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Abstract

In this paper, we derive a reactivity descriptor stemming from the Fermi-Dirac population

scheme, applied to density functional calculations on molecular systems. Assuming molecular

orbitals only marginally change when temperature is slightly increased from 0 K, we study the

response of electron density to a change in temperature. Connection with usual conceptual

DFT descriptors is made, and the T-variation of electron density for some representative

examples is given and discussed.
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Introduction

Predicting and rationalising chemical reactivity is one of the central concerns in theoretical

chemistry. To address it, various frameworks were proposed over time. These frameworks

often rely on a so-called "perturbation perspective":1 the approach of a reagent towards

another can be seen as a perturbation of the latter in its resting state. This holds for the

early stages of reaction (weak interaction), and may be extended further provided that the

Hammond’s postulate holds.2

Hence one may try to extract meaningful chemical information from a given system

by probing its response to external perturbations. In C-DFT, this is usually achieved by

analysing electron density and energy variations against two central variables: the exter-

nal potential, v(r), and either the total number of electrons N (in the so-called canonical

development) or the chemical potential µ (grand-canonical approach).3,4

Nevertheless, responses to other types of perturbations can be conceived.5 For instance,

recently the group of F. de Proft studied the responses of various systems to electric fields6

and external mechanical force.7 New descriptors may thus be constructed, and they are ex-

pected to afford deeper and finer insight on chemical properties. Sometimes, as we will show

in the following paragraphs, the mathematical development of these descriptors furthermore

shows strong connection between these original quantities and previously proposed ones.

Hence the derivation of new descriptors is also of interest to develop and strengthen our

understanding of well-established theories and models.

Inclusion of temperature in C-DFT is of course of particular interest. Several proposals

were made in the past years, either relying on the definition of DFT-derived temperature8–11

or on the use of temperature as an additional external variable in DFT, using ensemble

approaches.12–21 Original descriptors and quantities were derived in these conditions, and

satisfactorily afford to retrieve long-known quantities in the zero-K limit. However, some de-

scriptors are ill-behaved in this 0 K limit (Dirac delta distribution behaviour). Additionally,

the use of ensemble state calculations is slightly cumbersome, and one may wonder whether
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a more approximate though simpler model could not be devised.

Here, we propose a simple approach to incorporate temperature dependence in a C-DFT

like approach. Our proposition relies on the following hypothesis: provided that tempera-

ture is low, the Kohn Sham orbitals obtained from "standard" 0 K calculation are a good

approximation of the T-dependent ones, and the effect of temperature is principally to alter

their population (Fermi-Dirac population scheme).22 Under these conditions, we develop the

first order response of electron density to a change in temperature, details of the develop-

ment being given in section 2, special attention being given to the derivation of a normalised

response. Such a quantity is expected to provide valuable information on reactivity. Indeed,

in a recent publication it was proposed that intermolecular interaction can be divided into

"heat" and "work" exchange between reagents.23 Probing how an electron density can vary

according to a change in temperature, that is under a heat exchange with an external part-

ner or reservoir, is thus of interest. In section 3, computational details are provided (note

the code is given in SI). In the fourth section, we illustrate the potential of the proposed

descriptors on prototypical systems, some of them being hard to study through standard

approximations, as a consequence of frontier MO degeneracy. The paper ends on concluding

remarks.

Theory

Initial development

The central idea of the development is to use a Fermi-Dirac population scheme on molecular

orbitals from SCF calculations: instead of integer (2 or 0) occupations, let us write that the

molecular orbital i bears ni electrons according to:

ni(T ) =
2

1 + exp
(
εi−µ
kBT

) (1)
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where kB is the Boltzmann constant, T the temperature, εi the MO energy, and µ the

chemical potential. As noted by Parr and Yang, this is actually exact for a system of non-

interacting electrons (Kohn-Sham like construction).24

If the system under study is a pure, macroscopic sample of a given compound, then we

may expect that the chemical potential µ is the average chemical potential of an individual

molecule,

µ =

(
∂E

∂N

)
v(r)

(2)

which can also be seen as the average of the frontier levels energies.25

One may already note that under such conditions the total number of electrons 〈N〉

(sum of ni) will differ from the expected value N, unless the MO distribution is symmetrical

around µ. Deviations may nonetheless be rather small at low T, and if T tends to zero 〈N〉

tends to N, since the Fermi-Dirac distribution tends towards a Heaviside distribution.a

The average electron density should then be:

ρ̃(r, T ) =
N ′∑
i=1

ni(T )|ϕi(r)|2 (3)

with ϕi the MO associated to εi. It must already be noted that this is an approximation of

the correct temperature-dependent electron density, since here we use the T=0 K molecular

orbitals (and not MOs from a T-dependent SCF calculations)24, and no entropy contribu-

tion is considered.26 Nevertheless, if temperature remains small, this approximation should

remain correct, and in the same line of arguments as before, ρ̃, the 0 K SCF electron density

and the genuine T-dependent electron density should be nearly equal.

Thus one may expect to extract some temperature-dependence effects from equation 3,

which can be rather straightforwardly evaluated from any SCF calculation output. Indeed,
aIn fact, a numerical experiment on a benzene molecule at T = 2500 K reveals that 〈N〉 and N differ by

about 1.10−9, suggesting that 2500 K is a "low" temperature here.
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from Equations 1 and 3, one may then compute the response of electron density to a change

in temperature:

fT (r) =

(
∂ρ̃N(r, T )

∂T

)
v(r),µ

=
N ′∑
i=1

(
∂ni(T )

∂T

)
v(r),µ

|ϕi(r)|2 (4)

assuming the orbital temperature-dependent relaxation remains small enough to be ne-

glected. From the previous equations one directly obtains that

fT (r) = 2
N ′∑
i=1

(
εi − µ
kBT 2

)
exp

(
εi − µ
kBT

)[
1 + exp

(
εi − µ
kBT

)]−2
|ϕi(r)|2 (5)

=
N ′∑
i=1

n′i(T )|ϕi(r)|2 (6)

The n′i(T ) coefficients present several noticeable features.

First, from equation 5 it may be noted that degenerate MOs will be associated to the same

value of n′i (only depending on energies), so the proposed descriptor naturally incorporates

some degeneracy effects.b Second, it may be noted that n′i is an odd function of εi−µ (saying

otherwise, n′i is antisymmetric around µ), adopting negative values for occupied MOs (εi < µ)

and positive values otherwise. Third, the further away from the Fermi level, the smaller

the absolute value of n′i, which quickly converges to zero far from µ. As a consequence,

maximal contributions are expected for MOs around the Fermi level, in correspondence

with the frontier MO model:28 the principal response of the electron density to a change in

temperature, that is, to an energy transfer, stems from the frontier and near frontier MOs.

Actually, let us assume the system under study is such that the frontier MOs (HOMO

and LUMO) are well-separated from all other MOs. In such a case, the two principal

contributions to the electron density variation with temperature will stem from these two

MOs. Using usual C-DFT notations and approximations,29,30 we have εHO = µ − η/2 and
bAlthough it must be reminded that, owing to our premises, static correlation is missing in our develop-

ment. As pointed out by a referee, a more complete treatment of degeneracy requires much more complete
and complex developments.13,27
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εLU = µ+ η/2, and thus one has:c

fT (r) ≈ −
η exp

(
− η

2kBT

)
kBT 2

(
1 + exp

(
− η

2kBT

))2 |ϕHO(r)|2 +
η exp

(
η

2kBT

)
kBT 2

(
1 + exp

(
η

2kBT

))2 |ϕLU(r)|2 (7)

≈ η

kBT 2
exp

(
− η

2kBT

)(
|ϕLU(r)|2 − |ϕHO(r)|2

)
(8)

=
η

kBT 2
exp

(
− η

2kBT

)
∆f(r). (9)

In the previous equation, ∆f(r) is the so-called Dual Descriptor31,32, here evaluated under

the Frontier MO (FMO) approximation. A comparable formula was actually obtained by

Franco-Perez and co-workers,18,33 using a three-states ensemble model to describe the tem-

perature response of electron density. The apparition of the dual descriptor is thus not a

complete surprise, but it is nonetheless interesting to observe that this "second-order" elec-

tron density response (with respect to the number of electrons or chemical potential, in 0 K

developments)3 is an avatar of a first order response at finite temperature. The first-order

response of electron density to a change in temperature will thus bear close resemblance to

the dual descriptor, and may actually be seen as a generalisation of the latter.d Satisfacto-

rily, one may note the explicit dependence on hardness in the electron density response: at

a given temperature, the higher η, the smaller the prefactor, and thus the lower the electron

density variation. This is in perfect line with expectations from Pearson’s HSAB theory34

and the principle of maximum hardness.35 Now it must be noted that though the right hand

side of Equation 9 integrates to zero, the same is not true in general for the electron density

response to temperature - in fact, this condition will be true only if the distribution of MO

energies around the Fermi level is symmetric.

It is also noteworthy that beyond the FMO approximation, equation 6 indicates that other

than frontier MOs may contribute, especially when temperature increases (larger width of the
cAssuming temperature is low (η/kBT >> 1), which allows to approximate both denominators in Equa-

tion (7).
dIt may additionnally be added that, as electron density is itself a first order response of electron density,

all descriptors in the previous statement are "one order higher" with respect to energy.
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n′i function). In line with a previous statement, we can thus see the first-order response of ρ to

a change in temperature as a generalisation of the dual descriptor beyond the classical FMO

approximation, in the spirit of the recent proposition of B. Pino-Rios.36 In this study, the

authors proposed to generalise the FMO dual descriptor through an expansion over all MOs,

weighting each MO contribution using a Gaussian scheme based on the energy difference

with respect to the frontier levels. Here, the weighting is not Gaussian, but similarly it

decays quickly as MOs are further away from the chemical potential, and thus from the

frontier level – also in line with a previous proposition by C. Cardenas and co-workers.37

Temperature in our proposition plays a comparable role with the Gaussian distribution width

∆ in B. Pino-Rios proposition: by playing on this value, contributions from deeper MOs can

be incorporated or reduced to zero.e Note the same

In fact, if temperature is high enough, the maximal contributions in Equation 5 may even

stem from non-frontier MOs. Using the explicit dependence over εi in the previous equation,

we can find the extrema of n′i at a given temperature. Indeed, from

∂n′i(T )

∂εi
=

(
(εi − µ) tanh

(
− εi−µ

2kBT

)
+ kBT

)
sech2

(
− εi−µ

2kBT

)
2k2BT

3
(10)

the following condition is expected to hold for extrema

tanh

(
εi − µ
2kBT

)
=

kBT

εi − µ
(11)

or tanh(x/2) = 1/x with x = (εi−µ)/kBT . Though the exact solution of the previous equa-

tion is not trivial, numerically one eventually obtains that x ≈ ±1.5434. Here it seems more
eIn fact, temperature also modulates the magnitude of the electron density reshuffling, as is obvious by

Equation 9. Numerical experiments reveal (as shown hereafter) that a temperature nearing 0.1 η is required
to obtain significant isosurfaces at 0.01 a.u.

7



natural to consider positive temperaturesf, and thus the contribution of MO i is extremal if

εi − µ ≈ 1.5434kBT. (12)

Temperature may then be chosen so that a given MO i will present the largest contribution

to the electron density response. In fact, we can define a particular temperature Tp such

that the extrema match the frontier levels:

Tp =
η

3.0868kB
. (13)

Above this temperature, maximal contributions are not necessarily associated to frontier

MOs, but may stem from deeper/higher MOs. On the contrary, below this temperature

frontier MOs are the principal contributors to the electron density response. It must be

noted that Tp is actually already a rather high temperature; for instance in the case of

benzene (see below for the calculation details), the calculated hardness is 0.246 a.u., and

thus the corresponding Tp is approximately 25 000 K. This temperature is already too high

for our approximations to remain valid,g so in the following we will restrict our discussion

only to T < Tp.

Normalisation

As stated above, in the Fermi-Dirac population scheme no restriction is applied to the total

number of electrons 〈N〉. As a consequence, the electron density is not exactly equal to

the 0 K Kohn-Sham density, and its T-derivative is not integrating to zero over all space -

meaning the system may acquire or lose electrons under a change in temperature.

Thus formally speaking the quantity derived in equation 6 is a grand-canonical quan-

tity. Usually in C-DFT the grand-canonical descriptors are closely associated to canonical
fThough negative temperatures can be conceived for non-equilibrated sub-parts of a given system.
gOccupation of the LUMO according to the Fermi-Dirac distribution is indeed equal to 0.35 at this

temperature, thus significantly departing from 0.
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counterparts, and one may wonder how a canonical (thus with constant total population)

equivalent could be derived.

This can be achieved through a slight modification of the Fermi-Dirac population scheme.

Let us define a modified coefficient di for the MO i, such that overall the total electron count

amounts to N:

di(T ) =
N∑

j

nj(T )
ni(T ). (14)

From this point, a normalised electron density is straightforwardly derived as

ρ̃N(r, T ) =
N ′∑
i=1

di(T )|ϕi(r)|2. (15)

Then the first order T-derivative directly reads

fT (r) =

(
∂ρ̃N(r, T )

∂T

)
v(r),µ

=
N ′∑
i=1

(
∂di(T )

∂T

)
v(r),µ

|ϕi(r)|2 (16)

once again assuming the orbital relaxation remains negligible. Expanding the derivative

results in

fT (r) = =
N[

N ′∑
j=1

nj(T )

]2
[
N ′∑
i=1

(
n′i(T )

N ′∑
j=1

nj(T )− ni(T )
N ′∑
j=1

n′j(T )

)
|ϕi(r)|2

]
(17)

=
N ′∑
i=1

γi(T )|ϕi(r)|2. (18)

As one can note, this quantity indeed integrates to 0 over all space, as expected. Also, one

may note the cross product of the Fermi-Dirac coefficients and their first-order T-derivative.

Because of this, it is more complicated to delineate mathematical properties for γ. Never-

theless, we may observe that for deep occupied MOs (far away from the Fermi level) and at
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low temperature, the first term is expected to tend to 0 as n′i does, and thus the second term

only should remain. This latter term is expected to be the same for all low-lying MOs, ni

tending to its limit value (2.0) and the sum being a constant. Thus all low-lying MOs will

present a comparable contribution to the overall response, which should be small at low T

(because the sum of the first order coefficients will be).

On the contrary, for high-lying MOs the second term in equation 17 should vanish (ni →

0), and so should the first one (n′i → 0). Thus all high-lying MOs will not contribute to the

overall electron density response.

The picture is less clear for near frontier levels. However we may assume that the sum of

the first order derivatives n′i will be small (tending to zero), while the individual contributions

themselves could be arbitrarily large near the Fermi level. Thus it may be surmised that the

second term in equation 6 will likely be negligible compared to the first one, and only act as a

small correction of the latter. Hence around the Fermi level the γi function should bear close

resemblance to c′i, and the conclusions from previous section should remain qualitatively

valid.

Computational details

The electronic structure calculations for all presented examples below were performed using

Gaussian 16 rev B.01.38 In all cases, full geometry optimisations without symmetry constraint

were performed in gas phase, and vibrational frequencies calculated to ensure the geometries

were actual minima on the potential energy surface. Additional keywords were used to print

basis set and MO details in output filesh. All calculations were performed at the hybrid

B3LYP/cc-pvtz level of theory.39,40

Descriptors in equations 6 and 17 were then computed using a Python 3/Orbkit41 script

(available in SI) and exported in cube format. Cube dimensions were adapted to each

molecule (7.5 bohr extension), and a grid spacing of 0.15 bohr was used in all cases but C60,
hiop(6/7=3) gfinput

10



for which a larger spacing was used (0.20 bohr) to alleviate the computational effort. In order

to limit computational time (and memory requirements), a cut-off was also set up on the

values of n′i: all MOs leading to |n′i| < 10−10 were rejected. This allows for a fast computation

of the descriptors, even in the case of C60 (20 over 1800 MOs used in computation, 3 minutes

30 seconds on 24 cpu).

Illustration on representative examples

The cases of benzene and HCN: detailed discussion

Let us first consider the example of the benzene molecule. We give in Table 1 the values for

the normalised and non-normalised responses for this molecule at 0.1 Tp (2520 K), for the

near-frontier (from HO-3 to LU+3) and extreme MOs. The values of the Fermi-Dirac popu-

lations for the same MOs at the same temperature are also given for the sake of comparison.

As said before, though seemingly high, the temperature can be considered "low" in

the sense that the Fermi-Dirac population scheme sticks very closely to the expected finite

occupations. The strongest deviation, observed for the frontier MOs, amounts to roughly

±4.10−7 electron. Hence the impact of T at 0th order is extremely weak, if not negligible.

This remains true when summing over all 264 MOs: the difference between N and 〈N〉 is

1.10−9 electron only.

If we now turn to the non-normalised response, the picture is quite different. As one

may judge from the values in Table 1, ni values are 3 orders of magnitude higher than ∆int

(difference between the occupations in the Fermi-Dirac scheme and expected integer values).

Hence, the effect of temperature is more pronounced on the first order derivative. It may

further be noticed that the largest contributions, as expected, arise from the frontier MOs

(3-4 orders or magnitude difference between HO and HO-3/LU and LU+3 for instance).

Satisfactorily, symmetrical values for the degenerate MOs of benzene (HO and HO-1, LU

and LU+1) are further retrieved. Ultimately, the non-normalised response principally stems
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Table 1: Results of the temperature-dependent calculation for the benzene molecule à 0.1 Tp.
FD is the Fermi-Dirac coefficient, ∆int the difference between the Fermi-Dirac and expected
integer MO population, ni the non-normalised first-order T-derivative of the Fermi-Dirac
coefficients, and γi the normalised response. Asterisks indicate that the value was too small
to be computed (below cut-off).

MO FD ∆int ni γi
1 2.00 0* 0* -3.27 10−6

HO-3 2.00 5.33 10−12 -1.78 10−08 -4.02 10−06

HO-2 2.00 5.34 10−12 -1.78 10−08 -4.02 10−06

HO-1 2.00 3.96 10−07 -7.67 10−04 -3.22 10−02

HO 2.00 3.96 10−07 -7.67 10−04 -3.22 10−02

LU 3.96 10−07 -3.96 10−07 7.67 10−04 3.22 10−02

LU+1 3.96 10−07 -3.96 10−07 7.67 10−04 3.22 10−02

LU+2 6.09 10−10 -6.09 10−10 1.67 10−06 7.03 10−05

LU+3 1.19 10−11 -1.19 10−11 3.87 10−08 1.63 10−06

264 0.0 0* 0* 0*

from 4 MOs: HO-1, HO, LU and LU+1.

Yet, as expected the sum over all MOs of the ni coefficients is not zero, but here amounts

to 1.636 10−6 electron. From Equation 17, we can then expect γi to converge to approxi-

mately −3.272 10−6 a.u. for the low-lying MOs (second right-hand term in equation). It may

be observed that this is indeed the case, as illustrated for the very first MO. Nevertheless,

as in the case of the non-normalised response, frontier MOs bear much larger contributions

than any other MO. As such, even though the magnitude of response differs between the

normalised and non-normalised schemes, at a qualitative level one may expect them to offer

comparable descriptions. This is indeed observed, as shown on Figure 1.

The same analysis holds for the case of the HCN molecule. We give in Table 2 the values

for the normalised and non-normalised responses for this molecule at 0.1 Tp (3830 K), for

all occupied MOs (HO-6 to HO) and near-frontier vacant MOs (LU to LU+3).

Here also the deviations from the Fermi-Dirac scheme are low (the difference between

N and 〈N〉 is 7.10−8 electrons only), suggesting the temperature can be considered "low".

Conversely the first order response shows larger values, indicating that the effect of temper-

ature is more pronounced at first order. The largest contributions here also arise as expected
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Figure 1: fT (r) isosurfaces for the benzene molecule at 0.1 Tp. Left: non-normalised frame-
work; right, normalised framework. Isovalues: 1.10−6 a.u. Colour scheme: lime, positive;
orange, negative.

from the frontier MOs (π HO and HO-1, π? LU and LU+1). Here too the non-normalised

response principally stems from 4 MOs: HO-1, HO, LU and LU+1.

In this case, it may be noted that the sum over all MOs of the ni coefficients is not zero,

but amounts to -9.09 10−5 e. The sign of the γi coefficient for the low-lying MOs will thus

be positive and not negative, amounting to 1.82 10−4 e. Yet as for benzene the frontier MOs

contributions are significantly larger (2 orders of magnitude higher), and thus the normalised

and non-normalised density responses are expected to display comparable descriptions at a

qualitative level. This is indeed observed, as shown on Figure 2.

Applications

In the following, we will illustrate on a set of examples how the newly proposed descriptor may

help to interpret and rationalise reactivity. All calculations were performed for a temperature

T equal to 0.1Tp. Only the normalised responses will be discussed hereafter.

The examples were chosen in line with those presented by B. Pino-Rios and J. Martinez-

Araya,42 along with additional compounds (cis butadiene, Zn(CH3)2). They comprise com-

pounds exhibiting degenerate frontier levels, as well as systems displaying near-degenerate
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Table 2: Results of the temperature-dependent calculation for the HCN molecule à 0.1 Tp.
FD is the Fermi-Dirac coefficient, ∆int the difference between the Fermi-Dirac and expected
integer MO population, ni the non-normalised first-order T-derivative of the Fermi-Dirac
coefficients, and γi the normalised response.

MO FD ∆int ni γi
HO-6 2.00 10+00 0.00 10+00 0.00 10+00 1.82 10−04

HO-5 2.00 10+00 0.00 10+00 0.00 10+00 1.82 10−04

HO-4 2.00 10+00 0.00 10+00 -2.20 10−23 1.82 10−04

HO-3 2.00 10+00 0.00 10+00 -2.53 10−12 1.82 10−04

HO-2 2.00 10+00 8.69 10−08 -1.21 10−04 -1.51 10−03

HO-1 2.00 10+00 3.96 10−07 -5.03 10−04 -6.86 10−03

HO 2.00 10+00 3.96 10−07 -5.03 10−04 -6.86 10−03

LU 3.96 10−07 -3.96 10−07 5.03 10−04 7.04 10−03

LU+1 3.96 10−07 -3.96 10−07 5.03 10−04 7.04 10−03

LU+2 1.99 10−08 -1.99 10−08 3.01 10−05 4.22 10−04

LU+3 3.04 10−11 -3.04 10−11 6.22 10−08 8.71 10−07

MOs.

(Quasi)-Linear molecules

Let us first consider linear or quasi-linear molecules. In Figure 3, we represent isosurfaces of

normalised fT (r) at 0.1 Tp, for CO, HCN, CO2, C2H2, C2F2 and Zn(CH3)2.

First, it may be noted that symmetries are correctly taken into account: the response of

density is indeed showing a perfect cylindrical symmetry for all linear molecules. In the case

of Zn(CH3)2, a quasi-cylindrical is observed, also in agreement with the molecular geometry.

Additionally, for CO2, C2H2, C2F2 and Zn(CH3)2, the molecule should present an inversion

center, and satisfactorily, the density response is invariant by inversion in these cases.

But beyond symmetries, the obtained descriptors comply nicely with chemical knowledge.

Areas associated with a high electron density, such as triple bonds, lone pairs at electroneg-

ative elements (oxygen, nitrogen), basic Lewis sites such as methylide ligand in ZnMe2 are

indeed associated to a negative value of fT , characterising nucleophilicity. Conversely, elec-

trophilic regions, like for instance the central C atom in carbon dioxide or the zinc atom in

dimethylzinc, appear associated to positive values of fT . It is noteworthy that in the case of
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Figure 2: fT (r) isosurfaces for the HCN molecule at 0.1 Tp. Left: non-normalised framework;
right, normalised framework. Isovalues: 1.10−6 a.u. Colour scheme: lime, positive; orange,
negative.

CO, we retrieve known coordination features for this species: Lewis basicity on the C atom

along the molecular axis, enabling σ-donation to metal cations, and electrophilicity on the

sides of the C-O bond, distorted towards the C atom, enabling π retrodonation to CO from

metal cations orbitals.43

High symmetry molecules

Similarly, octahedral (SF6, Cr(CO)6), tetrahedral (P4O10) and bipyramid-trigonal (PCl5)

symmetries are also respected, as shown in Figure 4.

Here also, chemical properties are retrieved from fT . For instance, the propensity of PCl5

or P4O10 to undergo nucleophilic attack at the P atom can be seen from the electrophilic

basins on this atom.44,45 Similarly, the fact that carbonyl ligands in Cr(CO)6 can be attacked

by strong nucleophiles (Grignard reagents, organolithium compounds) can be explained by

the large electrophilic domains surrounding these ligands.46 Activation of SF6 by Lewis base

coordination on fluorine atoms is also accounted for by electrophilic basins on these atoms,

pointing outside of the molecule.47
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Figure 3: Isosurfaces of the normalised first-order derivative of electron density with respect
to temperature for, from top left to bottom right, CO, HCN, CO2, C2H2, C2F2, Zn(CH3)2.
Calculation at 0.1 Tp. Isovalue: 10−6 a.u. Colour scheme: lime, positive; orange, negative.
Molecular structures are displayed on top of each isosurface to highlight orientation. Atom
colour code: gray, C; white, H; red, O; blue, N; cyan, F; lavender, Zn.

Aromatic molecules

We provide in Figure 5 the normalised fT isosurfaces for benzene, hexafluorobenzene and C60

fullerene, computed at 0.1 Tp. Again, symmetry is correctly taken into account. But more

interestingly, chemical properties are once again nicely retrieved. For instance, it is textbook

knowledge that benzene takes part in aromatic electrophilic substitutions, and accordingly

nucleophilic developments are observed on the C atoms along the ring. Conversely, C6F6

is known to take part in nucleophilic aromatic substitutions, and indeeed electrophilicity is

observed on the aromatic ring.48

In the case of fullerene, regioselectivity in Diels-Alder reaction can also be rationalised.

The addition of a diene is indeed expected to result to the so-called [6,6] addition (reaction

with the C-C bond bridging two 6-member rings) rather than [6,5].49 In Figure 6 we recall
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Figure 4: Isosurfaces of the normalised first-order derivative of electron density with respect
to temperature for, from top left to bottom right, SF6, PCl5, Cr(CO)6, P4O10. Same isovalue
and colour scheme as Figure 3. Atom colour scheme: yellow, S; cyan, F; lavender, Cr; gray,
C; red, O; orange, P; green, Cl.

the fT isosurface for fullerene and compare it with the 10−6 isosurface of fT for cis-butadiene.

If one only focuses on the interaction of the central electrophilic development of butadiene

with nucleophilic regions of fullerene, addition on any C-C bond would appear possible.

However, only addition on the [6,6] bonds allows additional stabilising interactions between

the nucleophilic basins of butadiene and electrophilic domains on fullerene (within the 5-

membered ring). Hence a significant selectivity for this addition is expected, in line with

experimental data.

Conclusion

In this publication, we derived a simple yet efficient reactivity descriptor, stemming from the

Fermi-Dirac population scheme applied to SCF MO diagrams. Under the approximation that
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Figure 5: Isosurfaces of the normalised first-order derivative of electron density with respect
to temperature for, from top left to bottom right, C6H6, C6F6 and C60 fullerene. Same colour
scheme as Figure 3. Isovalue: 1.10−6 a.u. for C6H6 and C6F6, 1.10−7 a.u. for C60. Atom
colour scheme: gray, C; white, H; cyan, F.

MO diagrams only marginally change when temperature is slightly increased from 0 K, we

developed the electron density response to changes in temperature, starting from "standard"

0 K DFT calculations. This electron density response develops over the whole set of MOs,

but it can be shown that, at low temperatures (which are required for our approximations

to hold), the principal contributions stem from frontier levels, in line with Fukui’s FMO

theory. From there a connection with the Dual Descriptor can be rather directly proposed,

supporting the use of this new quantity to probe reactivity and selectivity. Its additional

advantages are the natural inclusion of orbital degeneracies, as well as incorporation of

non-frontier MOs contributions. We thus implemented the target descriptor, along with a

canonical (normalised) counterpart, using a python-based library (Orbkit, cross- quantum

chemistry software). We then showed on a set of representative examples the efficiency of
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Figure 6: Explanation of the regioselectivity of the butadiene addition on fullerene. Black
dashed lines are serve a guide for the eye.

this quantity to indeed retrieve chemical selectivity and reactivity, noticeably on systems for

which the FMO approximation is known to misbehave.

On an ending note, during the course of this manuscript redaction a publication was

released, dealing with application of C-DFT descriptors in the solid state, noticeably Fukui

functions and local softness.50 These descriptors were evaluated through different formula-

tions, noticeably relying on the Fermi-Dirac population scheme. Difficulties were met in the

computation and interpretation of the electrophilic response, related to the large difference

in levels density between the conduction and valence bands. Could our proposition offer a

solution?

Supplementary material

Python3/orbkit script, optimised geometries in cartesian coordinate format, post-treatment

outputs (text files, detailing MO contributions to the overall response).
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Figure 7: TOC graphic.
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