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In the context of structural dynamics, recent works by the authors showed that microperforations can be
used to mitigate vibration. Microperforated plates (MPP) have been shown to exhibit substantial added
damping arising from fluid-structure interactions and visco-thermal effects in the boundary layers of the
perforations during relative motion between the solid and the fluid contained in the perforations. The
added damping reaches a maximum for a characteristic frequency, depending only on the diameter of the
perforation. Choosing the diameter of the perforation so that the characteristic frequency coincides with
a given natural frequency of the plate reduces the contribution of the associated plate mode. However,
the MPP studied had a single set of perforations homogeneously distributed throughout the structure. In
this work, it is proposed to extend the added damping to several modes of the plate by using MPP with
multi-size perforations and an optimized spatial distribution of these perforations. As an extension of the
previous vibratory model of the authors, the dynamics of MPP with perforations of multiple sizes based
on a homogenization model is established. In addition, the effect of the spatial distribution of perforations
on the additional damping is captured by including a spatially dependent perforation ratio in the model.
Experimental measurements on MPP validate the proposed analytical models. The results show that
(i) MPP with multiple-size perforations feature a wider effective damping frequency band, and (ii) the
added damping is accentuated when the perforations are distributed in the zone of the antinodes of the
considered modes. Thus, by coupling the two effects, it is possible to achieve MPP that effectively reduce
the vibratory responses on several modes.
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1. Introduction

Microperforated plates (MPP) are usually employed as lightweight acoustic absorbers for noise reduction
and are regarded as an alternative to conventional porous materials or conventional acoustic resonators.
MPP can be used in many fields to reduce noise, such as meeting room [1, 14], acoustic coatings in
flow ducts [30] or nuclear engines and reactors [29] for example. These simple structures can be safe,
environment-friendly and can be made of different materials. They can be designed to be resistant to
harsh environments, translucent or biodegradable. MPP transform acoustic energy into heat by exchanges
in the viscous and thermal boundary layers near the fluid-solid interface of the microperforations.
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The acoustic properties of microperforated plates were investigated through various models, including
models based on the Kirchhoff equations [18] and equivalent fluid models such as the Johnson-Allard
approach [10, 3]. Vibrations of MPP were also considered with the aim of investigating their influence on
the acoustic properties of structures [27, 11, 7]1. Research was also conducted to improve and extend MPP’
acoustic absorption by using different partitioned cavity depths [26] or multi-size perforation [20, 15], i.e.,
an MPP whose perforations have various diameters. In fact, Kim and Yoon [15] proposed a multi-size
microperforation configuration to improve the sound absorption of MPP in a wide frequency band. An
equivalent electro-acoustic circuit method was used to explore the sound absorption properties of a
perforated panel with microperforated partitions [8, 9]. Qian et al. [25] also used an equivalent electro-
acoustic circuit method to model multi-size microperforations. They proposed a multi-population genetic
algorithm to optimize the design of multi-size MPP absorbers. Theoretical results showed that only a
multi-size MPP absorber with grouped perforations can improve the sound absorption capability of MPP.
Mosa et al. [21] explored the absorption coefficient of an inhomogeneous MPP with multi-cavity depths.
Results showed that introducing an inhomogeneous perforation improved the absorption capability of
an MPP absorber compared to a homogeneous one. Experimental and numerical studies have also been
performed in an acoustic MPP context with multi-size perforation diameters. Miasa et al. [20] explored
experimentally the sound absorption performance of a microperforated plate with multi-size perforation
diameters. The results showed that multi-size MPP absorbers can exhibit high sound absorption over
a wider frequency range than uniformly sized MPP. The authors also concluded that in the case of an
MPP with multiple perforation diameters, the benefits of each MPP with a single perforation size were
combined. Qian and Zhang [24] used finite element analysis to investigate the influence of an MPP with
multi-size perforation diameters on the normal incidence sound absorption performance of a parallel MPP
absorber. Some authors have also conducted research on the effect of perforation distribution on the sound
absorption of MPP. Temiz et al. [28] proposed to numerically explore the effect of perforation distribution
on sound absorption by assuming that perforations are discrete impedance patches, as proposed in [22, 19].
Although their works focused on MPP sound absorption, they observed that the distribution of perforations
on the MPP could have a significant effect on the viscous damping mechanism. Different diameters and
perforation arrangements were modeled using the finite element method and then through an experimental
study [23]. They observed that the perforation ratio and the perforation position have an influence on the
dynamics of the plate.

In addition to acoustics, the structural dynamics of MPP was also explored. A recent work by the
authors [13], and based on [16] and [3], has shown, both theoretically and experimentally, that energy
dissipation at the fluid-solid interface in the microperforations drives substantial added damping for
the structure. Parametric studies have demonstrated the existence of a single characteristic frequency,
which depends on the constant diameter of the perforation and the perforation ratio, at which the added
damping reaches a maximum. If this characteristic frequency coincides with one natural frequency of
a plate, the vibration in the associated mode will be mitigated by the added damping. However, the
added damping will be weaker in the other natural modes. Its impact will be all the more limited as their
frequencies are further from the characteristic frequency. An MPP with multiple perforation sizes, and
thus with multiple characteristic frequencies (one for each perforation diameter), should theoretically have
maximum added damping to its modes having a frequency that coincides with one of the characteristic
frequencies. Moreover, additional damping capabilities are due to viscous frictions and thermal exchanges
in the boundary layers occurring during the motion of the structure. It is therefore expected that more
perforations distributed over the areas where the structural displacement is maximum will induce a
magnified added damping. The present work proposes to improve and enhance the additional damping
presented by microperforations by using multi-size perforation diameters and a spatial distribution of
perforations.

In this paper, each section proposes to study a different type of MPP, as listed below:

Section 2 MPP with uniformly distributed perforations of the same diameters corresponding to
the reference MPP;
Section 3 MPP with uniformly distributed perforations of different diameters;
Section 4 MPP with non-uniformly distributed perforations of the same diameters;
Section 5 MPP with non-uniformly distributed perforations of different diameters.

For each section, a model and experimental validations are proposed. To this end, it is first proposed
to recall in Section 2 the governing equations of the dynamic of a thin MPP saturated by a lightweight
fluid, already detailed in [13]. The model used to capture the effect of multi-size perforation diameters in
Section 3 is based on a homogenization approach. In Section 4, the spatial distribution of perforations is

1For a more detailed literature review on the acoustics and vibroacoustics of uniform MPP, the reader is invited to refer
to the introduction in [13].
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considered by defining a spatial perforation ratio. Section 5 proposes to combine the two models presented
in Section 3 and Section 4. Finally, conclusions are given in Section 6.

2. MPP: Uniform distribution and single diameter

2.1. Vibration model

The previous work [13] by the authors developed a vibration model of a finite-size MPP of dimensions
Lx × Ly × h, as illustrated in Figure 1, obtained by identifying the MPP with a porous plate and using
an alternative form of the Biot’s theory [4, 16]. It is used again in the present work, but multi-size
and spatially distributed microperforations are considered in Sections 3 to 5. In this model, in-plane
displacements are ignored and only the normal displacement is accounted for. The MPP is regarded
as a homogeneous plate excited by an external load of the form fext(x, y, t). Following a low-frequency
assumption, the dynamic response of the MPP saturated by a light fluid is the solution of the two coupled
governing equations [13]

h(ρẅs(x, y, t) + ρfẅ(x, y, t)) +
(

D +
α2Mfh

3

12

)

∇4ws(x, y, t) = fext(x, y, t), (1a)
(

ρfẅs(x, y, t) +
ρfα∞

ϕ(0)
ẅ(x, y, t)

)

+ σ(0)ẇ(x, y, t) + αMf∇2ws(x, y, t) = 0, (1b)

where ∇ is the vector differential operator so that ∇2(·) = ∂2(·)
∂x2 + ∂2(·)

∂y2 and ∇4(·) = ∇2(·)2. The relative

fluid-solid motion is w(x, y, t) = ϕ(0)(wf(x, y, t)− ws(x, y, t)) with wf(x, y, t), the fluid displacement, and
ws(x, y, t), the solid displacement, and ϕ(0) is the perforation ratio. Note that there was a sign error
in [13] but this had no impact on the results presented. The equation system is corrected in this paper.
Equation (1a) models the elastic response of the equivalent non-perforated homogeneous solid plate and
Equation (1b), the relative fluid-solid motion in the perforations. The coefficient D in Equation (1a) is

fext(x, y, t)

z

x
Lx h

×y

Figure 1: System of coordinates for an equivalent solid plate excited by an external mechanical force along z-axis.

the bending stiffness defined as a function of the plate thickness h, Young’s modulus E and Poisson’s
ratio of the non-perforated structure ν. To capture the effect of microperforations on plate response,
Young’s modulus E should be adapted to account for the effect of perforations on plate rigidity [6, 13].
The bending stiffness therefore depends on ϕ(0) as follows:

D =
ECφh

3

12(1− ν2)
with Cφ =

(1− ϕ(0))2

1 + (2− 3ν)ϕ(0)
. (2)

For a vibrating MPP saturated by a lightweight fluid, the elastic modulus of the plate is much greater

than that of the fluid, that is, E ≫ Mf: accordingly, D + α2Mfh
3

12 ≈ D in Equation (1) and in the rest of

the paper. The density of fluid-solid mixture is captured by ρ = (1− ϕ(0))ρs + ϕ(0)ρf where ρs and ρf are
the solid and fluid densities, respectively. In Equation (1b), Mf corresponds to the elastic modulus of the
equivalent fluid. The dimensionless quantity α characterizes the elastic coupling between the equivalent
fluid and the solid. In the context of an MPP saturated by a lightweight fluid, we have αMf ≈ Kf [16]
where Kf is the bulk modulus of the fluid. With the above assumptions, Equation (1) becomes (temporal
and spatial dependencies are omitted)

h(ρs(1− ϕ(0))ẅs + ρfϕ
(0)ẅf) +D∇4ws = fext, (3a)

ρf((1− α∞)ẅs + α∞ẅf) + σ(0)ϕ(0)(ẇf − ẇs) +Kf∇2ws = 0. (3b)

Some porous parameters used in Biot’s theory (airflow resistivity σ(0) and tortuosity α∞) are, for an
MPP, functions of the perforation diameter d, perforation ratio ϕ(0), plate thickness h, and fluid in the
perforations. Thus, the airflow resistivity reads [3]

σ(0) =
ς

ϕ(0)
with ς =

32µf

d2
(4)
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where µf is the dynamic viscosity of the fluid. In order to consider the distortion of airflow in the
perforations and the fluid-solid interactions between the perforations, an empirical correction is taken into
account via the tortuosity as proposed elsewhere [3]. Consequently, the tortuosity is defined as:

α∞ = 1 +B(1− 1.14
√

ϕ(0)) with B =
0.48

h

√
πd2. (5)

Here, the term in parentheses contains the edge interaction between neighboring perforations. Note that
the analytical vibration model presented in this section was validated by experimental measurements on
MPP in [13].

2.2. Added damping

An MPP features interactions in viscous and thermal boundary layers associated with fluid-solid interac-
tions, known to induce a non-neglecting additional damping in the plate [13]. This phenomenon reaches a
maximum at the characteristic frequency

fc =
16µf

πα∞ρfd2
(6)

defined from Biot’s frequency for porous materials [4, 16]. In Equation (6), fc depends only on the
perforation diameter d and the fluid properties ρf and µf. The perforation diameter d can be adapted to
induce maximum added damping at a resonance frequency, that is, in a way where fc coincides with a
natural frequency of the plate. The additional damping provided by the microperforations is greatest at
the characteristic frequency, but also acts in a frequency range centered on fc.

Figure 2 represents the damping capacities of an aluminum MPP of dimension 490mm×570mm×1mm.
The MPP is excited by a normal point force Fext(xF , yF ) located at (xF , yF ) = (80, 70) mm on its surface.
The level of mobility

LY = 10 log
(
∣

∣

∣

ẇs(xR, yR)

Fext(xF , yF )

∣

∣

∣

)

(7)

predicted by the model for the MPP at point (xR, yR) = (61.25, 71.25) mm is compared to that of a
reference plate of the same dimensions without perforations. The perforation diameter of the MPP is
set to d ≡ d1 = 1.6mm in order to induce maximum added damping on the first MPP mode. The
perforation ratio is set to ϕ(0) = 10%. The reduction in vibration and the loss factor at each MPP
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Figure 2: Predicted mobility level of aluminum plates of dimensions 490mm× 570mm× 1mm: ( ) reference
non-perforated plate, ( ) MPP with a perforation diameter, denoted d1, set to induce maximum added damping
in the first MPP mode, and ( ) MPP with the same equivalent stiffness as the reference non-perforated plate
and with d ≡ d1 maximizing the added damping on the first MPP mode. Perforation parameters are d1 = 1.6mm
and ϕ(0) = 10%. Isotropic structural loss factor of aluminum ηs = 10−4 or 0.01% is also considered.

resonance frequency are listed in Table 1. The loss factor ηmn is related to the modal damping ratio ζmn

by the following expression ηmn = 2ζmn at the eigenfrequency. The modal damping ratio ζmn is obtained
for mode (m,n) after solving Equation (1) via a modal analysis as detailed in [13]. The structural loss
factor for aluminum is assumed to be frequency-independent and is set to ηs = 10−4 or 0.01%. The
mobility reduction ∆Ymn is determined by the difference in mobility level between the MPP and the

4



(m,n) ηmn(%) ∆Ymn (dB)

(1, 1) 1.06 38
(1, 2) 0.35 30
(2, 1) 0.25 27
(2, 2) 0.12 21

Table 1: Modal loss factor ηmn and mobility reduction ∆Ymn for mode (m,n) of a simply supported MPP whose
mobility is indicated in Figure 2. Loss factor of aluminum is set to a constant value of ηs = 0.01%.

reference plate in mode (m,n). For the MPP, the shift towards low frequencies of the modes is due to the
reduction of the Young’s modulus via Cφ in Equation (2). The perforations increase the loss factor and
therefore the added damping relative to the reference plate by a factor of 106 in the first mode, 35 in the
second mode, 25 in the third mode and 12 in the fourth mode.

In Figure 2, an additional comparison is made, where the MPP keeps the same specific stiffness as the
reference plate. Here, the specific rigidity is the ratio between the rigidity and the surface mass (D/ρh).
This comparison aims to confirm that the increase in damping is indeed due to the losses added by the
perforations and not to the reduction in the rigidity of the plate.

3. MPP: Uniform distribution and multiple diameters

3.1. Homogenization model

In this section, an MPP with N groups of perforations is considered. All perforations in a same group
have the same diameter dk with k = 1, 2, · · · , N . Each group of perforations is homogeneously distributed
over the MPP which can be considered homogeneous. To capture the dynamic response of an MPP
with multi-size perforation diameters, a homogenization approach is proposed. The principle is to model
the heterogeneous MPP structure as an equivalent continuous structure. In this context, 2N equivalent
plates, defined in the same mathematical spatial domain, are considered: N equivalent homogeneous solid
plates and N equivalent homogeneous fluid plates as shown in Figure 3 for an MPP with two groups of
perforations. Each homogeneous solid plate is related to its perforations diameter dk and its corresponding
perforation ratio ϕ

(0)
k .2 The fluid flow in each subdomain is independent of the other subdomains (no direct

⊕⊕≡

+

+

≡

≡

Subdomain 1○:

d1 and φ
(0)
1

Subdomain 2○:

d2 and φ
(0)
2(a) (b) (c)

equivalent

homogeneous

solid plate 1○

equivalent

homogeneous

solid plate 2○

equivalent

homogeneous

fluid plate 1○

equivalent

homogeneous

fluid plate 2○

Figure 3: MPP with two groups of perforations with two perforation diameters d1 and d2. The MPP shown in (a)
is decomposed into two equivalent MPP, each associated with a perforation diameter and ratio, as illustrated in
(b). The two MPP in (b) are considered as the sum of two pairs of equivalent homogeneous plates shown in (c):
an equivalent homogeneous fluid plate and an equivalent homogeneous solid plate. Each pair is related to the
corresponding dk and ϕ

(0)
k with k = 1 or 2.

coupling). The properties of each subdomain (perforation ratio, resistivity) are considered separately. A
perforation ratio ϕ

(0)
k is associated with each perforation diameter dk and the total perforation ratio is

ϕ
(0)
tot =

N
∑

k=1

ϕ
(0)
k . (8)

2Note that the equivalent solid plate of subdomain k is defined by its perforation ratio ϕ
(0)
k

. The definition of the global
equivalent solid plate is achieved by an electroacoustic analogy [20, 24]. According to this approach, Young’s modulus and
density of the overall structure are defined as a function of the overall perforation ratio given in Equation (8).
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The overall airflow resistivity of the equivalent plate with N perforation diameters takes the form [15, 9, 31]

1

σ
=

N
∑

k=1

1

σ
(0)
k

(9)

where σ
(0)
k is given by Equation (4) with d = dk. If α∞ ≈ 1, only the resistivity is modified by the addition

of perforations of different sizes. For the considered ϕ
(0)
tot, the tortuosity end correction has limited influence

on the results. However, to account for the size of multiple perforations in the empirical formulation of
the tortuosity of the length correction from [3] given in Equation (5), an average approach is proposed
here. The tortuosity is thus rewritten

α∞ = 1 +Btot(1− 1.14

√

ϕ
(0)
tot) with Btot =

1

ϕ
(0)
tot

N
∑

k=1

ϕ
(0)
k Bk (10)

where Bk defined in Equation (5) is applied to each subdomain k.
The bending stiffness is also modified in order to capture the effect of the multi-size microperforations

in the dynamic response of the plate. To this end, the correction coefficient Cφ in Equation (2) becomes a
function of ϕ

(0)
tot. Equations (8) to (10) are then inserted in Equation (1) to obtain the structural response

for an MPP with homogeneous distribution of multiple microperforations.
Multi-size microperforations are expected to increase the frequency range over which the added

damping is effective. As said in Section 2.2, the added damping reaches a maximum at a characteristic
frequency that is only a function of the diameter of the perforation, as defined in Equation (6). Assuming
that each added damping phenomenon is independent, the use of N groups of perforations of different
diameters induces N characteristic frequencies of maximum damping on the same MPP and thus increases
its efficiency. In Figure 4, we vary the thickness of the plate described in the previous section, in the
range h ∈ 0.5 − 3mm, in order to vary the resonance frequency of its first two modes. Consequently,
the loss factor ηi is obtained as a function of the resonance frequency fi in Figure 4(a) for i = 1 and
in Figure 4(b) for i = 2. Three configurations are considered in terms of d. In the first, the diameter
of the perforation d1 is chosen to induce a maximum added damping in the first natural mode. In the
second, the diameter of the perforation d2 is set to maximize the added damping in the second natural
mode. In the third configuration, a combination of d1 and d2 is considered. The corresponding perforation
ratios are ϕ

(0)
1 = 3% and ϕ

(0)
2 = 7%. For each configuration, the overall perforation ratio, defined from

Equation (8), is set to 10%. For mode i with i = 1, 2, an MPP with two groups of perforations provides
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Figure 4: Loss factor for two modes. (a) first mode. (b) second mode. ( ) d1 set to maximize added damping
on the first mode with ϕ(0) = 10%; ( ) d2 set to maximize the added damping on the second mode with
ϕ(0) = 10%; ( ) combination of d1 and d2 with associated perforation ratios ϕ

(0)
1 = 3% and ϕ

(0)
2 = 7% where

the total perforation ratio, defined from Equation (8), is ϕ
(0)
tot = ϕ

(0)
1 + ϕ

(0)
2 = 10%.

similar results to the case of an MPP with a single group of perforations, where the diameter is chosen
to maximize the added damping on the considered mode. The damping induced by the MPP with two
groups of perforations on mode i is always higher than the one induced on mode k, i ≠ k, by an MPP
with a single group of perforations. As a consequence, a multi-size perforation MPP does not decrease
(or slightly decreases) the added damping efficiency on mode i compared to an MPP where d is chosen
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to maximize damping on mode i only but allows for efficiency on multiple modes. The perforation ratio
of each subdomain also influences the added damping. In fact, mode i is all the more damped as the
perforation ratio of the subdomain k is large. It is therefore possible to adjust ϕ

(0)
k to maximize the added

damping on a mode or to maximize the effect on the N modes.
In order to maximize the added damping in the frequency range between the natural frequencies p and

q, the formula of the perforation diameter of each subdomain, denoted dp and dq respectively, is defined
as follows

dp =

√

16µf

πfpρfα∞

, (11)

where fp is the natural frequency of the pth mode. A similar expression is given for dq from fq. The
ω-dependent loss factors ηp(ω) and ηq(ω) can be calculated from Equation (48) of reference [13]. These
loss factors respectively show maximum added damping ηmax

p at fp and ηmax
q at fq. If one defines the

absolute difference |ηp(ω)− ηmax
p |/ηmax

p − |ηq(ω)− ηmax
q |/ηmax

q |, it can be shown that an overall maximum
added damping occurs at the geometric mean of fp and fq given by

fc =
√

fpfq. (12)

This overall maximum damping would typically be obtained when

ϕ(0)
p =

ϕ
(0)
tot

1 +
fq
fp

and ϕ(0)
q =

ϕ
(0)
tot

1 +
fp
fq

. (13)

Using the latter equations, with ϕtot = 10% and the graphs in Figure 4, one obtains ϕ
(0)
p ≈ 3% and

ϕ
(0)
q ≈ 7%. This gives the green curves in Figure 4 for the combination of the two sets of perforations.

These curves nearly reach the maximum loss curves for the single-perforation configuration for both
modes.

3.2. Experimental validation

In this section, the experimental validation of the previous approach is performed. The experimental setup
presented is used in Sections 4 and 5. The mechanical parameters of the MPP such as Young’s modulus
and structural loss factor are determined from the Oberst test bench developed by Mecanum Inc. and
presented in Figure 5(a). The measuring method follows the ASTM E756-05(2017) [12] standard. The
tested sample is clamped at x = 0 and free at x = Lx. It is excited by an external force of amplitude Fext

at (xF , yF ) = (Lx, Ly/2) and the sample vibratory response is measured by a magnetic sensor located at
point (xR, yR) = (R,Ly/2).

In order to validate the homogenized model of the multi-size MPP, the three samples presented in
Figure 5(b) are considered and noted MPP 1○, MPP 2○ and MPP 3○. They are made of steel and have a
length Lx = 130mm, a width Ly = 30mm, and a thickness h = 0.87mm. For MPP 1○, d ≡ d1 is set to
induce the maximum added damping around the first natural frequency f1. For MPP 2○, d ≡ d2 is chosen
to maximize the added damping around the second natural frequency f2. The perforation ratios associated
with diameters d1 and d2 are ϕ

(0)
1 = 10% and ϕ

(0)
2 = 2.3% respectively. MPP 3○ is a combination of

MPP 1○ and MPP 2○. The resulting MPP therefore has two groups of perforation with the two perforation
diameters d1 and d2 with corresponding perforation ratios ϕ

(0)
1 and ϕ

(0)
2 . Moreover, MPP 1○ and MPP 2○

have an equal number of perforations but d1 > d2 and thus ϕ
(0)
1 > ϕ

(0)
2 . MPP 3○ has therefore the double

number of perforations compared to MPP 1○ and MPP 2○. The perforation parameters of each MPP are
listed in Table 2.

ϕ
(0)
1 (%) d1 (mm) ϕ

(0)
2 (%) d2 (mm) ϕ

(0)
tot = ϕ

(0)
1 + ϕ

(0)
2 (%) (8)

MPP 1○ 10 1 · · 10
MPP 2○ · · 2.3 0.4 2.3
MPP 3○ 10 1 2.3 0.4 12.3

Table 2: Measured sample perforation parameters.

Plate mobility levels, as defined in the previous section, are plotted for the three MPP in Figure 6. The
figure compares the experimental measurements made on MPP 1○, MPP 2○, and MPP 3○. It also compares
the analytical prediction made on MPP 3○. As expected, the levels of mobility at the first resonance are
similar for MPP 1○ and MPP 3○. However, compared to MPP 1○, a reduction of about 3.8 dB is observed
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Figure 5: Test bench in (a) and MPP sample in (b) used in the experimental validation of the model presented in
Section 3.1. The zoom (c) corresponds to a focus on the perforations of (b).
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Figure 6: Mobilities for: ( ) measured MPP 1○ which acts as the reference MPP; ( ) measured MPP 2○; ( )
measured MPP 3○; ( ) analytical MPP 3○. Perforation parameters for MPP 1○ and MPP 3○ are given in Table 2.

on the second resonance for the multiple perforations MPP 3○. It can also be noticed that the analytical
model gives similar results as the experiments and which validates the model presented in Section 3.1.

From the plate mobility levels shown in Figure 6, the loss factors are measured using the half-power
bandwidth method at the first two resonances for the three MPP. The measured loss factors are summarized
in Table 3. For MPP 3○, the loss factor obtained from the theoretical homogenization model presented in
Section 3.1 is also provided. It can be seen that for MPP 3○, the global damping is maximized at both
resonances, unlike an MPP with single-size perforations, where the damping is only maximized locally on
one mode.

The previous results show that using an MPP with a multi-size perforations increases the frequency
band over which the added damping is effective. Moreover, it also increases the damping factor of the
first modes. Finally, the comparison between the measured and analytical results obtained for MPP 3○ in
Figure 6 and Table 3 allows one to validate the model proposed in Section 3.1.

4. MPP: Nonuniform distribution and single diameter

4.1. Perforation ratio gradient

The distribution of the perforations can also influence the added damping. For a given mode, the closer
the perforations are to the maximum displacement zones, the higher the added damping. In fact, the
damping added by the microperforations is due to the viscous friction in the boundary layers of the MPP.
This viscous friction is all the more important as the relative velocity between the fluid and the structure

8



Mode 1 Mode 2

f1 (Hz) η1[×10−3] f2 (Hz) η2[×10−3]

Measured MPP 1○ 44.2 ± 2.1 0.65 ± 0.002 250.7 ± 3.6 0.14 ± 0.005
Measured MPP 2○ 43.8 ± 0.3 0.34 ± 0.11 260.4 ± 1.9 0.24 ± 0.02
Measured MPP 3○ 43.2 ± 0.5 0.75 ± 0.08 244.2 ± 1.7 0.23 ± 0.002
Analytical MPP 3○ 41.4 0.81 240.3 0.20

Table 3: Values of experimental and theoretical loss factor with standard deviation for the three MPP presented
in Figure 9(a). Each loss factor is determined for the ith mode. Perforation parameters are given in Table 2 for
each MPP configurations.

is large. To enhance the added damping effect, it is therefore possible to concentrate the perforations on
the antinodes of the modes whose amplitude must be reduced. In this section, only a single perforation
diameter is considered, and the perforation ratio is written in terms of a distribution function to explore
this effect:

ϕ(x, y) = ϕ(0) Ih(x, y) (14)

where Ih(x, y) is a normalized inhomogeneity function and ϕ(0) the maximum value of the perforation
ratio obtained at max Ih(x, y) = 1. The perforation ratio in the previous equation is a local variable. Its
integration over the whole plate surface yields the global perforation ratio

ϕg =
ϕ(0)

LxLy

∫ Lx

0

∫ Ly

0

Ih(x, y)dydx. (15)

In Equation (3), D and α∞ depend on the perforation ratio and become a spatial function by considering
the perforation ratio gradient defined in Equation (14). The correction function in the bending stiffness of
Equation (2) is rewritten as

Cφ(x, y) =
(1− ϕ(x, y))2

1 + (2− 3ν)ϕ(x, y)
, (16)

Similarly, the corrected tortuosity given by Equation (5) now rewrites α∞(x, y) = 1 +B − 1.14B
√

ϕ(x, y).
Note that the perforation ratio also has an influence on ν [2]. However, for the perforation ratios considered,
ν is assumed to be constant [17, 2]. Equations (14) and (16) are inserted into Equation (3) to capture
the effect of the perforation ratio gradient in the structural dynamics of MPP. The system of equations
describing the autonomous response of a finite MPP saturated by a lightweight fluid in its perforations
then becomes

h(ρs(1− ϕ(x, y))ẅs + ρfϕ(x, y)ẅf) +D(x, y)∇4ws = 0, (17a)

ρf((1− α∞(x, y))ẅs + α∞(x, y)ẅf) + ς(ẇf − ẇs) +Kf∇2ws = 0. (17b)

Classical modal analysis is now performed in the same vein as in [13]. The equations must be space
semi-discretized and projected onto the non-perforated plate mode. The plate displacement is assumed to
be of the form

ws(x, y, t) =

∞
∑

m=1

∞
∑

n=1

ws
mn(t)Ψmn(x, y), (18)

where ws
mn(t) represent the participation of non-perforated plate eigenmode Ψmn(x, y) determined from

boundary conditions. A similar expression holds for the fluid. Equation (18) is rewritten for a finite number
of modes and rearranged in lexicographic order according to i. Each pair (m,n) ∈ N×N corresponds to a
single index i ∈ N. Equation (18) is therefore rewritten in terms of i such that

ws(x, y, t) =

Ndof
∑

i=1

ws
i(t)Ψi(x, y) (19)

where Ndof is the number of degrees-of-freedom (dof) in plate discretization. The corresponding vector
Ψ(x, y) is of size Ndof × 1 and stores the terms Ψi(x, y). After this reorganization, Equation (17) are
discretized and projected onto the plate and fluid eigenmode basis. To this end, the terms in Equation (17)
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are multiplied by Ψ⊤(x, y) and integrated on the plate surface S. The resulting system is written in the
matrix form

ż(t) = Dz(t), where D =

[

0 Id

−M−1K −M−1C

]

, z(t) =

(

x(t)
ẋ(t)

)

(20)

where Id is the identity matrix of rank Ndof/2 and

x(t) =

(

ws(t)
wf(t)

)

; M =

[

Ms1 Mf1

Ms2 Mf2

]

; C =

[

0 0

Cs2 Cf2

]

; K =

[

Ks1 0

Ks2 0

]

. (21)

The displacement contributions of the solid are stored in ws and those of the fluid, in wf. Each matrix of
Equation (21) is written as follows:

Ms1 = hρs

∫∫

S

(1− ϕ(x, y))ΨΨ⊤dxdy, Ms2 = ρf

∫∫

S

(1− α∞(x, y))ΨΨ⊤dxdy,

Mf1 = hρf

∫∫

S

ϕ(x, y)ΨΨ⊤dxdy, Mf2 = ρf

∫∫

S

α∞(x, y)ΨΨ⊤dxdy,

Cs2 = −ς

∫∫

S

ΨΨ⊤dxdy, Cf2 = ς

∫∫

S

ΨΨ⊤dxdy,

Ks1 =

∫∫

S

D(x, y)∇4ΨΨ⊤dxdy Ks2 = Kf

∫∫

S

∇2ΨΨ⊤dxdy.

(22)

An analytical solution of the equation of motion is possible in the state space. Solutions for the ith
mode take the form of eigenvalues λi = βi ± jγi where βi = −ζi/ωi is the damping term involved into
the exponential decrease of the mode due to viscous friction and ζi is the modal damping ratio. The
imaginary part γi = ωi

√

1− ζ2i corresponds to the natural frequency, where ωi is the undamped angular
frequency. The loss factor is related to ζi by ηi = 2ζi.

In order to explore the influence of the spatial distribution of the perforation on the added damping3,
the loss factor of the first mode η1 is plotted as a function of the global perforation ratio in Figure 7.
In this figure, three spatial distributions are considered. The first configuration consists in perforations
homogeneously distributed on the MPP. It corresponds to the reference MPP, i.e. Ih(x, y) = 1. In the
second configuration, the perforations are distributed according to the shape of the first plate mode
without perforation thus Ih(x, y) = sin(πx/Lx) sin(πy/Ly). The normalized inhomogeneity function is
equal to 1 at the maximum plate deflection. The spatial perforation ratio is defined via Equation (14).
Finally, the third configuration consists in perforations distributed according to the step function

Ih(x, y) = Π(x, y) =

{

1 if 1
4 ≤ x

Lx

≤ 3
4 and 1

4 ≤ y
Ly

≤ 3
4 ,

0 else.
(23)

As mentioned previously, the additional damping exhibited by MPP is closely related to the viscous
friction in the boundary layers of MPP, which is more important the higher the relative velocity between
the fluid and the structure. Adapted from [5] for an MPP with inhomogeneous spatial distribution of
perforation under low frequency assumptions, the viscous friction force can be recast as

fv(x, y, t) =
32µfϕ(x, y)

d2
(ẇf(x, y, t)− ẇs(x, y, t)). (24)

The larger the velocity difference, the greater the friction force. From the discretization in Equation (19),
Equation (24) reads

fv(x, y, t) =
32µfϕ(x, y)

d2

Ndof
∑

i

Ψi(x, y)(ẇ
f
i(t)− ẇs

i(t)). (25)

For a given mode, maximizing Ψi(x, y) leads to maximizing the friction force and thus the additional
damping of the MPP. Values of x and y for which Ψi(x, y) reaches a maximum can be obtained depend
on the size of the plate and on the boundary conditions involved in defining the eigenfunction. For a
given d, the viscous force and, thus, the additional damping induced by the microperforations, is maximal

3Due to the distribution of perforations along the deformations of the first resonance mode, i.e. i = 1, only the added
damping presented by the first mode is taken into account in this section. The same considerations can be made for another
mode, i.e. i > 1.
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Figure 7: Loss factor for the first mode of a 570mm× 490mm× 1mm simply-supported aluminum MPP with
d = 1.4mm: ( ) uniform distribution with Ih(x, y) = 1; ( ) distribution along plate mode shape according x
with Ih(x, y) = sin(πx/Lx) sin(πy/Ly); ( ) distribution according to the rectangular function Ih(x, y) = Π(x, y)
defined in Equation (23).

for the ith mode when x = xmax is the solution of ∂xΨi(x, y) = 0 and when y = ymax is the solution
of ∂yΨi(x, y) = 0. The added damping increases with the perforation ratio. It is therefore possible to
increase the added damping by increasing the perforation ratio around the point (xmax, ymax). However,
the concentration of perforations on the zones of interest, i.e. presenting maximum deflection amplitudes,
will have a lower mechanical resistance, due to the modification of the Young’s modulus. In addition, the
more abrupt the change, the greater the stress concentrations at the point of failure, which reduces the
mechanical strength of the structure.

Moreover, the spatial distribution of the perforation has an influence on the Young modulus of the
structural part and thus on the MPP stiffness. For the first MPP mode of the three MPP represented in
Figure 7, the MPP stiffness K11

s1 , where exponent 11 corresponds to the term’s position in the stiffness
matrix, given in Equation (22), is plotted versus ϕg in Figure 8. For the same ϕg, the plate stiffness
decreases significantly when the concentration of perforations is shifted to the maximum deflection area of
the plate.
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Figure 8: Equivalent solid plate stiffness K11
s1 for the first mode of a 570mm× 490mm× 1mm simply-supported

aluminum MPP with d = 1.4mm as a function of the global perforation ratio ϕg for three different spatial
perforation distributions: ( ) uniform distribution with Ih(x, y) = 1; ( ) distribution along plate mode
shape according x with Ih(x, y) = sin(πx/Lx) sin(πy/Ly); ( ) distribution according to the rectangular function
Ih(x, y) = Π(x, y) defined in Equation (23).

4.2. Experimental validation

In this section, the experimental validation is performed on the Oberst test bench detailed in Section 3.2.
The tested MPP samples are presented in Figure 9(a) and measure 131mm× 30.7mm× 1.08mm. The
overall perforation ratio and the diameter of the perforations are constant for the three plates and fixed at
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ϕg = 10% and d = 1mm, respectively. For MPP 4○ the perforations are homogeneously distributed over
the structure. In this validation section, MPP 4○ acts as the reference MPP. For MPP 5○, the perforation
ratio is chosen as a linear function of x with a maximum at x = Lx (maximum plate deflection for the
first mode) such that ϕ(x) = ϕ(0)x/Lx with ϕ(0) = 20%. For MPP 6○, the perforation ratio is defined by

ϕ(x) = ϕ(0)Π(x) with Π(x)

{

1 if x
Lx

≥ 1
2 ,

0 else.
(26)

where ϕ(0) = 20%. All perforation parameters and Ih(x) homogeneity functions for the three MPP of
Figure 9(a) previously presented are reported in Figure 9(b). The experimental results are presented in
Figure 10 and Table 4.

4

5

6

(a)

ϕ(0) (%)(15) Ih(x) (%)

MPP 4○ 10 1

MPP 5○ 20
x

Lx

MPP 6○ 20 Π(x) defined in Equation (26)

(b)

Figure 9: Tested MPP samples with various space-dependent distributions of the perforation ratio. (a) — MPP 4○
homogeneous distribution: reference MPP, MPP 5○ linear distribution, MPP 6○ concentrated distribution located
at the maximum of the deflection amplitude. (b) — Perforation parameters and homogeneity function Ih(x) for
the three MPP presented in Figure 9(a). Perforation diameter is set to d = 1mm in order to induce maximum
damping around the first mode (i.e. i = 1) and global perforation ratio ϕg = 10% identical for all three MPP.

In Figure 10, the plate mobilities for the first mode of MPP 5○ and MPP 6○ are compared to those
obtained for the reference MPP 4○ and non-perforated plate. On the one hand, an amplitude reduction of
about 8 dB is observed with MPP 5○ and MPP 6○ compared to the case of the non-perforated plate. On the
other hand, the amplitude reduction between MPP with spatial distribution (MPP 5○ and MPP 6○) and
the reference MPP 4○ is about 3 dB. The resonance frequency is shifted due to the reduction in stiffness,
which is successively higher for MPP 6○, MPP 5○ and MPP 4○. Finally, the good comparisons between
the measurements and theoretical predictions shown in Figure 10, for MPP 5○ and MPP 6○, validate the
analytical model presented in Section 4.1.

From the mobilities measured, the loss factor is calculated at the first mode i = 1. The results are
given in Table 4 for the studied MPP and reference non-perforated plate. In addition, the analytical
model of Section 4.1 was also considered for calculating the loss factor of the first mode for the three MPP.
One can observe that the analytical values agree well with the measurements. Also, for the same overall
perforation ratio, distributing the perforations over the maximum deflection areas of the MPP increases
the added damping by 62% over the reference MPP 4○ and 133% over the non-perforated plate.

To conclude this section, we have used an MPP whose microperforations are distributed along the
vibrational antinodes of the modes we wish to damp. The proposed analytical model is validated by
experimental measurements and shows that an MPP with distributed perforations maximizes the added
damping compared to a uniform MPP. This is because the added damping is linked to the dissipation
induced in the boundary layers that support the motion. The greater the deflection of the plate, the more
viscous friction is present, thus increasing damping. To achieve damping in a given mode, it is therefore
advisable to distribute the perforations over its vibratory antinodes. However, a large concentration of
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Figure 10: Theoretical and experimental mobilities around mode 1 of (a) MPP 5○ and (b) MPP 6○. Comparisons
between ( ) measured and ( ) theoretical. In (a) and (b), the measured mobilities of the reference MPP 4○
( ) and non-perforated plate ( ) are also provided. MPP perforation parameters are given in Figure 9(b).

Measured Analytical

f1 (Hz) η1[×10−3] f1 (Hz) η1[×10−3]

Reference non-perforated plate 1○ 47.9 ± 0.36 0.9 ± 0.073 · ·
MPP 4○ 48.1 ± 0.12 1.3 ± 0.075 47.2 1.2
MPP 5○ 48.4 ± 0.50 1.7 ± 0.190 46.5 1.6
MPP 6○ 48.0 ± 1.97 2.1 ± 0.079 45.8 2.0

Table 4: Measured with standard deviation and analytical frequencies of the first mode plate and corresponding
loss factors for the reference non-perforated plate 1○ and the three MPP presented in Figure 9(a) and perforation
parameters are given in Table 2. Theoretical results obtained though the model proposed in Section 4.1 provided
for i = 1.

perforations in a small area can generate a stress concentration that could reduce the mechanical strength
of the structure. This aspect must be carefully considered when designing the MPP.

5. MPP: Nonuniform distribution and multiple diameters

The aim of this section is to combine the two effects presented in Sections 3 and 4. Recall that Section 3
proposes to increase the frequency range of effective damping by employing multiple perforation diameters,
and Section 4 suggests increasing the maximum added damping by using a perforation distribution
according to modal deflections. It is therefore proposed to explore the damping capabilities of the MPP
with a spatial distribution of multi-sized perforations. The idea is to design an MPP that improves the
frequency range of the effective damping while maximizing the added damping on the frequencies of
interest, i.e. the resonance frequencies of the structure.

Here, both analytical models exposed in Sections 3 and 4 are combined to obtain the dynamic response
of an MPP involving space-dependent distributions of multi-size perforations. The MPP is assumed to

be equivalent to N independent MPP, each with its own perforation diameter dk, perforation ratio ϕ
(0)
k ,

and inhomogeneity function Πk, k = 1, 2, . . . , N . Based on a homogenization model similar to the one
presented in Section 3, the equations of motion generalize to (time and space dependencies are dropped
out for the purpose of readability)

h(ρs(1− ϕ(x, y))ẅs + ρfϕ(x, y)ẅf) +D(x, y)∇4ws = 0 (27a)

ρf((1− α∞(x, y))ẅs + α∞(x, y)ẅf) + σ(x, y)ϕ(x, y)(ẇf − ẇs) +Kf∇2ws = 0 (27b)

with

1

σ(x, y)
=

N
∑

k=1

1

σk(x, y)
. (28)

The spatial bending coefficient D(x, y) is expressed in terms of the global spatial perforation ratio ϕ(x, y)
defined through Equation (8) applied to ϕk(x, y). The global spatial resistivity σ(x, y) is defined from
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the resistivity of each equivalent plate derived from dk and ϕk(x, y). The global spatial tortuosity is
also expressed using Equation (10) applied to the spatial perforation ratio ϕk(x, k) and the perforation
diameter of the subdomain k.

The validation of the generalized model in Equation (27) is now exposed. To this aim, two plates of
dimension 195mm× 30.7mm× 1.17mm are considered: a non-perforated reference plate 2○ and MPP 7○
with multiple perforation diameters spatially distributed along a non-homogeneous pattern. To maximize
the damping added by the microperforations on modes 1 and 2, two diameters of perforations are chosen:
d1 = 1.3mm and d2 = 0.7mm, corresponding to characteristic frequencies fc1 ≈ 27Hz and fc2 ≈ 114Hz,
respectively. MPP 7○ which is presented in Figure 11 is decomposed into three equivalent plates with
respective perforation ratios and inhomogeneity functions defined as:

ϕ1(x) = ϕ
(0)
1 Π1(x) with Π1(x) =

{

1 if x
Lx

≥ 0.695,

0 otherwise
and ϕ

(0)
1 = 33%, (29a)

ϕ2(x) = ϕ
(0)
2 Π2(x) with Π2(x) =

{

1 if x
Lx

≥ 0.8,

0 otherwise
and ϕ

(0)
2 = 11%, (29b)

ϕ3(x) = ϕ
(0)
3 Π3(x) with Π3(x) =

{

1 if 0.165 ≤ x
Lx

≤ 0.695,

0 otherwise
and ϕ

(0)
3 = 16%. (29c)

The ratio ϕ1(x) is associated with perforations of diameter, d1 while ϕ2(x) and ϕ3(x) are related to
perforations of diameter d2.

d2, φ
(0)
3

d1, φ
(0)
1

d1, φ
(0)
1

d2, φ
(0)
2

+

0 0.165 0.695 0.8 1 x
Lx

Figure 11: MPP 7○: spacial perforation distribution described in Equation (29).
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Figure 12: Plate mobility in dB with: ( ) measured MPP 7○ shown in Figure 11, ( ) measured reference
non-perforated plate 2○, ( ) measured reference MPP with d = d1 and ( ) theoretical MPP 7○. MPP 7○ is
considered as three equivalent MPP inhomogeneous spacial distribution of perforations defined in Equation (29).
Spacial distribution (29a) associated with d1 = 1.3mm while spacial distributions (29b) and (29c) are related to
d2 = 0.7mm. Loss factor and Young’s modulus used in the theoretical model are obtained experimentally from
measurements on the non-perforated plate.

The test bench described in Section 3.2 is used to obtain the MPP mobility. In Figure 12, the mobility
measured for MPP 7○ is compared to that of the non-perforated reference plate 2○ and the analytical
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Mode 1 Mode 2

f1 (Hz) η1[×10−3] f2 (Hz) η2[×10−3]

Measured reference non-perforated plate 2○ 33.41 0.63 147.7 0.15
Measured MPP 7○ 31.41 1.26 142.4 0.29
Analytical MPP 7○ 28.6 1.25 145.1 0.25

Table 5: Values of experimental and theoretical loss factor for the MPP 7○ presented in Figure 11. Each loss factor
is determined for the ith mode. Perforation are described in Equation (29).

mobility calculated for the MPP. Table 5 summarizes the main comparison data. On the one hand, the
measured results show a magnitude reduction of approximately 12 dB for the first resonance frequency,
while the magnitude reduction is approximately 10 dB for the second resonance frequency. On the other
hand, the loss factor is nearly doubled at both resonances in the case of MPP 7○ compared to the case of
the non-perforated plate. Finally, the predicted theoretical results for MPP 7○ are in close agreement with
the measurements for MPP 7○.

These results seem to show that the implementation of multi-size microperforations combined with
inhomogeneous spatial distributions of perforations has two advantages: (1) depending on the diameters
chosen, the added damping is effective over a wider frequency band compared to a plate with a single
set of perforations; (2) the well-chosen distribution of the perforations over certain areas of interest also
maximizes the added damping.

6. Conclusion

This article extends the theoretical model of reference [13] to study the added damping effect exhibited by
microperforated plates (MPP) embedding: (i) multi-size perforation diameters; (ii) spatial distributions
of perforation, and (iii) a combination of (i) and (ii). For this purpose, a homogenization approach was
proposed in the context of MPP with multi-size perforations. Then, to consider an MPP with a spatial
distribution of microperforations, the perforation ratio was introduced as a space-dependent function.
Finally, these two models were combined. Experimental measurements were performed to validate the
analytical models. The results provide evidence that:

(i) MPP with multi-size perforations can broaden the frequency band of the effective added damping.
When the perforation diameters are chosen so that each characteristic frequency coincides with a resonance
frequency of the MPP, the frequency band of the effective damping is extended.

(ii) MPP with spatial distribution of perforations can maximize the added damping on a given mode.
Indeed, the distribution of perforations around the antinodes of the considered mode maximizes the added
damping compared to a homogeneous MPP.

(iii) The damping effects of the multi-size perforations and the spatial distribution of perforations can
be cumulated. The combination of multiple perforation sizes with inhomogeneous spatial distribution
of perforations had the two main advantages. The first is to expand the range of frequencies in which
the additional damping is effective. The second is to optimize the amount of added damping across a
carefully chosen set of frequencies.

In practice, the perforations could be distributed around the vibration antinodes of the plate modeshapes
that need to be dampened.
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Supplementary material

Python scripts used to perform the modal analysis presented in this article are available in commit
292f7864 of the [Git repository] Inhomogeneous Perforated Plate
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