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Abstract

We study the problems of controllability and ergodicity of the system
of 3D primitive equations modeling large-scale oceanic and atmospheric
motions. The system is driven by an additive force acting only on a
finite number of Fourier modes in the temperature equation. We first
show that the velocity and temperature components of the equations can
be simultaneously approximately controlled to arbitrary position in the
phase space. The proof is based on Agrachev–Sarychev type geometric
control approach.

Next, we study the controllability of the linearization of primitive
equations around a non-stationary trajectory of the randomly forced
system. Assuming that the probability law of the forcing is decomposable
and observable, we prove almost sure approximate controllability by using
the same Fourier modes as in the nonlinear setting. Finally, combining
the controllability of the linearized system with a criterion from [KNS20a],
we establish exponential mixing for the nonlinear primitive equations with
a random force.
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0 Introduction

The system of 3D primitive equations (PEs) of meteorology and oceanology is an
important model of geophysical fluid dynamics. Today, most numerical weather
prediction and climate simulation models are based on them. This system is
derived, using hydrostatic approximation, from the 3D Navier–Stokes equations
with Coriolis force coupled with the thermodynamic equation (see the book by
Zeitlin [Zei18]). The mathematical study of these equations has attracted a lot
of attention in the last two decades. Following the framework introduced by
Lions, Temam, and Wang [LTW92a, LTW92b], we consider in this paper the
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PEs written in the form:

∂tv + L1v + 〈v,∇〉v + w ∂zv + fv⊥ +∇p = h1, (0.1)

∂zp+ θ = 0, (0.2)

div v + ∂zw = 0, (0.3)

∂tθ + L2θ + 〈v,∇〉θ + w ∂zθ = h2 + η. (0.4)

The unknowns are the 3D velocity field of the fluid (v1, v2, w), where1 v = (v1, v2)
and w are the horizontal and vertical velocity components, the temperature θ, and
the pressure p. The number f is the Coriolis rotation frequency, the functions h1
and h2 are given source terms, and η is an external perturbation—a control or
a random noise. The operators

L1 = −ν1∆− µ1∂zz,

L2 = −ν2∆− µ2∂zz

are the viscosity and heat diffusions, where the numbers ν1, µ1 > 0 are the
horizontal and vertical viscosities, while ν2, µ2 > 0 are the horizontal and vertical
heat diffusivity coefficients. We denote by ∆,∇, div the 2D (horizontal) Laplacian,
gradient, divergence operators:

∆ = ∂xx + ∂yy, ∇ = (∂x, ∂y) , div = 〈∇, ·〉,

and 〈v,∇〉 = v1∂x + v2∂y.
The space variable (x, y, z) is assumed to belong to the torus T3 = R3/2πZ3,

i.e., all the above functions are 2π-periodic in x, y, and z. Furthermore, we
assume that the functions v, p, h1 are even and the functions w, θ, h2, η are odd
in z. As a consequence, w, θ, h2, η vanish at z = 0.

The unknown functions in system (0.1)-(0.4) can be divided into two types:
the prognostic unknowns v and θ, which are determined through an initial
boundary value problem, and diagnostic ones w and p, which can be expressed
as functions of v and θ. Indeed, from the conservation of mass equation (0.3)
and the boundary condition w|z=0 = 0 it follows that

w(t, x, y, z) = −
∫ z

0

div v(t, x, y, z) dz, (0.5)

and from the hydrostatic balance (0.2) that

p(t, x, y, z) = ps(t, x, y)−
∫ z

0

θ(t, x, y, z) dz. (0.6)

Using equalities (0.5) and (0.6), the following equivalent formulation is obtained

1We denote v⊥ = (−v2, v1).
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for the PEs:

∂tv + L1v + 〈v,∇〉v −
∫ z

0

div v(t, x, y, z) dz ∂zv + fv⊥

+∇ps(t, x, y)−
∫ z

0

∇θ(t, x, y, z) dz = h1, (0.7)

∂tθ + L2θ + 〈v,∇〉θ −
∫ z

0

div v(t, x, y, z) dz ∂zθ = h2 + η. (0.8)

The well-posedness of these equations has been studied by many authors. The
existence of weak solutions is known from the works of Lions, Temam, and
Wang [LTW92a, LTW92b], but the uniqueness is still an open problem. In this
paper, we deal with strong solutions whose global existence and uniqueness is
established by Cao and Titi [CT07] in the case of Neumann boundary conditions;
see also the paper by Kobelkov [Kob07] for a different proof. In the case of
periodic boundary conditions, the global existence of strong solutions is considered
by Petcu [Pet06] and in the case of Dirichlet boundary conditions, by Kukavica
and Ziane [KZ07]. The existence of a global attractor is obtained by Ju [Ju07]
and Chueshov [Chu14]. We refer the reader to the reviews [TZ04, PTZ09] for
more details and references.

In the periodic setting, the PEs (0.7), (0.8) are considered in the function
spaces H and V recalled in Section 1. To formulate the first main result of this
paper, we assume that the couple of source terms (h1, h2) is a smooth element
of H, and η is a control taking values in the space H = span{φi : i = 1, . . . , 10},
where φi are the following eigenfunctions of the heat diffusion operator L2:

cos jx sin z, sin jx sin z, cos jy sin z, sin jy sin z, sin jz, j = 1, 2.

Theorem A. Problem (0.7), (0.8) is approximately controllable by H-valued
controls. More precisely, for any ε > 0, any time T > 0, any initial condi-
tion (v0, θ0) ∈ V , and any target (v1, θ1) ∈ H, there is a control η ∈ L∞([0, T ],H)
such that the unique strong solution (v, θ) of problem (0.7), (0.8) satisfies

(v(0), θ(0)) = (v0, θ0), (0.9)

‖(v(T ), θ(T ))− (v1, θ1)‖L2(T3,R3) < ε. (0.10)

Note that the space H of admissible values for the control η is independent
of the physical parameters h1, h2, f, νi, µi, i = 1, 2. A more general version of
this result is formulated in Theorem 2.3, where a saturation property is specified
that ensures the approximate controllability of the system. We also show that
if some controlled Fourier modes are added in the velocity equation (0.7), then
approximate controllability holds with respect to the stronger norm of the
space H1(T3,R3).

Approximate controllability of PDEs by additive finite-dimensional forces has
been studied by many authors in the recent years. The first results are obtained
by Agrachev and Sarychev [AS05, AS06], who considered the Navier–Stokes (NS)
and Euler systems on the 2D torus (see also the review [AS08]). Their approach
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has been generalized by Shirikyan [Shi06, Shi07] to the case of the 3D NS system;
see also the papers [Shi14, Shi18] by Shirikyan, where the Burgers equation is
considered on the real line and on a bounded interval with Dirichlet boundary
conditions. Rodrigues and Phan [Rod06, PR19] established approximate con-
trollability of the NS system on 2D and 3D rectangles with Lions boundary
conditions. In the periodic setting, Nersisyan [Ner10, Ner11] considered 3D Euler
systems for perfect compressible and incompressible fluids, Sarychev [Sar12]
studied the 2D cubic Schrödinger equation, and Nersesyan [Ner15] considered
the Lagrangian trajectories of the 3D NS system.

The proof of Theorem A is based on a technique of applying large controls
on short time intervals. Previously, such ideas have been used mainly in the
study of finite-dimensional control systems; e.g., see the works of Jurdjevic and
Kupka [JK85, Jur97] and the references therein. Infinite-dimensional extensions
of this technique appear in the above-cited papers of Agrachev and Sarychev.
More recently, this approach has been used in the paper of Glatt-Holtz, Herzog,
and Mattingly [GHHM18], where, in particular, a 1D parabolic PDE is considered
with polynomial nonlinearity of odd degree, and in the paper of Nersesyan [Ner20],
where the nonlinearity is a smooth function that grows polynomially without
any restriction on the degree and on the space dimension.

The main difficulty of the problem considered in this paper comes from
the highly degenerate nature of the control system. The form of the saturation
property and the argument for its verification are more complicated than in
the previously studied situations. When the control acts directly only on the
temperature equation, we are able to check the saturation with respect to the
L2-norm. The latter is known to be poorly adapted for the stability properties
of the 3D PEs and is a source of many difficulties in different parts of the proof.

To formulate our second result, let us assume that η is a Haar coloured noise
taking values in the same space H as above. This means that η has the form

η(t) =

10∑
i=1

ηi(t)φi, (0.11)

where {ηi} are independent copies of a random process η̃ defined by

η̃(t) =

∞∑
k=0

ξkh0(t− k) +

∞∑
j=1

j−q
∞∑
l=0

ξjlhjl(t). (0.12)

Here q > 1, {ξk, ξjl} are independent identically distributed (i.i.d.) scalar random
variables with Lipschitz-continuous density ρ, and {h0, hjl} is the Haar system
defined by

h0(t) =

{
1 for 0 ≤ t < 1,

0 for t < 0 or t ≥ 1,

hjl(t) =


0 for t < l2−j or t ≥ (l + 1)2−j ,

1 for l2−j ≤ t <
(
l + 1

2

)
2−j ,

−1 for
(
l + 1

2

)
2−j ≤ t < (l + 1)2−j
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with j ≥ 1 and 0 ≤ l ≤ 2j − 1. Note that, for any k ≥ 1, the functions{
h0(· − k + 1), hjl, j ≥ 1, (k − 1)2j ≤ l ≤ k2j − 1

}
are supported on the interval [k − 1, k] and form an orthonormal basis in the
space L2([k − 1, k]).

Let (ṽ, θ̃) be a trajectory of problem (0.7), (0.8) with process η defined
by (0.11).

Theorem B. Under the above conditions, the linearization of problem (0.7), (0.8)
around the trajectory (ṽ, θ̃) (see system (1.8)) is almost surely approximately
controllable by H-valued controls.

See Theorem 3.3 for a more precise formulation of the result. It is proved
by showing that the kernel of the random Gramian operator is almost surely
non-trivial. The latter is derived from the observability property of the Haar noise.
Let us emphasize that on a non-empty, but zero-probability event (depending on
the reference trajectory (ṽ, θ̃)), the linearized problem is non-controllable. Indeed,
assume that the source terms h1 and h2, the noise η, as well as the trajectory (ṽ, θ̃),
are identically zero. Then the space H is invariant for the linearized problem, so
the attainable set from the origin cannot be dense in H.

Controllability properties of nonlinear and linearized equations have appli-
cations to the study of randomly perturbed problems. Indeed, it is well known
that approximate controllability implies, for example, irreducibility of the as-
sociated Markov process when the support of the law of the noise is the whole
space L∞([0, T ],H) (see Section 6.3 in [KS12] for more details). As it is shown
in the recent papers by Kuksin, Nersesyan, and Shirikyan [KNS20a, KNS20b],
the controllability of the linearized system can be used in the analysis of the
ergodicity problem when the system is perturbed by a bounded degenerate
noise. In these papers the NS system, complex Ginzburg–Landau equations,
and parabolic PDEs with polynomial nonlinearities are studied. See also the
papers [KZ20] and [Ner19] for some related situations where the noise is non-
degenerate. In our third result, we show that the approach of these papers
can be extended to the more degenerate case of PEs. To formulate the result,
let ((vk, θk),P(v,θ)) be the Markov family obtained by restricting the trajectories
of system (0.7), (0.8), (0.11) to integer times. Recall that ρ is the density of the
random variables {ξk, ξjl} in (0.12).

Theorem C. In addition to the above conditions, assume that (h1, h2) = 0, the
support of the density ρ is bounded, and ρ(0) > 0. Then the family ((vk, θk),P(v,θ))
has a unique stationary measure on V which is exponentially mixing in the dual-
Lipschitz metric.

See Section 4 for more details. In the case of the 3D primitive equations
with spatially regular white noise, existence of stationary measure is established
by Glatt-Holtz, Kukavica, Vicol, and Ziane [GHKVZ14]. As far as we know,
uniqueness of stationary measure for that situation is still an open problem due to
rather weak tail estimates for solutions. The boundedness of the noise allows to
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reduce the study of the system to a compact phase space. This naturally eliminates
the problems coming from the tail estimates. On the other hand, bounded
noises are well-accepted and commonly used in the physics literature (e.g.,
see [Ono13] and the references therein). In the case of non-degenerate bounded
kick force, uniqueness and exponential mixing are proved by Chueshov [Chu14].
Let us also recall some previous results considering the problem of ergodicity
for PDEs driven by a degenerate noise. Hairer and Mattingly [HM06, HM11]
used Malliavin calculus to study the ergodicity for the NS system with a white
noise which is degenerate in the Fourier space. Földes, Glatt-Holtz, Richards,
and Thomann [FGRT15] considered a similar problem for the Boussinesq system.
Using controllability methods, Shirikyan [Shi15, Shi20] studied the NS system
with a noise that is localized in the physical space (distributed in a subdomain
or on the boundary). For more results and references, we refer the reader to the
book [KS12].

This paper is organized as follows. In Section 1, we recall the functional setting
for the PEs and formulate perturbative results with respect to the initial condition
and control. In Sections 2 and 3, we discuss the problems of controllability of
nonlinear and linearized PEs and prove Theorems A and B. In Section 4, we
consider the randomly forced PEs and prove Theorem C. Examples of saturating
spaces are provided in Section 5. Finally, in Section 6, we establish a perturbative
result formulated in Section 1.
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Notation

Throughout this paper, we use the following notation.

Zd, d ≥ 1 is the integer lattice in Rd, and Td is the torus Rd/2πZd.
Lp(Td,Rn), p ≥ 1, n ≥ 1 and Hk(Td,Rn), k ≥ 0 are the usual Lebesgue and
Sobolev spaces of functions g : Td → Rn endowed with the norms ‖ · ‖Lp
and ‖ · ‖k, respectively. If p = 2, we write ‖ · ‖ instead of ‖ · ‖L2 and denote
by 〈·, ·〉 the corresponding scalar product. If p = +∞, we write ‖ · ‖∞ instead
of ‖ · ‖L∞ .

C∞(Td,Rn) is the space of infinitely differentiable functions g : Td → Rn.

Let X be a Banach space endowed with the norm ‖ · ‖X .

BX(a, r) denotes the closed ball of radius r > 0 centred at a ∈ X.
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B(X) is the Borel σ-algebra on X, and P(X) is the set of Borel probability
measures on X.

Lp(JT , X), 1 ≤ p <∞ is the space of measurable functions u : JT → X endowed
with the norm

‖u‖Lp(JT ,X) =

(∫ T

0

‖u(t)‖pX dt

)1/p

, JT = [0, T ].

C(JT , X) (resp. L∞(JT , X)) is the space of continuous (resp. bounded measur-
able) functions u : JT → X endowed with the norm

‖u‖C(JT ,X)(resp. ‖u‖L∞(JT ,X)) = sup
t∈JT

‖u(t)‖X .

1 Preliminaries on primitive equations

We consider the system of PEs in the spaces Hk, k ≥ 0 defined by

Hk = closure of V in Hk(T3,R3)

and endowed with the Sobolev norms ‖ · ‖k (with L2-norm ‖ · ‖ if k = 0),
where V = V1 × V2 and V1 and V2 are the spaces given by

V1 =

{
v ∈ C∞(T3,R2) : v is even in z,

∫
T

div v dz = 0,

∫
T3

v dx dy dz = 0

}
,

V2 =

{
θ ∈ C∞(T3,R) : θ is odd in z,

∫
T3

θ dxdy dz = 0

}
.

The condition
∫
T div v dz = 0 in the definition of V1 comes from equality (0.5)

at z = 2π, the fact that w is 2π-periodic, and the boundary value w|z=0 = 0;
see [CT07, PTZ09] for more details. We will mainly consider the spaces2 H =
H1 × H2 = H0, V = V1 × V2 = H1, and U = U1 × U2 = H6. For any T > 0,
we set

XT = C(JT , V ) ∩ L2(JT , H
2)

and endow this space with the norm

‖u‖XT = ‖u‖C(JT ,V ) + ‖u‖L2(JT ,H2).

The Leray-type orthogonal projection onto H1 in L2(T3,R2) is denoted by Π.
Applying this projection to Eq. (0.7), we eliminate the pressure term and
transform problem (0.7), (0.8) into an evolution system which can be written in
the following dimensionless form:

u̇+ Lu+B(u) +Qu = h+ η, (1.1)

2The subscripts 1 and 2 are used with H,V,U to denote spaces of velocity fields and
temperatures, respectively. The superscript k ≥ 0 is used with H to indicate the Sobolev
regularity.
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where the unknown is the couple u = (v, θ), and the linear terms L and Q and
the nonlinear term B are defined by3

Lu = (L1v, L2θ), B(u) = (B1(v), B2(u)), Qu = (Q1u, 0),

B1(v) = Π

(
〈v,∇〉v −

∫ z

0

div v(t, x, y, z) dz ∂zv

)
,

B2(u) = 〈v,∇〉θ −
∫ z

0

div v(t, x, y, z) dz ∂zθ, (1.2)

Q1u = Π

(
fv⊥ −

∫ z

0

∇θ(t, x, y, z) dz

)
. (1.3)

Eq. (1.1) is supplemented with the initial condition

u(0) = u0. (1.4)

Proposition 1.1. For any T > 0, u0 ∈ V , η ∈ L∞(JT , H), and h ∈ H, there is a
unique solution u of problem (1.1), (1.4) belonging to XT . Let S be the mapping
taking the couple4 (u0, η) to the solution u. For any r > 0, there is a constant
C = C(r, T ) > 0 such that

‖S(u0,1, η1)− S(u0,2, η2)‖XT ≤ C
(
‖u0,1 − u0,2‖1 + ‖η1 − η2‖L∞(JT ,H)

)
,

provided that u0,i ∈ V , ηi ∈ L∞(JT , H), and h ∈ H satisfy

‖u0,i‖1 + ‖ηi‖L∞(JT ,H) + ‖h‖ ≤ r, i = 1, 2.

Existence and uniqueness of solutions is established in [CT07, Pet06, KZ07],
and the local Lipschitz property in [Ju07].

Inspired by ideas from [AS05, AS06, Shi06], together with Eq. (1.1), we will
consider a more general equation with additional control ζ:

u̇+ L(u+ ζ) +B(u+ ζ) +Q(u+ ζ) = h+ η. (1.5)

The well-posedness of problem (1.5), (1.4) with ζ ∈ V follows from that of prob-
lem (1.1), (1.4) using a change of unknown u′ = u+ ζ. We denote by S(u0, ζ, η)
the corresponding solution and by St(u0, ζ, η) its restriction at time t ∈ JT .
To avoid any ambiguity, in this and next sections, we write S(u0, 0, η) instead of
S(u0, η) defined in Proposition 1.1. Let π1 : H → H1 and π2 : H → H2 be the
projections (v, θ) 7→ v and (v, θ) 7→ θ. The following result is proved in Section 6.

3With a slight abuse of notation, instead of elements like B2(u), Q(u), Q1(u) with u = (v, θ),
we will often write B2(v, θ), Q(v, θ), Q1(v, θ). Note that the term B1 does not depend on θ, so
we write B1(v).

4In what follows, the source term h will be fixed, so we shall not indicate the dependence
of S on it.
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Proposition 1.2. For any u0 ∈ H4 and ζ, η, ξ ∈ H5 with π1ξ = 0 and π2ζ = 0,
the following limits hold in V as δ → 0+:5

Sδ(u0, δ
− 1

2 ζ, δ−1η)→ u0 + η −B(ζ), (1.6)

Sδ(u0, δ
−1ξ, 0)→ u0 − Lξ − (0,Ψ(u0, ξ))−Qξ, (1.7)

where Ψ(u0, ξ) = B2(π1u0 − 1
2Q1ξ, π2ξ).

Now, let ũ = (ṽ, θ̃) = S(u0, 0, η) be a trajectory of Eq. (1.1) corresponding
to initial condition u0 ∈ V and control η ∈ L∞(JT , H). The linearization of
Eq. (1.1) around ũ is given by

ẇ + Lw + b(ũ, w) +Qw = g, (1.8)

where w = (v, θ) and the term b(ũ, w) = (b1(ṽ, v), b2(ũ, w)) is defined by

b1(ṽ, v) = Π

(
〈ṽ,∇〉v + 〈v,∇〉ṽ

−
∫ z

0

div ṽ(t, x, y, z) dz ∂zv −
∫ z

0

div v(t, x, y, z) dz ∂z ṽ

)
,

b2(ũ, w) = 〈ṽ,∇〉θ + 〈v,∇〉θ̃

−
∫ z

0

div ṽ(t, x, y, z) dz ∂zθ −
∫ z

0

div v(t, x, y, z) dz ∂z θ̃.

Using standard techniques (e.g., see Chapter III in [Tem79]), one shows that,
for any w0 ∈ V and g ∈ L2(JT , H), the linear equation (1.8) has a unique
solution w ∈ XT issued from w0.

2 Controllability of the nonlinear system

2.1 Saturation property and the result

In this section, we formulate a controllability result for Eq. (1.1) that is a
generalization of Theorem A given in the Introduction. We start by introducing
some definitions and notation.

Definition 2.1. Let H be a finite-dimensional subspace of U . Eq. (1.1) is said
to be approximately controllable in H by H-valued controls if for any ε > 0,
any time T > 0, any initial point u0 ∈ V , and any target u1 ∈ H, there is a
control η ∈ L∞(JT ,H) such that

‖ST (u0, 0, η)− u1‖ < ε. (2.1)

In a similar way, Eq. (1.1) is said to be approximately controllable in V if
inequality (2.1) holds with respect to the H1-norm ‖ · ‖1 and the target u1 is
arbitrary in V .

5In (1.7), we denote (0,Ψ) the element Ψ̂ ∈ H such that π1Ψ̂ = 0 and π2Ψ̂ = Ψ. Likewise,
in what follows, we will often have terms of the form (v, 0) that denote an element v̂ ∈ H with
π1v̂ = v and π2v̂ = 0.
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Let us assume that H = H1 × H2, where Hi ⊂ Ui, i = 1, 2 are finite-
dimensional subspaces. We denote by F1(H) the largest subspace of U1 whose
elements can be approximated, within any accuracy with respect to the H1-norm,
by elements of the form (cf. [AS05, AS06, Shi06])

Q1(0, ζ0) + ζ1 −
m∑
i=2

B1(ζi), (2.2)

where m ≥ 2, ζ0 ∈ H2, and ζ1, . . . , ζm ∈ H1. As H is finite-dimensional, Q1

is linear, and B1 is bilinear, it is easy to see that F1(H) is well defined and
finite-dimensional.

Let F2(H) be the subspace spanned by all the vectors of the form

ξ0 +B2(Q1(0, ξ1), ξ2), (2.3)

where ξ0, ξ1, ξ2 ∈ H2 are such that B2(Q1(0, ξ1), ξ2) ∈ U2. We denote by F(H)
the product F1(H) × F2(H), and define a non-decreasing sequence {H(j)} of
finite-dimensional subspaces of U by

H(0) = H, H(j) = F(H(j − 1)), j ≥ 1. (2.4)

Let us set

H(∞) =

∞⋃
j=1

H(j). (2.5)

Definition 2.2. A subspace H ⊂ U is H-saturating (resp. V -saturating) if the
following two conditions hold:

(a) H = H1 ×H2, where Hi ⊂ Ui, i = 1, 2 are finite-dimensional subspaces;

(b) the vector space H(∞) is dense in6 H1 × V2 (resp. in V ).

We are now ready to formulate the main result of this section.

Theorem 2.3. If H ⊂ U is an H-saturating subspace, then Eq. (1.1) is approxi-
mately controllable in H by H-valued controls. Moreover, if H is V -saturating,
then the equation is approximately controllable in V .

Examples of H and V -saturating subspaces are given in Section 5. When the
control acts directly only on the temperature component (i.e., H1 = {0} in (a)
in Definition 2.2), we provide an H-saturating subspace—the ten-dimensional
space considered in the Introduction. In particular, Theorem A is obtained as an
immediate consequence of Theorems 2.3 and 5.1. We do not have an example
of V -saturating subspace acting through the temperature component only. The
example we provide is less degenerate and combines few modes from velocity
and temperature components (see Theorem 5.5). Furthermore, in the case of
the 2D and 3D NS systems, there are necessary and sufficient conditions on the
Fourier modes to use in order to have approximate controllability (see [AS05,
AS06, Ner15]). It would be interesting to obtain similar precise description in
the case of 3D PEs.

6The reason why we take H1 × V2 and not the space H is explained in Remark 2.8.
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2.2 Proof of Theorem 2.3

The proof of Theorem 2.3 is divided into three steps. We first show that the
temperature and velocity components can be separately controlled in small
time. Then we derive simultaneous controllability of both components in arbitrary
fixed time.

2.2.1 Controllability of θ-component

Let us set Hi(j) = πiH(j) for j ≥ 0 and i = 1, 2. In this subsection, we prove
the following proposition.

Proposition 2.4. Let Hi ⊂ Ui, i = 1, 2 be arbitrary finite-dimensional subspaces
and H = H1 × H2. For any u0 ∈ V and η ∈ H2(∞), there is a family of
controls {ζτ}τ>0 ⊂ L∞(J1,H) such that

Sτ (u0, 0, ζτ )→ u0 + η̂ in V as τ → 0+, (2.6)

where η̂ = (0, η) ∈ H.

Proof. We first prove the result in the case u0 ∈ U . It suffices to show that
for any N ≥ 0 and η ∈ H2(N), there are controls {ζτ} ⊂ L∞(J1,H) such that
limit (2.6) holds. We argue by induction on N ≥ 0.

Step 1. Base case: N = 0. Let us check that limit (2.6) holds in the case N = 0,
i.e., for any η ∈ H2. Indeed, by limit (1.6) with ζ = 0 and η = η̂, we have

Sδ(u0, 0, δ
−1η̂)→ u0 + η̂ in V as δ → 0+.

Taking δ = τ , we obtain the required limit with controls ζτ = τ−1η̂.
Step 2. Inductive step. We assume that the limit is proved for N − 1, and

take any η ∈ H2(N) of the form

η = ξ0 +B2(Q1(0, ξ1), ξ2) (2.7)

with some ξ0, ξ1, ξ2 ∈ H2(N − 1). Let us set ξ̂i = (0, ξi) ∈ H, i = 1, 2, 3. Using

limit (1.7) with ξ = ξ̂1, we get

Sδ(u0, δ
−1ξ̂1, 0)→ u0 − Lξ̂1 − (0,Ψ(u0, ξ̂1))−Qξ̂1. (2.8)

By the uniqueness of the solution of the Cauchy problem, the following equality
holds for any t ≥ 0:

St(u0 + δ−1ξ̂1, 0, 0) = St(u0, δ
−1ξ̂1, 0) + δ−1ξ̂1. (2.9)

Taking here t = δ and using (2.8), we obtain the limit

‖Sδ(u0 + δ−
1
2 ξ̂1, 0, 0)− u0 + Lξ̂1 + (0,Ψ(u0, ξ̂1)) +Qξ̂1 − δ−1ξ̂1‖1 → 0 (2.10)

as δ → 0+. The fact that ξ1 ∈ H2(N − 1) and the induction hypothesis imply
that, for any δ > 0, there is a family of controls {ζ1τ,δ} ⊂ L∞(J1,H) such that

Sτ (u0, 0, ζ
1
τ,δ)→ u0 + δ−

1
2 ξ̂1 in V as τ → 0+.
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From Proposition 1.1 it follows

Sδ(Sτ (u0, 0, ζ
1
τ,δ), 0, 0)→ Sδ(u0 + δ−

1
2 ξ̂1, 0, 0) in V as τ → 0+.

Combining this with (2.10), we find a family {ζ2δ } ⊂ L∞(J1,H) verifying

‖Sδ(u0, 0, ζ2δ )− u0 + Lξ̂1 + (0,Ψ(u0, ξ̂1)) +Qξ̂1 − δ−1ξ̂1‖1 → 0

as δ → 0+. Using one more time the assumption ξ1 ∈ H2(N − 1), the induction
hypothesis, and Proposition 1.1, we find {ζ3τ } ⊂ L∞(J1,H) such that

Sτ (u0, 0, ζ
3
τ )→ u0 − Lξ̂1 − (0,Ψ(u0, ξ̂1))−Qξ̂1 in V as τ → 0+. (2.11)

Now we use the following lemma.

Lemma 2.5. Let us denote

Fξ1(u0) = u0 − Lξ̂1 − (0,Ψ(u0, ξ̂1))−Qξ̂1.

Then

F−ξ2(F−ξ1(Fξ2(Fξ1(u0)))) = u0 + (0, B2(Q1(0, ξ1 − ξ2), ξ1 + ξ2)). (2.12)

Using (2.12) and iterating four times the argument of the construction of the
family {ζ3τ }, we find a family {ζ4τ } ⊂ L∞(J1,H) such that

Sτ (u0, 0, ζ
4
τ )→ u0 + (0, B2(Q1(0, ξ1 − ξ2), ξ1 + ξ2)) in V as τ → 0+.

This and the induction hypothesis imply that, for any ξ0, ξ1, ξ2 ∈ H2(N − 1),
there are controls {ζ5τ } ⊂ L∞(J1,H) such that

Sτ (u0, 0, ζ
5
τ )→ u0 + (0, ξ0 +B2(Q1(0, ξ1), ξ2)) in V as τ → 0+.

Iterating this argument, we show that the system can be controlled in small time
to any target of the form u0 + η̂ (in the sense of limit (2.6)), where η̂ is now
a linear combination of vectors of the form (2.7). This completes the proof of
the proposition in the case of a regular initial condition u0. In the case u0 ∈ V ,
it suffices to take control equal to zero on a small time interval, to use the
regularizing property of the PEs (e.g., see Theorem 3.1 in [Pet06]), and apply
the already proved result for regular initial condition.

Proof of Lemma 2.5. For any smooth u in H, we have

F−ξ1(Fξ2(u)) = Fξ2(u) + Lξ̂1 + (0,Ψ(Fξ2(u), ξ̂1)) +Qξ̂1

= u+ L(ξ̂1 − ξ̂2)− (0,Ψ(u, ξ̂2)) + (0,Ψ(Fξ2(u), ξ̂1)) +Q(ξ̂1 − ξ̂2).
(2.13)

Replacing in this equality u by Fξ1(u0), we obtain

F−ξ1(Fξ2(Fξ1(u0))) = u0 − Lξ̂2 −Qξ̂2
− (0,Ψ(u0, ξ̂1))− (0,Ψ(Fξ1(u0), ξ̂2)) + (0,Ψ(Fξ2(Fξ1(u0)), ξ̂1)).

(2.14)
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Note that

Ψ(u, ξ) does not depend on π2u and π1Lξ̂1 = π1Lξ̂2 = 0, (2.15)

so using (2.13), we get

Ψ(Fξ1(u0), ξ̂2) = Ψ(u0 −Qξ̂1, ξ̂2),

Ψ(Fξ2(Fξ1(u0)), ξ̂1) = Ψ(u0 +Q(ξ̂1 − ξ̂2), ξ̂1).

Thus (2.14) can be rewritten as

F−ξ1(Fξ2(Fξ1(u0))) = u0 − Lξ̂2 −Qξ̂2
+ (0,Ψ(u0 +Q(ξ̂1 − ξ̂2), ξ̂1)−Ψ(u0 −Qξ̂1, ξ̂2)−Ψ(u0, ξ̂1)),

hence

F−ξ2(F−ξ1(Fξ2(Fξ1(u0)))) = u0 + (0,Ψ(F−ξ1(Fξ2(Fξ1(u0))), ξ̂2))

+ (0,Ψ(u0 +Q(ξ̂1 − ξ̂2), ξ̂1)−Ψ(u0 −Qξ̂1, ξ̂2)−Ψ(u0, ξ̂1))

= u0 + (0,Ψ(u0 −Qξ̂2, ξ̂2))

+ (0,Ψ(u0 +Q(ξ̂1 − ξ̂2), ξ̂1)−Ψ(u0 −Qξ̂1, ξ̂2)−Ψ(u0, ξ̂1))

= u0 + (0, b2(ξ1 − ξ2, ξ1 + ξ2)),

where we used again (2.15) and the equality

Ψ(F−ξ1(Fξ2(Fξ1(u0))), ξ̂2) = Ψ(u0 −Qξ̂2, ξ̂2).

2.2.2 Controllability of v-component

Here we prove the following version of Proposition 2.4 for the v-component.

Proposition 2.6. Let Hi ⊂ Ui, i = 1, 2 be finite-dimensional subspaces, let
H = H1 × H2, and assume that H2(∞) is dense in V2. For any u0 ∈ V
and η ∈ H1(∞), there is a family of controls {ξτ}τ>0 ⊂ L∞(J1,H) such that

Sτ (u0, 0, ξτ )→ u0 + η̂ in V as τ → 0+, (2.16)

where η̂ = (η, 0) ∈ H.

Proof. The argument is close to the one used in Proposition 2.4. Again, without
loss of generality, we can assume that u0 ∈ U . We prove limit (2.16) for
any η ∈ H1(N), arguing by induction on N ≥ 0. The base case N = 0 follows
from limit (1.6) with ζ = 0 and η = η̂:

Sδ(u0, 0, δ
−1η̂)→ u0 + η̂ in V as δ → 0+.
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Taking δ = τ , we obtain the required limit with ξτ = τ−1η̂.
Assume that the limit is proved in the case N − 1, and let η ∈ H1(N). By

approximation, we can suppose that η is of the form

η = Q1ζ̂0 + ζ1 −
m∑
i=2

B1(ζi)

for some m ≥ 2, ζ̂0 = (0, ζ0), ζ0 ∈ H2(N − 1), and ζ1, . . . , ζm ∈ H1(N − 1).

Step 1. Direction ζ1−
∑m
i=2B1(ζi). Limit (1.6) with ζ = ζ̂2 = (ζ2, 0) and η = 0

implies that

Sδ(u0, δ
− 1

2 ζ̂2, 0)→ u0 −B(ζ̂2) in V as δ → 0+. (2.17)

The equality

Sδ(u0 + δ−
1
2 ζ̂2, 0, 0) = Sδ(u0, δ

− 1
2 ζ̂2, 0) + δ−

1
2 ζ̂2

and limit (2.17) show that

‖Sδ(u0 + δ−
1
2 ζ̂2, 0, 0)− u0 +B(ζ̂2)− δ− 1

2 ζ̂2‖1 → 0 as δ → 0+.

The fact that ζ2 ∈ H1(N − 1) and the induction hypothesis imply that, for any
δ > 0, there is a family of controls {ξ1τ,δ} ⊂ L∞(J1,H) such that

Sτ (u0, 0, ξ
1
τ,δ)→ u0 + δ−

1
2 ζ̂2 in V as τ → 0+.

Then Proposition 1.1 implies that

Sδ(Sτ (u0, 0, ξ
1
τ,δ), 0, 0)→ Sδ(u0 + δ−

1
2 ζ̂2, 0, 0) in V as τ → 0+.

Combining this with (2.17), we find a family {ξ2δ} ⊂ L∞(J1,H) verifying

‖Sδ(u0, 0, ξ2δ )− u0 +B(ζ̂2)− δ− 1
2 ζ̂2‖1 → 0

as δ → 0+. Using the assumption ζ1, ζ2 ∈ H1(N − 1), the induction hypothesis,
and Proposition 1.1, we find a family of controls {ξ3τ} ⊂ L∞(J1,H) such that

‖Sτ (u0, 0, ξ
3
τ )− u0 − (ζ1 −B1(ζ2), 0)‖1 → 0 as τ → 0+.

Iterating this argument with ζ3, . . . , ζm, we construct a family {ξm+1
τ } ⊂ L∞(J1,H)

such that

‖Sτ (u0, 0, ξ
m+1
τ )− u0 − (ζ1 −

m∑
i=2

B1(ζi), 0)‖1 → 0 as τ → 0+. (2.18)

Step 2. Direction Q1ζ̂0. Let û0 ∈ H4. By limit (1.7) with ξ = ζ̂0 and η = 0,
we have

Sδ(û0, δ
−1ζ̂0, 0)→ û0 − Lζ̂0 − (0,Ψ(û0, ζ̂0))−Qζ̂0
= û0 − (Q1ζ̂0, L2ζ0 + Ψ(û0, ζ̂0)).
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The equality

Sδ(û0 + δ−1ζ̂0, 0, 0) = Sδ(û0, δ
−1ζ̂0, 0) + δ−1ζ̂0

implies that

‖Sδ(û0 + δ−1ζ̂0, 0, 0)− û0 + (Q1ζ̂0, L2ζ0 + Ψ(û0, ζ̂0))− δ−1ζ̂0‖1 → 0

as δ → 0+. Combining this with the assumption that H2(∞) is dense in V2 and
Propositions 1.1 and 2.4, we construct a family of controls {ξm+2

τ } ⊂ L∞(J1,H)
such that

Sτ (û0, 0, ξ
m+2
τ )→ û0 − (Q1ζ̂0, 0) in V as τ → 0+.

Taking

û0 = u0 + (ζ1 −
m∑
i=2

B1(ζi), 0)

and using (2.18), we find a family of controls {ξτ} ⊂ L∞(J1,H) such that
limit (2.16) holds.

2.2.3 Completion of the proof

Assume that H ⊂ U is an H-saturating (resp. V -saturating) subspace, and
let ε > 0, T > 0, u0 ∈ V , and u1 ∈ H (resp. u1 ∈ V ) be arbitrary. Then there
is η = (η1, η2) ∈ H(∞) such that

‖ST (u0, 0, 0) + η − u1‖ <
ε

2

(
resp. ‖ST (u0, 0, 0) + η − u1‖1 <

ε

2

)
. (2.19)

Let us denote û0 = ST (u0, 0, 0) + η and take t0 > 0 and r > 0 so small that

‖St(u, 0, 0)− û0‖1 <
ε

2
for t ∈ [0, t0] and u ∈ BV (û0, r). (2.20)

This is possible by Proposition 1.1. Choosing, if necessary, t0 smaller, we will
also have

‖ST−t(u0, 0, 0)− ST (u0, 0, 0)‖1 <
r

2
for t ∈ [0, t0]. (2.21)

Now applying Propositions 2.4 and 2.6 with initial condition ST−t0(u0, 0, 0), we
find a time τ ∈ (0, t0) and a control ξ ∈ L∞([0, τ ],H) such that

‖Sτ (ST−t0(u0, 0, 0), 0, ξ)− ST−t0(u0, 0, 0)− (η1, η2)‖1 <
r

2
.

In view of (2.21), this implies that Sτ (ST−t0(u0, 0, 0), 0, ξ) ∈ BV (û0, r). Finally,
using (2.19) and (2.20), we conclude that

‖ST (u0, 0, ζ)− u1‖ < ε (resp. ‖ST (u0, 0, ζ)− u1‖1 < ε) ,

where ζ(t) = I[T−t0,T−t0+τ ]ξ(t − T + t0), t ∈ JT . This completes the proof
of Theorem 2.3.
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Remark 2.7. Note that the above proof gives approximate controllability to any
target u1 in H1 × V2 with respect to the norm of that space.

Remark 2.8. The assumption that H2(∞) is dense in V2 (see (b) in Definition 2.2)
plays an important role in the above proof. We use it in Step 2 of the proof
of Proposition 2.6. If H2(∞) was dense only in H, we would need a version of
Proposition 1.1 with respect to the L2-norm. The latter is an open problem.

3 Controllability of linearized system

3.1 Saturation for linearized system and the result

Before formulating the main result of this section, let us define a saturation
property for linearized system (1.8), which is different from the one used in the
nonlinear case (cf. Definition 2.2), and recall the concept of observable measures
introduced in [KNS20a].

We assume that H = H1×H2, where H1 = {0} ⊂ U1 and H2 ⊂ U2 is a finite-
dimensional subspace. Let us define vector spaces G1(∞) ⊂ U1 and G2(∞) ⊂ U2

as follows:

• G2(∞) = ∪∞j=0G2(j), where G2(0) = H2 and G2(j), j ≥ 1 is the space spanned
by all the vectors of the form

ξ0 + b2(ξ1, ξ2),

where ξ0, ξ1 ∈ G2(j − 1) and ξ2 ∈ H2 are such that

b2(ξ1, ξ2) = B2(Q1(0, ξ1), ξ2)−B2(Q1(0, ξ2), ξ1) ∈ U2;

• G1(∞) is the space spanned by all the vectors of the form

Q1(0, ζ0) + b1(Q1(0, ζ1), Q1(0, ζ2)),

where ζ0, ζ1 ∈ G2(∞) and ζ2 ∈ H2 are such that

Q1(0, ζ0) + b1(Q1(0, ζ1), Q1(0, ζ2)) ∈ U1.

We set G(∞) = G1(∞)× G2(∞).

Definition 3.1. A finite-dimensional space H as above is said to be saturating for
linearized system (1.8) if G(∞) is dense in H.

We will see in Section 5 that the ten-dimensional subspace defined in the
Introduction is saturating in the sense of Definition 3.1. Let us take any T > 0,
denote E = L∞(JT ,H), and let {ϕi}di=1 be a basis in H.
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Definition 3.2. A function ζ ∈ E is said to be observable if for any continuously
differentiable functions ai : JT → R, i ∈ [[1, d]] and any continuous function
a0 : JT → R the equality

d∑
i=1

ai(t)〈ζ(t), ϕi〉 − a0(t) = 0 for almost every t ∈ JT

implies that ai(t) = 0 for any t ∈ JT and i ∈ [[0, d]]. A measure ` ∈ P(E) is said
to be observable if `-almost every trajectory η ∈ E is observable.

It is easy to see that the observability does not depend on the choice of
the basis {ϕi} in H. See Section 5 in [KNS20a] for examples of observable
measures. In particular, it is shown there that the law of the Haar noise defined
by (0.11), (0.12) is observable.

Let u ∈ U , and let DηST (u, η) be the derivative of ST (u, η) with respect
to η ∈ E . Then the linear mapping

DηST (u, η) : E → U, g 7→ w(T )

is the resolving operator for Eq. (1.8), where ũ(t) = ST (u, η), (u, η) ∈ U × E ,
and t ∈ JT . Let Ku be a Borel set in E defined by

Ku = {η ∈ E : the image of DηST (u, η) is dense in U}. (3.1)

The following theorem can be seen as a non-Gaussian extension of the non-
degeneracy property of the Malliavin matrix. The latter is known to be an
important ingredient in the study of ergodicity and existence of positive densities
for stochastic equations driven by a white-in-time noise (see [MP06, HM06,
HM11, FGRT15, HM15]).

Theorem 3.3. Let ` ∈ P(E), and let H be a saturating subspace in the sense
of Definition 3.1. If there is τ ∈ (0, T ) such that the restriction7 `′ of ` to the
interval Jτ is observable, then `(Ku) = 1 for any u ∈ U .

In other words, the conclusion of this theorem is that Eq. (1.8) is approxi-
mately controllable in V by H-valued control g for any u ∈ U and `-a.e. η ∈ E .

3.2 Proof of Theorem 3.3

We follow the scheme used in the case of the complex Ginzburg–Landau equa-
tion considered in [KNS20a]. Let w(t;w0, g) be the solution of Eq. (1.8) cor-
responding to initial condition w0 ∈ H, control g ∈ E , and reference tra-
jectory ũ(t) = St(u, η), t ∈ JT . Our goal is to prove that the vector space
Λ = {w(T ; 0, g), g ∈ E} is dense in U for any u ∈ U and `-a.e. η ∈ E .

A well-known property of approximate controllability by initial condition,8

applied to Eq. (1.8) with g ≡ 0, shows that the vector space {w(s;w0, 0), w0 ∈ H}
7This means that `′ is the image of ` by the mapping πJT : E → L∞(Jτ ,H), η 7→ η|Jτ .
8In the case of Eq. (1.8), this can be proved by literally repeating the arguments of Section 7.2

in [KNS20a], where a similar result is proved for linear parabolic equations.
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is dense in U for any s ∈ [0, T ]. Let us apply this result for the interval [τ, T ],
where τ is as in Theorem 3.3. Furthermore, the resolving operator for Eq. (1.8) on
the interval [τ, T ] with g ≡ 0 is continuous from H to U . Hence, to show that Λ is
dense in U , it suffices to prove the density of the vector space {w(τ ; 0, g), g ∈ E}
in H.

For any 0 ≤ s ≤ t ≤ τ , we denote by Rũ(t, s) : H → H the two-parameter
resolving operator for the homogeneous problem

ẇ + Lw + b(ũ, w) +Qw = 0, w(s) = w0. (3.2)

Let Gũ be the controllability Gramian for Eq. (1.8) (see Chapter 1 in [Cor07]):

Gũ =

∫ τ

0

Rũ(τ, t)PHR
ũ(τ, t)∗dt,

where Rũ(τ, t)∗ : H → H is the adjoint of Rũ(τ, t), and PH is the orthogonal
projection onto H in H. It is easy to see that the required assertion will be
established if we show that KerGũ is trivial for `-a.e. η ∈ E .

It is easily seen that p(t) = Rũ(τ, t)∗w0 is the solution of the dual of prob-
lem (3.2) given by

ṗ− Lp− b(ũ)∗p−Q∗p = 0, p(τ) = w0, (3.3)

where b(ũ)∗ and Q∗ are the adjoints of b(ũ, ·) and Q in H.
Let us fix any observable η ∈ E and show that Ker(Gũ) = {0}. For any

w0 ∈ Ker(Gũ), we have

〈Gũw0, w0〉 =

∫ τ

0

‖PHRũ(τ, t)∗w0‖2dt =

∫ τ

0

‖PHp(t)‖2dt = 0,

which implies that PHp(t) = 0 for t ∈ Jτ . Thus,

〈ζ, p(t)〉 = 0, t ∈ Jτ (3.4)

for any ζ ∈ H. From this we are going to derive that π1w0 and π2w0 are zero.
Step 1. Proof of π2w0 = 0. Let us denote pi(t) = πip(t), i = 1, 2. In this

step, we show that
p2(t) = 0 for t ∈ Jτ . (3.5)

Choosing t = τ in this equality, we get π2w0 = 0. To prove (3.5), let us take

ζ = ξ̂ = (0, ξ) ∈ {0} ×H2 in (3.4). Then9

〈ξ, p2(t)〉 = 0, t ∈ Jτ . (3.6)

This shows that p2(t) is orthogonal to H2 for any t ∈ Jτ . In what follows, we
prove that p2(t) is orthogonal to all subspaces G2(j), j ≥ 1. By the saturation
assumption, the subspace G2(∞) is dense in H2, so we get (3.5).

9We shall use the same notation 〈·, ·〉 for the scalar products in the spaces H, H1, and H2.
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We proceed by induction on j ≥ 0. The case j = 0 is already considered
above. Assuming that (3.6) holds for any ξ ∈ G2(j − 1), let us prove it for

any ξ ∈ G2(j). Taking ζ = ξ̂ = (0, ξ) ∈ {0} × H2 in (3.3), differentiating the
resulting equality in time, and using (3.3), we obtain

〈Q1ξ̂, p1(t)〉+ 〈L2ξ + b2(ũ(t), ξ̂), p2(t)〉 = 0, t ∈ Jτ . (3.7)

Note that, as π1ξ̂ = 0, we have b2(ũ(t), ξ̂) = B2(ṽ(t), ξ), where ṽ(t) = π1ũ(t).
Thus (3.7) becomes

〈Q1ξ̂, p1(t)〉+ 〈L2ξ +B2(ṽ(t), ξ), p2(t)〉 = 0, t ∈ Jτ .

Taking the derivative in time of this equality, we get

〈Q1ξ̂, ṗ1(t)〉+
〈
B2( ˙̃v(t), ξ), p2(t)

〉
+ 〈L2ξ +B2(ṽ(t), ξ), ṗ2(t)〉 = 0, t ∈ Jτ .

From the equations for ṽ and p and the fact that π1η = 0 we derive

〈L1(Q1ξ̂) + b1(ṽ(t), Q1ξ̂) +Q1q̂(t), p1(t)〉+ 〈L2q(t) + b2(ũ(t), q̂(t)), p2(t)〉
− 〈B2(L1ṽ(t) +B1(ṽ(t)) +Q1ũ(t)− h1, ξ), p2(t)〉 = 0, (3.8)

where q(t) = L2ξ +B2(ṽ(t), ξ) and q̂(t) = (Q1ξ̂, q(t)) ∈ H, t ∈ Jτ . Setting

y(t) = ũ(t)−
∫ t

0

η(s) ds = ũ(t)−
d∑
i=1

ϕi

∫ t

0

ηi(s) ds, (3.9)

where ηi(t) = 〈η(t), ϕi〉, and using the equalities

b2(ũ(t), q̂(t)) = B2(ṽ(t), q(t)) +B2(Q1ξ̂, π2ũ(t))

= B2(ṽ(t), q(t)) +B2(Q1ξ̂, π2y(t)) +

d∑
i=1

B2(Q1ξ̂, π2ϕi)

∫ t

0

ηi(s) ds,

(3.10)

we rewrite (3.8) as

〈L1(Q1ξ̂) + b1(ṽ(t), Q1ξ̂) +Q1q̂(t), p1(t)〉

+〈L2q(t) +B2(ṽ(t), q(t)) +B2(Q1ξ̂, π2y(t)), p2(t)〉
−〈B2(L1ṽ(t) +B1(ṽ(t)) +Q1y(t)− h1, ξ), p2(t)〉

+

d∑
i=1

〈B2(Q1ξ̂, π2ϕi)−B2(Q1ϕi, ξ), p2(t)〉
∫ t

0

ηi(s) ds = 0.
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Taking the derivative in time of this equality and setting

ai(t) = 〈B2(Q1ξ̂, π2ϕi)−B2(Q1ϕi, ξ), p2(t)〉, i ∈ [[1, d]],

a0(t) =
d

dt

(
〈L1(Q1ξ̂) + b1(ṽ(t), Q1ξ̂) +Q1q̂(t), p1(t)〉

+ 〈L2q(t) +B2(ṽ(t), q(t)) +B2(Q1ξ̂, π2y(t)), p2(t)〉

− 〈B2(L1ṽ(t) +B1(ṽ(t)) +Q1y(t)− h1, ξ), p2(t)〉
)

+

d∑
i=1

〈B2(Q1ξ̂, π2ϕi)−B2(Q1ϕi, ξ), ṗ2(t)〉
∫ t

0

ηi(s) ds,

we obtain

a0(t) +

d∑
i=1

ai(t)η
i(t) = 0.

The functions {ai}di=1 are continuously differentiable and a0 is continuous. The
observability of η implies that ai(t) = 0 for t ∈ Jτ and i ∈ [[0, d]]. Thus (3.6)
holds with ξ replaced by

B2(Q1ξ̂, π2ϕi)−B2(Q1ϕi, ξ) = b2(ξ, π2ϕi). (3.11)

We conclude that (3.6) holds with any ξ ∈ G2(j).
Step 2. Proof of π1w0 = 0. In this step, we show that

p1(t) = 0 for t ∈ Jτ . (3.12)

Choosing t = τ , we get π1w0 = 0, which will complete the proof of the theorem.
We prove (3.12) by repeating the arguments of Step 1. In view of (3.5)

and (3.7), we have

〈Q1ξ̂, p1(t)〉 = 0, t ∈ Jτ (3.13)

for any ξ̂ = (0, ξ) ∈ {0} ×G2(∞). Taking the derivative in time, we obtain

〈L1(Q1ξ̂) + b1(ṽ(t), Q1ξ̂) +Q1q̂(t), p1(t)〉 = 0, t ∈ Jτ ,

where q(t) = L2ξ + B2(ṽ(t), ξ) and q̂(t) = (Q1ξ̂, q(t)) ∈ H, t ∈ Jτ . Taking
another derivative and using the equality

d

dt
Q1q̂(t) = Q1(0, B2( ˙̃v(t), ξ)),

we get

〈b1( ˙̃v(t), Q1ξ̂) +Q1(0, B2( ˙̃v(t), ξ)), p1(t)〉+ 〈r(t), ṗ1(t)〉 = 0, t ∈ Jτ ,

where r(t) = L1(Q1ξ̂) + b1(ṽ(t), Q1ξ̂) +Q1q̂(t). Now, we use the equations for ṽ
and p1:

−〈b1(L1ṽ(t) +B1(ṽ(t)) +Q1ũ(t)− h1, Q1ξ̂))

−Q1(0, B2(L1ṽ(t) +B1(ṽ(t)) +Q1ũ(t)− h1, ξ)), p1(t)〉
+ 〈L1r(t) + b1(ṽ(t), r(t)) +Q1r̂(t), p1(t)〉 = 0, t ∈ Jτ ,
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where r̂(t) = (r(t), L2q(t) + b2(ũ(t), q̂(t))). Combining this with (3.9), (3.10),
and (3.11), we arrive at

−〈b1(L1ṽ +B1(ṽ) +Q1y − h1, Q1ξ̂))

−Q1(0, B2(L1ṽ +B1(ṽ) +Q1y − h1, ξ)), p1〉

+ 〈L1r + b1(ṽ, r) +Q1(r, L2q +B2(ṽ, q) +B2(Q1ξ̂, π2y)), p1〉

+

d∑
i=1

〈−b1(Q1ϕi, Q1ξ̂) +Q1(0, b2(ξ, π2ϕi)), p1〉
∫ t

0

ηi(s) ds = 0.

Taking the derivative in this equality and denoting

ãi(t) = 〈−b1(Q1ϕi, Q1ξ̂) +Q1(0, b2(ξ, π2ϕi)), p1〉, i ∈ [[1, d]],

ã0(t) =
d

dt

(
− 〈b1(L1ṽ +B1(ṽ) +Q1y − h1, Q1ξ̂))

−Q1(0, B2(L1ṽ +B1(ṽ) +Q1y − h1, ξ)), p1〉

+ 〈L1r + b1(ṽ, r) +Q1(r, L2q +B2(ṽ, q) +B2(Q1ξ̂, π2y)), p1〉
)

+

d∑
i=1

〈−b1(Q1ϕi, Q1ξ̂) +Q1(0, b2(ξ, π2ϕi)), ṗ1〉
∫ t

0

ηi(s) ds,

we obtain

ã0(t) +

d∑
i=1

ãi(t)η
i(t) = 0.

Again the functions {ãi}di=1 are continuously differentiable and ã0 is continuous,
so the observability of η implies that ãi(t) = 0 for t ∈ Jτ and i ∈ [[0, d]]. We have
b2(ξ, π2ϕi) ∈ G2(∞) for any ξ ∈ G2(∞). Hence, Q1(0, b2(ξ, π2ϕi)) ∈ G1(∞), and
from (3.13) it follows that

〈Q1(0, b2(ξ, π2ϕi)), p1(t)〉 = 0, t ∈ Jτ .

Combining this with the equality ãi(t) = 0 for t ∈ Jτ , we derive that

〈b1(Q1ϕi, Q1ξ̂), p1(t)〉 = 0, t ∈ Jτ .

Thus 〈ζ, p1(t)〉 = 0 for any ζ ∈ G1(∞) and t ∈ Jτ . The saturation assumption
implies that (3.12) holds.

4 Ergodicity of primitive equations

4.1 Abstract result

Here we formulate an abstract sufficient condition for exponential mixing which
is applied in the next section to the randomly forced primitive equations. It is
derived from Theorem 1.1 in [KNS20a].
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Let H and E be separable Hilbert spaces, let E be a dense Banach subspace
of E, and let X and K ⊂ E be compact sets in H and E, respectively. Assume
that S : X×K → X is a continuous mapping, {ηk} is a sequence of i.i.d. random
variables in E with common law ` and K = supp `, and consider a random
sequence defined by

uk = S(uk−1, ηk), k ≥ 1, u0 = u ∈ X.

Then (uk,Pu), u ∈ X is a Markov family in X, let Pk and P∗k be the associated
Markov operators. A measure µ ∈ P(X) is said to be stationary for (uk,Pu)
if P∗1µ = µ. Recall that the dual-Lipschitz metric on P(X) is defined by

‖µ1 − µ2‖∗L = sup
f∈L(X), ‖f‖L≤1

|(f, µ1)− (f, µ2)| ,

where (f, µ) =
∫
X
f(u)µ(du) and L(X) is the space of functions f : X → R

such that

‖f‖L = sup
u∈X
|f(u)|+ sup

0<‖u−v‖H≤1

|f(u)− f(v)|
‖u− v‖H

<∞.

Theorem 4.1. Assume that the following conditions hold.

(H1) There is a Banach space V compactly embedded into the space H such
that X ⊂ V . There is an open set O = OH×OE in H×E containing X×K
and an extension S̃ : O → V of S that is twice continuously differentiable
with derivatives that are bounded on bounded subsets of O. Moreover,
for any u ∈ OH , the mapping η 7→ S̃(u, η), OE → H is analytic, and all
the derivatives (Dj

ηS̃)(u, η) are continuous in (u, η) and are bounded on
bounded subsets of O.

(H2) There are a ∈ (0, 1), η̂ ∈ K, and û ∈ X such that

‖S(u, η̂)− û‖H ≤ a‖u− û‖H for any u ∈ X.

(H3) For any u ∈ X and `-a.e. η ∈ E, the image of the linear mapping
(DηS̃)(u, η) : E → H is dense in H.

(H4) The random variables ηk are of the form ηk =
∑∞
j=1 bjξjkej , where {ej} is

an orthonormal basis in E such that ej ∈ E and supj≥1 ‖ej‖E <∞, {bj} are
non-zero numbers satisfying

∑∞
j=1 b

2
j < ∞, and {ξjk} are independent

scalar random variables with Lipschitz-continuous density ρj such that
supp ρj ⊂ [−1, 1].

Then the family (uk,Pu), u ∈ X is exponentially mixing, i.e. it has a unique
stationary measure µ ∈ P(X), and there are numbers C > 0 and c > 0 such that

‖P∗kλ− µ‖∗L ≤ Ce−ck, k ≥ 0 (4.1)

for any initial measure λ ∈ P(X).
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This theorem is a slight modification of Theorem 1.1 in [KNS20a]. The
difference is in Condition (H1) which is a localized version of the condition used
in [KNS20a]. Indeed, it is not clear whether in the case of primitive equations
this regularity condition holds with O = H × E (see Theorem 3 in [Bou20]).
Condition (H2) is usually satisfied with û = 0 if the origin is an exponentially
stable equilibrium for the unforced equation and 0 ∈ K. Condition (H3) is a
Hörmander-type condition, and (H4) is quite usual decomposability assumption.
We refer the reader to Section 1 in [KNS20a] for a detailed discussion of these
conditions and for a short scheme of the proof of the original version of the
theorem.

Proof of Theorem 4.1. Truncating the mapping S̃, we easily obtain an extension
Ŝ : H × E → V of S satisfying (H1) with O = H × E. Note that the family
(uk,Pu), u ∈ X does not change if we replace S by its extension Ŝ. In view of
Conditions (H1)-(H4), the hypotheses of Theorem 1.1 in [KNS20a] are satisfied
for the random dynamical system uk = Ŝ(uk−1, ηk). Applying that theorem, we
prove the mixing (4.1) for (uk,Pu), u ∈ X.

4.2 Application

In this section, we combine Theorems 3.3 and 4.1 to prove the exponential mixing
for the randomly forced 3D primitive equations. More precisely, we consider
Eq. (1.1) with h = 0 and random process η of the form

η(t) =

∞∑
k=1

I[k−1,k)(t)ηk(t− k + 1), t ≥ 0,

where I[k−1,k) is the indicator function of the interval [k−1, k), {ηk} is a sequence
of i.i.d. random variables in the space E = L∞(J,H), J = [0, 1], and H ⊂ U is a
finite-dimensional subspace. In what follows, we denote by ` the law of the random
variable ηk and assume that K = supp ` is compact in E . The restriction to integer
times of the solution of Eq. (1.1) satisfies the relation uk = S1(uk−1, ηk), k ≥ 1
and defines a family of Markov processes (uk,Pu) parametrised by the initial
condition u0 = u ∈ V . The following lemma is proved by using standard
arguments based on dissipative and regularizing properties of PEs.

Lemma 4.2. The family (uk,Pu) admits a closed invariant absorbing set X in U
in the sense that, for any R > 0, there is an integer k0 = k0(R) ≥ 0 such that

Pu{uk ∈ X, k ≥ k0} = 1 for u ∈ BV (0, R),

Pu{uk ∈ X, k ≥ 0} = 1 for u ∈ X.

The following theorem is a more detailed version of Theorem C formulated
in the Introduction.

Theorem 4.3. Let a finite-dimensional subspace H ⊂ U be saturating in the sense
of Definition 3.1, and assume that the following two conditions are fulfilled.
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Decomposability. The random variables ηk are of the form ηk =
∑∞
j=1 bjξjkej ,

where {ej} is an orthonormal basis in the Hilbert space E = L2(J,H)
such that supj≥1 ‖ej‖L∞(J,H) <∞, {bj} are non-zero numbers satisfying∑∞

j=1 b
2
j < ∞, and {ξjk} are independent scalar random variables with

Lipschitz-continuous density ρj such that supp ρj ⊂ [−1, 1] and ρj(0) > 0.

Observability. There is τ ∈ (0, 1) such that the law `′ of the restriction of the
random variable ηk to the interval Jτ is observable.

Then the family (uk,Pu), u ∈ X is exponentially mixing.

Proof. By Theorem 3 in [Bou20], there is an open set OE in E containing K and
an extension S̃ : H2 ×OE → H3 of S1 that is twice continuously differentiable
with derivatives that are bounded on bounded subsets of H2 ×OE . Moreover,
for any u ∈ H2, the mapping η 7→ S̃(u, η), OE → H2 is analytic and the
derivatives (Dj

ηS̃)(u, η) are continuous in (u, η) and bounded on bounded subsets
of H2×OE . Thus Condition (H1) in Theorem 4.1 is verified with H = H2, V =
H3, and O = H2 ×OE .

Next, for any δ > 0, we define a norm on H2 by |u|δ =
(
‖u‖2 + δ‖u‖22

)1/2
.

Then for any bounded set B ⊂ H2, there are numbers δ > 0 and a ∈ (0, 1)
such that

|S1(u)|δ ≤ a|u|δ for u ∈ B, (4.2)

where S1(u) = S1(u, 0). This inequality with B = X shows that Condition (H2)
is verified with û = 0, η̂ = 0, and the norm | · |δ. To prove (4.2), we use the
following inequalities (see [CT07, Ju07, Pet06, Bou20]):

‖S1(u)‖ ≤ q‖u‖ for u ∈ H,
‖S1(u)‖2 ≤ CB‖u‖ for u ∈ B,

where q ∈ (0, 1) and CB > 0. These inequalities imply that

|S1(u)|2δ = ‖S1(u)‖2 + δ ‖S1(u)‖22 ≤ q2‖u‖2 + δ C2
B‖u‖2 ≤

(
q2 + δC2

B

)
|u|2δ .

Choosing δ > 0 so small that a2 = q2 + δC2
B < 1, we obtain (4.2). Finally,

Condition (H3) is established in Theorem 3.3, and Condition (H4) is verified by
the decomposability hypothesis. Applying Theorem 4.1, we complete the proof.

Theorem 4.3 is formulated for initial measures λ supported by X. As a
consequence of Lemma 4.2 and Theorem 4.3, we obtain the following result.

Corollary 4.4. Under the conditions of Theorem 4.3, the measure µ is the
unique stationary measure for the family (uk,Pu) in P(V ). Moreover, inequal-
ity (4.1) holds for any R > 0, λ ∈ P(V ) with suppλ ⊂ BV (0, R), and k ≥ k0.
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5 Saturating subspaces

In this section, we show that the ten-dimensional subspace defined in the Intro-
duction is saturating in the sense of both Definitions 2.2 and 3.1. We also give
an example of V -saturating subspace.

5.1 H-saturating subspace

Let us consider the subspace

H = span {(0, φi) : i ∈ [[1, 10]]} ⊂ H, (5.1)

where φi are the eigenfunctions of the operator L2 given by

φ1 = cosx sin z, φ2 = sinx sin z, φ3 = cos y sin z, φ4 = sin y sin z,

φ5 = sin z, φ6 = cos 2x sin z, φ7 = sin 2x sin z, φ8 = cos 2y sin z,

φ9 = sin 2y sin z, φ10 = sin 2z.

Theorem 5.1. The subspace H is H-saturating in the sense of Definition 2.2.

To prove this theorem, we introduce the following two orthogonal bases:

• in H1, composed of eigenfunctions of the operator L1:

mcm(x, y) cos pz, m sm(x, y) cos pz, m⊥cm(x, y) cos pz, m⊥sm(x, y) cos pz,

m⊥cm(x, y), m⊥sm(x, y), ı cos pz,  cos pz m ∈ Z2
∗, p ≥ 1;

• in H2, composed of eigenfunctions of the operator L2:

cm(x, y) sin pz, sm(x, y) sin pz, sin pz m ∈ Z2
∗, p ≥ 1,

where we denote m⊥ = (−m2,m1), ı = (1, 0),  = (0, 1) ∈ R2, and

cm(x, y) = cos(m1x+m2y), sm(x, y) = sin(m1x+m2y).

The following two propositions are established in the next two subsections.

Proposition 5.2. Any vector of the basis in H1 belongs10 to H1(∞).
H1

Proposition 5.3. Any vector of the basis in H2 belongs to G2(∞).

These propositions and the inclusion G2(∞) ⊂ H2(∞) readily imply thatH(∞)
is dense in H1 × V2 and prove Theorem 5.1.

10Here H1(∞)
H1

is the closure of H1(∞) in H1.
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5.1.1 Saturation in θ-component

In this subsection, we give a proof of Proposition 5.3.

Proof of Proposition 5.3. Step 1. We first show that sinx sin pz ∈ G2(∞) for any
integer p ≥ 1. Indeed, as φ2, φ5 ∈ G2, we have b2(φ2, φ5) ∈ G2(1). The equalities

Q1(0, φ2) = ı cosx cos z, Q1(0, φ5) = 0,

b2(φ2, φ5) = B2(Q1(0, φ2), φ5) =
1

2
sinx sin 2z

imply that sinx sin 2z ∈ G2(1). A simple computation shows that

Q1(0, sinx sin 2z) =
1

2
ı cosx cos 2z,

b2(sinx sin 2z, φ5) = B2(Q1(0, sinx sin 2z), φ5)

=
1

4
sinx sin 2z cos z

=
1

8
(sinx sin z + sinx sin 3z) ∈ G2(2).

This implies that sinx sin 3z ∈ G2(2). Iterating this argument, we see that
sinx sin pz ∈ G2(∞) for any p ≥ 1. In a similar way, we can prove that cosx sin pz,
cos y sin pz, sin y sin pz ∈ G2(∞) for any p ≥ 1.

Repeating the above arguments and using the fact that sin 2x sin z, cos 2x sin z,
sin 2y sin z, cos 2y sin z ∈ G2, we can obtain also that sin 2x sin pz, cos 2x sin pz,
sin 2y sin pz, cos 2y sin pz ∈ G2(∞) for any p ≥ 1.

Step 2. Let us show that sin pz ∈ G2(∞) for any p ≥ 1. The equalities

ı cosx cosnz = Q1(0, n sinx sinnz),

ı sinx cosnz = Q1(0,−n cosx sinnz)

and the fact that cosx sinnz, sinx sinnz ∈ G2(∞) imply that

b2(n cosx sinnz,φ1) + b2(n sinx sinnz, φ2)

=
n2 − 1

2n
((n− 1) sin(n− 1)z − (n+ 1) sin(n+ 1)z) ∈ G2(∞).

Thus n sinnz − p sin pz ∈ G2(∞) for any integers n > p ≥ 1 that are both even
or both odd. As sin z, sin 2z ∈ G2, we obtain sin pz ∈ G2(∞) for any p ≥ 1.

Step 3. Now we prove the following property P (m) for any m ≥ 1:

P (m) : for any p ≥ 1 and q ∈ [[1,m]], we have sin qx sin pz ∈ G2(∞).

We argue by induction on m. The cases m = 1, 2 are considered in Step 1.
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Assuming that P (m) is true for m ≥ 2, we prove it for m+ 1. Note that

ı cosmx cosnz =
n

m
Q1(0, sinmx sinnz),

b2

( n
m

sinmx sinnz, φ1

)
=

(m− n)(m+ n2)

4mn
sin(m+ 1)x sin(n+ 1)z

+
(m+ n)(m+ n2)

4mn
sin(m+ 1)x sin(n− 1)z

+
(m+ n)(m− n2)

4mn
sin(m− 1)x sin(n+ 1)z

+
(m− n)(m− n2)

4mn
sin(m− 1)x sin(n− 1)z ∈ G2(∞)

(5.2)

for any n ≥ 1. By the induction hypothesis, we have sin(m − 1)x sin(n + 1)z,
sin(m− 1)x sin(n− 1)z ∈ G2(∞). Thus (5.2) implies that

(m−n) sin(m+1)x sin(n+1)z+(m+n) sin(m+1)x sin(n−1)z ∈ G2(∞) (5.3)

Taking here n = 1, we obtain sin(m+ 1)x sin 2z ∈ G2(∞). It follows that

b2

(
2

m+ 1
sin(m+ 1)x sin 2z, φ5

)
=

(m+ 1)

4
sin(m+ 1)x(sin 3z + sin z)∈G2(∞).

Thus
sin(m+ 1)x sin 3z + sin(m+ 1)x sin z ∈ G2(∞). (5.4)

Taking n = 2 in (5.3), we get

(m− 2) sin(m+ 1)x sin 3z + (m+ 2) sin(m+ 1)x sin z ∈ G2(∞).

This and (5.4) imply that sin(m+ 1)x sin z ∈ G2(∞). Repeating the argument
of Step 1, we show that sin(m+ 1)x sin pz ∈ G2(∞) for any p ≥ 1. Thus P (m)
is true for any m ≥ 1

In a similar way, cosmx sin pz, cosmy sin pz, sinmy sin pz belong to G2(∞)
for any m, p ≥ 1.

Step 4. In this step, we show that sm(x, y) sin pz ∈ G2(∞) for any p ≥ 1
and m = (m1,m2) ∈ Z2

∗. We confine ourselves to the case m2 ≥ 0, the
case m2 < 0 being similar. Arguing by induction on m2, we prove the following
property:

P ′(m2) : for any p ≥ 1, m1 ∈ Z, and q ∈ [[0,m2]], we have sm(x, y) sin pz ∈
G2(∞), where m = (m1, q).

The casem2 = 0 is considered in Step 3. Assuming that P ′(m2) is true form2 ≥ 0,
let us prove it for m2 + 1. We first consider the case m1 6= ±1. Let

θ1 = −n cos(m1x+m2y) sinnz,

θ2 = n sin(m1x+m2y) sinnz.
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Using the equalities

Q1(0, θ1) = msm(x, y) cosnz,

Q1(0, θ2) = mcm(x, y) cosnz,

we get

b2(θ1, sin y sin z)− b2(θ2, cos y sin z) = a1 sin(m1x+ (m2 + 1)y) sin(n+ 1)z

+ a2 sin(m1x+ (m2 + 1)y) sin(n− 1)z ∈ G2(∞), (5.5)

where

a1 =
1

2n

(
n3 − n(n− 1)m2 −m2

1 −m2
2

)
,

a2 = − 1

2n

(
n3 + n(n+ 1)m2 +m2

1 +m2
2

)
.

Taking n = 1 in (5.5), we obtain

(1−m2
1 −m2

2) sin(m1x+ (m2 + 1)y) sin 2z ∈ G2(∞).

As m1 6= ±1, we have 1−m2
1−m2

2 6= 0, so sin(m1x+ (m2 + 1)y) sin 2z ∈ G2(∞).
The latter implies that

b2(2 sin(m1x+ (m2 + 1)y) sin 2z, φ5) =
m2

1 + (m2 + 1)2

4
sin(m1x+ (m2 + 1)y)

× (sin 3z + sin z) ∈ G2(∞). (5.6)

On the other hand, taking n = 2 in (5.5), we get

a1 sin(m1x+ (m2 + 1)y) sin 3z + a2 sin(m1x+ (m2 + 1)y) sin z ∈ G2(∞). (5.7)

When n = 2, we have a1 − a2 = 4 + m2 6= 0, since m2 ≥ 0. Combining (5.6)
and (5.7), we see that sin(m1x + (m2 + 1)y) sin z ∈ G2(∞). Now applying the
argument of Step 1, we infer that sin(m1x + (m2 + 1)y) sin pz ∈ G2(∞) for
any p ≥ 1 and m1 6= ±1.

Finally, computing the term b2(sin(±2x+ (m2 + 1)y) sinnz, φ1), one easily
shows that sin(±x + (m2 + 1)y) sin pz ∈ G2(∞) for any p ≥ 1. Thus P ′(m2)
holds for any m2 ≥ 0, and we conclude that that sm(x, y) sin pz ∈ G2(∞) for
any p ≥ 1. The proof of cm(x, y) sin pz ∈ G2(∞) is similar.

Thus all the vectors of the basis in H2 belong to G2(∞). This completes the
proof of Proposition 5.3.

5.1.2 Saturation in v-component

Here we prove Proposition 5.2. We first establish the following lemma.

Lemma 5.4. For any m ∈ Z2
∗, p ≥ 1, and i ∈ [[1, 4]], the following properties hold:

(a) the functions mcm(x, y) cos pz, msm(x, y) cos pz belong to H1(∞);
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(b) the functions

ψcm,p,i = b1(mcm(x, y) cos pz, ψi), ψ
s
m,p,i = b1(msm(x, y) cos pz, ψi)

belong to H1(∞), where

ψ1 = ι cosx cos z, ψ2 = ι sinx cos z, ψ3 =  cos y cos z, ψ4 =  sin y cos z.

Proof. By Proposition 5.3, we know that sm(x, y) sin pz, cm(x, y) sin pz ∈ H2(∞).
Recall that Q1(0, θ) ∈ H1(∞) for any θ ∈ H2(∞). So property (a) follows from
the equalities

mcm(x, y) cos pz = Q1(0, psm(x, y) sin pz),

m sm(x, y) cos pz = Q1(0,−pcm(x, y) sin pz), m ∈ Z2
∗, p ≥ 1.

To prove (b), we take any ε > 0 and a ∈ R and note that

B1(εm cm(x, y) cos pz + aε−1ψi) = ε−2B1(aψi) + ε2B1(mcm(x, y) cos pz)

+ b1(mcm(x, y) cos pz, aψi).

Using the fact that B1(ψi) = 0, we obtain the following limit in V1 as ε→ 0+:

B1(εm cm(x, y) cos pz + aε−1ψi)→ b1(mcm(x, y) cos pz, aψi) = aψcm,i.

As a ∈ R is arbitrary, this shows that ψcm,p,i ∈ H1(∞). Repeating these
arguments with sm(x, y) instead of cm(x, y), we prove that ψsm,p,i ∈ H1(∞).

Proof of Proposition 5.2. Step 1. Let us show that ı cos pz ∈ H1(∞)
H1

for
any p ≥ 1. To this end, we take any n ≥ 2 and compute the term

b1(ı cosx cosnz, ψ2) =
1

2
ı cos 2x (cos(n+ 1)z + cos(n− 1)z)

+
1 + n2

2n
ı cos 2x (cos(n− 1)z − cos(n+ 1)z)

+
n2 − 1

2n
ı (cos(n− 1)z − cos(n+ 1)z) .

By property (a) in Lemma 5.4, we have ı cos 2x cos(n ± 1)z ∈ H1(∞), and by
property (b), that b1(ı cosx cosnz, ψ2) ∈ H1(∞). It follows that

ı (cos(n− 1)z − cos(n+ 1)z) ∈ H1(∞) for any n ≥ 2,

so
ı (cos pz − cos qz) ∈ H1(∞), (5.8)

provided that p, q ≥ 1 are both odd or both even. Passing to the limit as q →∞,
we see that, for any p ≥ 1, the function ı cos pz is in the L2-weak closure of

H1(∞), hence in H1(∞)
H1

, since H1(∞) is a vector space.
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Computing the term b1( cos y cos pz, ψ4) and repeating the above arguments,

we infer that  cos pz ∈ H1(∞).
H1

Step 2. In this step, we show that m⊥sm(x, y) cos pz belongs to H1(∞)
H1

for any m ∈ Z2
∗ and p ≥ 0. Let us take any m = (m1,m2) ∈ Z2

∗ and n ≥ 1, and
use the equality

b1(sm+(x, y) cosnz, ψ4) + b1(cm+(x, y) cosnz, ψ3)

= −(m2 + 1)Π (sm(x, y) cosnz cos z)

+ Π (A(m,n) sin(m1x+m2y) sinnz sin z) , (5.9)

where A(m,n) = n−1(m1n
2, (m2 + 1)n2 −m2

1 − (m2 + 1)2). By Lemma 5.4, we
have that the functions Π (sm(x, y) cosnz cos z), b1(sm+(x, y) cosnz, ψ4), and
b1(cm+(x, y) cosnz, ψ3) belong to H1(∞). Hence,

Π (A(m,n) sin(m1x+m2y) sinnz sin z) ∈ H1(∞). (5.10)

The vector A(m,n) is parallel to m if and only if one of the following two
conditions hold:

• m1 = 0 and m2 6= 0;

• m1 6= 0 and n2 = m2
1 + (m2 + 1)2.

Let us denote by A the set of couples (m,n) such that A(m,n) is non-parallel
to m. From (5.10) we derive that

m⊥sm(x, y)(cos(n+ 1)z − cos(n− 1)z) ∈ H1(∞) (5.11)

for any (m,n) ∈ A. In a similar way, we compute the sum

b1(sm+ι(x, y) cosnz, ψ2) + b1(cm+ι(x, y) cosnz, ψ1)

= −(m1 + 1)Π (sm(x, y) cosnz cos z)

+ Π (Aι(m,n) sin(m1x+m2y) sinnz sin z) , (5.12)

where Aι(m,n) = n−1((m1 + 1)n2−m2
2− (m1 + 1)2,m2n

2). As above, Aι(m,n)
is parallel to m if and only if one of the following conditions hold:

• m2 = 0 and m1 6= 0;

• m2 6= 0 and n2 = (m1 + 1)2 +m2
2.

Let Aι be the set of (m,n) such that Aι(m,n) is non-parallel to m. From (5.12)
it follows that (5.11) holds for any (m,n) ∈ Aι.

Let us go back to (5.9), and replace m by −m. We see that

Π (A(−m,n) sin(m1x+m2y) sinnz sin z) ∈ H1(∞),

and A(−m,n) is parallel to m if one of the following conditions hold:
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• m1 = 0 and m2 6= 0;

• m1 6= 0 and n2 = m2
1 + (m2 − 1)2.

We denote by A− the set of (m,n) such that A(m,n) is non-parallel to m.
Again (5.11) holds for any (m,n) ∈ A− . The set A−ι is defined in a similar way,
by replacing m by −m in (5.12). Then (5.11) holds for any (m,n) ∈ A−ι .

It is easy to see that the union of the sets A± , A±ι is Z2
∗×N∗, so (5.11) holds

for any m ∈ Z2
∗ and n ≥ 1. Iterating (5.11), we obtain

m⊥sm(x, y)(cos pz − cos qz) ∈ H1(∞), (5.13)

provided that the integers p, q ≥ 0 are both even or odd. Passing to the limit
as q →∞, we conclude that m⊥sm(x, y) cos pz belongs to the L2-weak closure

of H1(∞), hence to H1(∞)
H1

for any m ∈ Z2
∗ and p ≥ 0.

A similar argument shows that m⊥cm(x, y) cos pz ∈ H1(∞)
H1

for any m ∈ Z2
∗

and p ≥ 0. This completes the proof of Proposition 5.2.

5.2 V -saturating subspace

We do not know whether the subspace H defined in (5.1) is V -saturating. The
main difficulty comes from Proposition 5.2, which only implies that H1(∞)
is dense in H1. In this section, we add new vectors to H with non-zero v-
components. This results in a larger H1(∞)-space that contains all the vectors of
the basis in H1. As a consequence, we get V -saturation property. More precisely,
we define the space

H̃ = span{(φ̃i, 0), (0, φj) : i = 1, . . . , 6, j = 1, . . . , 10} ⊂ H,

where the functions φj are as in Section 5.1 and

φ̃1 =  cos z, φ̃2 =  cos 2z, φ̃3 = ı cos z, φ̃4 = ı cos 2z,

φ̃5 =  cosx, φ̃6 =  sinx.

Theorem 5.5. The subspace H̃ is V -saturating in the sense of Definition 2.2.

Proof. Let H̃(j) be the subspaces defined by (2.4) and (2.5) with H = H̃, and
let H̃i(j) = πiH̃(j), i = 1, 2. From Proposition 5.3 it follows that H̃2(∞)
is dense in V2. The proposition will be proved if we show that any vector of
the basis in H1 belongs to H̃1(∞) (cf. Proposition 5.2). By Lemma 5.4, we
have mcm(x, y) cos pz, msm(x, y) cos pz ∈ H̃1(∞) for any m ∈ Z2

∗ and p ≥ 1.
Combining (5.8), the version of (5.8) with  instead of ι, and the assumption
that (φ̃i, 0) ∈ H̃, i = 1, . . . , 4, we obtain that ı cos pz,  cos pz ∈ H̃1(∞) for
any p ≥ 1. For any m ∈ Z2

∗ and p ≥ 1, the following equality holds:

b1(sm+ι(x, y) cos pz, φ̃6) + b1(cm+ι(x, y) cos pz, φ̃5)

= Π (A(m) sin(m1x+m2y) cos pz) , (5.14)

32



where A(m) = (−(m1+1)m2,m1+1−m2
2). Note that the vector A(m) is parallel

to m if and only if A(m) = 0, i.e., m = (−1, 0). Assume that m 6= (−1, 0).
Since B1(φ̃5) = B1(φ̃6) = 0, as in the proof of (b) in Lemma 5.4, we show
that b1(sm+ι(x, y) cos pz, φ̃6), b1(cm+ι(x, y) cos pz, φ̃5) ∈ H̃1(∞). As A(m) is
non-parallel to m, from (5.14) we derive that m⊥sm(x, y) cos pz ∈ H̃1(∞) for
any p ≥ 1. From (5.13) it follows also that m⊥sm(x, y) ∈ H̃1(∞). Finally,
if m = (−1, 0), then m⊥sm(x, y) = φ̃6(x) ∈ H̃, and (cf. (b) in Lemma 5.4)

b1((1, 1) cos pz, φ̃5(x)) = −m⊥sm(x, y) cos pz ∈ H̃1(∞), p ≥ 1.

With similar arguments one proves also that m⊥cm(x, y) cos pz ∈ H̃1(∞) for
any m ∈ Z2

∗ and p ≥ 0. Thus any vector of the basis in H1 belongs to H̃1(∞).
We conclude that H̃1(∞) is dense in V1 and H̃(∞) is dense in V .

5.3 Saturation for linearized system

Now we turn to the saturation property for the linearized system.

Theorem 5.6. The subspace H defined by (5.1) is saturating for linearized sys-
tem (1.8) in the sense of Definition 3.1.

Proof. This theorem follows from the proof of Theorem 5.1. Indeed, by Proposi-
tion 5.3, G2(∞) is dense in H2. The computations in Section 5.1.2 show that

any vector of the basis in H1 belongs to G1(∞).
H1

We conclude that G(∞) is
dense in H, so H is saturating in the sense of Definition 3.1.

6 Proof of Proposition 1.2

We confine ourselves to the proof of limit (1.7), which is relatively more com-
plicated; see Remark 6.1. Let us take any u0 = (v0, θ0) ∈ H4 and ξ ∈ H5

such that π1ξ = 0 and consider the function w(t) = u(δt) − q(t), where
u(t) = St(u0, δ

−1ξ, 0), q(t) = (q1(t), q2(t)),

q1(t) = v0 − tQ1ξ, (6.1)

q2(t) = θ0 − t (L2ζ +B2(v0, ζ)) +
t2

2
B2(Q1ξ, ζ), (6.2)

and ζ = π2ξ. For any r > 0, we show that

w(1)→ 0 in V as δ → 0+ (6.3)

uniformly with respect to u0 and ζ satisfying

‖u0‖4 + ‖ζ‖5 ≤ r. (6.4)

Note that v = π1w is a solution of the following equation:

∂tv + δL1(v + q1) + δ〈v + q1,∇〉(v + q1)− δ
∫ z

0

div(v + q1) dz ∂z(v + q1)

+δf(v + q1)⊥ + δ∇ps − δ
∫ z

0

∇(θ + q2 + δ−1ζ) dz + ∂tq1 = δh1.
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Using (6.1) and (1.3), we see that this equation is equivalent to

∂tv + δL1(v + q1) + δ〈v + q1,∇〉(v + q1)− δ
∫ z

0

div(v + q1) dz ∂z(v + q1)

+δf(v + q1)⊥ + δ∇ps − δ
∫ z

0

∇(θ + q2) dz = δh1. (6.5)

In a similar way, θ = π2w is a solution of the equation

∂tθ + δL2(θ + q2 + δ−1ζ) + δ〈v + q1,∇〉(θ + q2 + δ−1ζ)

−δ
∫ z

0

div(v + q1) dz ∂z(θ + q2 + δ−1ζ) + ∂tq2 = δh2,

which, in view of (6.2) and (1.2), can be rewritten as follows:

∂tθ + δL2(θ + q2) + δ〈v + q1,∇〉(θ + q2)

−δ
∫ z

0

div(v + q1) dz ∂z(θ + q2) + 〈v,∇〉ζ −
∫ z

0

div v dz ∂zζ = δh2. (6.6)

The initial conditions are v(0) = 0 and θ(0) = 0. Using Eqs. (6.5) and (6.6),
we estimate the norms of v and θ. We begin with estimates for L2-norms of
v and θ, where we use standard energy methods. Then, following the ideas of
Cao and Titi [CT07], we estimate the L6-norm of v and H1-norms of v and θ
using specific barotropic-baroclinic formulation of PEs. The latter consists in
representing the velocity field v as follows v = v̄ + ṽ, where v̄ is the vertical
average of v and ṽ is the remaining part. The average v̄ is two-dimensional, so
it is treated by usual 2D NS methods, and the advantage of the reminder ṽ is
that it satisfies an equation without pressure. We provide a very detailed proof
of limit (6.3) that is divided into nine steps.

Step 1. L2-estimate for v. The goal of the first two steps is to show the
limit ‖v(1)‖ + ‖θ(1)‖ → 0 as δ → 0+. We start by taking the scalar product
in L2 of Eq. (6.5) with v and integrating by parts:

1

2

d

dt
‖v‖2+δν1‖∇v‖2 + δµ1‖∂zv‖2 = −δ 〈L1q1, v〉 − δ 〈〈v + q1,∇〉(v + q1), v〉

+ δ

〈∫ z

0

div(v + q1) dz ∂z(v + q1), v

〉
− δ

〈
f(v + q1)⊥, v

〉
− δ 〈∇ps, v〉+ δ

〈∫ z

0

∇(θ + q2) dz, v

〉
+ δ 〈h1, v〉 =

7∑
i=1

Ii. (6.7)

To estimate the terms I1, I4, I6, I7, we integrate by parts and use11 the Cauchy–
Schwarz and Young inequalities and the assumption that u0 and ζ satisfy (6.4)

11These inequalities and assumptions are used in almost all the estimates below, so we will
not mention them every time. The same letter C is used to denote constants which may change
from line to line.
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and t ∈ [0, 1] :

|I1| ≤ δ‖L1q1‖ ‖v‖ ≤ Cδ‖v‖,
|I4| = δ|〈fq⊥1 , v〉| ≤ δ‖fq1‖ ‖v‖ ≤ Cδ‖v‖,

|I6| ≤ Cδ‖θ + q2‖ ‖∇v‖ ≤ Cδ
(
‖θ‖2 + 1

)
+
δν1
4
‖∇v‖2,

|I7| ≤ δ‖h1‖ ‖v‖ ≤ Cδ‖v‖.

Integrating by parts and using the condition
∫
T div v dz = 0, we get

I5 = −δ
∫
T2

∇ps(x, y)

(∫
T
v(x, y, z) dz

)
dxdy

= δ

∫
T2

ps(x, y)

(∫
T

div v(x, y, z) dz

)
dxdy = 0.

To estimate I2 and I3, we note that〈∫ z

0

div(v + q1) dz ∂zv, v

〉
=

1

2

∫
T3

∫ z

0

div(v + q1) dz ∂z|v|2dxdy dz

= −1

2

∫
T3

div(v + q1) |v|2dxdy dz

= 〈〈(v + q1),∇〉v, v〉 .

Thus

|I2 + I3| ≤ δ (‖v‖+ ‖q1‖) ‖∇q1‖∞‖v‖+ Cδ (‖∇v‖+ ‖∇q1‖) ‖∂zq1‖∞‖v‖

≤ Cδ
(
‖v‖2 + 1

)
+
δν1
4
‖∇v‖2.

Combining the estimates for Ii with inequality (6.7), we obtain

d

dt
‖v‖2+δν1‖∇v‖2 + δµ1‖∂zv‖2 ≤ Cδ

(
‖v‖2 + ‖θ‖2 + 1

)
. (6.8)

Step 2. L2-estimate for θ. Now we take the scalar product in L2 of Eq. (6.6)
with θ:

1

2

d

dt
‖θ‖2+δν2‖∇θ‖2 + δµ2‖∂zθ‖2 = −δ 〈L2q2, θ〉 − δ 〈〈v + q1,∇〉(θ + q2), θ〉

+ δ

〈∫ z

0

div(v + q1) dz ∂z(θ + q2), θ

〉
− 〈〈v,∇〉ζ, θ〉

+

〈∫ z

0

div v dz ∂zζ, θ

〉
+ δ 〈h2, θ〉 =

6∑
i=1

Ji. (6.9)

We start with the terms J1, J4, J5, J6:

|J1| ≤ δ‖L2q2‖ ‖θ‖ ≤ Cδ‖θ‖,
|J4| ≤ ‖v‖ ‖∇ζ‖∞‖θ‖ ≤ C‖v‖ ‖θ‖,
|J5| ≤ C‖∇v‖ ‖∂zζ‖∞‖θ‖ ≤ C‖∇v‖ ‖θ‖,
|J6| ≤ δ‖h2‖ ‖θ‖ ≤ Cδ‖θ‖.
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To estimate J2 and J3, we use the equality〈∫ z

0

div(v + q1) dz ∂zθ, θ

〉
=

1

2

∫
T3

∫ z

0

div(v + q1) dz ∂z(θ
2) dxdy dz

= −1

2

∫
T3

div(v + q1) (θ2) dxdy dz

= 〈〈(v + q1),∇〉θ, θ〉 .

Then

|J2 + J3| ≤ δ (‖v‖+ ‖q1‖) ‖∇q2‖∞‖θ‖+ Cδ (‖∇v‖+ ‖∇q1‖) ‖∂zq2‖∞‖θ‖
≤ Cδ

(
‖v‖2 + ‖θ‖2 + 1

)
+ δν1‖∇v‖2.

The estimates for Ji and (6.9) imply that

d

dt
‖θ‖2 + δν2‖∇θ‖2 + δµ2‖∂zθ‖2 ≤ C

(
‖v‖2 + ‖∇v‖2 + ‖θ‖2 + 1

)
+ Cδ

(
‖v‖2 + ‖θ‖2 + 1

)
+ δν1‖∇v‖2.

Combining this with (6.8), we get

d

dt
‖θ‖2 +

(
C(ν1δ)

−1 + 1
) d

dt
‖v‖2 + δν2‖∇θ‖2 + δµ2‖∂zθ‖2

≤ C(1 + δ)
(
‖v‖2 + ‖θ‖2 + 1

)
. (6.10)

Integrating in time, we obtain

‖θ(t)‖2 + ‖v(t)‖2 ≤ C(1 + δ)

∫ t

0

(
‖v‖2 + ‖θ‖2 + 1

)
ds.

The Gronwall inequality implies

sup
t∈[0,1], δ∈(0,1]

(
‖θ(t)‖2 + ‖v(t)‖2

)
<∞.

Going back to (6.8) and (6.10), we see that

‖v(t)‖2 + ‖θ(t)‖2 +

∫ t

0

(
‖v‖21 + ‖θ‖21

)
ds ≤ Cδ for t ∈ [0, 1]. (6.11)

Step 3. Barotropic-baroclinic formulation. Following [CT07], next we estimate
the L6-norm of v and H1-norms of v and θ by using barotropic-baroclinic
formulation of PEs. More precisely, we denote

φ̄ = (2π)−1
∫
T
φ(x, y, z) dz, φ̃ = φ− φ̄.

Then the barotropic mode v̄ satisfies the following system of equations:

∂tv̄ − δν1∆(v̄ + q̄1) + δ〈v̄ + q̄1,∇〉(v̄ + q̄1)

+δ〈ṽ + q̃1,∇〉(ṽ + q̃1) + div(ṽ + q̃1)(ṽ + q̃1) + δf(v̄ + q̄1)⊥

+δ∇ps − δ
∫ z

0

∇(θ + q2) dz = δh̄1, div v̄ = 0, (6.12)
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and the baroclinic mode ṽ the following one:

∂tṽ + δL1(ṽ + q̃1) + δ〈ṽ + q̃1,∇〉(ṽ + q̃1)− δ
∫ z

0

div(ṽ + q̃1) dz ∂z(ṽ + q̃1)

+δ〈v̄ + q̄1,∇〉(ṽ + q̃1) + δ〈ṽ + q̃1,∇〉(v̄ + q̄1)

−δ〈ṽ + q̃1,∇〉(ṽ + q̃1) + div(ṽ + q̃1)(ṽ + q̃1) + δf(ṽ + q̃1)⊥

−δ
∫ z

0

∇(θ + q2) dz + δ

∫ z

0

∇(θ + q2) dz = δh̃1 (6.13)

(see [CT07] for details). The advantage of this representation is that there is no
pressure term in Eq. (6.13) and the barotropic mode depends only on horizontal
variables (x, y) (its properties are similar to the ones of 2D NS system).

Step 4. L6-estimate for ṽ. We take the scalar product in L2 of Eq. (6.13)
with ṽ|ṽ|4:

1

6

d

dt
‖ṽ‖6L6 + δν1‖|∇ṽ| |ṽ|2‖2 + δν1‖ṽ |∇|ṽ|2|‖2

+ δµ1‖|∂z ṽ| |ṽ|2‖2 + δµ1‖ṽ |∂z|ṽ|2|‖2 = −δ
〈
L1q̃1, ṽ|ṽ|4

〉
− δ

〈
〈ṽ + q̃1,∇〉(ṽ + q̃1)−

∫ z

0

div(ṽ + q̃1) dz ∂z(ṽ + q̃1), ṽ|ṽ|4
〉

− δ
〈
〈v̄ + q̄1,∇〉(ṽ + q̃1), ṽ|ṽ|4

〉
− δ

〈
〈ṽ + q̃1,∇〉(v̄ + q̄1), ṽ|ṽ|4

〉
+ δ

〈
〈ṽ + q̃1,∇〉(ṽ + q̃1) + div(ṽ + q̃1)(ṽ + q̃1), ṽ|ṽ|4

〉
+ δ

〈∫ z

0

∇(θ + q2) dz−
∫ z

0

∇(θ + q2) dz, ṽ|ṽ|4
〉

− δ
〈
f(ṽ + q̃1)⊥, ṽ|ṽ|4

〉
+ δ

〈
h1, ṽ|ṽ|4

〉
=

8∑
i=1

Ii. (6.14)

Then

|I1| ≤ δ‖L1q̃1‖L6‖ṽ‖5L6 ≤ Cδ‖ṽ‖5L6 ,

|I7| = δ|〈f q̃⊥1 , ṽ|ṽ|4〉| ≤ Cδ‖q̃1‖L6‖ṽ‖5L6 ≤ Cδ‖ṽ‖5L6 ,

|I8| ≤ δ‖h̃1‖L6‖ṽ‖5L6 ≤ Cδ‖ṽ‖5L6 .

Integrating by parts, we see that〈
〈ṽ + q̃1,∇〉ṽ −

∫ z

0

div(ṽ + q̃1) dz ∂z ṽ, ṽ|ṽ|4
〉

= 0,

which implies (again by integrating by parts)

|I2| ≤ δ (‖ṽ‖L6 + ‖q̃1‖L6) ‖∇q̃1‖∞‖ṽ‖5L6

+ Cδ (‖ṽ‖L6 + ‖q̃1‖L6) ‖∇q̃1‖∞‖ṽ‖5L6

+ Cδ (‖ṽ‖L6 + ‖q̃1‖L6) ‖ṽ‖2L6‖∂z q̃1‖∞‖|∇ṽ| |ṽ|2‖

≤ Cδ
(
‖ṽ‖6L6 + 1

)
+
δν1
9
‖|∇ṽ| |ṽ|2‖2.
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As div v̄ = div q̄1 = 0, we have that〈
〈v̄ + q̄1,∇〉ṽ, ṽ|ṽ|4

〉
= 0,

hence

|I3| ≤ δ (‖v̄‖L6 + ‖q̄1‖L6) ‖∇q̃1‖∞‖ṽ‖5L6 ≤ Cδ (‖v̄‖L6 + 1) ‖ṽ‖5L6 .

To estimate I4, we first integrate by parts:

I4 = δ
〈
(v̄ + q̄1) div (ṽ + q̃1) , ṽ|ṽ|4

〉
+ δ

〈
〈ṽ + q̃1,∇〉(ṽ|ṽ|4), v̄ + q̄1

〉
.

We decompose I4 as I4 = I14 + I24 , where

I14 = −δ
〈
〈ṽ,∇〉v̄, ṽ|ṽ|4

〉
= δ

〈
v̄ div ṽ, ṽ|ṽ|4

〉
+ δ

〈
〈ṽ,∇〉(ṽ|ṽ|4), v̄

〉
.

It is proved on pages 255–257 in [CT07] that

|I14 | ≤ Cδ
(
‖v̄‖ 1

2 ‖∇v̄‖ 1
2 ‖ṽ‖

3
2

L6‖|∇ṽ| |ṽ|2‖
3
2 + ‖v̄‖ 1

2 ‖∇v̄‖ 1
2 ‖ṽ‖6L6

)
≤ Cδ

(
‖v̄‖2‖∇v̄‖2 + 1

)
‖ṽ‖6L6 +

δν1
9
‖|∇ṽ| |ṽ|2‖2.

Then, integrating by parts, we estimate the term I24 as follows:

|I24 | ≤ Cδ
(
‖v̄‖L6‖∇q̃1‖∞‖ṽ‖5L6 + ‖q̄1‖∞‖|∇ṽ| |ṽ|2‖ ‖ṽ‖3L6

+ ‖q̄1‖∞‖∇q̃1‖L6‖ṽ‖5L6 + ‖q̃1‖∞‖ṽ‖2L6‖|∇ṽ| |ṽ|2‖ (‖v̄‖L6 + ‖q̄1‖L6)
)

≤ Cδ
(
‖v̄‖L6‖ṽ‖5L6 + ‖v̄‖2L6‖ṽ‖4L6 + ‖ṽ‖6L6 + 1

)
+
δν1
9
‖|∇ṽ| |ṽ|2‖2.

To estimate I5, we first integrate by parts:

I5 = δ
〈
〈ṽ + q̃1,∇〉(ṽ + q̃1) + div(ṽ + q̃1)(ṽ + q̃1), ṽ|ṽ|4

〉
= −δ

2∑
k,j=1

∫
T3

(ṽ + g̃1)k(ṽ + g̃1)j∂k(ṽj |ṽ|4),

where ∂1 = ∂x and ∂2 = ∂y. We write I5 = I15 + I25 , where

I15 = −δ
2∑

k,j=1

∫
T3

ṽkṽj∂k(ṽj |ṽ|4).

By the computations on pages 255–257 in [CT07], we have

|I15 | ≤ Cδ‖ṽ‖3L6 (‖ṽ‖+ ‖∇ṽ‖) ‖|∇ṽ| |ṽ|2‖

≤ Cδ‖ṽ‖6L6

(
‖ṽ‖2 + ‖∇ṽ‖2

)
+
δν1
9
‖|∇ṽ| |ṽ|2‖2.
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Then we estimate I25 as follows:

|I25 | ≤ Cδ
∫
T2

((∫
T

(|ṽ|+ 1) dz

)2 ∫
T
|∇ṽ||ṽ|4 dz

)
dx dy

≤ Cδ
∫
T2

(∫
T
|ṽ|2 dz

∫
T
|∇ṽ||ṽ|4 dz

)
dx dy + Cδ

∫
T3

|∇ṽ||ṽ|4dxdy dz.

The first term on the right-hand side is estimated exactly in the same way as I15
(see [CT07]), and the second term by

Cδ

∫
T3

|∇ṽ||ṽ|4dxdy dz ≤ Cδ‖|∇ṽ| |ṽ|2‖ ‖ṽ‖2L4 ≤ Cδ‖ṽ‖4L4 +
δν1
9
‖|∇ṽ| |ṽ|2‖2.

It remains to estimate I6. To this end, we write I6 = I16 + I26 , where

I16 = δ

〈∫ z

0

∇θ dz−
∫ z

0

∇θ dz, ṽ|ṽ|4
〉
.

Again we refer to pages 255–257 in [CT07] for the proof of the following inequality:

|I16 | ≤ Cδ‖θ̄‖
1
2 ‖∇θ̄‖ 1

2 ‖ṽ‖
3
2

L6

(
‖ṽ‖ 1

2 + ‖∇ṽ‖ 1
2

)
‖|∇ṽ| |ṽ|2‖

≤ Cδ
(
‖θ̄‖2‖∇θ̄‖2 + ‖ṽ‖6L6‖ṽ‖2 + ‖ṽ‖6L6‖∇ṽ‖2

)
+
δν1
9
‖|∇ṽ| |ṽ|2‖2.

Then we estimate I26 as follows:

|I26 | ≤ Cδ‖∇q2‖∞‖ṽ‖5L5 ≤ Cδ‖ṽ‖5L5 .

Combining all the above estimates for the terms Ii with (6.14), (6.11), the Sobolev
embedding H1(T3) ⊂ L6(T3), and the Gronwall inequality, we conclude that

‖ṽ(t)‖L6 +

∫ t

0

‖|∇ṽ| |ṽ|2‖2 ds ≤ Cδ for t ∈ [0, 1]. (6.15)

Step 5. Estimate for ∇v̄. Here we take the scalar product in L2 of the first
equation in (6.12) with −∆v̄:

1

2

d

dt
‖∇v̄‖2+δν1‖∆v̄‖2 = −δν1〈∆q̄1,∆v̄〉+ δ 〈〈v̄ + q̄1,∇〉(v̄ + q̄1),∆v̄〉

+ δ
〈
〈ṽ + q̃1,∇〉(ṽ + q̃1) + div(ṽ + q̃1)(ṽ + q̃1),∆v̄

〉
+ δ

〈
f(v̄ + q̄1)⊥,∆v̄

〉
+ δ 〈∇ps,∆v̄〉

− δ

〈∫ z

0

∇(θ + q2) dz,∆v̄

〉
− δ

〈
h̄1,∆v̄

〉
=

7∑
i=1

Ii. (6.16)
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We estimate12 I1, I4, I7 as follows:

|I1| ≤ δν1‖∆q̄1‖ ‖∆v̄‖ ≤ Cδ +
δν1
10
‖∆v̄‖2,

|I4| = δ|〈f q̄⊥1 ,∆v̄〉| ≤ Cδ +
δν1
10
‖∆v̄‖2,

|I7| ≤ δ‖h̄1‖ ‖∆v̄‖ ≤ Cδ +
δν1
10
‖∆v̄‖2.

Integrating by parts and using the fact that div v̄ = 0, we get I5 = I6 = 0. Next
we use the Hölder inequality, the Sobolev embedding H1(T2) ⊂ L4(T4), and the
interpolation inequality to estimate I2:

|I2| ≤ δ‖v̄ + q̄1‖L4‖∇(v̄ + q̄1)‖L4‖∆v̄‖ ≤ δ‖v̄ + q̄1‖
1
2 ‖∇(v̄ + q̄1)‖ ‖∆v̄‖ 3

2

≤ Cδ
(
‖∇v̄‖6 + 1

)
+
δν1
10
‖∆v̄‖2.

Finally, we use the Hölder inequality to estimate I3:

|I3| ≤ Cδ
∫
T2

(∫
T
|ṽ + q̃1| |∇(ṽ + q̃1)|dz

)
|∆v̄|dxdy

≤ Cδ
∫
T2

(∫
T
(|ṽ|+ 1) (|∇ṽ|+ 1) dz

)
|∆v̄|dx dy

≤ Cδ
∫
T2

(∫
T
(|∇ṽ|+ 1) dz

) 1
2
(∫

T
(|ṽ|+ 1)2(|∇ṽ|+ 1) dz

) 1
2

|∆v̄|dxdy

≤ Cδ
(
‖∇ṽ‖2 + ‖ṽ‖2L4 + ‖|∇ṽ| |ṽ|2‖2 + 1

)
+
δν1
10
‖∆v̄‖2.

Combining the estimates for Ii and inequalities (6.16), (6.15), and (6.11), we get

d

dt
‖∇v̄‖2 + δν1‖∆v̄‖2 ≤ Cδ

(
‖∇v̄‖6 + 1

)
. (6.17)

This inequality implies that

‖∇v̄(t)‖2 +

∫ t

0

‖∆v̄‖2ds ≤ Cδ for t ∈ [0, 1], (6.18)

provided that δ > 0 is sufficiently small. Indeed, to see this, let Aδ = Cδ and

Φ(t) = Aδ +Aδ

∫ t

0

‖∇v̄‖6 ds.

By inequality (6.17), we have (
d

dt
Φ

) 1
3

≤ A
1
3

δ Φ,

12In the estimate for I4, we use the equality 〈v̄⊥,∆v̄〉 = 0 which is easily verified by
integration by parts in x and y.
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or, equivalently,
1

Φ3

d

dt
Φ ≤ Aδ.

Integrating this, we obtain

Φ(t) ≤ Aδ
(
1− 2A3

δt
)− 1

2 for 0 ≤ t < 1 ∧
(

1

2A3
δ

)
.

Thus

Φ(t) ≤ 2Aδ for 0 ≤ t < 1 ∧
(

3

8A3
δ

)
.

Choosing δ0 > 0 so small that

3

8A3
δ

> 1 for δ ∈ (0, δ0),

we arrive at
Φ(t) ≤ 2Aδ for t ∈ [0, 1], δ ∈ (0, δ0).

Combining this with (6.17), we prove (6.18). Below everywhere we shall assume
that δ ∈ (0, δ0).

Step 6. Estimate for ∂zv. The function ω = ∂zv is a solution of the equation

∂tω + δL1(ω + q̂1) + δ〈v + q1,∇〉(ω + q̂1)− δ
∫ z

0

div(v + q1) dz ∂z(ω + q̂1)

+δ〈ω + q̂1,∇〉(v + q1)− δ div(v + q1) (ω + q̂1)

+δf(ω + q̂1)⊥ − δ∇(θ + q2) = δĥ1, (6.19)

where we denote q̂1 = ∂zq1 and ĥ1 = ∂zh1. Let us take the scalar product in L2

of Eq. (6.19) with ω:

1

2

d

dt
‖ω‖2 + δν1‖∇ω‖2 + δµ1‖∂zω‖2 = −δ 〈L1q̂1, ω〉

− δ
〈
〈v + q1,∇〉(ω + q̂1)−

∫ z

0

div(v + q1) dz ∂z(ω + q̂1), ω

〉
− δ 〈〈ω + q̂1,∇〉(v + q1)− div(v + q1) (ω + q̂1), ω〉

− δ
〈
f(ω + q̂1)⊥, ω

〉
+ δ 〈∇(θ + q2), ω〉+ δ〈ĥ1, ω〉 =

6∑
i=1

Ii. (6.20)

Then I1, I4, I5, I6 are estimated as follows:

|I1| ≤ δ‖L1q1‖ ‖ω‖ ≤ Cδ‖ω‖,
|I4| = δ|〈f q̂⊥1 , ω〉| ≤ δ‖f q̂1‖ ‖ω‖ ≤ Cδ‖ω‖,

|I5| ≤ Cδ‖θ + q2‖ ‖∇ω‖ ≤ Cδ
(
‖θ‖2 + 1

)
+
δν1
4
‖∇ω‖2,

|I6| ≤ δ‖ĥ1‖ ‖ω‖ ≤ Cδ‖ω‖.
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Integrating by parts in z, we get〈
〈v + q1,∇〉ω −

∫ z

0

div(v + q1) dz ∂zω, ω

〉
= 0,

so we can estimate I2 by

|I2| ≤ δ (‖v‖+ ‖q1‖) ‖∇q̂1‖∞‖ω‖+ Cδ (‖∇v‖+ ‖∇q1‖) ‖∂z q̂1‖∞‖ω‖
≤ Cδ (‖v‖1 + 1) ‖ω‖.

Integrating by parts in x and y and using the Hölder, Gagliardo–Nirenberg, and
Sobolev inequalities, we obtain

|I3| ≤ Cδ
∫
T3

|v + q1| (|∇(ω + q̂1)||ω|+ |ω + q̂1||∇ω|) dxdy dz

≤ Cδ
∫
T3

(|v|+ 1) (|ω|+ 1) (|∇ω|+ 1) dxdy dz

≤ Cδ (‖v‖L6 + 1) (‖ω‖L3 + 1) (‖∇ω‖+ 1)

≤ Cδ (‖v‖L6 + 1)
(
‖ω‖ 1

2 ‖ω‖
1
2
1 + 1

)
(‖∇ω‖+ 1)

≤ Cδ
(
‖v‖4L6‖ω‖2 + ‖v‖2L6 + ‖ω‖2 + 1

)
+
δν1
2
‖∇ω‖2 +

δµ1

2
‖∂zω‖2

≤ Cδ
((
‖∇v̄‖4 + ‖ṽ‖4L6

)
‖ω‖2 + ‖∇v̄‖2 + ‖ṽ‖2L6 + ‖ω‖2 + 1

)
+
δν1
4
‖∇ω‖2 +

δµ1

2
‖∂zω‖2.

Combining the estimates for Ii with (6.20), the Gronwall inequality, and inequal-
ities (6.11), (6.15), and (6.18), we obtain

‖∂zv(t)‖2 +

∫ t

0

‖∂zv‖21ds ≤ Cδ for t ∈ [0, 1]. (6.21)

Step 7. Estimate for ∇v. We take the scalar product in L2 of Eq. (6.5)
with −∆v:

1

2

d

dt
‖∇v‖2+δν1‖∆v‖2 + δµ1‖∇∂zv‖2 = δ〈L1q1,∆v〉

+ δ 〈〈v + q1,∇〉(v + q1),∆v〉

− δ
〈∫ z

0

div(v + q1) dz ∂z(v + q1),∆v

〉
+ δ

〈
f(v + q1)⊥,∆v

〉
+ δ 〈∇ps,∆v〉

− δ
〈∫ z

0

∇(θ + q2) dz,∆v

〉
− δ 〈h1,∆v〉 =

7∑
i=1

Ii. (6.22)
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Again the terms I1, I4, I6, I7 are easier to estimate:13

|I1| ≤ δ‖L1q1‖ ‖∆v‖ ≤ Cδ +
δν1
16
‖∆v‖2,

|I4| = δ|〈fq⊥1 ,∆v〉| ≤ δ‖fq1‖ ‖∆v‖ ≤ Cδ +
δν1
16
‖∆v‖2,

|I6| ≤ Cδ‖θ + q2‖1 ‖∆v‖ ≤ Cδ
(
‖θ‖21 + 1

)
+
δν1
16
‖∆v‖2,

|I7| ≤ δ‖h1‖ ‖∆v‖ ≤ Cδ +
δν1
16
‖∆v‖2.

Integrating by parts in x and y and using the condition
∫
T div v dz = 0, we get

I5 = δ

∫
T2

∇ps(x, y)

(∫
T

∆v(x, y, z) dz

)
dx dy

= δ

∫
T2

∇ps(x, y) ∆

(∫
T
v(x, y, z) dz

)
dxdy

= −δ
∫
T2

ps(x, y) ∆

(∫
T

div v(x, y, z) dz

)
dx dy = 0.

We decompose the terms I2 and I3 as follows:

I2 = P1 + P2, P1 = δ 〈〈v,∇〉v,∆v〉 ,

I3 = Q1 +Q2, Q1 = −δ
〈∫ z

0

div v dz ∂zv,∆v

〉
,

and estimate the quadratic in v terms P2 and Q2 in the following way:

|P2| ≤ δ (‖v‖ ‖∇q1‖∞ + ‖∇v‖ ‖q1‖∞ + ‖q1‖ ‖∇q1‖∞) ‖∆v‖

≤ Cδ
(
‖v‖21 + 1

)
+
δν1
16
‖∆v‖2,

|Q2| ≤ Cδ (‖∂zv‖ ‖∇q1‖∞ + ‖∇v‖ ‖∂zq1‖∞ + ‖∇q1‖ ‖∂zq1‖∞) ‖∆v‖

≤ Cδ
(
‖v‖21 + 1

)
+
δν1
16
‖∆v‖2.

For P1, we use the Hölder, Sobolev, and Gagliardo–Nirenberg inequalities:

|P1| ≤ Cδ
∫
T3

|v||∇v||∆v|dxdy dz ≤ Cδ‖v‖L6‖∇v‖L3‖∆v‖

≤ Cδ‖v‖L6‖∇v‖ 1
2 ‖∇v‖

1
2
1 ‖∆v‖

≤ Cδ
(
‖∇v̄‖4 + ‖ṽ‖4L6

)
‖∇v‖2 + Cδ‖∇∂zv‖2 +

δν1
16
‖∆v‖2.

Next, we use the following inequality which is proved in Proposition 2.2 in [CT03]:∣∣∣∣〈∫ z

0

div φdzϕ,ψ

〉∣∣∣∣ ≤ C‖φ‖ 1
2
1 ‖L1φ‖

1
2 ‖ϕ‖ 1

2 ‖ϕ‖
1
2
1 ‖ψ‖ (6.23)

13In the estimate for I4, we use the equality 〈v⊥,∆v〉 = 0.
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for any φ ∈ H2(T3,R2), ϕ ∈ H1(T3,R), and ψ ∈ L2(T3,R). Applying (6.23),
we obtain

|Q1| ≤ Cδ‖v‖
1
2
1 ‖L1v‖

1
2 ‖∂zv‖

1
2 ‖∂zv‖

1
2
1 ‖∆v‖

≤ Cδ
(
‖∇v‖2 + ‖∂zv‖2 + ‖v‖2

)
‖∂zv‖2‖∇∂zv‖2 + Cδ‖∂zzv‖2 +

δν1
16
‖∆v‖2.

The estimates for P1, P2, Q1, Q2 and Ii, together with (6.22), the Gronwall
inequality, and inequalities (6.11), (6.15), (6.18), and (6.21) imply that

‖∇v(t)‖2 +

∫ t

0

‖∆v‖2ds ≤ Cδ for t ∈ [0, 1].

Combining this with (6.21), we get

‖v(t)‖21 +

∫ t

0

‖v‖22 ds ≤ Cδ for t ∈ [0, 1], (6.24)

which implies, in particular that ‖v(1)‖1 → 0 as δ → 0+.
Step 8. Estimate for ∂zθ. Now we turn to the H1-estimates for θ. To

estimate ∂zθ, we take the scalar product in L2 of Eq. (6.6) with −∂zzθ:

1

2

d

dt
‖∂zθ‖2+δν2‖∇∂zθ‖2 + δµ2‖∂zzθ‖2 = δ 〈L2q2, ∂zzθ〉

+ δ 〈〈v + q1,∇〉(θ + q2), ∂zzθ〉+ 〈〈v,∇〉ζ, ∂zzθ〉

−δ
〈∫ z

0

div(v + q1) dz ∂z(θ + q2), ∂zzθ

〉
−
〈∫ z

0

div v dz ∂zζ, ∂zzθ

〉
− δ 〈h2, ∂zzθ〉 =

6∑
i=1

Ji. (6.25)

We start with the terms J1 and J6:

|J1| ≤ δ‖L2q2‖ ‖∂zzθ‖ ≤ Cδ +
δµ2

12
‖∂zzθ‖2,

|J6| ≤ δ‖h2‖ ‖∂zzθ‖ ≤ Cδ +
δµ2

12
‖∂zzθ‖2.

To estimate J3 and J5, we integrate by parts in z and use the Cauchy–Schwarz
and Sobolev inequalities:

|J3| ≤ | 〈〈∂zv,∇〉ζ, ∂zθ〉 |+ | 〈〈v,∇〉∂zζ, ∂zθ〉 |
≤ ‖∂zv‖ ‖∇ζ‖∞‖∂zθ‖+ ‖v‖ ‖∇∂zζ‖∞‖∂zθ‖ ≤ C‖v‖1‖∂zθ‖,

|J5| ≤ |〈div v ∂zζ, ∂zθ〉|+
∣∣∣∣〈 ∫ z

0

div v dz ∂zzζ, ∂zθ

〉∣∣∣∣
≤ C‖∇v‖ ‖∂zζ‖∞‖∂zθ‖+ C‖∇v‖ ‖∂zzζ‖∞‖∂zθ‖ ≤ C‖v‖1‖∂zθ‖.
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We write the terms J2 and J4 as follows:

J2 = P1 + P2, P1 = δ 〈〈v,∇〉θ, ∂zzθ〉 ,

J4 = Q1 +Q2, Q1 = −δ
〈∫ z

0

div v dz ∂zθ, ∂zzθ

〉
,

and estimate P2 and Q2 as in the previous steps:

|P2| ≤ δ (‖v‖ ‖∇q2‖∞ + ‖∇θ‖ ‖q1‖∞ + ‖q1‖ ‖∇q2‖∞) ‖∂zzθ‖

≤ Cδ
(
‖v‖21 + ‖θ‖21 + 1

)
+
δµ2

12
‖∂zzθ‖2,

|Q2| ≤ Cδ (‖∇v‖ ‖∂zq2‖∞ + ‖∂zθ‖ ‖∇q1‖∞ + ‖∇q1‖ ‖∂zq2‖∞) ‖∂zzθ‖

≤ Cδ
(
‖v‖21 + ‖θ‖21 + 1

)
+
δµ2

12
‖∂zzθ‖2.

To estimate P1, we use the Hölder, Sobolev, and Gagliardo–Nirenberg inequalities:

|P1| ≤ δ‖v‖L6‖∇θ‖L3‖∂zzθ‖ ≤ Cδ‖v‖1‖∇θ‖
1
2 ‖∇θ‖

1
2
1 ‖∂zzθ‖

≤ Cδ‖v‖41‖θ‖21 + δν2‖∆θ‖2 +
δµ2

12
‖∂zzθ‖2.

To estimate Q1, we first integrate by parts in z:〈∫ z

0

div v dz ∂zθ, ∂zzθ

〉
=

1

2

∫
T3

∫ z

0

div v dz ∂z((∂zθ)
2) dx dy dz

= −1

2

∫
T3

(∂zθ)
2 div v dxdy dz,

then we use the Cauchy–Schwarz and Gagliardo–Nirenberg inequalities:

|Q1| ≤ Cδ‖∇v‖ ‖∂zθ‖2L4 ≤ Cδ‖∇v‖ ‖∂zθ‖
1
2 ‖∂zθ‖

3
2
1

≤ Cδ‖v‖41‖θ‖21 +
δν2
2
‖∇∂zθ‖2 +

δµ2

12
‖∂zzθ‖2.

Combining the estimates for P1, P2, Q1, Q2 and Ji with inequalities (6.11), (6.24),
and (6.25), we obtain

‖∂zθ(t)‖2 + δµ2

∫ t

0

‖∂zzθ‖2ds ≤ Cδ + δν2

∫ t

0

‖∆θ‖2ds. (6.26)

Step 9. Estimate for ∇θ. Finally, to estimate ∇θ, we take the scalar product
in L2 of Eq. (6.6) with −∆θ:

1

2

d

dt
‖∇θ‖2+δν2‖∆θ‖2 + δµ2‖∇∂zθ‖2 = δ 〈L2q2,∆θ〉

+ δ 〈〈v + q1,∇〉(θ + q2),∆θ〉+ 〈〈v,∇〉ζ,∆θ〉

− δ
〈∫ z

0

div(v + q1) dz ∂z(θ + q2),∆θ

〉
−
〈∫ z

0

div v dz ∂zζ,∆θ

〉
− δ 〈h2,∆θ〉 =

6∑
i=1

Ji. (6.27)
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The terms J1 and J6 are estimated as follows:

|J1| ≤ δ‖L2q2‖ ‖∆θ‖ ≤ Cδ +
δν2
12
‖∆θ‖2,

|J6| ≤ δ‖h2‖ ‖∆θ‖ ≤ Cδ +
δν2
12
‖∆θ‖2.

To estimate J3 and J5, we integrate by parts and use the Cauchy–Schwarz and
Sobolev inequalities:

|J3| ≤ C‖v‖1‖θ‖1,
|J5| ≤ C‖∆v‖ ‖θ‖1.

The terms J2 and J3 are decomposed as follows:

J2 = P1 + P2, P1 = δ 〈〈v,∇〉θ,∆θ〉 ,

J3 = Q1 +Q2, Q1 = −δ
〈∫ z

0

div v dz ∂zθ,∆θ

〉
,

and P2 and Q2 are estimated by

|P2| ≤ δ (‖v‖ ‖∇q2‖∞ + ‖∇θ‖ ‖q1‖∞ + ‖q1‖ ‖∇q2‖∞) ‖∆θ‖

≤ Cδ
(
‖v‖21 + ‖θ‖21 + 1

)
+
δν2
12
‖∆θ‖2,

|Q2| ≤ Cδ (‖∇v‖ ‖∂zq2‖∞ + ‖∂zθ‖ ‖∇q1‖∞ + ‖∇q1‖ ‖∂zq1‖∞) ‖∆θ‖

≤ Cδ
(
‖v‖21 + ‖θ‖21 + 1

)
+
δν2
12
‖∆θ‖2.

Using the Hölder, Sobolev, and Gagliardo–Nirenberg inequalities, we obtain

|P1| ≤ δ‖v‖L6‖∇θ‖L3‖∆θ‖ ≤ Cδ‖v‖1‖∇θ‖
1
2 ‖∇θ‖

1
2
1 ‖∆θ‖

≤ Cδ‖v‖41‖θ‖21 +
δµ2

4
‖∂zzθ‖2 +

δν2
12
‖∆θ‖2.

By (6.23), we have

|Q1| ≤ Cδ‖v‖
1
2
1 ‖L1v‖

1
2 ‖∂zθ‖

1
2 ‖∂zθ‖

1
2
1 ‖∆θ‖

≤ Cδ‖v‖21‖L1v‖2‖∂zθ‖2 +
δµ2

4
‖∂zzθ‖2 +

δν2
12
‖∆θ‖2.

The estimates of P1, P2, Q1, Q2 and Ii and the inequalities (6.11), (6.24), and (6.27)
imply that

‖∇θ(t)‖2 + δν2

∫ t

0

‖∆θ‖2 ds ≤ Cδ + δµ2‖∂zzθ‖2.

From this and (6.26) we derive that ‖θ(t)‖1 ≤ Cδ, so ‖θ(1)‖1 → 0 as δ → 0+.
This completes the proof of limit (1.7).
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Remark 6.1. Limit (1.6) can be established by repeating the arguments of the
proof of limit (1.7), by considering the function

w(t) = u(δt)− q(t),

where u(t) = St(u0, δ
− 1

2 ζ, δ−1η), q(t) = (q1(t), q2(t)),

q1(t) = v0 + t(η1 −B1(ζ1)),

q2(t) = θ0 + tη2,

ηi = πiη, and ζ1 = π1ζ. See Proposition 2.4 in [Ner20] for a proof of a limit
similar to (1.6) in the case of parabolic equations with polynomially growing
nonlinearities.
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Poincaré, 23:2277–2294, 2021

[Ner20] V. Nersesyan. Approximate controllability of nonlinear parabolic
PDEs in arbitrary space dimension. Math. Control Relat. Fields,
11(2):237–251, 2021.

[Ono13] A. d’Onofrio. Bounded Noises in Physics, Biology, and Engineering.
Springer New York, 2013.

[Pet06] M. Petcu. On the three-dimensional primitive equations. Adv.
Differential Equations, 11(11):1201–1226, 2006.

[PR19] D. Phan and S. S. Rodrigues. Approximate controllability for
Navier-Stokes equations in 3D rectangles under Lions boundary
conditions. J. Dyn. Control Syst., 25(3):351–376, 2019.

[PTZ09] M. Petcu, R. Temam, and M. Ziane. Some mathematical problems
in geophysical fluid dynamics. volume 14 of Handb. Numer. Anal.,
pages 577–750. 2009.

[Rod06] S. S. Rodrigues. Navier–Stokes equation on the rectangle: Con-
trollability by means of low mode forcing. J. Dyn. Control Syst.,
12(4):517–562, 2006.

49



[Sar12] A. Sarychev. Controllability of the cubic Schrödinger equation
via a low-dimensional source term. Math. Control Relat. Fields,
2(3):247–270, 2012.

[Shi06] A. Shirikyan. Approximate controllability of three-dimensional
Navier–Stokes equations. Comm. Math. Phys., 266(1):123–151,
2006.

[Shi07] A. Shirikyan. Exact controllability in projections for three-
dimensional Navier–Stokes equations. Ann. Inst. H. Poincaré Anal.
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48(2):253–280, 2015.

[Shi18] A. Shirikyan. Control theory for the Burgers equation: Agrachev–
Sarychev approach. Pure Appl. Funct. Anal., 3(1):219–240, 2018.

[Shi20] A. Shirikyan. Controllability implies mixing II. Convergence in the
dual-Lipschitz metric. J. Eur. Math. Soc. (JEMS), 23(4):1381–1422,
2021.

[Tem79] R. Temam. Navier–Stokes equations. Theory and numerical analysis.
Studies in Mathematics and its Applications 2, North-Holland,
Amsterdam, 1979.

[TZ04] R. Temam and M. Ziane. Some mathematical problems in geophys-
ical fluid dynamics. In Handbook of mathematical fluid dynamics.
Vol. III, pages 535–657. North-Holland, Amsterdam, 2004.

[Zei18] V. Zeitlin. Geophysical Fluid Dynamics: Understanding (almost)
Everything with Rotating Shallow Water Models. Oxford University
Press, 2018.

50


	Introduction
	Preliminaries on primitive equations
	Controllability of the nonlinear system
	Saturation property and the result
	Proof of Theorem 2.3
	Controllability of -component
	Controllability of v-component
	Completion of the proof


	Controllability of linearized system
	Saturation for linearized system and the result
	Proof of Theorem 3.3

	Ergodicity of primitive equations
	Abstract result
	Application

	Saturating subspaces
	H-saturating subspace
	Saturation in -component
	Saturation in v-component

	V-saturating subspace
	Saturation for linearized system

	Proof of Proposition 1.2
	Bibliography

