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Abstract In this work, we introduce a novel ap-
proach for depth estimation in CGH by employing
horizontal segmentation of the reconstruction volume
instead of conventional vertical segmentation. The
reconstruction volume is divided into horizontal slices
and each slice is processed using a residual U-net
architecture to identify in-focus lines, enabling the
determination of the slice’s intersection with the 3D
scene. The individual slice results are then combined
to generate a dense depth map of the scene. Our
experiments demonstrate the effectiveness of our
method, with improved accuracy, faster processing
times, lower GPU utilization, and smoother predicted
depth maps compared to existing state-of-the-art
models.

Accurate and fast motion estimation between two
consecutive holographic video frames remains a chal-
lenge in the current state of the art due to the holo-
gram signal properties [1]. Unlike natural images
where scene objects are well localized inside the image
plane, in holography, the light wave scattered by each
scene point contributes to every pixel during hologram
recording. As a result, the scene objects are poorly lo-
calized inside the hologram plane, preventing the use
of traditional optical flow methods [2] based on block
matching to estimate the scene motion vectors. In ad-
dition to the spatial displacement along the horizontal
and vertical axis, the motion vector along the opti-
cal axis also needs to be estimated. To this end, the
scene geometry must first be extracted from the holo-
gram, then motion vector estimation can be performed
from this new representation. The Depth-From-Focus
(DFF) [3] method is a widely researched technique in
digital holographic microscopy for capturing relatively
flat scenes, which can be represented by a limited num-
ber of focus planes. Unlike CGH, which faces the chal-
lenge of varying depth values between adjacent pixels
and thus necessitates per-pixel estimation. The recent
advances in the subject are discussed in [4, 5, 6].
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Recently, [7] explored the use of the DFF method
for extracting RGB-D representations from computer-
generated holograms. This is achieved by comput-
ing numerical reconstructions at uniformly spaced dis-
tances within a specified range, retaining only the am-
plitude information to form the reconstruction volume.
The focus level of each pixel is determined using a focus
measure operator on a centered patch, and the depth
at which the focus is at its maximum is selected as
the pixel’s depth estimate. The pixel’s intensity value
is then linked to the holographic reconstruction per-
formed at the estimated depth. The experimental re-
sults showed that the DFF method gives reasonable re-
sults when the reconstruction distances, patch size, and
focus measures are well chosen. However, the method
is computationally expensive and thus cannot be used
in real-time processing.

The authors extended their work in [8], using a CNN
model to evaluate the focus level of each pixel in the
reconstruction volume. To ensure that two points can-
not share the same horizontal and vertical coordinates
and have different depths, the network was fed with
a cropped reconstruction volume and was supervised
using the Cross-entropy to maximize the focus value
at the optimal focus plane. During the inference, the
argmax value was taken along the batch axis to pre-
dict a local depth map. Unlike DFF where the focus is
evaluated at the pixel level using a centered patch, the
method proposed in [7] uses a non-overlapping recon-
struction volume decomposition and therefore ensures
a faster inference time. In addition, the experimental
results showed that the proposed approach is more ac-
curate and produces better depth maps than the classic
DFF methods. The pre-trained network can be partic-
ularly useful for inferring the scene geometry when the
ground truth depth map is not available. This situa-
tion may arise, for example, when dealing with opti-
cally acquired or synthetic holograms that are derived
from multi-view or light-field data.

Even though the above-mentionned approach gives
promising results, it has some limitations. First, the
GPU consumption is linear with the number of holo-
graphic reconstructions and the patch size. The higher
the number of reconstructions and the bigger the patch
size, the greater the 3D volume at the entrance of the
network. Second, the network performances are poor
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along the border of the patches, thus creating discon-
tinuities in the final depth map. Finally, similarly to
DFF methods, the resulting depth map requires the
computation of a binary mask to segment the fore-
ground and background objects, resulting in additional
computational costs.
In this paper, we propose to reformulate the depth

estimation problem, which is typically solved by fixing
a 2D region along a plane parallel to the hologram and
detecting the reconstruction distance at which the fo-
cus is sharper. Here, we propose to perform the depth
prediction along horizontal planes perpendicular to the
hologram, to distinguish optimal focus planes more eas-
ily due to holographic reconstruction characteristics.
In contrast to the patch-based approach, the following
approach has a lower GPU consumption; additionally,
by using the entire horizontal plane at the network in-
put, it is easier to maintain depth continuity, result-
ing in a smoother depth map. Finally, the predicted
depth map does not require additional segmentation
into foreground and background classes.

The proposed approach for retrieving the scene ge-
ometry from a given hologram is depicted in Figure 1.
The process begins by building a reconstruction volume
using a series of numerical reconstructions. Next, the
volume is broken down into a set of horizontal slices,
and a CNN model is trained to estimate the in-focus
lines present on each slice. The final phase of the pro-
cess involves refining the segmentation results to elim-
inate occlusion and seamlessly merging the individual
slices to generate a precise and comprehensive repre-
sentation of the scene geometry.

Given a hologram H of size L×L, the Angular Spec-
trumMethod (ASM) [9] is used to acquire a reconstruc-
tion volume by computingN numerical reconstructions
at uniformly spaced distances zi within a predefined
depth interval of [zmin, zmax], where zmin and zmax rep-
resent the minimum and maximum reachable depth
values, respectively:

zi =
zmax − zmin

N
× i+ zmin. (1)

The numerical reconstruction at a specific distance
zi is given as follows:

Pzi{H}(x, y) = F−1
{
F(H)ej2πzi

√
λ−2−f2

x−f2
y

}
(x, y),

(2)
where fx and fy are the spatial frequencies along the X
and Y direction of the hologram plane, λ is the acqui-
sition wavelength, and zi is the reconstruction depth.
Only the amplitude of the numerical reconstructions is
retained, constituting the reconstruction volume. The
reconstruction volume is sliced horizontally as follows

My(i, x) = |Pzi{H}| (x, y) i = 0, ..., N. (3)

As explained in [7], each numerical reconstruction is
sharp only at the part of the scene with a depth equal
to the used reconstruction distances. Thus when slicing
the reconstruction volume into horizontal slices, each

slice My will be contaminated with speckle noise, with
the exception of a few sharp lines. These lines corre-
spond to the intersection points between the 3D scene
and the horizontal plane with an elevation equal to
y, as depicted in Figure 1. In order to accurately re-
construct the geometry of the scene, it is necessary to
extract the in-focus points forming these sharp lines
from each of the horizontal slices.

In the present work, a neural network is supervised
to segment the in-focus regions from the input horizon-
tal slice. The segmentation problem can be mathemat-
ically formalized as

Îy = G(My), (4)

L = BCE(Îy, Iy), (5)

where G is implemented using a residual U-net [10] ar-
chitecture, Îy and Iy are the estimated and the ground
truth in-focus maps, and L is the loss function, based
on binary cross entropy function BCE.

The segmentation problem outlined in Eq. (4) is
characterized by an imbalance, with only a limited
number of in-focus regions on the horizontal slice. As a
result, training the network G without an appropriate
loss function can result in suboptimal model perfor-
mance and biased predictions. To overcome this chal-
lenge, the segmentation loss must be adapted to make
sure that the network converges. One strategy that
has been shown to be effective is the use of a weighted
sum of the boundary loss [11] and binary cross-entropy.
This approach stabilizes the network training process
and leads to a significant improvement in the final re-
sults. The weighted loss is given as

L = LBCE + αLB , (6)

where LBCE is the binary cross-entropy, LB is the
boundary loss [11], and α is a hyperparameter set to
0.5 in the experiments.
The combination of boundary loss and binary cross

entropy loss used in this method will result in the gen-
eration of thick in-focus lines, where each point along
the X-axis may have multiple associated depth values.
To address this issue and extract a single, accurate
depth value per point, we assume that the ground truth
in-focus lines represent the skeleton of the predicted
thick lines. Using this assumption, we can approxi-
mate the accurate depth value per point by taking the
median along the Z-axis:

d̂y = median{z : Îy(z, x) > 0 z = 0, ..., N − 1} (7)

where d̂y is the final predicted depth value with an

elevation equal to y, and d̂ is the final depth maps
given as:

d̂(y, x) = d̂y(x). (8)

The proposed H-Seg and the patch-based ap-
proach [8] have been trained on the same dataset,
which consists of 1400 holograms that are equally di-
vided into three classes: Piano, Table, and Woods.
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Figure 1: Illustration of the different steps of the proposed method.

These holograms were acquired using the layer-based
methods described in [12] with a resolution of 1024 ×
1024 and four different pixel pitches: 8, 6, 4, and 2µm.
The evaluation phase included the use of two hologram
sets. The test set comprised 300 holograms, created by
adding 100 additional acquisition angles to each train-
ing scene (Piano, Table, Woods). The validation set
consisted of 200 holograms recorded from two addi-
tional scenes (Cars, Dices) unseen during the training
phase. For each hologram, a reconstruction volume
was created by computing N = 256 numerical recon-
structions at uniform intervals within the depth range
[zmin, zmax], where zmin and zmax are the minimum and
maximum reachable depth values in the dataset. These
values are manually computed from the dataset and set
according to the used pixel pitch. Each numerical re-
construction took 1.31 second to complete using a Mat-
lab implementation on 11th Gen Intel Core i9-11900F.
Both the patch-based and H-Seg methods were trained
for 200 epochs with a batch size of 256. An early stop
was implemented, halting training if the test accuracy
did not improve for 10 epochs. Additionally, an ex-
ponential learning decay was applied with a step size
of 10 and a rate of 0.8 chosen through experimenta-
tion and hyperparameter tuning. For the patch-based
method, at each iteration the images that make up the
cropped reconstruction volume are randomly shuffled
and then all images are subjected to the same random
flip (horizontally or vertically with equal probability).
In contrast, the proposed H-Seg method involves inde-
pendently flipping each slice and then applying a ran-
dom translation along the X and Z directions. The use
of early stopping, learning decay, and data augmenta-
tion helped to improve the generalization performance
of the networks, resulting in better performance on
unseen data. The patch-based and H-Seg were eval-
uated not only for their ability to predict depth ac-
curately but also for their ability to perform empty
background removal. To assess this ability, an addi-
tional background class was added to the patch-based
method and the networks of both methods were trained
to classify any background points into this class. The
performance of the tested methods was evaluated using
the ℓ1 norm between the predicted and ground truth
depth maps. Table 1 gives the obtained results when

Piano Table Woods Cars Dices
Pixel pitch : 8µm

Patch-based approach 2.93/79.09 4.36/106.17 2.39/ 84.09 6.92/ 41.19 5.22 / 12.22
Proposed H-Seg approach 0.14/0.61 0.32/1.14 0.25/0.97 2.02/7.35 1.03/3.96

Pixel pitch : 6µm
Patch-based approach 3.46/ 58.88 6.55/70.64 3.12/85.72 10.06/58.5 8.4/38.89
Proposed H-Seg approach 0.49/3.24 0.75/4.11 0.79/3.93 2.23/7.9 1.5/8.07

Pixel pitch : 4µm
Patch-based approach 5.02/ 71.52 7.2/73.62 3.23/76.26 12.55/64.06 12.65/69.23
Proposed H-Seg approach 0.69/4.44 0.97/5.18 1.24/4.9 3.72/11.96 2.33/10.43

Pixel pitch : 2µm
Patch-based approach 14.75/54.1 20.55/ 64.52 4.37/58.19 16.59/ 61.36 19.74/ 33.08
Proposed H-Seg approach 1.57/8.93 1.42/5.77 1.62/6.2 5.35/17.72 5.1/25.35

Table 1: The table presents the ℓ1 norm distance be-
tween the ground truth and predicted depth maps in
terms of reconstruction planes number. Two scenar-
ios are analyzed, with the right term calculated us-
ing the entire depth map and the left term considering
only foreground objects. The network is trained from
scratch for each pixel pitch and evaluated on both test
and validation sets.

the two networks are trained and evaluated using the
same pixel pitch.

Depth accuracy : Results show that the patch-based
method exhibits a significant discrepancy between its
accuracy for in-object pixels and its overall accuracy
for the depth map, indicating that the network is un-
able to effectively distinguish between foreground and
background pixels. In contrast, the proposed H-Seg
method performs better at separating the background
and maintaining a smaller prediction gap. However,
this gap tends to widen for smaller pixel pitches.

The difference in prediction accuracy between the
two approaches can be attributed to their respective
problem formulations. The proposed H-Seg method
uses horizontal slices that span the entire scene via
horizontal planes perpendicular to the hologram, pro-
viding global information about the scene. This allows
for accurate prediction of background pixels. On the
other hand, patch-based methods rely on local infor-
mation from the crop reconstruction volume, ignoring
the temporal correlation between the images that com-
pose the volume. As a result, the network is unable to
learn the relevant features that distinguish background
pixels, leading to the observed gap in prediction.

Figure 2 displays the inferred in-focus map for a dis-
tinct scene that includes background elements. Re-
markably, despite being trained on scenes with no back-
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(a) (b)

Figure 2: (a) Ground-truth and (b) inferred in-focus
map using the proposed method on a scene with a non-
zero background.

(a) (b)

Figure 3: Comparison of pointclouds predicted us-
ing the (a) patch-based and (b) H-Seg methods. The
patch-based method produces a point cloud with signif-
icant scatter due to the poor performance along edges.
As the proposed H-Seg method uses a horizontal slice
that provides global information about the X,Z plane,
it produces a smoother pointcloud with less scatter.

ground, the network accurately recovered the geom-
etry of both scenes. However, some areas were still
misclassified, indicating that there is room for further
improvement in the model performance.

Generalization ability : Both methods show an in-
crease in the ℓ1 norm and prediction gap between
the test and validation set as the pixel pitch becomes
smaller. However, this gap is smaller when using the
proposed H-Seg approach. This can be attributed to
the data augmentation applied during network train-
ing, which artificially introduces variations and helps
the network learn the underlying patterns in the data
more effectively, leading to more accurate predictions
on unseen data. While the patch-based method also
utilizes data augmentation, it only introduces local
variations to the reconstruction volume without chang-
ing the shape of the segmented region. In contrast, the
proposed H-Seg method randomly flips and shifts each
horizontal slice, and therefore the in-focus lines along
the X or Z axis, to cover every possible region of the
horizontal plane, leading to better performances.

In addition to synthetic scenes, we evaluated the
proposed network on optically-acquired holograms pro-
vided by the Universidade da Beira Interior [13] shown
in Figure 4, using 256 numerical reconstructions uni-

(a) Car (b) Horse

Figure 4: In-focus map inferred using the proposed
method on optically acquired holograms [13].

formly sampled between 1 to 256 mm. The obtained
average error is 31.2mm for the Car scene and 28.1mm
for the cube scene.

Qualitative comparison of obtained depth maps : The
patch-based method tends to produce depth maps with
more roughness and discontinuities compared to the
proposed H-Seg method, as demonstrated in Figure 3.
There are two factors contributing to this issue. Firstly,
a low-resolution patch size is used for network training
and inference to avoid excessive GPU usage when deal-
ing with large reconstruction intervals. Secondly, the
poor performance at the edges of the patches, resulting
from the convolution operation which extends beyond
the patch boundary and thus produces unreliable or
nonsensical results. In contrast, the proposed H-Seg
method uses a horizontal section that fully spans the
X and Z dimensions, resulting in fewer discontinuities
and smoother depth maps.

Computational complexity : In addition to its accu-
racy, the proposed H-Seg method has the advantage
of being faster (14.30 second per reconstruction vol-
ume) than the patch-based method (26.05 second per
reconstruction volume). When processing a full recon-
struction volume, H-Seg only requires L/b (4 in this
experiment) inferences with a batch size of b, while the
patch-based method necessitates (L×L)/(s× s) (1024
in this experiment) inferences with a fixed batch size of
N . As a result, H-Seg not only requires fewer inferences
to process the reconstructions, but also has lower GPU
requirements per batch that are not linearly correlated
with the number of numerical reconstructions.

Overall, the proposed H-Seg approach yields faster
and more accurate results compared to the patch-based
method. However, the process of extracting horizontal
slices requires the computation and storage of large
amounts of numerical reconstructions, which can pose
a challenge for high-resolution holograms. In future
work, we plan to investigate interpolation techniques
to reduce the number of numerical reconstructions re-
quired to retrieve the depth map of the scene. In ad-
dition, we plan to enhance the proposed method by
incorporating temporal information between the hori-
zontal slices that constitute the reconstruction volume,
or by using cross slices in both X and Y directions with
an additional merge and refine step.
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