.
Fichier principal
Vignette du fichier
Riemannian_Locally_Linear_Embedding_with_Application_to_Kendall_Shape_Spaces.pdf (1011.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04122754 , version 1 (08-06-2023)

Licence

Identifiants

Citer

Elodie Maignant, Alain Trouvé, Xavier Pennec. Riemannian Locally Linear Embedding with Application to Kendall Shape Spaces. GSI 2023: Geometric Science of Information, Aug 2023, Saint-Malo, (France), France. pp.12-20, ⟨10.1007/978-3-031-38271-0_2⟩. ⟨hal-04122754⟩
189 Consultations
202 Téléchargements

Altmetric

Partager

More