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Abstract

Adaptation can occur at remarkably short timescales in natural populations, leading to drastic changes in

phenotypes and genotype frequencies over a few generations only. The inference of demographic parameters

can allow understanding how evolutionary forces interact and shape the genetic trajectories of populations

during rapid adaptation. Here we propose a new Approximate Bayesian Computation (ABC) framework that

couples a forward and individual-based model with temporal genetic data to disentangle genetic changes and

demographic variations in a case of rapid adaptation. We test the accuracy of our inferential framework and

evaluate the benefit of considering a dense versus sparse sampling. Theoretical investigations demonstrate

high accuracy in both model and parameter estimations, even if a strong thinning is applied to time series

data. Then, we apply our ABC inferential framework to empirical data describing the population genetic

changes of the poplar rust pathogen following a major event of resistance overcoming. We successfully

estimate key demographic and genetic parameters, including the proportion of resistant hosts deployed in

the landscape and the level of standing genetic variation from which selection occurred. Inferred values

are in accordance with our empirical knowledge of this biological system. This new inferential framework,

which contrasts with coalescent-based ABC analyses, is promising for a better understanding of evolutionary

trajectories of populations subjected to rapid adaptation.
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1 Introduction

Adaptation can occur at remarkably short timescales in natural populations, leading to drastic changes in

genotype frequencies and phenotypes over a few generations only (Buffalo and Coop, 2019). This rapid pace

of adaptation has motivated the use of temporal data to understand neutral (Prout, 1954; Wallace, 1956;

Nei and Tajima, 1981; Pollak, 1983; Mueller et al., 1985b; Waples, 1989; Wang and Whitlock, 2003) and

under-selection genetic evolution over time (Dobzhansky, 1943; Dobzhansky and Pavlovsky, 1971; Fisher and

Ford, 1947; Kettlewell, 1958, 1961; Mueller et al., 1985a). However, such time series studies remain rare

compared to the amount of work focusing on one contemporary sample to trace back its genetic history

(Buffalo and Coop, 2019, 2020; Pavinato et al., 2022). Temporal data allow to track the changes in allele

frequency through time, and therefore lead to a better understanding of evolutionary processes (Dehasque

et al., 2020; Feder et al., 2021; Saubin et al., 2023b). In cases of rapid adaptation especially, the resulting

genetic changes may be transient (Day and Gandon, 2007; Parsons et al., 2018) and require time sampling

around the selection event to be highlighted (Saubin et al., 2022).

The inference of demographic parameters can allow understanding how evolutionary forces (especially

genetic drift and selection) interact and shape the genetic trajectories of populations during rapid adaptation

(Bergland et al., 2014; Živković et al., 2019). However, the difficulties in obtaining the likelihood of models

including both demography, selection, and genetic drift (Pavinato et al., 2022; Luqman et al., 2021) lead

to consider alternative approaches relying on simulations (Bazin et al., 2010; Laval et al., 2019). With the

advent of computational approaches, Approximate Bayesian Computation (ABC) has become a standard

approach for genetic analyses aiming at tracing back the evolutionary history of populations (Rosenberg and

Nordborg, 2002; Bazin et al., 2010; Cornuet et al., 2010; Estoup and Guillemaud, 2010; Collin et al., 2021).

These methods, coupled with a coalescent simulator, allow inferring evolutionary scenarios and demographic

parameters, by modelling the genealogy of the samples (Kingman, 1982; Whitlock and Barton, 1997). The

coalescent is computationally very efficient but relies on strong modelling assumptions (Rosenberg and Nord-

borg, 2002). As such, coalescent-based ABC approaches suffer from two limitations. First, there is a gap

between the models developed so far and the actual complexity of biological scenarios. Different coalescent
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models have been developed to account for fluctuating population sizes (Sjödin et al., 2005) or partially

clonal species (Orive, 1993; Ceplitis, 2003; Hartfield, 2021). Yet these specificities has been considered in

isolation. To date, few models integrate both rapid demographic fluctuations and complex life cycles (Tellier

and Lemaire, 2014). Second, coalescent-based inference methods are powerful only when coalescent events

occur at the same time scale as the process being considered, such as past demographic events. This means

that demographic events happening in a recent past compared to the coalescent time scale (in units of the

effective population size Ne) cannot be inferred. For example, under antagonistic coevolution, changes in

the demography of host and pathogen are too fast for a coalescent analysis, but tracking allele frequencies

and nucleotide diversity forward-in-time is informative about this process (Živković et al., 2019). Rapid ad-

aptation processes are associated with transient genetic changes that can be well illuminated by considering

step-by-step modelling algorithms forward-in-time. The study of the rapid adaptation of pathogens would

therefore benefit from being considered with forward models (Foll et al., 2015).

The ultimate goal of studying adaptation is to search for loci under selection in order to decipher the

genetic architecture underlying adaptive events (Oleksyk et al., 2010; Hoban et al., 2016). In this regard, rapid

adaptation poses a challenge because complex demography can lead to peculiar patterns of allele frequency

changes, even at neutral loci. This in turn can blur the detection of selected loci, such as observed for

complex population structures (De Mita et al., 2013). However, models to search for selected loci have so

far considered relatively simple demography (e.g. Vitalis et al., 2014). When addressing the phenomenon of

rapid adaptation, it may therefore be worthwhile to proceed in two steps (Luqman et al., 2021). The first

step is to decipher how a rapid adaptation event shapes the population structure at neutral loci (Saubin

et al., 2022) and to infer demographic parameter from these genetic changes. With a few exceptions (e.g. De

Mita and Siol, 2012; Foll et al., 2015), are not considered in such frameworks. The second step is to perform

accurate genome scan that explicitly takes into account the inferred demography (Luqman et al., 2021). Here

we propose an original approach to infer demographic and ecological parameters from the rapid changes in

allele frequency at neutral loci. We base our analyses on a new ABC framework that couples a forward and

individual-based model with temporal genetic data to disentangle genetic changes and demographic variations
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in a case of rapid adaptation.

Understanding and inferring the evolutionary trajectories of populations is of major interest to evolu-

tionary biologists but it can also have practical applications for population management. This is especially

the case in agriculture where the need to control pathogen populations is paramount. Pathogens can induce

disease outbreaks devastating human-managed ecosystems (Anderson et al., 2004; Tobin, 2015; Savary et al.,

2019). Understanding the evolution of pathogens is therefore crucial for developing effective disease manage-

ment strategies (Bonneaud and Longdon, 2020). The rapid adaptation of pathogen populations (McDonald

and Linde, 2002; Saubin et al., 2021) and the high stochasticity in pathogen evolutionary trajectories (Parsons

et al., 2018) make this endeavour extremely difficult.

The rapid adaptation of pathogen populations in agrosystems results from the tremendous selection

pressures exerted by modern agricultural practices (Zhan et al., 2015; Stukenbrock and McDonald, 2008).

To counter plant disease outbreaks, breeders develop resistant plant genotypes. These genetic resistances are

most often deployed across large spatial scales (Zhan et al., 2015; Rimbaud et al., 2021). These agricultural

practices break eco-evolutionary feedbacks that maintain the polymorphism observed in natural host-parasite

systems (Stukenbrock and McDonald, 2008; Brown and Tellier, 2011). As such, these practices weaken the

sustainability of plant genetic resistances in favouring the emergence and spread of virulent (i.e. resistance-

adapted) pathogens (Rimbaud et al., 2021; Saubin et al., 2023b).

Therefore, the outcome of plant genetic resistance deployment is often a resistance overcoming event,

i.e. the failure of the host plant to remain resistant to the pathogen. This results in the spread of virulent

pathogens on resistant hosts (Johnson, 1984; Pink and Puddephat, 1999; Brown and Tellier, 2011; Burdon

et al., 2016). On the pathogen side, an event of resistance overcoming can translate into a strong selective

sweep with the intense and unidirectional selection causing drastic demographic changes for the pathogen

population (Burdon et al., 2016; Persoons et al., 2017; Saubin et al., 2021). Such rapid adaptation can lead to

specific temporal genetic signatures at neutral loci, depending on the evolutionary scenario ruling the change

in population sizes (Saubin et al., 2022).

Here, we propose to use ABC based on temporal genetic evolution to unravel the evolutionary scenarios

5



following rapid and contemporaneous adaptation. We apply our inferential framework to time series data

and evaluate the added value of considering the full trajectory following forward simulations compared to

few time samples. We test the accuracy of several temporal sampling designs in inferring model parameter

values. Last, we apply our ABC inferential framework to empirical data describing the population genetic

changes of the poplar rust pathogen following a major event of resistance overcoming (Persoons et al., 2017;

Louet et al., 2023).

2 Materials and methods

2.1 Simulation model

The rapid adaptation we model is a resistance overcoming event that is monitored through time. We use an

individual-based, forward-time and non-spatial demogenetic model, designed for diploid individuals (Saubin

et al., 2021, 2022). This model couples population dynamics and population genetics to follow the evolu-

tionary trajectory of different genotypes at the selected locus and at neutral genetic markers. The model is

implemented in Python (version 3.7, van Rossum, 1995) and Numpy (Harris et al., 2020). We consider life

cycles commonly found in temperate pathogen species, with seasonal variation in reproductive mode. These

pathogens switch from clonal reproduction during the epidemic phase to sexual reproduction occurring once

a year, in winter (Agrios, 2005). This general life cycle is adjusted in two variations to take into account that

the sexual reproduction takes place either on the same host plant as for the epidemic phase or on an alternate

host (usually a different species). These life cycles are named ‘with’ or ‘without’ host alternation, respectively

(Boolean parameter Cycle). The life cycle of plant pathogens is generally well documented (Agrios, 2005).

This is the case for the focal study species: the poplar rust fungus, Melampsora larici-populina (Basidio-

mycota, Pucciniales), (Pinon and Frey, 2005). But in some cases the full life cycle has only recently been

elucidated (e.g., for wheat stripe rust, Puccinia striiformis, Jin et al., 2010), or is still unresolved (e.g., for

coffee leaf rust, Hemileia vastatrix, Talhinhas et al., 2017). ‘Without’ host alternation, the model represents

the evolution in time of a population of pathogens on two static host compartments: a resistant compartment
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(R) and a susceptible compartment (S). Each compartment has a fixed carrying capacity for the pathogen

population, KR and KS , respectively. We define two parameters: the cumulative carrying capacity of S and

R (K = KR + KS); and the proportional size of R (propR = KR

K ). ‘With’ host alternation, the alternate

host compartment (A) is added, to account for the sexual reproduction occurring on another species. This

static compartment is assumed to be larger than the two other compartments, with a fixed carrying capacity

KA. In the following, we refer to the three compartments as S (susceptible hosts), R (resistant hosts), and

A (alternate hosts).

We consider that a year consists of 11 generations, 10 rounds of clonal multiplication plus one sexual

reproduction event (Hacquard et al., 2011). Three basic steps are modelled at each clonal generation: re-

production following a logistic growth (with growth rate (r) and carrying capacity KR or KS depending on

the compartment considered), mutation of neutral loci (see below), and a two-way migration (migration rate

mig), from S to R and vice versa (Figure 1, model specifications are detailed in Saubin et al. (2021)). At the

end of clonal multiplication, random mortality is applied to the pathogen population (at rate τ) because some

individuals fail to overwinter. Then, sexual reproduction occurs. It differs between life cycles, considering or

not the obligate migration to the alternate host before mating. For the life cycle ‘with’ host alternation, the

generation of sexual reproduction is followed by one generation of clonal multiplication on the alternate host

before the obligate emigration to S and R. We simulate the evolution at neutral loci and at a selected locus

responsible for the virulence (qualitative trait) of pathogen individuals. In accordance with the gene-for-gene

model that is prevailing in host-pathogen interactions (Flor, 1971), virulence is a qualitative trait determined

by a single locus and a recessive allele (named avr). Only virulent individuals (i.e. homozygous avr/avr at

the virulence locus) can infect the resistant plants and invade R. We assume no fitness cost of virulence, that

is all pathogen individuals (irrespective of their genotype at the virulence locus) have equal fitness on S. We

do not consider mutation at the virulence locus, meaning that evolution stems only from standing genetic

variation, with initial frequency favr of virulent allele introduced after the burn-in period. Evolution at

neutral loci is set to suit classical population genetic analyses based on microsatellite markers: 23 loci with a

maximum of 20 allelic states. For this model to be applicable to SNP markers as well, the mutational process
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follows a k-allele model. The mutation rate is a particularly difficult parameter to estimate by ABC analyses

(see for example Parat et al., 2016). However, mutation rate has a limited impact on the dynamics of genetic

diversity compared to demographic variations and selection. It takes a large time scale to account for a small

effect, which can be overlooked in the face of genetic drift, especially in partially clonal populations (Reichel

et al., 2016). Therefore, for this analysis, we set the mutation rate of microsatellite markers to a fixed and

realistic value of 10−3 (Ellegren, 2004).

Each simulation starts with genotypes randomly drawn from the 20 possible alleles followed by a burn-in

period with a population of constant size N = KS . During the burn-in period, the pathogen population

only evolves on S. To reach the genetic drift and mutation equilibrium from the initial state, the burn-in

period is set to 2N generations. For a diploid organism with frequent sexual reproduction, 2N generations

are sufficient to reach a steady state (Reichel et al., 2016; Hartfield, 2021; Bessho and Otto, 2022). We build a

random simulation design of 150,000 simulations, with input parameter values drawn randomly from defined

prior distributions (Table 1).

Each simulation is run for 400 generations (with 11 generations per year), which amounts to 36 years.

Simulation is aborted if the virulent allele goes extinct. Of the 150,000 simulations produced from the random

simulation design, 106,058 lead to resistance overcoming and are used for the following analyses (50,547 ‘with’

host alternation, and 55,511 ‘without’ host alternation).

2.2 Summary statistics

Sampling represents a random draw of n individuals from a host compartment, with the sample size n =

30. The sampling occurs each year at the end of generation 9 on S and R, and additionally - for the

life cycle ‘with’ host alternation - at generation 11 on A before the redistribution to S and R (Figure 1).

Sampled individuals are not removed (sampling with replacement) so that their genotypes could contribute

to subsequent generations.

To summarise the observed and simulated data sets, we compute the following statistics for each popula-

tion (time sample in a given compartment): (i) the proportion of virulent individuals (PV ir); (ii) the genotypic
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diversity estimated by Pareto’s β (βP ); (iii) the proportion of unique multilocus genotypes (R = G−1
n−1 with

G the number of unique genotypes and n the number of sampled individuals); (iv) the genetic diversity

estimated by Simpson’s index (S); (v) the genetic diversity estimated by Shannon-Wiener’s index (SW );

(vi) the mean expected heterozygosity over all loci (MHE); (vii) the variance of the expected heterozygosity

over all loci (V HE); (viii) the mean number of alleles per locus (MLA); (ix) the multilocus index of linkage

disequilibrium (r̄D); the population differentiation index between populations on R and S sampled at the

same generation (FSTR − S); (x) the population differentiation index between the initial population (on S

after burn-in) and the sampled population (TFST ) (Table 2). All statistics are implemented along with the

model. Summary statistics are calculated for each population, independently of the sampled compartment

(S, R or A), except for PV ir which is not recorded for populations sampled on R (because all individuals

living on the resistant host are virulent), and for FSTR − S which is calculated from populations on S and

R from the same generation. In the following analyses, summary statistics from different compartments

are considered as distinct summary statistics. Because of the temporal sampling, each summary statistic is

recorded for multiple generations, which constitutes a time series of summary statistics.

Two methods are used to perform the analyses: 1) Summary statistics from different generations are

considered as distinct summary statistics and hence all generations along the time series are taken into

account (hereafter referred to as ‘Complete summary statistics’); 2) We extract the mean, variance, minimum

and maximum values along each time series, and considered these four values as the distinct set of summary

statistics for each population genetic index (hereafter referred to as ‘Wrap-up summary statistics’). The total

number of summary statistics used for each analysis is presented in Table S1.

2.3 Approximate Bayesian Computation

We use the R package abc (Csilléry et al., 2012) to perform an ABC analysis from the simulated data. This

analysis involves two steps: model choice and parameter estimation. The model choice aims to distinguish

between the two simulated life cycles, ‘with’ and ‘without’ host alternation. The parameter estimation aims

to estimate each of the six quantitative parameters of the chosen simulation model (Table 1).
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The model choice procedure is based on a weighted multinomial logistic regression (Fagundes et al.,

2007) computed on 5% of the simulated data sets for which ϵ, the Euclidean distance between the summary

statistics of the observed data set and the simulated data sets, is the smallest (Beaumont et al., 2002). Bayes

factors are calculated as the ratio of the posterior probabilities for the tested models (Kass and Raftery,

1995). Posterior model probabilities are corrected for the number of simulations performed for each model,

as implemented in the postpr function of the abc R package.

For the parameter estimation procedure, we use the 50,547 simulations obtained under the model ‘with’

host alternation. We estimate posterior distributions (mode and credible intervals calculated as 95% percent-

ile intervals from the posterior distributions) of each parameter by applying the neural networks regression

method (Blum and François, 2010) implemented in the R package abc based on the 5% of simulations closest

to the observed data.

Cross-validation on simulated data

To assess the validity of the method and the identifiability of model parameters, cross-validations are per-

formed at both steps of the analysis. Here we use identifiability in the broad sense, that is including quantit-

ative differences in the ability to infer parameter values. A leave-one-out cross-validation for the model choice

is performed on 500 randomly drawn simulations from each of the two models: ‘with’ and ‘without’ host

alternation. From the Bayes factors obtained, the probabilities to re-estimate the true model are calculated

for each life cycle (i.e. the model that is indeed used for the randomly drawn simulation). Additionally, we

perform Principal Component Analyses (PCA) from the values of summary statistics obtained from the two

life cycles. We display envelopes containing 95% of the simulations. A leave-one-out cross-validation for the

parameter estimation is performed on 200 randomly drawn simulations from the 50,547 simulations under

the life cycle ‘with’ host alternation.

Sampling schemes

In the first theoretical case presented in the results, we calculate summary statistics based on the maximum
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information available. We name it the ‘full’ simulation design, as we consider all time samples, that is

populations sampled once a year for 36 years on all host compartments (S and R for the model choice; S, R

and A for the parameter estimation).

To assess the impact of the sampling scheme on inference accuracy, we consider two types of rarefaction

affecting the time series and the range of compartments considered. Concerning the time series, in addition

to the full time series, we consider (1) a thinning that keeps samplings every five years for a total of eight time

samples and (2) only the first and last time samples. For the latter temporal rarefaction, it is not possible to

compare the two types of summary statistic since only two generations are considered. Concerning rarefaction

of the sampled compartment (S, R or A) we apply different rarefaction types depending on the cross-validation

procedure.

The model choice procedure is based on: (1) Populations sampled on both S and R; (2) Populations

sampled on S only. Populations sampled on A are not used for the model choice because this compartment

only exists for the life cycle ‘with’ host alternation. The parameter estimation procedure focus on the life

cycle ‘with’ host alternation and is based on: (1) Populations on S, R, and A; (2) Populations on S and R;

(3) Populations on S and A; (4) Populations on S only.

2.4 Case study: overcoming of poplar rust resistance RMlp7

Here we apply our ABC inference framework to a documented case of resistance overcoming by a diploid

plant pathogen responsible for the poplar rust disease, M. larici-populina. This pathogenic fungus is a host-

alternating species. Its life cycle consists of an annual sexual reproduction on larch needles in early Spring,

followed by clonal multiplications on poplar leaves from spring to autumn (Duplessis et al., 2021; Louet et al.,

2023). Its sexual reproduction is obligatory in temperate climates because of the annual fall of poplar leaves

(Xhaard, 2011). To control poplar rust disease, several resistant poplars have been selected and planted

widely in Western Europe over years. However, the intensive and monocultural plantations combined with

the host species being perennial (Gérard et al., 2006) makes poplars particularly vulnerable to the adaptation

of the pathogen. This leads to regular events of resistance overcoming, so that all known resistance types have
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now been overcome (Pinon and Frey, 2005; Louet et al., 2023). The most damaging resistance overcoming

by M. larici-populina occurred in 1994 with the adaptation of the pathogen to the resistance RMlp7 carried

at that time by a vast majority of cultivated poplar trees. The adaptation of the pathogen to the resistance

RMlp7 resulted from the association of two alterations (a nonsynonymous mutation and a complete deletion)

at the candidate locus AvrMlp7, from standing genetic variation (Louet et al., 2023). This led to a rapid

invasion, in less than four years, of adapted pathogens across Western Europe, including France (Barrès et al.,

2008; Xhaard et al., 2011; Persoons et al., 2017), causing drastic epidemics (Pinon et al., 1998; Pinon and

Frey, 2005). This rapid adaptation event strongly shaped the resulting genetic structure of M. larici-populina

populations (Xhaard et al., 2011; Persoons et al., 2017). This pathogen is airborne, which results in relatively

high migration rates compared to telial organisms (Saubin et al., 2023a). This aerial dispersal also leads to

high mortality during the annual migration on larch needles. Chosen prior distributions of parameters (Table

1) are consistent with our knowledge of the studied organism.

Poplar rust individuals were sampled before, during, and after this resistance overcoming event and

correspond to the samples analysed in the population genetic study. The dataset used for our ABC analysis

was previously studied (Louet et al., 2023), and was supplemented by including more recent samples to

investigate temporal variation of population genetic indices over a longer period (Table S4). Genotyping

of these additional samples was performed as described in Louet et al. (2023) and Persoons et al. (2017).

Each sampled individual was genotyped with 20 microsatellite markers, and population genetic indices are

calculated from the model developed above. Two versions of this temporal sampling are used. The first data

set is composed of poplar rust samples from the same geographic location (Amance, France), collected from

susceptible poplars (S) at the end of the epidemic season and from larch (A) after the sexual reproduction.

Twenty-eight populations were sampled between 1989 and 2021 (22 on S, and 6 on A). Sampling size ranges

from 5 to 58 individuals (samples with less than 5 individuals were removed from the analyses). The second

data set is composed of poplar rust samples from a broader geographic region (Grand Est region, France),

collected from susceptible and resistant poplars (S and R) at the end of the epidemic season, and from larch

(A) after the sexual reproduction. This second data set includes all individuals from the first data set.
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Thirty-six populations were sampled between 1988 and 2021 (26 on S, 4 on R and 6 on A). The sampling size

ranges from 5 to 79 individuals (samples with less than 5 individuals were removed from the analyses). The

empirical data used for the ABC inference are summarised in Table S4 and the total number of summary

statistics in Table S2.

For this case study, cross-validation procedures are performed as described above, based on simulated

data with the same sampling schemes as the two biological data sets. For the two data sets, the accuracy

of the model choice and parameter estimation are compared depending on the choice of summary statistics

(Complete summary statistics, or Wrap-up summary statistics). Model choice and parameter estimations are

then performed as described above on the empirical data sets, and the posterior distribution is obtained for

each model parameter. For each sampling scheme, we assess the relative importance of summary statistics

to the inference of each parameter using the semi-automatic ABC method of Fearnhead and Prangle (2012)

implemented in the R package abctools (Nunes and Prangle, 2015).

For the model choice, we check the goodness-of-fit by computing the P − value to test the fit of the

empirical data to each model. For each model, the null hypothesis states that the tested model offers a good

fit and is rejected if P − value < 0.01.

3 Results

3.1 Model choice and parameter estimations for the ‘full’ simulation design

We first evaluate the accuracy of our ABC inference under the ideal case with the maximum data available:

populations are sampled every generation from all host compartments.

The cross-validation procedure for the model choice highlights a strong accuracy of model choice when

Wrap-up summary statistics are used (Table 3). Conversely, the model identifiability is weaker for Complete

summary statistics. However, whatever the summary statistics used, there is a strong overlap in the outcome

of simulations realised under the two life cycles (Figure 2). Hence only small areas of parameter values allow

to truly discriminate between the two models.
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The cross-validation procedure for parameter estimation highlights a strong discrepancy among paramet-

ers. Some parameters are very well estimated, including propR, K, favr and r, ranked in a decreasing order

of identifiability (Table 4, Figure 3). τ is less accurately estimated, but with increasing confidence as its true

value increases (Figure 3). Last, the worst parameter to estimate is mig, irrespective of the simulated value

(Figure 3).

3.2 Model choice and parameter estimations when rarefaction is applied

For both cross-validations, sampling every five years gives similar results than considering the full time series

of samplings. Reducing the range of sampled compartments also provides fairly good estimates for the model

choice and parameter estimations. This result holds even if the sampling focuses on S only. Overall, the ABC

accuracy for the model choice is higher for Wrap-up summary statistics than for Complete summary statistics

(Table 5). The Wrap-up summary statistics performed equally well, or slightly better, when rarefaction is

applied. It is noteworthy that the total number of Wrap-up summary statistics is not affected by the

rarefaction, unlike for Complete summary statistics (Table S1). For parameter estimation, Wrap-up summary

statistics generally perform better than for Complete summary statistics (Table 6). However, the differences

in accuracy in the parameter estimations between Complete and Wrap-up summary statistics decreases with

the rarefaction. Last, the accuracy of the model choice drops drastically if only the first and last time points

are considered (Table 5) and the parameter estimations are less accurate, especially for r and τ . However

propR, favr and K are still well estimated, regardless of the rarefaction (Table 6).

3.3 Case study: Approximate Bayesian Computations applied to the poplar

rust resistance overcoming

In this section, we apply our ABC framework to the two empirical data sets describing the rapid evolution

of the genetic structure of a pathogen population following resistance overcoming.
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3.3.1 Cross-validations applied to the sampling schemes of empirical data sets

We first perform the cross-validation procedures with sampling schemes corresponding to the two data sets

(Amance location and Grand Est region). For both data sets, the cross-validation of model choice shows weak

identifiability of life cycles (Table 7). The identifiability of the life cycle ‘with’ host alternation is slightly

better than ‘without’ host alternation but still limited. The model is more identifiable with the sampling

scheme of the data set from the Grand Est region, which represents more time points and both S and R

compartments, contrary to the data set from Amance location sampled on S only. As for the ‘full’ simulation

design, the accuracy of parameter estimations is particularly high for parameters propR and K, regardless of

the data set (Table 8). The estimation of parameters favr is more mitigated but still quite good (correlation

coefficient > 0.75 for the two data sets). Conversely, mig, r and τ are less accurately estimated. Unlike

the ‘full’ simulation design, there are no clear differences of accuracy in the inference of parameters using

Wrap-up summary statistics or Complete summary statistics.

The population genetic index that contributes most to the inference is TFST , the population differentiation

between the initial population (after burn-in) and the sampled population (Tables S3, S5). Considering the

Complete summary statistics, TFST with sampling at generation 8 exhibits the major contribution to the

inference of parameters propR, r, K and τ for both sampling schemes (Table S3). Considering the Wrap-up

summary statistics, this information is encapsulated in V arTFST . Note that for the Grand Est sampling

scheme, V arTFST−R exhibits the major contribution to most inferred parameters, which highlights the

importance of sampling on R (Table S5).

3.3.2 Model choice

For the two empirical data sets, we infer the life cycle ‘with’ host alternation with probability 100% or 97%

from the Complete summary statistics and 100% or 99% from the Wrap-up summary statistics, depending

on the empirical data set (Table 9). In all cases however, the results of the goodness-of-fit tests do not

allow to significantly reject either of the life cycles, irrespective of the data set considered and the summary

statistics used. Therefore, we do not have enough information to properly infer the pathogen life cycle. This
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is consistent with the coordinates of the data sets on the PCA analyses (Figure 4), which are located in the

overlap area of the two models. This explains the weak identifiability of the life cycle and the impossibility

of significantly rejecting either life cycle. Therefore, in our case study we have to rely on biological insights

to determine the life cycle.

3.3.3 Parameter estimation

Knowing that the poplar rust pathogen alternates on larch to perform its sexual reproduction, we compute

the parameter estimations under the model ‘with’ host alternation.

In the case study, Complete summary statistics perform better than Wrap-up summary statistics for

the analysis of both empirical data sets. For most parameters, especially those that are well identified,

the difference between the posterior density versus the prior density is more pronounced (Figures 5, S1).

Therefore, in the following, we focus on the parameter estimation from Complete summary statistics. As

expected from the theoretical identifiability, narrow posterior distributions allow a confident inference of

parameters propR and K. The power of inference of parameters favr, r and τ is more limited, and the

posterior distribution for parameter mig is not more informative compared to its prior distribution. From

the mode of each posterior distribution (Table 10), we infer a high proportion of resistant poplars at the time

of resistance overcoming: propR = 0.93 and propR = 0.85 for Amance and the Grand Est region data sets

respectively. The inferred population sizes are in the order of three thousands (mode values K = 3, 751 and

3, 404 for Amance and the Grand Est region, respectively). We infer an initial proportion of virulent alleles

favr in the pathogen population of 13% in Amance and in the Grand Est region, but with a large credible

interval, between 3% and 20%. The annual mortality rate τ during the annual migration preceding sexual

reproduction is inferred at 0.56 and 0.75 in Amance and in the Grand region, respectively. The growth rate

r is estimated at 1.63 and 1.96 in Amance and in the Grand region, respectively. The migration rate mig is

badly estimated and would range from 0.01 to 0.10.
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4 Discussion

Time samples unravel rapid adaptation

In this paper, we develop an original approach to infer demographic scenarios and parameter values in the

case of rapid adaptation. We base our inference framework on the use of time series data to grasp changes

in population structure over time. We employ a forward population genetic model to simulate the summary

statistics used for ABC inference. As such, our study is in line with the most recent developments in popula-

tion genetic inference that use time series data to unravel the demographic changes that accompany selection

(Foll et al., 2015; Johri et al., 2022; Kreiner and Booker, 2022; Pavinato et al., 2022). Theoretical investiga-

tions demonstrate high accuracy in both model and parameter estimations. Last, our inferential framework is

successfully applied to a case study of rapid adaptation in a plant pathogen following a resistance overcoming

event with consistent estimates of demographic and ecological oriented parameters.

Too many summary statistics lead to model overfitting

The main originality of our method is to take into account the time series, compared to the high amount

of studies that focus on a single time point. To do so, we adapt the classical ABC protocols of using sum-

mary statistics. We compare two methods, either keeping the complete sequence of statistics over all time

samples or wrapping up the information into the mean, variance, minimum and maximum values for each

summary statistic. We show in the theoretical cross-validation procedures that Wrap-up summary statistics

outperform Complete summary statistics, except when we apply data rarefaction. This result may appear

counter-intuitive. However too much and redundant information can lead to a decrease in statistical power.

Since many statistics can be used in ABC, there is a certain curse of dimensionality, early on identified.

This generates overfitting that may affect the accuracy of model and parameter estimation. This is especially

acute when several summary statistics correlate with the same model parameters, inflating the heterogeneous

accuracy inference of some parameters compared to others. A suggested solution is to perform first a dimen-

sion reduction of the statistics space (Wegmann et al., 2009) before performing the ABC estimations. In our

case, we have few genetic indices and few parameters, so we do not perform such reduction of dimensionality
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beforehand. We want to keep the full time series to avoid loss of temporal information, but in doing so

we inflate the number of summary statistics which is likely to result in temporal auto-correlation causing

overfitting. In support of this hypothesis, the discrepancy in parameter identifiability between Complete and

Wrap-up statistics tends to decrease when we apply a thinning in the time series consisting in keeping only

one fifth of the temporal samples. A way to keep the maximum information while avoiding the redundancy

that causes overfitting would be to summarise the time series in a different manner. For example, we may fit

a function describing the temporal changes and use regression coefficients as summary statistics. However,

this method requires that all dynamics be correctly fitted by a similar function (with the same number of

regression coefficients). In this attempt, we try to fit quadratic polynomes, but the shape of the temporal

variation varied too much among population genetic indices to provide conclusive summary statistics (data

not shown). Moreover, such fit cannot take into account stochastic variation due to drift. Another way to

improve the inferential framework would be to avoid the use of population genetic indices as summary stat-

istics and base the inference method directly on the evolution of genotypic frequencies, or a less condensed

type of information such as site frequency spectra (SFS) across time samples. However this method may be

more computationally intensive (in particular for storing the results over a long time series), and the SFS

cannot be computed from microsatellite markers. Moreover, the resulting increase in the number of summary

statistics could also lead to high dimensionality of the data.

Case study estimates match the biology of the poplar rust system

By applying this method on empirical data sets, we infer accurately three parameters: propR, K and favr.

The estimated values make sense with regard to our knowledge of this event of resistance overcoming. We

infer a very large proportion of resistant poplars (85% to 93%), which is slightly higher but still consistent with

our knowledge of poplar plantations before the RMlp7 resistance overcoming. Indeed, the resistant poplar

cultivar ‘Beaupré’ that bears resistance RMlp7 was widely planted at the time of resistance overcoming and

represented up to 80% of poplar cultivar sales in 1996 (data from the French Ministry of Agriculture, Fabre

et al., 2021). This very high proportion of resistant poplars in the landscape exerted a strong selection
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pressure and accounts for the changes in the genetic structure of a pathogen population over time (Persoons

et al., 2017). We infer a population size of around three thousand individuals. This population size does not

represent the number of individuals actually multiplying in the population but the effective population size,

i.e. the number of individuals that effectively contribute to the observed genetic variability. This order of

magnitude is consistent with a previous estimate based on a coalescent analysis (Persoons, 2015). We estimate

an initial proportion of virulent alleles of 13%. This value is consistent with the genetic characterisation

at the selected locus in M. larici populina (Louet et al., 2023). Louet et al. (2023) highlighted that the

alleles conferring virulence pre-existed in the pathogen population long before the resistance overcoming, at a

frequency of 21%, on average, between 1989 and 1993. The proportion of virulent alleles in the population can

strongly fluctuate during the years preceding resistance overcoming (Saubin et al., 2021). Such fluctuations

are indeed observed in the data from Louet et al. (2023), with a standard deviation in the proportion of

virulent alleles of 0.12 between 1989 and 1993. Our estimation is therefore consistent with the empirical data

considering such large fluctuations from year to year. This level of standing genetic variation is not negligible

in view of the adaptive potential it brings to the pathogen population.

The fact that some parameters are not well estimated is not caused by a limited amount of data, but

rather by a strong assumption in our modelling framework. Indeed, we assume three compartments only

in the landscape and neglect the more complex spatial structures that can be encountered in agricultural

landscapes. In such a non-spatial system, it may be especially difficult to disentangle the genetic effects of

growth, mortality and migration rates. We believe that increasing the spatial complexity of the model would

help disentangle these three parameters. However, this would also highly increase the dimensions of summary

statistics, which can lead to a decrease in the statistical accuracy of the ABC.

Despite the precautions taken when evaluating the theoretical accuracy of our method, we observe that

the accuracy of our ABC estimation differs between the theoretical and empirical results. We obtain similar

theoretical results with Wrap-up summary statistics and with Complete summary statistics. However, Com-

plete summary statistics lead to more accurate parameter inferences from empirical data sets. We believe

that this is due to increased variability in population genetic indices in the empirical data compared to the
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simulated data. Many sources of biological stochasticity are not accounted for in our modelling assumptions.

This stochasticity results in stronger local extremes, which are captured by the minimum and maximum val-

ues in Wrap-up summary statistics. Thus, taking into account all the available information of the empirical

time series through Complete summary statistics can reduce the impact of this additional stochasticity, and

improve the parameter estimations. This discrepancy between our application to empirical data and theoret-

ical findings from simulated data can also originate from strong modelling assumptions (like the non-spatial

model) that do not perfectly reflect the biological system.

Methodological guideline

We recommend using a sampling scheme with regular time points to capture sufficient information in the

genetic evolution of populations. Contrary to the classical practices, we show that for this framework it is

more efficient to sample more populations in time but on a single host than to focus on few temporal samples

but on several hosts. The sampling scheme with the first and the last time points, even if less informative

than a more regular sampling, still allows to correctly infer some of the model parameters. In particular,

the initial frequency of virulent alleles in the population is very well inferred with this sampling scheme

because the first population in time is the most important to identify the initial genetic composition of the

population. In addition to the methodological considerations of ABC analyses, it is essential to build a model

adapted to the organism studied. For example, an organism with a high clonality rate may lead to special

methodological considerations, with a much longer burn-in period required before a steady state is reached

(Reichel et al., 2016; Hartfield, 2021).

Future work is still required to establish a robust and general framework for demography inference of

species with rapid adaptive evolution. It would be interesting to test this framework on another species

with a life cycle without host alternation. This analysis would serve as a second proof of concept without

the need to modify the underlying simulation model. In addition, further developments could benefit from

modelling spatially structured populations more realistically. This would lead assuredly to a more generic

model and would allow for a better estimation of the migration rate. Such an addition could however increase
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the simulation time, which is a major issue in ABC analyses where the number of simulations can be decisive

for increasing inferential power.

Future directions: application for genome scans of rapid adaptation

Our analyses demonstrate that neutral genetic data from microsatellite markers contain sufficient information

to infer parameters of resistance overcoming from time samples. This validates our approach consisting

in studying rapid adaptation in two steps: first inferring demographic parameters using neutral loci only,

then apply the demographic scenario to build accurate genome scan analyses. The next step thus involve

considering population genomic data. The integration of genomic data would allow the calculation of a wider

range of summary statistics, which could increase the accuracy of inferences. Fitting demographic models is

a prerequisite for detecting selection, but it can be difficult to do in practice and is often inaccurate (Hoban

et al., 2016). The addition of genomic data to the described framework would enable to focus on areas under

selection, detect sweeps (Messer and Petrov, 2013; Foll et al., 2015) and calculate their age. Determining the

evolution of neutral loci through such a selection event may allow, by comparison, to identify selected loci

implied in rapid adaptation.
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Živković, D., John, S., Verin, M., Stephan, W., and Tellier, A. (2019). Neutral genomic signatures of host-
parasite coevolution. BMC Evolutionary Biology, 19(1):1–11.

Data accessibility

R scripts for statistical analyses and data for the biological application as well as an executable file to run the

population genetic simulations are available on a public GitLab repository: https://gitlab.com/saubin.meline/demogenetic-

abc.

Author contributions
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Tables and Figures

Table 1: Input parameters and their range of variations for the random simulation design run for 400
generations.

Parameter Description Distribution Interval

favr
Initial frequency of the virulent allele in the

pathogen population
Uniform [0.01; 0.2]

Cycle Life cycle of the pathogen Bernoulli
Without or ‘with’ host
alternation, probability

0.5
mig Migration rate between R and S Uniform [0.01; 0.1]
r Growth rate of the pathogen population Uniform [1.1; 2]
τ Mortality rate during the annual migration Uniform [0.5; 1[

K
Cumulative carrying capacity of susceptible

and resistant hosts
Uniform [1,000; 20,000]

propR Proportion of resistant hosts in the landscape Uniform ]0.01; 0.99[

Table 2: Description of population genetic indices used as summary statistics in the ABC analyses.

Index Description Reference

PV ir Proportion of virulent individuals

βP Genotypic diversity index

Arnaud-Haond et al., 2007
R Proportion of unique genotypes
S Simpson index of genetic diversity

SW Shannon-Wiener index of genetic diversity

MHE Mean expected heterozygosity overall loci
Nei, 1978

V HE Variance of the expected heterozygosity overall loci

MLA Mean number of alleles by locus Nielsen and Signorovitch, 2003

r̄D Linkage disequilibrium index Agapow and Burt, 2001

FST R− S Population differentiation between populations on R and S
Wright, 1949, 1978

TFST
Population differentiation between the initial population (after

burn-in) and the sampled population
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Table 3: Accuracy of model selection for the ‘full’ simulation design depending on the type of summary
statistics considered. The model choice procedure is based on leave-one-out cross-validations with a weighted
multinomial logistic regression computed with tolerance parameter set at 0.05, for 500 replicates.

Summary statistics
Probability to find the true model

‘Without’ host alternation ‘With’ host alternation
Complete 0.80 0.89
Wrap-up 1.00 0.99

Table 4: Accuracy of parameter estimation for the ‘full’ simulation design depending on the summary stat-
istics considered. Data represent correlation coefficients between simulated and estimated parameters. The
parameters identifiability procedure is based on a leave-one-out cross-validation with the neural networks
regression method and tolerance parameter set at 0.05, for 200 replicates.

Summary statistics propR mig favr r K τ
Complete 0.91 0.42 0.77 0.74 0.76 0.51
Wrap-up 0.92 0.62 0.82 0.79 0.87 0.76

Table 5: Accuracy of model selection depending on the summary statistics and the sampling rarefaction con-
sidered. The model choice procedure is based on leave-one-out cross-validations with a weighted multinomial
logistic regression computed with tolerance parameter set at 0.05, for 500 replicates. Bold values represent
the values already presented in Table 3.

Time samples Compartment samples Summary statistics
Probability to find the true model

Without alternation With alternation

Every year
S and R

Complete 0.80 0.89
Wrap-up 1.00 0.99

S
Complete 0.59 0.77
Wrap-up 0.94 0.93

Every five year
S and R

Complete 0.76 0.81
Wrap-up 1.00 0.99

S
Complete 0.61 0.66
Wrap-up 0.97 0.96

First and last year
S and R - 0.59 0.62

S - 0.53 0.60
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Table 6: Accuracy of the parameter estimation depending on the summary statistics considered and the
type of rarefaction, for simulated populations ‘with’ host alternation. Data represent correlation coefficients
between simulated and estimated parameters. The parameters identifiability procedure is based on a leave-
one-out cross-validation with the neural networks regression method and tolerance parameter set at 0.05, for
200 replicates. Bold values represent the values already presented in Table 4.

Time samples
Compartment Summary

propR mig favr r K τ
samples statistics

Every year

S, R and A
Complete 0.91 0.42 0.77 0.74 0.76 0.51
Wrap-up 0.92 0.62 0.82 0.79 0.87 0.76

S and R
Complete 0.90 0.43 0.77 0.74 0.79 0.53
Wrap-up 0.90 0.51 0.85 0.76 0.86 0.68

S and A
Complete 0.90 0.31 0.74 0.72 0.77 0.61
Wrap-up 0.93 0.46 0.76 0.77 0.87 0.73

S
Complete 0.87 0.29 0.73 0.61 0.79 0.60
Wrap-up 0.90 0.42 0.74 0.63 0.80 0.64

Every five year

S, R and A
Complete 0.91 0.40 0.76 0.76 0.71 0.64
Wrap-up 0.79 0.42 0.75 0.58 0.73 0.72

S and R
Complete 0.88 0.33 0.82 0.61 0.81 0.61
Wrap-up 0.92 0.55 0.81 0.60 0.88 0.69

S and A
Complete 0.89 0.19 0.79 0.67 0.83 0.68
Wrap-up 0.81 0.17 0.76 0.57 0.75 0.68

S
Complete 0.86 0.21 0.75 0.59 0.83 0.51
Wrap-up 0.87 0.38 0.70 0.60 0.78 0.59

First and last year

S, R and A - 0.74 0.41 0.84 0.40 0.77 0.59
S and R - 0.78 0.49 0.76 0.39 0.68 0.50
S and A - 0.80 0.25 0.78 0.51 0.80 0.70

S - 0.72 0.19 0.79 0.18 0.79 0.56

Table 7: Accuracy of model selection on simulated populations on S and R, depending on the summary
statistics considered. The sampling schemes of simulation data sets match those of the two empirical data
sets: Amance location and Grand Est region. The model choice procedure is based on leave-one-out cross-
validations with a weighted multinomial logistic regression computed with tolerance parameter set at 0.05,
for 500 replicates.

Sampling scheme Summary statistics
Probability to find the true model

‘Without’ host alternation ‘With’ host alternation

Amance
Complete 0.65 0.77
Wrap-up 0.70 0.79

Grand Est
Complete 0.75 0.82
Wrap-up 0.79 0.87
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Table 8: Accuracy of the parameter estimation on simulated populations sampled on S, R and A compart-
ments for the life cycle ‘with’ host alternation, depending on the summary statistics considered. The sampling
schemes of the simulation data sets match those of the two the empirical data sets: Amance location and
Grand Est region. Numbers represent correlation coefficients between simulated and estimated parameters.
The parameter identifiability procedure is based on a leave-one-out cross-validation with the neural networks
regression method and tolerance parameter set at 0.05, for 200 replicates.

Sampling scheme Summary statistics propR mig favr r K τ

Amance
Complete 0.91 0.36 0.80 0.70 0.81 0.63
Wrap-up 0.88 0.40 0.76 0.72 0.85 0.61

Grand Est
Complete 0.90 0.39 0.76 0.68 0.82 0.64
Wrap-up 0.86 0.33 0.78 0.68 0.81 0.59

Table 9: Posterior model probabilities and goodness of fit for two data sets: in Amance location and the
Grand Est region, depending on the summary statistics. ‘With’ and ‘Without’ stand for life cycles ‘with’
and ‘without’ host alternation, respectively. P − values < 0.01 are considered significant.

Sampling scheme Summary statistics
Posterior probability Goodness of fit (P − value)
Without With Without With

Amance
Complete 0.00 1.00 0.084 0.045
Wrap-up 0.00 1.00 0.053 0.019

Grand Est
Complete 0.03 0.97 0.086 0.056
Wrap-up 0.01 0.99 0.073 0.085

Table 10: Statistical summary of the inference of the parameters for the life cycle ‘with’ host alternation,
depending on the data set, with Complete summary statistics.

Data set Parameter q − 2.5% median mean mode q − 97.5%

Amance

propR 0.57 0.89 0.86 0.93 0.97
mig 0.01 0.06 0.06 0.09 0.10
favr 0.03 0.13 0.12 0.13 0.20
r 1.30 1.71 1.70 1.63 2.01
K 1,642 4,447 5,566 3,751 14,271
τ 0.51 0.69 0.70 0.56 0.92

Grand Est

propR 0.43 0.81 0.79 0.85 0.93
mig 0.01 0.06 0.06 0.04 0.10
favr 0.03 0.12 0.12 0.13 0.19
r 1.30 1.70 1.69 1.96 1.99
K 1,010 3,976 4,942 3,404 13,253
τ 0.51 0.70 0.71 0.75 0.92
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Figure 1: Modelling steps for each simulated year with the three S, R, and A host compartments. Each year
is composed of 11 generations. During the clonal phase (generation 1 to 9), each generation is composed of
three steps identical between both life cycles: (I) clonal reproduction; (II) migration of a proportion mig of
each population between R and S; (III) mutation at all neutral markers with a mutation rate of 10−3. At the
end of the clonal phase, the pathogen overwinter as a dormant stage and is subjected to (IV) mortality of a
proportion τ of each population. Then, the sexual phase (generation 10) differs depending on the life cycle:
(0) represents the migration of all individuals from R and S towards A; (1) sexual reproduction; (2) mutation
of all neutral markers with a mutation rate of 10−3. This sexual phase is followed by a new clonal phase, which
is identical ‘without’ host alternation to the first clonal phase and ‘with’ host alternation: (3) represents the
clonal reproduction; (4) mutation of all neutral markers with a mutation rate of 10−3; (5) migration of all
individuals from A towards R and S. A sampling takes place every year at the end of generation 9 on S and
R and at generation 11 before the migration event (5) on A.
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(a) Complete summary statistics (b) Wrap-up summary statistics

Figure 2: Principal component analyses (95% envelope) of simulations for each model: ‘with’ and ‘without’
host alternation, depending on the summary statistics considered. PCA analyses were based on the ‘full’
simulation design.
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Figure 3: Practical identifiability of parameter estimation for Wrap-up summary statistics. Each point
represents the parameter estimation (‘Estimated’ value) depending on the real parameter (‘True’ value).
Each graph regroups the results of 200 replicates. Straight lines correspond to the first bisector.
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(a) Amance (b) Grand Est region

Figure 4: Principal component analyses (95% envelope) of simulations for each model: ‘with’ and ‘without’
host alternation, depending on the data set considered. Simulations were performed with Complete summary
statistics. The black crosses correspond to the coordinates of the actual data sets.
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Figure 5: Posterior distributions of parameters, with Complete summary statistics, for the data sets in
Amance location (on S and A) and the Grand Est region (on S, R and A). Dashed lines correspond to the
prior distributions and red lines correspond to the posterior distributions given by the neuralnet method.
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