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Damping performance of finite microperforated plates using multi-sized
and spacial distributions of perforations
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In the context of structural dynamics, recent works by the authors showed that microperforations can
be used to mitigate vibration. Microperforated plates (MPPs) have been shown to exhibit substantial
added damping stemming from fluid-structure interactions and visco-thermal effect mechanisms in the
boundary layers of the perforations during relative motion between the solid and the fluid contained
in the perforations. The added damping reaches a maximum for a characteristic frequency, depending
only on the perforation diameter. Choosing the perforation diameter so that the characteristic frequency
coincides with the natural frequency of the plate reduces the mode contribution of the plate. However,
the studied MPPs had a single set of perforations homogeneously distributed over the structure. It is
proposed in this work to broaden the frequency band and maximize the added damping using MPPs with
multi-sized perforation diameters and optimized spatial distribution of perforations. As an extension of
the previous vibratory model by the author, the dynamics of MPPs with multi-sized perforation based on
a homogenization model is established. In addition, the effect of the spacial distribution of perforations
on the additional damping is captured by including a spatially dependent perforation ratio in the model.
Experimental measurements on MPPs validate the proposed analytical models. The results show that: (i)
MPPs with multiple size perforations exhibit a broader effective damping frequency band; (ii) the added
damping enhances when the perforations are distributed in the area of the antinodes of the considered
mode. Thus, by coupling the two effects, it is possible to achieve MPPs that effectively reduce the
vibratory responses on several modes.
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1. Introduction

Microperforated plates (MPPs) are usually employed as lightweight acoustic absorbers for noise reduction
and are regarded as an alternative to conventional porous materials or conventional acoustic resonators.
MPPs can be used in many fields to reduce noise, such as meeting room [1, 13], acoustic coatings in
flow ducts [29] or nuclear engines and reactors [28] for example. These simple structures can be safe,
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Legrand), thomas.dupont@etsmtl.ca (Thomas Dupont), philippe.leclaire@u-bourgogne.fr (Philippe Leclaire)
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environment-friendly and can be made of different materials. They can be designed to be resistant to harsh
environments, translucent or biodegradable. MPPs transform acoustic energy into heat by exchanges in
the viscous and thermal boundary layers near the fluid-solid interface of the microperforations.

The acoustic properties of microperforated plates were investigated through various models, including
models based on the Kirchhoff equations [17] and equivalent fluid models such as the Johnson-Allard
approach [10, 3]. The vibrations of MPPs were also considered with the aim to investigate their influence on
the acoustic properties of structures [26, 11, 7]1. Research was also conducted to improve and extend MPPs’
acoustic absorption by using different partitioned cavity depths [25] or multi-sized perforation [19, 14], i.e.,
an MPP whose perforations have various diameters. Indeed, Kim and Yoon [14] proposed a configuration
of a multi-sized microperforation in order to improve MPP’s absorption and to achieve wideband frequency
absorption. An electro-acoustic equivalent circuit method was used to explore the sound absorption
properties of a perforated panel with microperforated partitions [8, 9]. Qian et al. [24] also used an
electro-acoustic equivalent circuit method to model a multi-sized microperforations. They proposed a
multi-population genetic algorithm to optimize the design of multi-size MPP absorbers. Theoretical results
showed that only a multi-sized MPP absorber with grouped perforations can improve the sound absorption
capability of MPPs. Mosa et al. [20] explored the absorption coefficient of an inhomogeneous MPP
with multi-cavity depths. Results showed that introducing an inhomogeneous perforation improved the
absorption capability of an MPP absorber compared to a homogeneous one. Experimental and numerical
studies have also been performed in an acoustic MPP context with multi-sized perforation diameters.
Miasa et al. [19] explored experimentally the sound absorption performance of a microperforated plate
with multi-sized perforation diameters. The results showed that multi-sized MPP absorbers can exhibit
high sound absorption over a wider frequency range than uniformly sized MPPs. The authors also
concluded that in the case of an MPP with multiple perforation diameters, the benefits of each MPP with
a single perforation size were combined. Qian and Zhang [23] used finite element analysis to investigate
the influence of an MPP with multi-sized perforation diameters on the normal absorption performance
of the parallel MPP absorber. Some authors have also conducted research on the effect of perforation
distribution on the sound absorption of MPPs. Temiz et al. [27] proposed to numerically explore the effect
of perforation distribution on sound absorption by assuming that perforations are discrete impedance
patches, as proposed in [21, 18]. Although their works focused on MPP sound absorption, they observed
that the distribution of perforations on the MPP could have a significant effect on the viscous damping
mechanism. Different diameters and perforation arrangements were modelled using the finite element
method and then via an experimental study [22]. They observed that the perforation ratio and the
perforation position have an influence on the dynamics of the plate.

In addition to the acoustics, the structural dynamics of MPP was also explored. A recent work by the
authors [12], and based on [15] and [3], has shown, both theoretically and experimentally, that energy
dissipation at the fluid-solid interface in the microperforations. Parametric studies have demonstrated the
existence of a single characteristic frequency, which depends on the constant diameter of the perforation and
the perforation ratio, at which the added damping reaches a maximum. Accordingly, if the characteristic
frequency coincides with the frequency of a plate mode, the mode will be mitigated by the added damping.
On the other hand, the added damping will be weaker on the other natural modes. Its impact will be
all the more limited as their frequencies are far from the characteristic frequency. An MPP with several
perforation sizes and therefore with several characteristic frequencies (one for each perforation diameter)
should theoretically have an optimized added damping on each of the modes having a frequency close
to one of the characteristic frequencies of the plate. Moreover, additional damping capabilities are due
to viscous frictions and thermal exchanges in the boundary layers occurring during the motion of the
structure. It is therefore expected that more perforations distributed over the areas where the structural
displacement is maximum will induce a magnified added damping. The present work proposes to improve
and enhance the additional damping presented by microperforations by using multi-sized perforation
diameters and a spacial distribution of perforations.

In this paper, each section proposes to study a different type of MPP, as listed below:

Section 2 MPP with uniform perforation corresponding to the reference MPP;
Section 3 MPP with multi-sized perforation diameters;
Section 4 MPP with spacial perforation distribution;
Section 5 MPP with multi-sized and spacial perforation distribution.

For each section, a model and experimental validations are proposed. To this end, it is firstly proposed
to recall in Section 2 the governing equations of the dynamic of a thin MPP saturated by a lightweight
fluid already detailed in [12]. The model used to capture the effect of multi-sized perforation diameters in

1For a more detailed literature review on the acoustics and vibroacoustics of uniform MPPs, the reader is invited to refer
to the introduction in [12].
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Section 3 is based on a homogenization approach. In Section 4, the spatial distribution of perforations is
considered by defining a spatial perforation ratio. Section 5 proposes to combine the two models presented
in Section 3 and Section 4. Finally, conclusions are given in Section 6.

2. MPP with homogeneous perforation

2.1. Vibration model

The previous work [12] by the authors developed a vibration model of a finite-size MPP of dimensions
Lx × Ly × h, as illustrated in Figure 1, obtained by identifying the MPP with a porous plate and using
an alternative form of the Biot’s theory [4, 15]. It is used again in the present work, but multi-sized and
spacially distributed microperforation are considered in Sections 3 to 5. Bending only is accounted for
and the MPP is regarded as a homogeneous plate excited by an external load of the form fext(x, y, t).

fext(x, y, t)

z

x
Lx h

×y

Figure 1: System of coordinates for an equivalent solid plate excited by an external mechanical force along z-axis.

Under a low-frequency assumption, the dynamic response of an MPP saturated by a lightweight fluid
is solution to the two coupled governing equations [12](

D +
α2Mfh

3

12

)
∇4ws(x, y, t) + h(ρẅs(x, y, t) + ρfẅ(x, y, t)) = fext(x, y, t), (1a)

αMf∇2ws(x, y, t) +
(
ρfẅs(x, y, t) +

ρfα∞
φ(0)

ẅ(x, y, t)
)

+ σ(0)ẇ(x, y, t) = 0, (1b)

where ∇ is the vector differential operator so that ∇2(·) = ∂2(·)
∂x2 + ∂2(·)

∂y2 and ∇4(·) = ∇2(·)2. The relative

fluid-solid motion is w(x, y, t) = φ(0)(wf(x, y, t)− ws(x, y, t)) with wf(x, y, t), the fluid displacement and
ws(x, y, t), the solid displacement and φ(0) is the perforation ratio. Note that there was a sign error
in [12] but this had no impact on the results presented. The equation system is corrected in this paper.
Equation (1a) models the elastic response of the equivalent non-perforated homogeneous solid plate and
Equation (1b), the relative fluid-solid motion in the perforations. The coefficient D is the bending stiffness
defined as a function of the plate thickness h, Young’s modulus E and Poisson’s ratio of the non-perforated
structure ν. In order to capture the effect of the microperforation on the response of the plate, Young’s
modulus E should be adapted to account for the effect of perforations on the plate rigidity [6, 12]. The
bending stiffness therefore depends on φ(0) as follows:

D =
Eh3

12(1− ν2)

(1− φ(0))2
1 + (2− 3ν)φ(0)

. (2)

For a vibrating MPP saturated by a lightweight fluid, the elastic modulus of the plate is much greater

than that of the fluid i.e., E �Mf: accordingly, D+ α2Mfh
3

12 ≈ D in Equation (1) and in the remainder of

the paper. The density of fluid-solid mixture is captured by ρ = (1− φ(0))ρs + φ(0)ρf where ρs and ρf are
the solid and fluid densities, respectively. In Equation (1b), Mf corresponds to the elastic modulus of the
equivalent fluid. The dimensionless quantity α characterizes the elastic coupling between the equivalent
fluid and the solid. In the context of an MPP saturated by a lightweight fluid, we have αMf ≈ Kf [15]
where Kf is the fluid bulk modulus. With the above assumptions, Equation (1) becomes (temporal and
spatial dependencies are omitted)

D∇4ws + h(ρs(1− φ(0))ẅs + ρfφ
(0)ẅf) = fext, (3a)

αMf∇2ws + ρf((1− α∞)ẅs + α∞ẅf) + σ(0)φ(0)(ẇf − ẇs) = 0. (3b)

Porous parameters used in Biot’s theory (resistivity σ(0), perforation ratio φ(0) and tortuosity α∞) are,
for an MPP, functions of d, the perforation diameter and the airflow resistivity reads [3]

σ(0) =
ς

φ(0)
with ς =

32µf

d2
(4)
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where µf is the dynamic viscosity of the fluid. In order to consider the distortion of the airflow in the
perforations and fluid-solid interactions between perforations, an empirical correction on [3]

α∞ = 1 +B(1− 1.14
√
φ(0)) with B =

0.48

h

√
πd2 (5)

is applied on both sides of the plate thickness [3]. In Equation (5), the term in parentheses contains the
edge interaction between neighboring perforations.

2.2. Added damping

MPP feature interactions in viscous and thermal boundary layers associated with fluid-solid interactions,
known to induce a non-neglecting additional damping in the plate [12]. This phenomenon reaches a
maximum at the characteristic frequency

fc =
32µf

2πα∞ρfd2
(6)

defined from Biot’s frequency for porous materials [4, 15]. In Equation (6), fc depends only on the
perforation diameter d and the fluid parameters ρf and µf. The perforation diameter d can be adapted to
induce maximum added damping at a resonance frequency, that is in a manner where fc coincides with a
natural frequency of the plate. The additional damping provided by the microperforations is largest at
the characteristic frequency, but also acts in a frequency range centred on fc.

Figure 2 depicts the damping capabilities of an MPP: the forced responses of aluminum simply-
supported MPP of dimension 490 mm× 570 mm× 1 mm and the corresponding non-perforated plate are
compared. The perforation diameter of the MPP is set to d = 1.6 mm in order to induce maximum added
damping on the first MPP mode. The perforation ratio is set to φ(0) = 10 %. The vibration attenuation
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Figure 2: Mobility for two aluminum plates of dimensions 490 mm×570 mm×1 mm: ( ) reference non-perforated
plate; ( ) MPP with perforation diameter set to induce a maximum added damping at the first MPP natural
frequency. Perforation parameters are d = 1.6 mm and φ(0) = 10 %. Velocity reference is ẇref

s = 1.3 × 10−6 m/s.
Isotropic structural factor of aluminum ηs = 10−4 is also considered.

and the loss factor for each MPP resonance frequency are listed in Table 1. The loss factor ηmn is related
to the modal damping factor ζmn by the following expression ηmn = 2ζmn at the eigenfrequency. The
modal damping factor ζmn is obtained for the m,n mode after solving Equation (1) via a modal analysis
as detailed in [12]. The vibration attenuation Ymn is determined by the absolute difference between the
MPP amplitude at the resonance frequency m,n and that obtained for the non-perforated plate. The shift

m,n ηmn[×10−3] ∆Ymn (dB)

1, 1 10.64 38
1, 2 3.46 30
2, 1 2.52 27
2, 2 1.20 21

Table 1: Modal damping factor ζmn and amplitude reduction ∆Ymn for mode mn of a simply supported MPP
whose mobility is indicated in Figure 2. Isotropic structural factor of aluminum ηs = 10−4 is also considered.

in resonance frequency is due to the reduction of the Young’s modulus and thus of the bending stiffness,
whose expression considering this reduction is given in Equation (2). Perforations increase the loss factor
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and therefore the added damping compared with the reference by approximately: 1064% for m,n = 1, 1;
173% for m,n = 1, 2; 126% for m,n = 2, 1 and 60% for m,n = 2, 2.

The analytical model presented in Section 2 was validated by experimental measurements on MPP in
[12].

3. MPP with multi-sized microperforations

3.1. Homogenization model
In this section, an MPP with N group of perforations different perforation diameters denoted dk with
k = 1, 2, · · · , N is considered. Each group of perforations is homogeneously distributed over the MPP
which can be considered homogeneous. In order to capture the dynamic response of an MPP with
multi-sized perforation diameters, a homogenization approach is proposed. The principle is to model the
MPP heterogeneous structure as an equivalent continuous structure. In this context, 2N equivalent plates,
defined in the same mathematical spacial domain, are considered: N equivalent homogeneous solid plates
and N equivalent homogeneous fluid plates as shown in Figure 3 for an MPP with two group of perforation
with different perforation diameters. Each homogeneous solid plate is related to its perforations diameter
dk and its corresponding perforation ratio φ

(0)
k

2. The fluid flow in each subdomain is independent of the

⊕⊕≡

+

+

≡

≡

Subdomain 1○:

d1 and φ
(0)
1

Subdomain 2○:

d2 and φ
(0)
2(a) (b) (c)

equivalent
homogeneous
solid plate 1○

equivalent
homogeneous
solid plate 2○

equivalent
homogeneous
fluid plate 1○

equivalent
homogeneous
fluid plate 2○

Figure 3: MPP with two groups of perforations with two perforation diameters d1 and d2. The MPP shown in (a)
is decomposed into two equivalent MPPs, each associated with a perforation diameter and ratio, as illustrated in
(b). The two MPPs in (b) are considered as the sum of two pairs of equivalent homogeneous plates shown in (b)
and (c): an equivalent homogeneous fluid plate and an equivalent homogeneous solid plate. Each pair is related to
the corresponding dk and φ

(0)
k with k = 1 or 2.

other subdomains (no direct coupling). The properties of each subdomain (perforation ratio, resistivity)
are considered separately. A perforation ratio φ

(0)
k is associated with each perforation diameter dk and

the total perforation ratio is

φ
(0)
tot =

N∑
k=1

φ
(0)
k . (7)

The overall airflow resistivity of the equivalent plate with N perforation diameters takes the form [14, 9, 30]

1

σ
=

N∑
k=1

1

σk
(8)

where σk are given by Equation (4) with d = dk. If α∞ ≈ 1, only the resistivity is modified by the
addition of perforations of different sizes. For the considered φ

(0)
tot, the tortuosity end correction has limited

influence on the results. However, in order to account for the size of multiple perforations in the empirical
formulation of the length correction tortuosity from [3] given in Equation (5), an average approach is
proposed here. The tortuosity is thus rewritten

α∞ = 1 +Btot(1− 1.14

√
φ
(0)
tot) with Btot =

1

φ
(0)
tot

N∑
k=1

φkBk (9)

2Note that the equivalent solid plate of subdomain k is defined by its perforation ratio φ
(0)
k . The definition of the global

equivalent solid plate is achieved by an electroacoustic analogy [19, 23]. According to this approach, the Young’s modulus
and density of the overall structure are defined as a function of the overall perforation ratio given in Equation (7).
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where Bk defined in Equation (5) are applied to each subdomain k.
The stiffness bending coefficient is also modified in order to capture the effect of the multi-sized

microperforation in the dynamic response of the plate. To this end, the stiffness bending correction in
Equation (2) becomes a function of φ

(0)
tot. Equations (7) to (9) are inserted in Equation (1) to obtain the

structural response for an MPP with multi-sized microperforations. Multi-sized microperforations increase
the frequency range over which the added damping is effective. As said in Section 2.2, the added damping
reaches a maximum at a characteristic frequency that is a function only of the perforation diameter, as
defined in Equation (6). Assuming that each added damping phenomenon is independent, the use of N
groups of perforations of different diameters induces N characteristic frequencies of maximum damping
on the same MPP and thus increases its efficiency. In Figure 4, the thickness of the plate is varied in
the range h ∈ 0.5 − 3 mm in order to affect the first and second modes of the plate. Accordingly, the
loss factor ηi is obtained as a function of the resonance frequency fi in Figure 4(a) for i = 1 and in
Figure 4(b) for i = 2. Three configurations are considered in terms of d. In the first one, the perforation
diameter d1 is chosen to induce a maximum added damping on the first natural mode. In the second one,
the perforation diameter d2 is set to maximize the added damping on the second natural mode. In the
third configuration, a combination of d1 and d2 is considered. The corresponding perforation ratios are
φ
(0)
1 = 3 % and φ

(0)
2 = 7 %. For each configuration, the overall perforation ratio defined from Equation (7)

is set to 10 %. For mode i with i = 1, 2, an MPP with a double set of perforations provides similar results
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Figure 4: Loss factor for two modes. (a) first mode. (b) second mode. ( ) d1 set to induce a maximal added
damping on the first mode with φ(0) = 10 %; ( ) d2 set to maximize the added damping on the second mode
with φ(0) = 10 %; ( ) combination of d1 and d2 with associated perforation ratios φ

(0)
1 = 3 % and φ

(0)
2 = 7 %

where the total perforation ration defined from Equation (7) is φ
(0)
tot = φ

(0)
1 + φ

(0)
2 = 10 %.

to the case of an MPP with a single set of perforations, where the diameter is chosen to maximize the
added damping on the considered mode. The damping induced by the MPP with two group of perforations
on mode i is always higher than the one induced on mode k, i 6= k, by an MPP with a single set of
perforations. As a consequence, a multi-sized perforation MPP does not decrease (or slightly decreases)
the added damping efficiency on mode i compared to an MPP where d is chosen to maximize damping on
mode i only but allows for efficiency on multiple modes. The perforation ratio of each subdomain also has
an influence on the added damping. In fact, mode i is all the more damped as the perforation ratio of the
subdomain k is large, with k ∈ N is the index of the subdomain. It is therefore possible to adjust φ

(0)
k to

maximize the added damping on a mode or to maximize the effect on the N modes.
In order to maximize the added damping in the frequency range between the natural frequencies p

and q, the formulation of the perforation diameter of each subdomain, denoted dp and dq respectively, is
defined as follows

dp =

√
32µf

2πfpρfα∞
, (10)

where fp is the natural frequency for the pth mode. A similar expression is given for dq from fq. The
ω-dependent loss factor ηp(ω) defined by Equation (48) in [12] and the maximum added damping ηmax

p

reached at fp is calculated. The index p is used for readability reasons, the same is carried out for the index
q. The resulting ω function is denoted δp(ω) for the p index and δq(ω) for the qth. The absolute difference
∆(ω) = |δp(ω)− δq(ω)| is plotted in terms of ω. It can be observed that ∆(ω) reaches a maximum at a

6



particular frequency, which is expressed as the geometric mean of fp and fq:

fc =
√
fpfq. (11)

From the value of fc given in Equations (6) and (11), an estimated σ and thus values for perforation ratio
of each subdomain can be estimated numerically.

3.2. Experimental validation

In this section, the experimental validation of the previous approach is performed. The experimental
set-up presented is used in Sections 4 and 5. The mechanical parameters of the MPP such as Young’s
modulus and structural loss factor are determined from the Oberst test bench developed by Mecanum
and presented in Figure 5(a). The tested sample is clamped at x = 0 and free at x = Lx. It is excited
by an external force of amplitude Fext at x = Lx and the sample vibratory response is measured by a
magnetic sensor located at point R. In order to validate the homogenized model of the multi-sized MPP,

Magnetic exciter
Magnetic sensor

R

(a)

1 2 3

(b)

(c)

Figure 5: Test bench in (a) and MPP sample in (b) used in the experimental validation of the model presented in
Section 3.1. The zoom (c) correspond to a focus on the perforations of (b).

the three samples presented in Figure 5(b) are considered and noted MPP 1○, MPP 2○ and MPP 3○. They
are made of steel and have a dimension of 130 mm × 30 mm × 0.87 mm. For MPP 1○, d ≡ d1 is set to
induce maximum added damping around the first natural frequency f1. For MPP 2○, d ≡ d2 is chosen
to maximize the added damping on the second natural frequency f2. The perforation ratios associated
with diameters d1 and d2 are φ

(0)
1 = 10 % and φ

(0)
2 = 2.3 % respectively. MPP 3○ is a combination of

MPP 1○ and MPP 2○. The resulting MPP therefore has two groups of perforation with the two perforation
diameters d1 and d2 with corresponding perforation ratios φ

(0)
1 and φ

(0)
2 . Moreover, MPP 1○ and MPP 2○

have an equal number of perforations but d1 > d2 and thus φ
(0)
1 > φ

(0)
2 . MPP 3○ has therefore the double

number of perforations than MPP 1○ and MPP 2○. The perforation parameters of each MPP are listed
in Table 2. The plate mobility, defined as the ratio of the plate velocity at point R to the external

φ
(0)
1 (%) d1 (mm) φ

(0)
2 (%) d2 (mm) φ

(0)
tot = φ

(0)
1 + φ

(0)
2 (%) (7)

MPP 1○ 10 1 · · 10
MPP 2○ · · 2.3 0.4 2.3
MPP 3○ 10 1 2.3 0.4 12.3

Table 2: Measured sample perforation parameters.

force applied to the system Fext, writes 20 log10 |ẇs/Fext|. It is plotted in Figure 6 for the experimental
measurements of MPP 1○ and MPP 3○ and for the analytical results of MPP 3○. As expected, Figure 6
exhibit a similar amplitude for the first mode between MPP 1○ and MPP 3○, but it is noted an amplitude
reduction of about 3.8 dB on the second resonance frequency between the reference MPP and the MPP
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with multiple perforation diameters, i.e., MPP 1○ and MPP 3○ respectively. It can also be noticed that
the model give similar results as the experiments and which validates the model presented in Section 3.1.
From the frequency response, which provides the plate mobility as a function of the forced frequency
as presented in Figure 6, the loss factor is derived for each considered mode. The loss factor measured
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Figure 6: Mobilities for: ( ) measured MPP 1○ which acts as the reference MPP; ( ) measured MPP 2○; ( )
measured MPP 3○; ( ) analytical MPP 3○. Perforation parameters for MPP 1○ and MPP 3○ are given in Table 2.

for i = 1, 2 is depicted in Table 3 for the three MPPs illustrated in Figure 5(b). For MPP 3○, the loss
factor obtained from the theoretical homogenization model presented in Section 3.1 is also provided.
Table 3 shows that for MPP 3○, the damping is maximized for i = 1 and i = 2 contrary to an MPP with

Mode 1 Mode 2

f1 (Hz) η1[×10−3] f2 (Hz) η2[×10−3]

Measured MPP 1○ 44.2 ± 2.1 0.65 ± 0.002 250.7 ± 3.6 0.14 ± 0.005
Measured MPP 2○ 43.8 ± 0.3 0.34 ± 0.11 260.4 ± 1.9 0.24 ± 0.02
Measured MPP 3○ 43.2 ± 0.5 0.75 ± 0.08 244.2 ± 1.7 0.23 ± 0.002
Analytical MPP 3○ 41.4 0.81 240.3 0.20

Table 3: Values of experimental and theoretical loss factor with standard deviation for the three MPPs presented
in Figure 9(a). Each loss factor is determined for the ith mode. Perforation parameters are given in Table 2 for
each MPP configurations.

single-sized perforations. The added damping of MPP 3○ is approximately equal to the sum of the added
damping of MPP 1○ and the added damping of MPP 2○. Using an MPP with a multi-sized perforations
increases the frequency band over which the added damping is effective, and can also increase the damping
factor of the first modes. Comparison between measured and analytical results obtained for MPP 3○ in
Figure 6 and Table 3 permits to validate the model proposed in Section 3.1.

4. MPP with spacial distribution of perforations

4.1. Perforation ratio gradient

The distribution of the perforations can also have an influence on the added damping. For a given mode,
the higher the perforation ratio over the maximum displacement, the higher the added damping. The
damping added by the microperforations is due to the viscous friction in the boundary layers of the MPP.
This viscous friction is all the more important as the relative velocity of the fluid structure is large. To
enhance the added damping effect, it is therefore possible to concentrate the perforations on the antinodes
of the modes whose amplitude must be reduced. In this section, only one size of perforation diameter is
considered, and the perforation ratio writes as a function of space in order to explore this effect:

φ(x, y) = φ(0) Ih(x, y) (12)

where Ih(x, y) is a normalized inhomogeneity function and φ(0) the maximum value of the perforation
ratio obtained at max Ih(x, y) = 1. The perforation ratio becomes a local variable, however the global
perforation ratio φg is defined by

φg =
φ(0)

LxLy

∫ Lx

0

∫ Ly

0

Ih(x, y)dydx. (13)
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In Equation (3), D and α∞ depend on the perforation ratio and become a spacial function by considering
the perforation ratio gradient defined in Equation (12). The bending stiffness is given by

D(x, y) =
Eh3

12(1− ν2)

(1− φ(x, y))2

1 + (2− 3ν)φ(x, y)
, (14)

defined from Equation (2) and α∞(x, y) = 1+B−1.14B
√
φ(x, y) where B is defined in Equation (5). Note

that the perforation ratio also has an influence on ν [2]. However, for the perforation ratios considered,
ν is assumed to be constant [16, 2]. Equations (12) and (14) are inserted into Equation (3) to capture
the effect of the perforation ratio gradient in the structural dynamics of MPP. The system of equations
describing the autonomous response of a finite MPP saturated by a lightweight fluid in its perforations
then becomes

D(x, y)∇4ws + h(ρs(1− φ(x, y))ẅs + ρfφ(x, y)ẅf) = 0, (15a)

αMf∇2ws + ρf((1− α∞(x, y))ẅs + α∞(x, y)ẅf) + ς(ẇf − ẇs) = 0. (15b)

In Equation (15), the time and space dependencies of ws and wf are dropped for readability purposes.
Classical modal analysis is now performed in the same vein as in [? ]. The equations must be space
semi-discretized and projected onto the non-perforated plate mode. The plate displacement is assumed to
be of the form

ws(x, y, t) =

∞∑
m=1

∞∑
n=1

ws
mn(t)Ψmn(x, y), (16)

where ws
mn(t) represent the participation of non-perforated plate eigenmode Ψmn(x, y) determined from

boundary conditions. A similar expression holds for the fluid. Equation (16) is rewritten for a finite number
of modes and rearranged in lexicographic order according to i. Each pair (m,n) ∈ N×N corresponds to a
single index i ∈ N. Equation (16) is therefore rewritten in terms of i such that

ws(x, y, t) =

Ndof∑
i=1

ws
i(t)Ψi(x, y) (17)

where Ndof is the number of degrees-of-freedom (dof) in plate discretization. The corresponding vector
Ψ(x, y) is of size Ndof × 1 and stores the terms Ψi(x, y). After this reorganization, Equation (15) are
discretized and projected onto the plate and fluid eigenmode basis. To this end, the terms in Equation (15)
are multiplied by Ψ>(x, y) and integrated on the plate surface S. The resulting system is written in the
matrix form

ż(t) = Dz(t), where D =

[
0 Id

−M−1K −M−1C

]
, z(t) =

(
x(t)
ẋ(t)

)
(18)

with

x(t) =

(
ws(t)
wf(t)

)
; M =

[
Ms1 Mf1

Ms2 Mf2

]
; C =

[
0 0

Cs2 Cf2

]
; K =

[
Ks1 0
Ks2 0

]
. (19)

The displacement contributions of the solid are stored in ws and those of the fluid, in wf. Each matrix of
Equation (19) is written as follows :

Ms1 = hρs

∫∫
S

(1− φ(x, y))ΨΨ>dxdy, Ms2 = ρf

∫∫
S

(1− α∞(x, y))ΨΨ>dxdy,

Mf1 = hρf

∫∫
S

φ(x, y)ΨΨ>dxdy, Mf2 = ρf

∫∫
S

α∞(x, y)ΨΨ>dxdy,

Cs2 = −ς
∫∫

S

ΨΨ>dxdy, Cf2 = ς

∫∫
S

ΨΨ>dxdy,

Ks1 =

∫∫
S

D(x, y)∇4ΨΨ>dxdy Ks2 = αMf

∫∫
S

∇2ΨΨ>dxdy.

(20)

An analytical solution of the equation of motion is possible in the state space. Solutions for the ith
mode take the form of eigenvalues λi = βi ± jγi where βi = −ζi/ωi is the damping term involved into
the exponential decrease of the mode due to viscous friction with ζi is the modal damping factor. The
imaginary part γi = ωi

√
1− ζ2i corresponds to the natural frequency, where ωi is the undamped frequency.

The loss factor is related to ζi by the following expression: ηi = 2ζi.
In order to explore the influence of the spacial distribution of the perforation on the added damping,

the loss factor of the first mode η1 is plotted as a function of the global perforation ratio in Figure 7.
Three spacial distributions are considered:

9
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Figure 7: Loss factor for the first mode of a 570 mm × 490 mm × 1 mm simply-supported aluminum MPP with
d = 1.4 mm: ( ) uniform distribution with Ih(x, y) = 1; ( ) distribution along plate mode shape according x
with Ih(x, y) = sin(πx/Lx); ( ) distribution according to the rectangular function Ih(x, y) = Π(x) defined in
Equation (21).

Configuration 4 The perforations are homogeneously distributed on the MPP and correspond to the
reference MPP, i.e. Ih(x, y) = 1.

Configuration 5 The perforations are distributed according to the shape of the first plate mode without
perforation thus Ih(x, y) = sin(πx/Lx). The normalized inhomogeneity function is equal to 1 at the
maximum plate deflection. The spacial perforation ratio is defined via Equation (12).

Configuration 6 The perforations are distributed according to the step function

Ih(x, y) = Π(x) =

{
1 if 1

4 ≤ x
Lx
≤ 3

4 ,

0 else.
(21)

As previously mentioned, the added damping exhibited by MPPs is closely related to the viscous friction
in the boundary layers of the MPPs, which is more important the higher the relative velocity of the fluid
structure. Adapted from [5] for an MPP with inhomogeneous spacial distribution of perforation under low
frequency assumptions, the viscous friction force can be recast as

fv(x, y, t) =
32µfφ(x, y)

d2
(ẇf(x, y, t)− ẇs(x, y, t)). (22)

The larger the velocity difference, the greater the friction force. From the discretization in Equation (17),
Equation (22) reads

fv(x, y, t) =
32µfφ(x, y)

d2

Ndof∑
i

Ψi(x, y)(ẇf
i(t)− ẇs

i(t)). (23)

For a given mode, maximizing Ψi(x, y) leads to maximizing the friction force and thus the additional
damping of the MPP. Values of x and y for which Ψi(x, y) reaches a maximum can be obtained depend
on the size of the plate and on the boundary conditions involved in defining the eigenfunction. For a
given d, the viscous force and, thus, the additional damping induced by the microperforations, is maximal
for the ith mode when x = xmax is the solution of ∂xΨi(x, y) = 0 and when y = ymax is the solution
of ∂yΨi(x, y) = 0. The added damping increases with the perforation ratio. It is therefore possible to
increase the added damping by increasing the perforation ratio around the point (xmax, ymax). However,
the concentration of perforations on the zones of interest, i.e. presenting maximum deflection amplitudes,
will have a lower mechanical resistance, due to the modification of the Young’s modulus. In addition, the
more abrupt the change, the greater the stress concentrations at the point of failure, which reduces the
mechanical strength of the structure.

Moreover, the spacial distribution of the perforation has an influence on the Young modulus of the
structural part and thus on the MPP stiffness. For the first MPP mode of the three MPP represented
in Figure 7, the space-dependent Young modulus E(x, y) given in Equation (14) is plotted versus φg in
Figure 8. For the same φg, E(x, y) decreases significantly when the concentration of perforations is shifted
to the maximum deflection area of the plate.
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Figure 8: Space-dependent Young’s modulus E(x, y) given in Equation (14) for the first mode of a 570 mm ×
490 mm× 1 mm simply-supported aluminum MPP with d = 1.4 mm as a function of the global perforation ratio φg

for three different spacial perforation distributions: ( ) uniform distribution with Ih(x, y) = 1; ( ) distribution
along plate mode shape according x with Ih(x, y) = sin(πx/Lx); ( ) distribution according to the rectangular
function Ih(x, y) = Π(x) defined in Equation (21).

4.2. Experimental validation

In this section, the experimental validation is performed on the Oberst test bench detailed in Section 3.2.
The tested MPP samples are presented in Figure 9(a) and measure 131 mm× 30.7 mm× 1.08 mm. The
overall perforation ratio and the diameter of the perforations are constant for the three plates and fixed at
φg = 10 % and d = 1 mm, respectively. For MPP 4○ the perforations are homogeneously distributed over
the structure. In this validation section, MPP 4○ acts as the MPP reference. For MPP 5○, the perforation
ratio is chosen as a linear function of x with a maximum x = Lx (maximum plate deflection for the first
mode) such that φ(x) = φ(0)x/Lx with φ(0) = 20 %. For MPP 6○, the perforation ratio is defined by

φ(x) = φ(0)Π(x) with Π(x)

{
1 if x

Lx
≥ 1

2 ,

0 else.
(24)

where φ(0) = 20 %. All perforation parameters and Ih(x) homogeneity functions for the three MPPs of
Figure 9(a) previously presented are reported in Figure 9(b). Experimental results are presented in
Figure 10 and Table 4. In Figure 10, the plate mobility for the first mode of MPP 5○ and MPP 6○ are
compared to that obtained for the MPP reference (MPP 4○) and the non-perforated plate reference 1○.
An amplitude reduction of about 10 dB is observed between the two MPPs with spatial distribution of
perforations (i.e., MPP 5○ and MPP 6○) and the non-perforated plate. The amplitude reduction between
MPPs with spacial distribution and the reference MPP is about 3 dB. The resonance frequency is shifted
due to the reduction in stiffness, which is greater for MPP 6○ than MPP 5○ and than the reference MPP 4○.

Comparisons between measurements and theories for MPP 5○ and MPP 6○ are given in Figure 10 and
validate the analytical model presented in Section 4.1. From the plate mobility in Figure 10, the loss
factor for each mode i, with i ≤ 5, is calculated. The results are given in Table 4 for the tested samples
and the reference non-perforated plate 1○. In addition, the Section 4.1 model was also considered for
calculating the loss factor of the first mode (i.e., i = 1) for the three MPPs. Experimental and theoretical
loss factor for the first mode and their corresponding resonance frequency are indicated in Table 4. For

Measured Analytical

f1 (Hz) η1[×10−3] f1 (Hz) η1[×10−3]

Reference non-perforated plate 1○ 47.9 ± 0.36 0.9 ± 0.073 · ·
MPP 4○ 48.1 ± 0.12 1.3 ± 0.075 47.2 1.2
MPP 5○ 48.4 ± 0.50 1.7 ± 0.190 46.5 1.6
MPP 6○ 48.0 ± 1.97 2.1 ± 0.079 45.8 2.0

Table 4: Measured with standard deviation and analytical frequencies of the first mode plate and corresponding
loss factors for the reference non-perforated plate 1○ and the three MPPs presented in Figure 9(a) and perforation
parameters are given in Table 2. Theoretical results obtained though the model proposed in Section 4.1 provided
for i = 1.
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Figure 9: Tested MPP samples with various space-dependent distributions of the perforation ratio. (a) — MPP 4○
homogeneous distribution: reference MPP, MPP 5○ linear distribution, MPP 6○ concentrated distribution located
at the maximum of the deflection amplitude. (b) — Perforation parameters and homogeneity function Ih(x) for
the three MPPs presented in Figure 9(a). Perforation diameter is set to d = 1 mm in order to induce maximum
damping around the first mode (i.e. i = 1) and global perforation ratio φg = 10 % identical for all three MPP.

the same overall perforation ratio, distributing the perforations over the maximum deflection areas of the
MPP can increase the added damping by 62 % over the reference MPP and 133 % over the non-perforated
plate. However, a large concentration of perforations in a small area generates a stress concentration
that reduces the mechanical strength of the structure. This aspect must be carefully considered when
designing the MPP. In this regard, it is possible in practice to patch the perforations on the vibration
bellies of the modes that one wishes to attenuate.

5. MPP with multi-sized perforations and spacial distribution of perforations

In this section, it is proposed to explore the damping capabilities of the MPP with a spatial distribution of
multi-size perforations; both presented in Sections 3 and 4. The idea is to design an MPP that improves
the frequency range of the effective damping while maximizing the added damping on the frequencies of
interest, i.e. the resonance frequencies of the structure. Both analytical models exposed in Sections 3
and 4 are combined to obtain the dynamic response of an MPP involving space-dependent distributions
of multi-sized perforations. The MPP is assumed to be equivalent to N independent MPPs, each with

its own perforation diameter dk, perforation ratio φ
(0)
k , and inhomogeneity function Πk, k = 1, 2, . . . , N .

Based on a homogenization model similar to the one presented in Section 3, the equations of motion
generalize to (time and space dependencies are dropped out for the purpose of readability)

D(x, y)∇4ws + h(ρs(1− φ(x, y))ẅs + ρfφ(x, y)ẅf) = 0 (25a)

αMf∇2ws + ρf((1− α∞(x, y))ẅs + α∞(x, y)ẅf) + σ(x, y)φ(x, y)(ẇf − ẇs) = 0 (25b)

with

1

σ(x, y)
=

N∑
k=1

1

σk(x, y)
. (26)

The spacial bending coefficient D(x, y) is expressed in terms of the overall perforation ratio φ(x, y)
defined through Equation (7) applied to φk(x, y). The global spacial resistivity σ(x, y) is defined from the
resistivity of each equivalent plate derived from dk and φk(x, y). The overall spacial tortuosity is also
expressed using Equation (9) applied to the spacial perforation ratio φk(x, k) and the perforation diameter
of the subdomain k. The validation of the generalized model in Equation (25) is now exposed. To this aim,
two plates of dimension 195 mm× 30.7 mm× 1.17 mm are considered: a non-perforated reference plate 2○
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Figure 10: Theoretical and experimental mobilities: MPP 5○ in (a) with: ( ) measured; ( ) theoretical, and
for MPP 6○ in (b) with: ( ) measured; ( ) theoretical. In (a) and (b) the reference MPP ( ) and the
reference non-perforated plate ( ) are provided. Mobilities of MPP with spatial distribution are compare to
the reference non-perforated plate 1○ and the reference MPP; i.e., MPP 4○ in Figure 9(a). MPP perforation
parameters are given in Figure 9(b).

and MPP 7○ with multiple perforation diameters spatially distributed along a non-homogeneous pattern.
In order to maximize the damping added by the microperforations on modes 1 and 2, two diameters of
perforations are chosen: d1 = 1.3 mm which corresponds to fc1 ≈ 27 Hz and d2 = 0.7 mm which refers to
fc2 ≈ 114 Hz. MPP 7○ which is presented in Figure 11 is decomposed into three equivalent plates with
respective perforation ratios and inhomogeneity functions defined below:

φ1(x) = φ
(0)
1 Π1(x) with Π1(x) =

{
1 if x

Lx
≥ 0.695,

0 otherwise
and φ

(0)
1 = 33 %, (27a)

φ2(x) = φ
(0)
2 Π2(x) with Π2(x) =

{
1 if x

Lx
≥ 0.8,

0 otherwise
and φ

(0)
2 = 11 %, (27b)

φ3(x) = φ
(0)
3 Π3(x) with Π3(x) =

{
1 if 0.165 ≤ x

Lx
≤ 0.695,

0 otherwise
and φ

(0)
3 = 16 %. (27c)

The ratio φ1(x) is associated with perforations of diameter, d1 while φ2(x) and φ3(x) are related to

d2, φ
(0)
3

d1, φ
(0)
1

d1, φ
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1
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Figure 11: MPP 7○: spacial perforation distribution described in Equation (27).

perforations of diameter d2. The test bench described in Section 3.2 is used to obtain the MPP mobility,
as shown in Figure 12. The mobility measured for the MPP is compared to that of the reference non-
perforated plate 2○ and the analytical mobility calculated for the MPP. Figure 12 exhibits a magnitude
reduction of about 12 dB on the first resonance frequency, while the magnitude reduction is about 10 dB
for the second resonance frequency. The loss factor increases by 98 % on the first resonance frequency and
by 93 % on the second one in the case of MPP 7○ compared to the non-perforated plate case. Altogether,
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Figure 12: Plate mobility in dB with: ( ) measured MPP 7○ shown in Figure 11, ( ) measured reference non-
perforated plate 2○ and ( ) theoretical MPP 7○. MPP 7○ is considered as three equivalent MPP inhomogeneous
spacial distribution of perforations defined in Equation (27). Spacial distribution (27a) associated with d1 = 1.3 mm
while spacial distributions (27b) and (27c) are related to d2 = 0.7 mm. Loss factor and Young’s modulus used in
the theoretical model are obtained experimentally from measurements on the non-perforated plate.

Mode 1 Mode 2

f1 (Hz) η1[×10−3] f2 (Hz) η2[×10−3]

Measured reference non-perforated plate 2○ 33.41 0.63 147.7 0.15
Measured MPP 7○ 31.41 1.26 142.4 0.29
Analytical MPP 7○ 28.6 1.25 145.1 0.25

Table 5: Values of experimental and theoretical loss factor for the MPP 7○ presented in Figure 11. Each loss factor
is determined for the ith mode. Perforation are described in Equation (27).

we can state that the implementation of multi-sized microperforations combined with inhomogeneous
spacial distributions of perforations has two advantages: (1) depending on the diameters chosen, the added
damping is effective over a wider frequency band compared to a plate with a single set of perforations; (2)
the well-chosen distribution of the perforations over certain areas of interest also maximizes the added
damping.

6. Conclusion

This paper proposed as an extension of [12] to study the added damping effect exhibited by microperforated
plates (MPPs) embedding: (i) multi-sized perforations diameters; (ii) spacial distributions of perforation;
(iii) a combination of (i) and (ii) that corresponds to spacial distributions of multi-sized perforation
diameters. For this purpose, it was proposed a homogenization approach in the context of MPPs with
multi-sized perforations. Then, in order to consider an MPP with a spacial distribution of microperforations,
the perforation ratio was introduced as a space-dependent function. Finally, these two models were
combined. Experimental measurements validate the analytical models. Results provide evidence that:

(i) MPPs with multiple perforations can broaden the frequency band of the effective added damping.
When the perforation diameters are chosen so that each characteristic frequency coincides with a resonance
frequency of the MPP, the frequency band of the effective damping is extended.

(ii) MPPs with spatial distribution of perforations can maximize the added damping on one mode.
Indeed, the distribution of perforations around the antinodes of the considered mode maximizes the added
damping compared to a homogeneous MPP.

(iii) the two effects can be cumulated for MPP with multi-sized perforation diameters and spatial
distribution of perforations. The combination of multiple perforation sizes with inhomogeneous spacial
distribution of perforations had the two main advantages of increasing the frequency band over which
added damping was actually effective and maximizing the added damping over several properly selected
frequencies.

Practically, the perforations could be distributed through patches located on the vibration antinodes
of the plate modeshape to be damped.
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