
HAL Id: hal-04122582
https://hal.science/hal-04122582

Preprint submitted on 8 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Efficient parallelization strategy for real-time FE
simulations

Ziqiu Zeng, Hadrien Courtecuisse

To cite this version:
Ziqiu Zeng, Hadrien Courtecuisse. Efficient parallelization strategy for real-time FE simulations. 2023.
�hal-04122582�

https://hal.science/hal-04122582
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


EFFICIENT PARALLELIZATION STRATEGY FOR REAL-TIME FE
SIMULATIONS∗

ZIQIU ZENG † AND HADRIEN COURTECUISSE †‡

Abstract. This paper introduces an efficient and generic framework for finite-element simulations
under an implicit time integration scheme. Being compatible with generic constitutive models, a fast
matrix assembly method exploits the fact that system matrices are created in a deterministic way as
long as the mesh topology remains constant. Using the sparsity pattern of the assembled system brings
about significant optimizations on the assembly stage. As a result, developed techniques of GPU-based
parallelization can be directly applied with the assembled system. Moreover, an asynchronous Cholesky
precondition scheme is used to improve the convergence of the system solver. On this basis, a GPU-based
Cholesky preconditioner is developed, significantly reducing the data transfer between the CPU/GPU
during the solving stage. We evaluate the performance of our method with different mesh elements and
hyperelastic models and compare it with typical approaches on the CPU and the GPU.

Key words. Real-time simulation, parallel algorithms, finite-element method

AMS subject classifications.

1. Introduction. Medical simulations have received strong interest in providing un-
limited access to learn and rehearse complex interventions in a safe environment, without
the ethical issues associated. Medical simulations have become more and more realis-
tic, offering the possibility to simulate complex interactions in real-time such as contacts
and friction between deformable structures. The general trend is currently focused on the
possibility to bring medical simulations closer to the Operating Room (OR) for planning in-
terventions, or even directly in the OR with visual assistance, registration, and augmented
reality (AR). For this purpose, simulations must meet the antagonistic requirements of
accuracy and fast computation time at the same time. Indeed, advanced finite-elements
(FE) simulations are necessary to predict the complex behavior of organs during surgery
and provide relevant information for surgeons in real-time.

The material behavior of tissues is generally admitted as non-linear. Hyperelastic FE
models are nowadays compatible with real-time computations [30]. However, to provide
large-scale simulations of detailed meshes, parallelization strategies must be employed
to maintain the computational expense sufficiently low to account for user interactions.
In this context, general-purpose computing on graphics processing units (GPGPU) has
been widely studied because it provides access to massively parallel architecture with very
low-cost memory transfers compared to distributed machines.

Low-level parallelization strategies are necessary to exploit the computational power
of the GPUs efficiently. When applied to FEM, standard approaches aim to accumulate
all the elements’ contributions in parallel. Nevertheless, since several elements share the
nodes of meshes, additional operations are necessary to handle concurrent memory access.
Many solutions have been proposed to address this issue. For instance, [1] proposed a
GPU-based matrix-free approach, enabling high-speed FE simulations with tetrahedral co-
rotational elements. However, such a technique of parallelizing FE models is very invasive
in the code. Specific solutions are necessary because each material law leads to different
arithmetic operations needed to compute per-element matrices. Moreover, since memory

†ICUBE, UNIVERSITY OF STRASBOURG, FRANCE
‡CNRS, FRANCE
∗Submitted to the editors on May 2 2022.
Funding: This work was supported by French National Research Agency (ANR) within the project

SPERRY ANR-18-CE33-0007.

1



2 Z. ZENG AND H. COURTECUISSE

consumption also depends on the dimension of elements, the ratio between memory access
and arithmetic operations brings additional concerns to manage the little cache memory
available on the GPUs. As a result, the algorithm presented in [1] can hardly be applied in
other constitutive models. A generic parallelization strategy for different models remains
a challenge.

On the other hand, as a popular technique used in system solvers, preconditioning
boosts convergence and improves performance. [13] introduced an asynchronous precon-
ditioning scheme where a Cholesky preconditioner is factorized in a parallel thread. This
strategy significantly accelerates the convergence since the preconditioner gives a close
approximation to the system matrix. The overhead of factorization is removed from the
main simulation loop, making the solving stage very efficient. However, applying the
preconditioner (consisting of solving triangular systems) remains a CPU-based operation,
leading to considerable data transfer between the CPU/GPU. Parallelizing the triangular
systems on the GPU remains a challenge, as the forward/backward substitutions lead to
data dependency all over the solving stage.

This paper introduces a framework for the system solver of FE simulations. Based on
the currently fastest solving strategy in the Sofa framework, our main contributions are:

1. An efficient matrix assembly method compatible with generic constitutive models
is proposed. The method requires no specific implementation of the material law
on the GPU, but allows efficient solver with typical GPU-based implementation.

2. A fully GPU-based solving strategy, including the application of the asynchronous
preconditioner, is proposed. The transfer between the CPU and the GPU is
minimal due to an efficient GPU-based Cholesky solver.

These improvements enable efficient GPU-based parallelization for generic constitutive
models.

The rest of this paper is organized as follows. After reviewing the related works in
section 2, section 3 presents the relevant deformable models and preconditioning tech-
niques used in this work. Section 4 is dedicated to the fast matrix assembling operation,
and section 5 describes the parallelization strategies. In section 6 the method is extended
to handle collisions and impose boundary conditions. Finally, the method is evaluated in
section 7 using different FE models.

2. Related works. The technical level of computer-based training systems is in-
creasing. Early works in this field proposed simplified models such as mass-spring systems
[28]. Such discrete methods are simple to implement and fast, but material properties
are difficult to parameterize. For this reason, they have been progressively replaced by Fi-
nite Element (FE) models. FE models provide a better understanding of the mechanisms
involved in physiological or pathological cases, mainly because the soft-tissue behavior is
directly explained through constitutive relations. With the rapid growth of computational
power, FE models have become compatible with real-time and interactivity. First limited
to linear elastic models [10], it was later extended to large displacements with the co-
rotational formulation [18]. FE models are now used for the simulation of hyperelastic
or viscoelastic materials in real-time [30], with advanced and complex interactions [14]
between multiple structures. On the other hand, meshless methods, Position-Based Dy-
namics (PBD), and Neural Networks are other strategies to model soft tissues in real-time.
A detailed review of this topic goes far beyond the scope of this article, but a survey can
be found in [40].

2.1. Time discretization. In the context of interactive simulations, an important
choice is the time integration scheme. Indeed, explicit methods have been widely used
for medical simulations [26]. In this case, the solution only involves the (diagonalized)

www.sofa-framework.org


EFFICIENT PARALLELIZATION STRATEGY FOR REAL-TIME FE SIMULATIONS 3

mass matrix leading to very fast, simple to implement, and parallelizable solutions [12].
Unfortunately, user interactions may introduce sudden and stiff contacts at arbitrary lo-
cation/frequency, which raises stability issues.

On the opposite, implicit methods are unconditionally stable, i.e., stable (but not
necessarily accurate) for any time step and arbitrary stiff materials [3]. Implicit schemes
provide better control of the residual vector and hence that the external and internal forces
are balanced at the end of the time steps. Although these advantages come at the cost
of solving a set of linear equations at each time step, implicit integration schemes offer
a reasonable trade-off between robustness, stability, convergence, and computation time,
particularly when combined with a GPU implementation.

2.2. Solving the set of nonlinear equations. The nonlinear problem obtained by
implicit schemes is usually solved using an iterative Newton Raphson method. Each
iteration of the Newton method consists of solving a linear problem whose solution reduces
the error between internal and external forces. Since the mechanical matrices depend
on the current position (and potentially velocities) of FE meshes, the linear problems
must then be recomputed for each simulation step and ideally for each Newton iteration.
Therefore, the performances of the simulation are directly linked to the efficiency of the
solver, which explains why earlier studies mainly focused on sparse linear algebra. Two
families of algorithms are proposed in the literature: direct and iterative methods.

Direct solvers provide the exact solution by computing a factorization (for instance,
the Cholesky factorization [5]) or a decomposition (QR decomposition), or eventually,
the actual inverse of the system matrix [10] (though not recommended for large matri-
ces). As proposed in [20], the nested dissection ordering has been widely used in direct
solvers by exploring the parallelism of subproblems while reducing the fill-in of the matrix.
Partitioning and ordering are usually implemented through external tools such as METIS
[27].

The solving phase can then be performed with so-called forward/backward substitu-
tion, using the two triangular systems (in the case of the Cholesky factorization). Effi-
cient libraries exist both on the CPU (Pardiso, MUMPS, Taucs) and GPU (cuSPARSE,
MAGMA, AmgX). The solving stage can be improved by partitioning and reordering the
system [23]. Despite the stability of direct solvers, the complete factorization or decompo-
sition of large matrices is usually too time-consuming to be recomputed at each time step,
and it is very difficult to parallelize. Specific optimizations, inspired by the co-rotational
model, have been proposed to incrementally update the sparse Cholesky factorization [22]
but this approach does not extend to other material laws or element types.

In the interactive context, iterative methods are usually preferred because they limit
the number of iterations to compute an approximated solution and better control the time
spent during the solving process. The most popular method is the Conjugate Gradient
(CG) algorithm [36], because of the fast convergence and its simple implementation. Par-
allel implementations both on CPU [34, 24] and GPU [7, 11, 1] were proposed. Neverthe-
less, the convergence of iterative methods can be significantly impacted for ill-conditioned
problems, i.e., when the ratio of the largest and smallest eigenvalues is large.

2.3. Matrix assembly and parallelized solver. The main issue to improve the
CG is to gain speedup on sparse matrix-vector multiplication (SpMV ) operations. As it
is presented in [6], to accelerate the SpMV operations, many methods are explored to
implement them on throughput-oriented processors such as GPU. Several methods rely
on the fact that CG iterations can be performed without explicitly assembling the system
matrix [33, 31]. Matrix-free methods significantly reduce the memory bandwidth and are
proven to be fast and stable. However, as a price of speedup, it lacks generality. As



4 Z. ZENG AND H. COURTECUISSE

an example, the method introduced in [1] is designed for the co-rotational formulation
and relies on specific cache optimization to compute rotation matrices directly on the
GPU. However, the specific cache optimizations proposed for the rotation matrices do not
extend to other types of material, such as hyperelastic laws.

Explicit assembly of global matrices is necessary for direct solvers to compute the
factorization or decomposition of the system. The assembly step is usually less critical
than the solving process itself, but it may become the bottleneck when combined with
efficient solvers. There are several ways to construct sparse matrices; the most popular
method is first to collect triplets (the row/column index and the value); then compress
the triplets in a sparse format. A very efficient implementation is provided in the Eigen
library. Recently [25] proposed a row by row assembling method for isogeometric linear
elasticity problems. To accelerate the assembling step and minimize memory transfers,
several approaches proposed to assemble the matrix directly on the GPU [17, 39, 19].
However, specific GPU-based implementation of the assembling procedure is needed for
each particular model.

2.4. Preconditioner. Another intense area of research aims to improve the perfor-
mance of the CG algorithm with the use of preconditioners to speed up its convergence.
There are several typical preconditioners: diagonal matrix is simple to build but has limited
effect [4]; in contrast, precise ones such as incomplete Cholesky factorization are complex
and costly to make but can significantly reduce the condition number [21].

For a typical synchronous preconditioner, the construction of the preconditioner has
to be performed before the solving stage of each time integration, leading to additional
computation costs. Some of the recent works aim to find a balance between the cost
of applying the preconditioner and the effect of convergence boost, such as efficient
preconditioners using the result of incomplete factorization [2] and inner Gauss-Seidel
preconditioners [37].

On the other hand, the asynchronous preconditioners proposed in [13] exploit the con-
tinuity of the time line in physically-based simulations. Relying on the assumption that
mechanical matrices undergo relatively small changes between consecutive time steps,
the asynchronous preconditioning scheme processes the matrix factorization in a dedi-
cated thread parallel to the main simulation loop and applies the factorization result as
a preconditioner after a short delay. It enables access to a very efficient preconditioner
with almost no overhead in the simulation loop. As a combination of a direct and it-
erative solver, the method requires explicitly assembling the matrix at a low frequency
in the simulation loop to factorize the system in the dedicated thread. For both syn-
chronous and asynchronous preconditioning schemes, applying the preconditioner requires
processing the forward/backward substitution, leading to solving sparse triangular systems
(STS). Parallelizing the solution of STS remains challenging in many applications. There
are many works dedicated to improving the performance of STS solvers on the CPU [9]
and on the GPU [35, 38, 29]. In [14], a GPU-based asynchronous preconditioner was
designed to solve the STS with multiple right-hand sides (RHS) in the contact problem.
However, the method cannot efficiently exploit parallelization when dealing with a single
RHS. Therefore, despite the asynchronous preconditioning scheme being introduced with
a GPU-based CG implementation of the co-rotational model, applying the preconditioner
was performed on the CPU, requiring data transfers between CPU/GPU for each iteration
of the preconditioned CG.

2.5. Implementation. It is important to note that even each model can be efficiently
parallelized on the GPU with specific implementation, it will be hard to be developed and
maintained in a large and generic framework such as SOFA framework.



EFFICIENT PARALLELIZATION STRATEGY FOR REAL-TIME FE SIMULATIONS 5

A strong motivation of the current work lies in the fact that once the matrices are
assembled, the solver can be parallelized independently from the FE models that generated
the matrix (i.e., the material law or the type of elements of the FE mesh). For this
purpose, a generic data structure is proposed to fill non-null values of mechanical matrices.
The method exploits the fact that contributions are added to the system matrix in a
deterministic way that only depends on the topology. Efficient GPU-based parallelization
operations such as SpMV can be implemented with the assembled system. A specific
parallelization strategy are also proposed to apply the preconditioner on the GPU, allowing
this to parallelize the entire solving process independently from the constitutive laws or
the type of elements used in the simulation.

3. Background. The current method is based on a general background for de-
formable simulations using the implicit integration.

3.1. FE models and constitutive law. In order to underline the importance of the
model, the method is tested with a co-rotational formulation [32] and with the hyperelastic
models [30]. The method also applies for various types of elements such as beams,
triangles, tetrahedra or hexahedra.

Using the co-rotational formulation, local stiffness matrices can be precomputed for
each element e with the synthetic formulation:

(3.1) Ke =

∫
Ve

(CeDeCe
TdVe)

where De corresponds to the stress-strain matrix, Ve is the volume of the element and Ce

is the strain-displacement matrix. The method is parametrized with the Young modulus E
and the Poisson’s ratio ν. The hyperelastic model is implemented with the Multiplicative
Jacobian energy decomposition (MJED) method [30]. The method consists in decoupling
the invariants of the right Cauchy-deformation tensor C = ∇ΦT∇Φ from the expression
of the deformation tensor I1 = trC , I2 = ((trC )2 − trC 2)/2 and the Jacobian J =
det∇Φ, where Φ is the deformation function between the rest and deformed configurations.
The method allows faster stiffness matrix assembly for a large variety of isotropic and
anisotropic materials. In these formulations, the function F(q, q̇) provides internal forces
of the deformable body, given the nodal position q and velocities q̇.

3.2. Time integration and implicit scheme. For any time step t, the general way
to describe the physical behavior of a deformable objective problem can be expressed using
Newton’s second law:

(3.2) Mq̈ = p−F(q, q̇)

Where M is the mass matrix, q̈ the vector of the derivative of the velocity, p the external
forces and F(q, q̇) the function representing the internal forces.

A backward Euler method is used to integrate the time step. The implicit scheme
can be expressed as follows, where h is the length of time interval [t, t + h]:

(3.3) q̇t+h = q̇t + hq̈t+h qt+h = qt + hq̇t+h

As F(q, q̇) is a non-linear function, a first-order Taylor expansion is performed to
linearize the problem [3]. This linearization corresponds to the first iteration of Newton-
Raphson method. The incomplete approximation may cause numerical errors of the dy-
namic behavior but they lean towards to decrease at equilibrium.



6 Z. ZENG AND H. COURTECUISSE

The internal forces are expanded as following:

(3.4) F(qt+h, q̇t+h) = ft +
∂F(q, q̇)

∂q
hq̇t+h +

∂F(q, q̇)

∂q̇
hq̈t+h

with ft = F(qt , q̇t).
During a time integration, the force function is considered as constant and the partial

derivative terms could be expressed as matrices: ∂F
∂q̇ the damping matrix B and ∂F

∂q the
stiffness matrix K.

By integrating the equations (3.2), (3.3) and (3.4) we obtain the dynamic equation:

(3.5)
(
M+ hB+ h2K

)
q̈t+h = pt − (ft + Bq̇t + hKq̇t)

With Rayleigh damping [3], the damping matrix can be expressed as a combination
of matrices of mass and stiffness B = αM+ βK with α and β the proportional Rayleigh
damping coefficients. By replacing B in the dynamic equation (3.5), it gives:

(3.6) [(1 + hα)M+ h(β + h)K]︸ ︷︷ ︸
A

q̈t+h︸︷︷︸
x

= pt − ft + hKq̇t︸ ︷︷ ︸
b

Equation (3.6) provides a linear problem Ax = b to solve. The left-hand side is a
global system matrix A and the right-hand side a vector b. Both of them are constructed
by some elements: M the mass matrix, K the stiffness matrix as well as scalar parameters
(the time interval and the Rayleigh damping coefficients). The linear system must be
solved at each time step as K depends on the position of FE models. Since A is large
and sparse, the general-propose compressed sparse row (CSR) format is used to store the
matrix information in three arrays.

3.3. Asynchronous preconditioner. Let At be the matrix built in a specific time t.
Following [13], a preconditioner P can be built from an asynchronous LDLT factorization:

(3.7) P = At = LDLT

Where D is a diagonal matrix and L a sparse lower triangular matrix. The factorized
matrices will be available after the factorization is done, normally several time steps after
time t, and used as a preconditioner with the assumption that P remains a relatively
good approximation to the current matrix At+nh. In practice, the method is very efficient
because the LDLT factorization requires only few simulation steps (usually n < 5).

The application of the preconditioner consists mainly of solving the two triangular
systems obtained after the factorization. The method is very efficient because in practice
only 2 to 5 preconditioned CG iterations are necessary to converge (with threshold of
10−9). However, despite the triangular matrices are sparse and the solution can easily
be implemented with a gauss elimination on the CPU, this step is difficult to parallelize
on a GPU due to numerous data dependencies. A GPU-based solver with a CPU-based
preconditioner leads to considerable data transfer between the different processors, making
the solving process inefficient. Improving this process is an important issue that will be
addressed in Section 5.

4. Matrix assembly strategy. Generic constitutive models can benefit from typical
GPU-based matrix operations. But the matrix assembly usually leads to an overhead cost,
which is not negligible. To address the issue, we propose a new assembly approach to
meet the requirements of both efficiency and generality. The fast assembly method relies
on the fact that the same assembly procedure is called in each time integration. When



EFFICIENT PARALLELIZATION STRATEGY FOR REAL-TIME FE SIMULATIONS 7

building the system matrix in sequential order, the invariant topology structure brings an
important property that the sequence of filling elements into the matrix and the sparsity
pattern of A are definitive. A specific mapping from the filling element sequence to the
final matrix pattern could be built. As sorting the initial filling sequence to the final
sparse format is the most time-consuming stage in the matrix assembly, replacing it with
the deterministic mapping brings a significant speedup.

Sequential data collection (CPU) Data Compression (GPU)

FE Model

FE Model

FE Model

Unstructured 
contributions

Data Mapping

Values

Row Index

Col Pointer

Solving stage (GPU)

Check Ordering 
and Insert data

Rebuild Matrix 
Pattern

Values

Row Index

Col Pointer(If modified)

Data transferred on the GPU Data computed on the CPU Process on the CPU

Fig. 1: General workflow of the matrix assembly procedure. Data Mapping corresponds
to the additional structure used to compress the unstructured contributions (see section
4.2) in CSR format. It is computed and sent on the GPU only once until no modifications
of the fill ordering are detected during the collection phase.

An overview of the general workflow of the assembly procedure is shown in the figure
1. The matrix assembly consists of the following steps:

1. Collect data: Collect the data of mass and stiffness for each element and fill the
data in a triplet format (row index, column index, and value).

2. Build matrix pattern: Sort the collected triplet data by order of row and column.
This step is necessary if and only if modifications of the structure have been
detected during the collection phase.

3. Compress: Build the system matrix in CSR format.
The current matrix assembly method relies on the assumption that the topology

remains invariant. Topological modifications are not addressed in this paper but the
method remains generic since the topology modification only occurs in specific cases,
such as cutting operations. Applying the asynchronous preconditioning in such case of
sudden changes can be addressed with specific correction on the preconditioner [14].
Collisions and interactions may also change the fill ordering of the matrices. This specific
issue is discussed in section 6.

4.1. Collect data. Matrices M and K in equations (3.6) are obtained by summing
the local contributions of each element into the global matrices. Values are stored in a set
of triplets at first, which is a structure containing 3 variables: row index, column index,
and value. As the triplet vector corresponds to the original process of filling elements
into the matrices, the sequence of row/column indices is unsorted and uncompressed1,
but definitive in each time integration. Nevertheless, insertion of contributions into the
triplet list will be called many times per second; it must therefore be optimized as much

1i.e. the pair row/column may appear several times when filling matrices



8 Z. ZENG AND H. COURTECUISSE

as possible. The pseudo-code of the add function is given in the algorithm 1, and exposed
to the FE models in order to insert their contributions.

1 Function add(col,row,val)
2 if keepStruct and id < prevVal.size() and prevCol[id] = col and

prevRow[id] = row then
3 prevVal[id] = val;
4 else
5 keepStruct = false;
6 prevRow[id] = row ;
7 prevCol[id] = col ;
8 prevVal[id] = val;

9 end
10 id=id+1;
Algorithm 1: Procedure used to add value in the matrix. The boolean keepStruct is
used to detect any modification in the filling order; id gives the next writing address in
the uncompressed arrays (prevRow, prevCol and prevVal corresponding to the triplets
list added in the previous time steps).

For each inserted value, the test performed line 2 checks the consistency of the pattern
with respect to the previously built matrices. This test is a necessary overhead to detect
changes in the structure. However, if the structure is not modified, only the value val is
stored (line 7), allowing this way to take advantage of the cache of the CPU and minimize
write operations.

4.2. Build matrix pattern. Let X be a generic matrix to be assembled (such as M
and K). A method inspired by the Eigen’s library is implemented to build the final CSR
format for X. The method consists of computing twice the transpose of the matrix to
sort the values. To store the temporary matrices, we introduce a temporary format called
uncompressed structure which is similar to the CSR format: Like the CSR, an arranged
row pointer encodes the index in the arrays of column index and values that are unsorted
and uncompressed (duplicate indices exist). We summarize the states of the assembly in
different stages in Table 1.

1. Firstly, the temporary transposed matrix XT is built in the uncompressed struc-
ture. The computation of the transposed matrix requires beforehand to count the
number of values per line, allowing this to allocate the necessary memory. Then,
data can be moved to their correct location in the allocated structure. With the
pre-defined matrix structure, the sequence of row index can be arranged with a
time complexity of O(2n), but inside each row, the sequence of column index
remains unsorted.

2. Similar to the previous step, X is built in the uncompressed structure by trans-
posing (XT)T. The second transpose gives the initial matrix X with a sequence
of values sorted both by rows and columns while the structure remains uncom-
pressed.

3. Finally, the elements in the same position are merged, transferring the uncom-
pressed structure into the CSR format.

One of the main differences with the Eigen’s implementation is that the values of the
transposed matrices are not directly stored in memory, making a strategy of fast assembly
possible: Relying on the hypothesis that the mesh topology remains unchanged, the filling
order, as well as the matrix pattern (row pointer and column index arrays in the CSR),
could be reused. As long as the filling order remains unchanged at the collecting stage,



EFFICIENT PARALLELIZATION STRATEGY FOR REAL-TIME FE SIMULATIONS 9

Matrix X XT X X

Format triplet set
uncompressed

structure
uncompressed

structure CSR

Row
unsorted

uncompressed
sorted

compressed
sorted

compressed
sorted

compressed
Column &
Values

unsorted
uncompressed

unsorted
uncompressed

sorted
uncompressed

sorted
compressed

Table 1: State of storage format at different stages in matrix assembly process

Fig. 2: build matrix pattern and mapping vector from triplets set

we propose to build a mapping C from the initial triplet set to the CSR format, making
it very efficient to build the value array. Hence, the main operation is to merge the
duplicated values in the triplet array that is reordered with the deterministic mapping C .
This operation must be performed at each time step, but it can be easily parallelized
both on CPU and GPU since the address of values in the CSR format are known and
unique. More importantly, parallelization can be performed without impacting the code
of the constitutive models that generate the matrices (i.e., our method is efficient for any
generic constitutive model). The deterministic mapping C can be reused as long as no
modifications in the filling order are detected at the previous stage. On the other hand, in
case modifications are detected at the collecting stage, we process the complete rebuilding



10 Z. ZENG AND H. COURTECUISSE

of the matrix pattern (called full assembly). In this mode, the method provides similar
performances as the default implementation of Eigen’s library.

In order to get the global matrix A and the vector b in equation (3.6), one may
note that both are generated from the sum of the same matrices M and K with various
coefficients:

A = (1 + hα)M+ h(h + β)K(4.1)

b = pt − ft − hKq̇t(4.2)

Coefficients only depend on the time step and the Rayleigh damping constant during
the entire simulation. Another consequence of our method is that the computation of the
right-hand side and the left-hand side terms can be merged in a single procedure, allowing
this way to exact a large amount of data that are well suited for GPU architectures, and
benefits from cache optimization since the mapping C is accessed twice.

Once the vector of values is compressed, the CSR format can be used directly inside
a parallel Conjugate Gradient (either on the CPU or the GPU2). For this purpose, the
product of the sparse matrix with a vector (SpMV ) needs to be parallelized, which is
trivial with the assembled system. Many efficient CPU and GPU-based implementations
exist for such a typical operation. In this paper, we use the SpMV implementation in the
CUSPARSE library developed by NVIDIA. It can significantly improve the time spent in the
CG iterations, providing a significant speedup to the entire simulation without modifying
the code that generates the matrices.

5. System solution. The system solution can be efficiently processed with typical
sparse matrix operations on GPU with the assembled matrix. Furthermore, as explained
in 3.3, the solver can be boosted with a preconditioner. Compared to the matrix-free
method, another important consequence of the fast assembly method lies in the possibility
of directly using the assembled matrix to build a preconditioner (which most of the time
requires the values of the system explicitly). For instance, the diagonal extraction for
the Jacobi preconditioner or the lower triangular system for the SSOR preconditioner is
exceptionally facilitated.

The asynchronous preconditioner method [13] needs to access the explicit values of
the assembled system matrix at some specific time steps, which does not add any addi-
tional overhead with the proposed assembled solution. The factorization of the matrix
being performed asynchronously, the preconditioner can be entirely computed on the CPU
without blocking the main simulation thread. However, the application of the precondi-
tioner at each iteration of the preconditioned CG implies solving sparse triangular systems.
The data dependence between lines makes it difficult to be computed in parallel. Let L
be the lower triangular system of the Cholesky factorization. We recall the main obstacle
for solving a general lower triangular system Ls = r is that the solution rj of a given row
j depends on all previous solutions si :

(5.1) sj = rj −
i<j∑
i=0

(siLj ,i )

Consequently, the primary operations of the Conjugate Gradient algorithm are processed
on the GPU, while the application of the preconditioner remains on the CPU. This hybrid
solving strategy generates a huge amount of data transfer between the processors: in

2Note that the vector of values is already available on the GPU if the compression is performed on this
architecture. The row index and column pointer need to be transferred only if the mapping is modified.



EFFICIENT PARALLELIZATION STRATEGY FOR REAL-TIME FE SIMULATIONS 11

each CG iteration, the processors need to send the residual vector from GPU to CPU to
apply the preconditioner and then send the result vector back to GPU. In addition to their
cost, data transfers impose numerous synchronizations between CPU/GPU, reducing the
efficiency of the preconditioner. We aim to implement a GPU-based preconditioner that
is at least as efficient as the CPU-based version to address the issue.

5.1. GPU-based Cholesky preconditioner. We propose a GPU-based Cholesky
preconditioner, which is inspired by the solver in [14] for sparse triangular systems with
multiple right-hand sides. Since the method in [14] was originally designed for multiple
RHS. When applied in the problem with a single RHS, the level of parallelism for multiple
RHS will be left unused. We propose to fill in this dimension with parallelism imported by
the domain decomposition technique using the nested dissection algorithm. The nested
dissection algorithm is used to reduce the filling of the matrix pattern, recursively di-
viding the mesh into two parts with nearly the same number of vertices while keeping
the divider part at a small scale [20]. Consequently, L is reordered and partitioned into
sub-domains with the indices given by the nested dissection algorithm. The reordering
algorithm partitions the graph as follows:

(5.2)

L̂a

L̂b

Va Vb L̃c


︸ ︷︷ ︸

L̂(a,b,c)

sasb
sc

 =

rarb
rc



where the diagonal domains a and b can be solved independently and the reordering
algorithm guarantees that the separator c (which requires the solution of a and b) is
as small as possible. The partition and reordering are processed recursively on diagonal
domains a and b until the block size is small enough.

The specific parallelization level is assigned to each subdomain identified in the lower
triangular system Ls = r. The base rule is that the blocks with higher levels (left edge)
require the solutions of low-level blocks. The upper triangular system problem LTs = r can
be solved with the same method but with an opposite sequence of computation priority.
The higher level a block has, the less dependence it has.

Within each level, the parallelization strategy presented in [14] can be used to solve
each diagonal block (L̂a, L̂b) and the separator (Va + Vb + L̃c) by the sequence of rows.
It corresponds to the Row Major as illustrated in the figure 3 where t ∗ t threads are
used to accumulate the contribution so that t rows are processed in parallel (t = 16 in
the current implementation). Due to the high dependencies, the diagonal part is treated
separately as a dense matrix in shared memory. A parallel reduction is then used to sum
the contribution for each row, and finally, the t ∗ t diagonal block is solved as a dense
problem.

The opposite Column Major is also feasible by pre-accumulating the column’s con-
tributions. Instead of solving the combined block (Va + Vb + L̃c) in a single kernel, the
accumulation process of Va and Vb is moved into the kernel of L̂a and L̂b respectively.
Since it requires only the solution of L̂a (or L̂b), the accumulation of block Va (or Vb) can
be processed in the same kernel. The part L̃c can be solved as a diagonal block after the
accumulation of Va and Vb. Similarly, the diagonal and accumulation parts are treated
with t ∗ t threads, and each t column is processed simultaneously. This pre-accumulation
leads to data writing conflicts since several columns may contribute to the same line si-
multaneously. The atomic add function defined in CUDA can automatically manage the
data conflict.



12 Z. ZENG AND H. COURTECUISSE

a d c b a d c b a
a c b a d c b a
b a d c b a d c b a
b a a d c b a d c b a

c b c

b
c

c
d
d d

d a
a a
a
b

b c
b
b

c d
c
d a

d c

t

Upper Solver:
Row Major

t

ac
cu

m
u

la
ti

o
n

Lower Solver:
Column Major

Solve diagonal as a dense block

Accumulate Values:
𝑎𝑐𝑐 − = 𝐴𝑖𝑗 ∗ 𝑥𝑖

Sh
ar

ed
m

em
o

ry

accumulation

Fig. 3: The solving stage for each subdomain is realized by GPU kernels, where contri-
butions are accumulated in parallel. For the lower triangular system, the solution can
be processed by column sequence (left), which pre-accumulates the data in higher levels,
allowing sharing of the computation cost. On the other hand, when solving the upper
triangular system, computation cost could be shared in lower levels, so the solution needs
to be processed oppositely by row sequence (top-right).

As illustrated in the figure 3, in order to share the computation cost in lower levels,
the lower solver is implemented with Column Major, and the upper system is solved with
Row Major. Our level-based parallelization strategy is similar to the approach in [38], with
several main differences:

1. Our solver uses the block-row parallelization strategy in [14] to efficiently exploit
the parallelism architecture of the GPU (see Figure 3).

2. Our solver is optimized for the problems in FE simulations (e.g. we keep using
the analysis result of parallelization level until the matrix pattern is changed).

3. Our solver benefits from the pre-accumulation technique which allows to share
the computation cost in lower levels, making the solver more efficient (see Figure
3).

5.2. Data Transfer between processors. We evaluate the performance of our new
GPU-based preconditioner in the following section 7. As illustrated in the table 5, our
method is faster than the CPU-based implementation in various examples. Replacing the
CPU-based preconditioner with our GPU-based implementation brings speedup for the
solver and addresses the data transfer issue between the processors. Consequently, our
new preconditioner makes it possible to execute a fully GPU-based preconditioned CG,
requiring only one scalar to be transferred at each iteration from the GPU to the CPU in
order to check the convergence (see Figure 4).

6. Contact and interactions. One can hardly talk about medical simulations with-
out considering interactions between objects. The simulation of interacting deformable
structure is an extremely large topic; a detailed review can be found in [8].



EFFICIENT PARALLELIZATION STRATEGY FOR REAL-TIME FE SIMULATIONS 13

Compute Force Collect

Compress Op
Apply 

Precond
…

Update 
System

Op Op
Apply 

Precond
Op Op

Apply 
Precond

Op

CG iteration CG iteration CG iteration

Building Stage Solving Stage

CPU

GPU

Asynchronous Thread for Factorization (CPU)

Send factorized data

Send uncompressed matrix Send result vectorSend scalarSend scalar

Check if converged Check if converged

Op
Matrix/Vector 
Operations in CG

Main Simulation Loop

Copy matrix for next 
factorization

Apply 
Precond

Cholesky solver for 
application of preconditioner

Data transfer for vectors 
between CPU/GPU

Data transfer for scalars 
from GPU to CPU

Fig. 4: Workflow of the asynchronous preconditioning scheme. The collect phase is
performed on the CPU with any generic implementation of FE models. The Op process
corresponds to the necessary operation to perform one CG iteration. All of them are either
Spmv or linear algebra operations on vectors that can be easily parallelized on the GPU.
The application of preconditioner Apply Precond is also performed on the GPU, resulting
in a preconditioned CG fully implemented on GPU. Only a scalar needs to be copied to
the CPU in each iteration to check the convergence state.

6.1. Projective Constraints. The more straightforward solution to fix a set of nodes
and impose boundary conditions is to use projective constraints. Such constraints consist
of reducing the matrix dimension to remove the fixed points from the equations of motion.
This can be implemented by clearing the corresponding rows and columns of the matrix
and setting the value 1 on the diagonal. Clearing a row in the CSR format is trivial,
but in order to clear the columns, either a filter could be added in the add procedure
of algorithm 1 to skip the undesired values, or a search can be performed on each line
afterward in order to erase non-null values on the column if it exists. Despite the fact that
both strategies are highly time-consuming, they represent the only available alternatives
when using the Eigen library.

With the proposed approach, the undesired values can be identified during the con-
struction of the mapping C . The collection phase is not modified, and all the values
associated with fixed points are added in the incoming triplets arrays with no overhead,
while indices of fixed rows/columns are stored separately in specific vectors. During the
computation of the matrix pattern, after the first transpose XT, the rows (corresponding
to the column of the final matrix) associated with fixed points can be skipped. Likewise,
the undesired lines in the final matrix (XT)T can be skipped and replaced by a single value
1 on the diagonal. Finally, the mapping C is built to only assemble the desired values of
the projected matrix with no additional overhead in the simulation.

6.2. Lagrangian multipliers. Augmented Lagrangian Multipliers is an efficient so-
lution to deal with constraints accurately and robustly. The size of the linear systems is
increased with specific constraint equations, resulting in a Karush-Kuhn-Tucker (KKT)
system:

(6.1)


A1x1 −H1

Tλ = b1

A2x2 +H2
Tλ = b2

H1x1 −H2x2 = ∆δ



14 Z. ZENG AND H. COURTECUISSE

with subscript 1 and 2 representing two interacting objects, H are the linearized constraint
equations, λ the associated Lagrangian Multipliers (contact forces) and ∆δ the difference
between interpenetration of the end and the beginning of the time step.

Contact constraints can be solved in Linear/Nonlinear Complementary Problem for-
mulations [15], forming an LCP (linear) to simulate frictionless contact or an NLCP (non-
linear) in case of friction contact [16]. The solving process can be performed in several
steps:

1. Free motion The motions are computed without considering the interactions
between objects. It requires solving the linear systems A1xfree1 = b1 and A2xfree2 =
b2.

2. Constraints resolution The constraints are defined and the compliance matrix
W = H1A

−1
1 HT

1 + H2A
−1
2 HT

2 , is built to solve the contact problem Wλ =
δ −H1xfree1 −H2xfree2 with the projected Gauss-Seidel.

3. Motion correction The motion is corrected solving equations: x1 = xfree1 −
A−1

1 HT
1 λ and x2 = xfree2 − A−1

2 HT
2 λ.

A significant advantage of using the Lagrange multipliers is that collision events
never modify the system matrix. Indeed, the Free motion and the Motion Correction
involve the solution of the same linear system as described in section 4 allowing this way
to direct benefits for the Fast Assembling method. The computation of the compliance
matrix is a time-consuming step that can be significantly improved using the asynchronous
preconditioner and the multiple right-hand side solver proposed in [14]. Again, our fast
assembly technique significantly improves the construction of the preconditioner resulting
in a global speedup of constraint-based simulations.

7. Results. The simulation tests are conducted in the open-source SOFA framework
with a CPU Intel@ core i9-9900k at 3.60GHz and a GeForce RTX 2070 8 Gb.

7.1. Matrix Assembly. Our matrix assembly strategy aims to reach a compromise
between the computation cost and the versatility of the code by assembling the matrix
A with low cost. This section compares the matrix building time between the current
assembly method and the standard assembly method implemented in the Eigen library.
The simulation tests for the assembly stage are executed with a group of deformable mesh
representing the shape of a raptor with various mesh resolutions (see table 2).

Example Raptor 1 Raptor 2 Raptor 3

Nodes 2996 4104 5992
Tetra 8418 12580 19409

Table 2: Number of nodes and tetrahedral elements of the meshes.

The figure 5 shows the performances of the assembling stage, including the accumu-
lation of triplets and the compression to the CSR format but excluding the computation
of the mapping C . With the exception of the first time step where the mapping is ac-
tually computed, it corresponds to the standard performances obtained during the entire
simulation with the various assembly methods. Compared with the standard method us-
ing Eigen library, the current method on CPU reduces by 72% time cost of building on
average. This cost reduction rises to 81% for the fast assembly method on the GPU. The
compression on the GPU provides a speedup of between 2.7× to 3× with respect to the
parallel implementation of the compression on the CPU using 8 threads.

If topological modifications are performed or if the filling order is modified, the matrix



EFFICIENT PARALLELIZATION STRATEGY FOR REAL-TIME FE SIMULATIONS 15

Raptor 1
fast assembly

Raptor 2
fast assembly

Raptor 3
fast assembly

Raptor 1
full assembly

Raptor 2
full assembly

Raptor 3
full assembly

0

10

20

30

40

50

13.1

18.9

29.3

12.4

18.7

28.9

3.6
5.4

8.2

12.9

19.8

31

2.4
3.5

5.6

18.7

30.1

47

Run time (ms)

Eigen assembly

FA + CPU compression

FA + GPU compression

Fig. 5: Computational costs for the matrix assembly in fast assembly mode (opera-
tions excluding the re-computation of the compression mapping C ) and full assembly
mode (when rebuilding the matrix pattern) introduced in Section 4.2. We compare the
performance between the Eigen’s library implementation (Eigen assembly) and our fast
assembly strategy (FA) with the compression performed on the CPU (with 8 CPU threads)
or on the GPU.

pattern needs to be rebuilt. In this case, the building cost, including the computation of
the pattern, is measured in the figure 5. The time cost of the current method on CPU
when the matrix pattern is rebuilt is slightly slower than the Eigen implementation, but
it remains in the same order. The overhead is due to the additional computation of
the index vector mapping C providing the position of the triplets in the CSR format.
However, the cost is balanced because the mapping can be reused for the next time
steps. Indeed, reusing the mapping for only two consecutive time steps already provides
an acceleration compared to the Eigen implementation. Since the computation of the
mapping is performed on the CPU, the GPU-based compression suffers a slowdown due
to data transfers between the CPU and the GPU.

Example Liver Cloth Cube Raptor

Model Co-rotational Hyperelastic
Type Tetrahera Triangle Hexahedra Tetrahedra
Nodes 2660 4900 8000 2996

Nb.element 12328 9522 6859 8418

Mesh

Table 3: Configurations of different scenario examples.



16 Z. ZENG AND H. COURTECUISSE

7.2. Performances with the CG solver. The performances of the global simulation
are now compared in a complete simulation of a deformable body, including the time for the
computation of the FE model, the assembling step and the solving process. Performances
of the fast assembly method combined with a Conjugate Gradient solver (CG GPU fast
assembly) is measured and compared with both a CPU-based matrix-free implementation
of the Conjugate Gradient (CG CPU matrix-free) and with the method introduced in
[1] which includes a matrix-free GPU-based Conjugate Gradient (CG GPU matrix-free)
for the tetrahedral co-rotational model.

In order to verify the generality of the proposed solution, the specific GPU-based
implementation introduced in [1] has been extended for other types of elements (triangles
and hexahedron), requiring the development of specific code for each model on the GPU. In
addition, the fast assembly method is also tested for hyperelastic material laws. However,
since developing an efficient GPU parallelization is not trivial, the method is only compared
with CPU-based matrix-free solvers. The scenarios are illustrated in Table 3.

For the scenarios in Figure 6, the run time increases linearly along with the number
of iterations. The fast assembly method combined with the GPU-based CG is up to
16× faster than the standard CPU method implemented in SOFA and reaches the same
computation cost level as the GPU-optimized method. The Fast Assembly method suffers
a slowdown compared to the GPU matrix-free method with fewer iterations, but this case
is inverted when the iteration increases. This is due to the fact that the fast assembly
method takes time to build the matrix, but this overhead is compensated at each CG
iteration since the parallel implementation of the SpMV operation is faster with the
assembled matrix.

It’s important to note that although performances are comparable to the GPU-based
matrix-free implementation, the code of the co-rotational model is written for the CPU
where optimizations are simply obtained by calling the add function of the algorithm 1,
which is completely transparent for the code and enforces the compatibility with the rest
of the models implemented in the SOFA framework. In addition, for computers without
GPU-compatible hardware, the SpMV operation can also be parallelized on the CPU. The
method CG CPU fast assembly uses 8 threads to perform the matrix-vector product,
which leads to a speedup of up to 4.13× compared to the sequential method (see the
figure 6a).

In the figure 7a, the method is directly tested with the Mooney-Rivlin material using
the implementation of the MJED [30] provided in SOFA, without any modification of
the code. The main difference with the co-rotational formulation lies in the fact that
the computation of the hyperelastic formulation is significantly slower, and thus the time
spent in the assembling and solving processes is smaller. Therefore, the benefits of the
CPU parallelization with 8 threads (CG CPU fast assembly) is balanced by the overhead
of assembling the matrix compared to the matrix-free version (CG CPU matrix-free).
However, the GPU-based internal parallelization of the assembling and solving process
provides a speedup between 1.31× and 2.05×. This represents the fastest method for
nonlinear materials available in SOFA because no specific GPU-based parallelization of the
MJED method is available. The method is also tested with the St Venant-Kirchhoff model
using the MJED implementation. Compared to the Mooney-Rivlin material, the model is
less complex so that the computation of the hyperelastic formulation is less costly. In the
figure 7b, the fast assembly method gains a speedup between 1.60× and 3.34× compared
to the matrix-free method, which is the fastest current implementation for the nonlinear
model in SOFA.



EFFICIENT PARALLELIZATION STRATEGY FOR REAL-TIME FE SIMULATIONS 17

CG CPU fast assembly CG GPU fast assembly CG CPU matrix-free CG GPU matrix-free

200 400 600 800 1,000

10

20

40

80

160

320

640

CG iterations

Run time (ms)

(a) Liver mesh (tetrahedron elements)

200 400 600 800 1,000

10

20

40

80

160

320

CG iterations

Run time (ms)

(b) Cloth mesh (Triangular elements)

100 200 300 400 500

10

20

40

80

160

320

640

1,280

CG iterations

Run time (ms)

(c) Cube mesh (hexahedron elements)

Fig. 6: Computation time of a single time step for different examples modeled with the
co-rotational formulation for various (fixed) number of CG iterations. The figures share
the same legend on the top. The details of different examples can be found in Table 3.
We note that the y axis is logarithmic in these figures.

7.3. Performances with the preconditioned CG solver. The performances of dif-
ferent sparse LDLT solvers (including both the lower and upper triangular systems) are
reported in the table 4. The proposed GPU-based parallelization relying on the nested
dissection method (GPU ND) introduced in section 5 is 20.3 − 24.0× faster than the
GPU-based implementation provided in NVIDIA’s CUSPARSE library. The main reasons
lie in the fact that the CUSPARSE method requires performing the analysis of the data
dependencies before actually solving the problem, and the parallelization strategies are op-
timal for much larger problems than the ones used in the context of real-time simulations.
Such speedup compared to the golden-standard implementation (CUSPARSE library) is
reported as maximally 5.8× in [35] and 19.5× in [38].

The method is also compared with the GPU-based implementation proposed in [14].



18 Z. ZENG AND H. COURTECUISSE

CG CPU fast assembly CG GPU fast assembly CG CPU matrix-free

200 400 600 800 1,000

20

40

60

80

100

120

140

160

180

200

CG iterations

Run time (ms)

(a) Mooney-Rivlin model

200 400 600 800 1,000

20

40

60

80

100

120

140

160

180

200

CG iterations

Run time (ms)

(b) St-Venant-Kichhoff model

Fig. 7: Computation time of a single simulation step with hyperelastic models implemented
in SOFA for various (fixed) number of CG iterations per time step. The figures share the
same legend on the top. The scenarios simulate a tetrahedron raptor mesh (see Table 3).

As reported in this previous work, the GPU-based LDLT solver is 3× slower than a
sequential CPU implementation, whereas the (GPU ND) provides a speedup of 1.4−2×,
enabling the possibility to solve the problem directly on the GPU.

Mesh Method LDL solver Lower Upper

Raptor 1

CUSPARSE 13.46 3.33 2.48
[14] GPU 3.63 1.88 1.66
CPU 1.13 0.52 0.58

GPU ND 0.56 0.29 0.24

Raptor 2

CUSPARSE 22.77 5.63 3.91
[14] GPU 6.36 3.18 2.78
CPU 1.97 0.90 1.04

GPU ND 1.12 0.60 0.49

Raptor 3

CUSPARSE 44.96 11.02 6.97
[14] GPU 10.07 5.33 4.71
CPU 3.94 1.77 2.14

GPU ND 2.15 1.07 1.05

Table 4: Computation time (in ms) of various STS solvers

The method is tested in complete simulations of deformable bodies with various con-
stitutive laws (see Table 5). The tests are conducted with the same mesh group of
raptors and solved with the asynchronous preconditioned CG. On average, the asynchro-
nous preconditioner is updated every 2 to 4 simulation steps, which lead between 5 to 20
iterations (#it) according to different cases. Therefore, the asynchronous preconditioner
already provides a significant speedup with respect to the standard GPU-based CG. With



EFFICIENT PARALLELIZATION STRATEGY FOR REAL-TIME FE SIMULATIONS 19

#it
Method

Raptor 1 Raptor 2 Raptor 3
Assembly CG Precond

C
or
ot

15

Fast Assembly CPU CPU 25.94 45.85 85.86
Fast Assembly GPU GPU 14.58 26.46 46.84
Matrix Free CPU CPU 43.18 65.65 118.33
Matrix Free GPU CPU 31.00 48.52 80.50

M
R

12
Fast Assembly CPU CPU 59.02 90.64 153.90
Fast Assembly GPU GPU 48.73 77.84 124.53
Matrix Free CPU CPU 56.76 89.76 152.11

S
V
K

8
Fast Assembly CPU CPU 23.16 37.96 67.03
Fast Assembly GPU GPU 16.60 26.46 42.86
Matrix Free CPU CPU 24.18 37.35 64.67

Table 5: Computation time (in ms) for various models: Corotational (Corot), Mooney-
Rivelin (MR) and St-Venant-Kichhoff (SVK).

the preconditioner, the matrix operations needed during the CG iterations are performed
either with the fast assembly method or with the matrix-free method , either on the CPU
or the GPU when available. The preconditioner is explicitly built using the fast assem-
bly method and applied on the CPU as done in [14] or on the GPU with the method
introduced in section 5.

The method fast assembly + CG GPU + preconditioner GPU is the fastest
method and provides a speedup of between 1.7× and 2.1× for the co-rotational model
compared to the solution proposed in [14]. An important advantage of the current solution
is that the preconditioned CG is applied entirely on the GPU, without any need for data
transfers or synchronizations between the CPU/GPU during the solving stage. In addition,
since the matrix is assembled every time step, no additional overhead is introduced when
the factorization needs to be recomputed.

As no GPU-based matrix-free method is implemented for hyperelastic models in SOFA,
the comparison is made with the CG performed on the CPU. Although the computation
cost of the hyperelastic formulation is significantly higher, the result of the proposed GPU
version also provides a speedup from 1.15× to 1.22× for the Mooney-Rivlin material.
For the St Venant-Kirchhoff material, where the model is more straightforward than the
Mooney-Rivlin material, this speedup is raised from 1.41× to 1.51×.

7.4. Contact and interactions. The fast assembly method is applied in various
simulations with interactions such as simulating an object falling on rigid planes and
needle insertion in soft bodies. Interactions are based on Lagrange multipliers. The
compliance matrix W is built using the asynchronous preconditioner, and constraints are
solved using the GPU-based solver introduced in [14]. However, these simulations still
benefit from the fast assembly method for the free motion and motion correction.

According to different scenarios, the speedup for the whole simulation depends on
the ratio between the computation time for the constraint resolution and the rest of the
simulation. For example, the simulation of the colliding deformable liver (see Figure 8a)
involves 246 constraints per step on average. The constraint resolution stage takes 56.7%
of the all computation time of a single time step while the free motion represents only
22.5%.

Although the benefits of the fast assembly method are provided only when the fill



20 Z. ZENG AND H. COURTECUISSE

(a) Liver collision (b) Needle insertion (cube) (c) Needle insertion in multi-
physics simulation.

Fig. 8: Simulation including contacts and interactions.

ordering of the matrix remains constant, complex interaction can still be simulated. Figure
8b shows a complex needle insertion in a soft body with complex interaction involving
friction. Lagrangian multipliers are dynamically added to constrain the relative displace-
ment of the needle and the cube when the needle penetrates the soft structure. Despite
the dynamic nature of the scene, the computation of the mapping is only performed at
the initial step. The needle insertion test into human organs is simulated in a heteroge-
neous scenario where the liver presents a co-rotational model while the skin covering the
liver is modeled with Mooney-Rivlin material (see 8c). The diaphragm and the intestine
are modeled with hexahedral elements, whereas the liver and the skin are composed of
tetrahedra. Therefore, the method proves its compatibility with the contact problem and
significant flexibility to different elements and materials. For these scenarios with complex
interactions, similar speedup as shown previously in Table 5 is observed during the free
motion.

8. Conclusion. This paper introduces a framework for real-time finite element sim-
ulations. Besides its efficiency, our method remains generic for different constitutive
models. We propose a new matrix assembly strategy, which gains a significant speedup
when the topology structure remains invariant and keeps the building cost on the same
level as standard methods when the matrix pattern needs to be rebuilt. The fast matrix
assembly gives a possibility for parallelizations in the solving stage without any specific
parallel implementation of the constitutive model. Moreover, we replace the CPU-based
preconditioner with a new GPU-based implementation in the solving stage. This improve-
ment significantly reduces the data transfer between CPU/GPU and makes running a
fully GPU-based CG solver possible. Finally, we evaluate our matrix assembly and paral-
lelization strategy in various examples, including different element types and constitutive
models. Our approach is also proven to be compatible with contact problems. We hope
that our work will help researchers and engineers improve the performance of their works
on FE simulations.

REFERENCES

[1] J. Allard, H. Courtecuisse, and F. Faure, Implicit FEM and fluid coupling on GPU for
interactive multiphysics simulation, in ACM SIGGRAPH 2011 Talks, SIGGRAPH’11, New York,
New York, USA, 2011, ACM Press, p. 1, https://doi.org/10.1145/2037826.2037895, http:
//dl.acm.org/citation.cfm?doid=2037826.2037895.

[2] H. Anzt, E. Chow, and J. Dongarra, Iterative sparse triangular solves for precon-
ditioning, Lecture Notes in Computer Science (including subseries Lecture Notes in

https://doi.org/10.1145/2037826.2037895
http://dl.acm.org/citation.cfm?doid=2037826.2037895
http://dl.acm.org/citation.cfm?doid=2037826.2037895


EFFICIENT PARALLELIZATION STRATEGY FOR REAL-TIME FE SIMULATIONS 21

Artificial Intelligence and Lecture Notes in Bioinformatics), 9233 (2015), pp. 650–
661, https://doi.org/10.1007/978-3-662-48096-0 50/FIGURES/5, https://link.springer.com/
chapter/10.1007/978-3-662-48096-0 50.

[3] D. Baraff, Linear-time dynamics using Lagrange multipliers, in Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1996, ACM, 1996,
pp. 137–146, https://doi.org/10.1145/237170.237226.

[4] D. Baraff and A. Witkin, Large steps in cloth simulation, Proceedings of the 25th An-
nual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1998,
(1998), pp. 43–54, https://doi.org/10.1145/280814.280821, http://portal.acm.org/citation.
cfm?doid=280814.280821.

[5] J. Barbič and D. James, Real-time subspace integration for St.Venant-Kirchhoff deformable
models, ACM Transactions on Graphics, 24 (2005), pp. 982–990, https://doi.org/10.1145/
1073204.1073300.

[6] N. Bell and M. Garland, Implementing sparse matrix-vector multiplication on throughput-
oriented processors, in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC ’09, New York, New York, USA, 2009, ACM
Press, p. 1, https://doi.org/10.1145/1654059.1654078, http://dl.acm.org/citation.cfm?doid=
1654059.1654078.

[7] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder, Sparse matrix solvers on the GPU:
Conjugate gradients and multigrid, in ACM SIGGRAPH 2005 Courses, SIGGRAPH 2005, 2005,
https://doi.org/10.1145/1198555.1198781.

[8] N. BOURAGO and V. KUKUDZHANOV, A review of contact algorithms, Mechanics of solids,
40 (2005), pp. 35–71.

[9] A. M. Bradley, A hybrid multithreaded direct sparse triangular solver, 2016 Proceedings of the
Seventh SIAM Workshop on Combinatorial Scientific Computing, (2016), pp. 13–22, https:
//doi.org/10.1137/1.9781611974690.CH2, https://epubs.siam.org/terms-privacy.

[10] M. Bro-Nielsen and S. Cotin, Real-time volumetric deformable models for surgery simulation
using finite elements and condensation, Computer Graphics Forum, 15 (1996), pp. 57–66.

[11] L. Buatois, G. Caumon, and B. Lévy, Concurrent number cruncher: a GPU implementation
of a general sparse linear solver, International Journal of Parallel, Emergent and Distributed
Systems, 24 (2009), pp. 205–223, https://doi.org/10.1080/17445760802337010.

[12] O. Comas, Z. A. Taylor, J. Allard, S. Ourselin, S. Cotin, and J. Passenger, Efficient
Nonlinear FEM for Soft Tissue Modelling and Its GPU Implementation within the Open Source
Framework SOFA, in Biomedical Simulation, vol. 5104 LNCS, 2008, pp. 28–39, https://doi.
org/10.1007/978-3-540-70521-5 4, http://link.springer.com/10.1007/978-3-540-70521-5 4.

[13] H. Courtecuisse, J. Allard, C. Duriez, and S. Cotin, Asynchronous preconditioners for
efficient solving of non-linear deformations, in VRIPHYS 2010 - 7th Workshop on Virtual
Reality Interactions and Physical Simulations, nov 2010, pp. 59–68, https://doi.org/10.2312/
PE/vriphys/vriphys10/059-068.

[14] H. Courtecuisse, J. Allard, P. Kerfriden, S. P. Bordas, S. Cotin, and C. Duriez, Real-
time simulation of contact and cutting of heterogeneous soft-tissues, Medical Image Analysis,
18 (2014), pp. 394–410, https://doi.org/10.1016/j.media.2013.11.001.

[15] C. Duriez, C. Andriot, and A. Kheddar, Signorini’s contact model for deformable objects
in haptic simulations, IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), 4 (2004), pp. 3232–3237, https://doi.org/10.1109/IROS.2004.1389915, http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1389915.

[16] C. Duriez, F. Dubois, A. Kheddar, and C. Andriot, Realistic haptic rendering of interacting
deformable objects in virtual environments, IEEE Transactions on Visualization and Computer
Graphics, 12 (2006), pp. 36–47, https://doi.org/10.1109/TVCG.2006.13, http://arxiv.org/
abs/0804.0561, https://arxiv.org/abs/0804.0561.

[17] A. Dziekonski, P. Sypek, A. Lamecki, and M. Mrozowski, Finite element matrix generation
on a GPU, in Progress in Electromagnetics Research, vol. 128, Electromagnetics Academy,
2012, pp. 249–265, https://doi.org/10.2528/PIER12040301.

[18] C. Felippa, A systematic approach to the element-independent corotational dynamics of
finite elements, Tech. Report January, College Of Engineeringuniversity Of Colorado, 2000,
http://www.colorado.edu/engineering/cas/Felippa.d/FelippaHome.d/Publications.d/Report.
CU-CAS-00-03.pdf.

[19] M. Fu, A. Kuntz, R. J. Webster, and R. Alterovitz, Safe Motion Planning for Steerable
Needles Using Cost Maps Automatically Extracted from Pulmonary Images, IEEE International
Conference on Intelligent Robots and Systems, (2018), pp. 4942–4949, https://doi.org/10.
1109/IROS.2018.8593407.

[20] A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM Journal on Numerical

https://doi.org/10.1007/978-3-662-48096-0_50/FIGURES/5
https://link.springer.com/chapter/10.1007/978-3-662-48096-0_50
https://link.springer.com/chapter/10.1007/978-3-662-48096-0_50
https://doi.org/10.1145/237170.237226
https://doi.org/10.1145/280814.280821
http://portal.acm.org/citation.cfm?doid=280814.280821
http://portal.acm.org/citation.cfm?doid=280814.280821
https://doi.org/10.1145/1073204.1073300
https://doi.org/10.1145/1073204.1073300
https://doi.org/10.1145/1654059.1654078
http://dl.acm.org/citation.cfm?doid=1654059.1654078
http://dl.acm.org/citation.cfm?doid=1654059.1654078
https://doi.org/10.1145/1198555.1198781
https://doi.org/10.1137/1.9781611974690.CH2
https://doi.org/10.1137/1.9781611974690.CH2
https://epubs.siam.org/terms-privacy
https://doi.org/10.1080/17445760802337010
https://doi.org/10.1007/978-3-540-70521-5_4
https://doi.org/10.1007/978-3-540-70521-5_4
http://link.springer.com/10.1007/978-3-540-70521-5_4
https://doi.org/10.2312/PE/vriphys/vriphys10/059-068
https://doi.org/10.2312/PE/vriphys/vriphys10/059-068
https://doi.org/10.1016/j.media.2013.11.001
https://doi.org/10.1109/IROS.2004.1389915
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1389915
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1389915
https://doi.org/10.1109/TVCG.2006.13
http://arxiv.org/abs/0804.0561
http://arxiv.org/abs/0804.0561
https://arxiv.org/abs/0804.0561
https://doi.org/10.2528/PIER12040301
http://www.colorado.edu/engineering/cas/Felippa.d/FelippaHome.d/Publications.d/Report.CU-CAS-00-03.pdf
http://www.colorado.edu/engineering/cas/Felippa.d/FelippaHome.d/Publications.d/Report.CU-CAS-00-03.pdf
https://doi.org/10.1109/IROS.2018.8593407
https://doi.org/10.1109/IROS.2018.8593407


22 Z. ZENG AND H. COURTECUISSE

Analysis, 10 (1973), pp. 345–363, https://doi.org/10.1137/0710032.
[21] M. Hauth, O. Etzmuß, and W. Straßer, Analysis of numerical methods for the simulation

of deformable models, Visual Computer, 19 (2003), pp. 581–600, https://doi.org/10.1007/
s00371-003-0206-2.

[22] F. Hecht, Y. J. Lee, J. R. Shewchuk, and J. F. O’Brien, Updated sparse Cholesky factors
for corotational elastodynamics, ACM Transactions on Graphics, 31 (2012), pp. 1–13, https://
doi.org/10.1145/2231816.2231821, http://dl.acm.org/citation.cfm?doid=2231816.2231821.

[23] P. Herholz and M. Alexa, Factor once: Reusing Cholesky factorizations on sub-meshes, SIG-
GRAPH Asia 2018 Technical Papers, SIGGRAPH Asia 2018, 37 (2018), pp. 1–9, https:
//doi.org/10.1145/3272127.3275107, https://dl.acm.org/doi/10.1145/3272127.3275107.

[24] E. Hermann, B. Raffin, and F. Faure, Interactive Physical Simulation on Multicore Ar-
chitectures, in Time, 2009, pp. 1–9, https://doi.org/10.2312/EGPGV/EGPGV09/001-008,
http://tel.archives-ouvertes.fr/docs/00/36/01/31/PDF/egpgv09.pdf.

[25] R. R. Hiemstra, G. Sangalli, M. Tani, F. Calabrò, and T. J. Hughes, Fast formation and
assembly of finite element matrices with application to isogeometric linear elasticity, Computer
Methods in Applied Mechanics and Engineering, 355 (2019), pp. 234–260, https://doi.org/10.
1016/j.cma.2019.06.020.

[26] G. R. Joldes, A. Wittek, and K. Miller, Suite of finite element algorithms for accu-
rate computation of soft tissue deformation for surgical simulation, Medical Image Analysis,
13 (2009), pp. 912–919, https://doi.org/10.1016/j.media.2008.12.001, http://dx.doi.org/10.
1016/j.media.2008.12.001.

[27] G. Karypis and V. Kumar, METIS* A Software Package for Partitioning Unstruc-
tured Graphs , Partitioning Meshes , and Computing Fill-Reducing Orderings of
Sparse Matrices, Manual, (1998), pp. 1–44, https://www.researchgate.net/publication/
254424775 METIS-A Software Package for Partitioning Unstructured Graphs Partitioning
Meshes and Computing Fill-Reducing Ordering of Sparse Matrices.

[28] U. Kühnapfel, H. K. Çakmak, and H. Maaß, Endoscopic surgery training using virtual
reality and deformable tissue simulation, Computers and Graphics (Pergamon), 24 (2000),
pp. 671–682, https://doi.org/10.1016/S0097-8493(00)00070-4, https://linkinghub.elsevier.
com/retrieve/pii/S0097849300000704.

[29] R. Li and C. Zhang, Efficient parallel implementations of sparse triangular solves for gpu ar-
chitectures, Proceedings of the 2020 SIAM Conference on Parallel Processing for Scientific
Computing, (2020), pp. 106–117, https://doi.org/10.1137/1.9781611976137.10.

[30] S. Marchesseau, T. Heimann, S. Chatelin, R. Willinger, and H. Delingette, Mul-
tiplicative Jacobian Energy Decomposition Method for Fast Porous Visco-Hyperelastic
Soft Tissue Model, in Lecture notes in computer science, vol. 6361, Springer, 2010,
pp. 235–242, https://doi.org/10.1007/978-3-642-15705-9 29, http://link.springer.com/10.
1007/978-3-642-15705-9 29.

[31] J. Mart́ınez-Frutos, P. J. Mart́ınez-Castejón, and D. Herrero-Pérez, Fine-grained GPU
implementation of assembly-free iterative solver for finite element problems, Computers and
Structures, 157 (2015), pp. 9–18, https://doi.org/10.1016/j.compstruc.2015.05.010.

[32] F. Morin, H. Courtecuisse, I. Reinertsen, F. Le Lann, O. Palombi, Y. Payan, and
M. Chabanas, Brain-shift compensation using intraoperative ultrasound and constraint-based
biomechanical simulation, Medical Image Analysis, (2017), https://doi.org/10.1016/j.media.
2017.06.003.

[33] E. Müller, X. Guo, R. Scheichl, and S. Shi, Matrix-free gpu implementation of a pre-
conditioned conjugate gradient solver for anisotropic elliptic pdes, Computing and Visual-
ization in Science, 16 (2013), pp. 41–58, https://doi.org/10.1007/s00791-014-0223-x, http:
//arxiv.org/abs/1302.7193, https://arxiv.org/abs/1302.7193.

[34] E. G. Parker and J. F. O’Brien, Real-time deformation and fracture in a game environment, in
Computer Animation, Conference Proceedings, 2009, pp. 165–175, https://doi.org/10.1145/
1599470.1599492.

[35] A. Picciau, G. E. Inggs, J. Wickerson, E. C. Kerrigan, and G. A. Constantinides,
Balancing locality and concurrency: Solving sparse triangular systems on gpus, Proceedings
- 23rd IEEE International Conference on High Performance Computing, HiPC 2016, (2017),
pp. 183–192, https://doi.org/10.1109/HIPC.2016.030.

[36] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathe-
matics, society fo ed., 2003, https://doi.org/10.1137/1.9780898718003.

[37] S. Thomas, I. Yamazaki, L. Berger-Vergiat, B. Kelley, J. Hu, P. Mullowney, S. Raja-
manickam, and K. K. Katarzyna´swirydowicz, Two-stage gauss–seidel preconditioners
and smoothers for krylov solvers on a gpu cluster, (2021), https://doi.org/10.48550/arxiv.2104.
01196, https://arxiv.org/abs/2104.01196v2.

https://doi.org/10.1137/0710032
https://doi.org/10.1007/s00371-003-0206-2
https://doi.org/10.1007/s00371-003-0206-2
https://doi.org/10.1145/2231816.2231821
https://doi.org/10.1145/2231816.2231821
http://dl.acm.org/citation.cfm?doid=2231816.2231821
https://doi.org/10.1145/3272127.3275107
https://doi.org/10.1145/3272127.3275107
https://dl.acm.org/doi/10.1145/3272127.3275107
https://doi.org/10.2312/EGPGV/EGPGV09/001-008
http://tel.archives-ouvertes.fr/docs/00/36/01/31/PDF/egpgv09.pdf
https://doi.org/10.1016/j.cma.2019.06.020
https://doi.org/10.1016/j.cma.2019.06.020
https://doi.org/10.1016/j.media.2008.12.001
http://dx.doi.org/10.1016/j.media.2008.12.001
http://dx.doi.org/10.1016/j.media.2008.12.001
https://www.researchgate.net/publication/254424775_METIS-A_Software_Package_for_Partitioning_Unstructured_Graphs_Partitioning_Meshes_and_Computing_Fill-Reducing_Ordering_of_Sparse_Matrices
https://www.researchgate.net/publication/254424775_METIS-A_Software_Package_for_Partitioning_Unstructured_Graphs_Partitioning_Meshes_and_Computing_Fill-Reducing_Ordering_of_Sparse_Matrices
https://www.researchgate.net/publication/254424775_METIS-A_Software_Package_for_Partitioning_Unstructured_Graphs_Partitioning_Meshes_and_Computing_Fill-Reducing_Ordering_of_Sparse_Matrices
https://doi.org/10.1016/S0097-8493(00)00070-4
https://linkinghub.elsevier.com/retrieve/pii/S0097849300000704
https://linkinghub.elsevier.com/retrieve/pii/S0097849300000704
https://doi.org/10.1137/1.9781611976137.10
https://doi.org/10.1007/978-3-642-15705-9_29
http://link.springer.com/10.1007/978-3-642-15705-9_29
http://link.springer.com/10.1007/978-3-642-15705-9_29
https://doi.org/10.1016/j.compstruc.2015.05.010
https://doi.org/10.1016/j.media.2017.06.003
https://doi.org/10.1016/j.media.2017.06.003
https://doi.org/10.1007/s00791-014-0223-x
http://arxiv.org/abs/1302.7193
http://arxiv.org/abs/1302.7193
https://arxiv.org/abs/1302.7193
https://doi.org/10.1145/1599470.1599492
https://doi.org/10.1145/1599470.1599492
https://doi.org/10.1109/HIPC.2016.030
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.48550/arxiv.2104.01196
https://doi.org/10.48550/arxiv.2104.01196
https://arxiv.org/abs/2104.01196v2


EFFICIENT PARALLELIZATION STRATEGY FOR REAL-TIME FE SIMULATIONS 23

[38] I. Yamazaki, S. Rajamanickam, and N. Ellingwood, Performance portable supernode-based
sparse triangular solver for manycore architectures, ACM International Conference Proceeding
Series, (2020), https://doi.org/10.1145/3404397.3404428.

[39] R. Zayer, M. Steinberger, and H. P. Seidel, Sparse matrix assembly on the GPU through
multiplication patterns, in 2017 IEEE High Performance Extreme Computing Conference, HPEC
2017, 2017, https://doi.org/10.1109/HPEC.2017.8091057.

[40] J. Zhang, Y. Zhong, and C. Gu, Deformable models for surgical simulation: A survey, IEEE
Reviews in Biomedical Engineering, 11 (2018), pp. 143–164, https://doi.org/10.1109/RBME.
2017.2773521.

https://doi.org/10.1145/3404397.3404428
https://doi.org/10.1109/HPEC.2017.8091057
https://doi.org/10.1109/RBME.2017.2773521
https://doi.org/10.1109/RBME.2017.2773521

	Introduction
	Related works
	Time discretization
	Solving the set of nonlinear equations
	Matrix assembly and parallelized solver
	Preconditioner
	Implementation

	Background
	FE models and constitutive law
	Time integration and implicit scheme
	Asynchronous preconditioner

	Matrix assembly strategy
	Collect data
	Build matrix pattern

	System solution
	GPU-based Cholesky preconditioner
	Data Transfer between processors

	Contact and interactions
	Projective Constraints
	Lagrangian multipliers

	Results
	Matrix Assembly
	Performances with the CG solver
	Performances with the preconditioned CG solver
	Contact and interactions

	Conclusion
	References

