Electronic Supplementary Material (ESI) for RSC Sustainability. This journal is © The Royal Society of Chemistry 2023

Supporting information

Recent advances in radical polymerization of biobased monomers in aqueous dispersed media

Elena Rigo,^{*a,b,c*} Vincent Ladmiral,^{*a*} Sylvain Caillol^{*a*} and Patrick Lacroix-Desmazes^{*a,**}

^a ICGM, CNRS, ENSCM, University of Montpellier, 34293, Montpellier, France.

^b OMNOVA Solutions France SAS, 91400, Orsay, France.

^c Synthomer Ltd., CM20 2BH, Harlow, United Kingdom.

* patrick.lacroix-desmazes@enscm.fr

Green metrics calculations:

- <u>Atom economy:</u> measure of the amount of starting materials that ends up as useful products. % atom economy = $\frac{Molecular Weight (MW) of desired product}{\sum MW of reactants} \times 100$
- <u>E-factor:</u> measure of the amount of waste produced in a process.

$$E - Factor = \frac{mass of total waste}{mass of desired product}$$

• <u>Carbon efficiency</u>: measure of the amount of carbon atoms in the starting materials that ends up in the desired product.

$$Carbon \ efficiency = \frac{\sum mass \ of \ C \ in \ the \ desired \ product}{\sum mass \ of \ C \ of \ reactants} \times 100$$

• <u>Reaction mass efficiency:</u> measure of the efficiency with which reactant mass ends up in the desired product.

 $Reaction \ mass \ efficiency = \ \frac{mass \ of \ isolated \ product}{\sum mass \ of \ reactants} \times 100$

• <u>Biobased carbons</u>: measure of the amount of renewable carbon in the final monomer.

$$Renewable \ carbons = \frac{\sum biobased \ atoms \ of \ C}{\sum total \ atoms \ of \ C} \times 100$$

For all the reactions, the work-up procedure is not taken in account. E-factor, C-efficiency and RME are calculated from experimental results considering the yield given in the articles and they are based on mass conservation.

Synthesis of soybean methacrylate (SBMA) from oleic soybean oil (*Figure* **51**)[1]:

Figure S1: Synthesis of soybean methacrylate (SBMA) from oleic soybean oil.

		N-					E-	C-	
Step 1	HOSO	methylethanolamine	NaOCH₃	SFHA	Yield	AE	factor	efficiency	RME
MW (g/mol)	884.78	75.07	54.01	339.56					
Equivalents	1.0	3.9	0.1	3					
nb of C per									
molecule	57	3	1	21					
m (g)	101.45	33.26	0.43						
n (mol)	0.115	0.443	0.008						
m exp (g)				113.30					
n exp (mol)				0.334					
					0.97	0.864	0.193	0.891	0.838

<u>Step 1:</u>

Ethanolamine could be biobased (produced from the fermentation of L-serine).

<u>Step 2:</u>

		Anhydri	DMAP						C- efficie	
Step 2	SFHA	de	(cat)	Water	SBMA	Yield	AE	E-factor	ncy	RME
MW (g/mol)	339.56	154.17	122.17		407.34					
Equival ents	1.0	1.0	0.010		1					
nb of C	21	8	7		25					
m (g)	101.868	46.251	0.37	10						
n (mol)	0.3	0.3	0.003							
m exp (g)					122.202					
n exp (mol)					0.3					
						1	0.823	0.297	0.862	0.823

<u>Total:</u>

		C-		Renewable
AE	E-factor	efficiency	RME	С
0.711	0.490	0.768	0.690	0.84

Figure S2: Synthesis of HOSBM by transesterification of high oleic soybean oil.

	HOSB	Amide	NaOH (cat)	THF	HOSB M	Yield	AE	E- factor	C- efficie ncy	RME	Renew able C
MW (g/mol)	884.78	115.06	40		379.31						
Equiva lents	1.0	5.8	0.2		3						
nb of C	57	5	0		23						
m (g)	150.41 26	113.90 94	1.5	133.14							
n (mol)	0.17	0.99	0.0375								
m exp (g)					181.84						
n exp (mol)					60.61						
						0.94	0.73	1.19	95.23	0.68	0.87

Green metrics calculation for eugenol (*Figure S3*)[3]:

Eugenol

Figure S3: Functionalization of eugenol.

<u>Step 1:</u>

		Ethylene						C-	
		carbonat	DBN	Ethoxy				efficienc	
Step 1	Eugenol	е	(cat)	eugenol	Yield	AE	E-factor	у	RME
MW (g/mol)	164.08	88.02	124.1	208.11					
Equivale nts	1.0	1.1	0.003	1					
nb of C	10	3		12					
m (g)	78.758	46.475	0.182						
n (mol)	0.48	0.528	0.00147						
m exp (g)				94.898					
n exp (mol)				0.456					
					0.95	0.796	0.322	0.857	0.757

<u>Step 2:</u>

					Ethoxy					
		Methac			methac					
	Ethoxy	rylic		DCM	rylated				C-	
	eugeno	anhydri	Triethyl	(solven	eugeno				efficien	
Step 2	I	de	amine	t)	I	Yield	AE	E-factor	су	RME
MW (g/mol)	208.11	154.17	101.12		276.14					
Equival ents	0.9	1.0	2.2		0.9					
nb of C	12	8	6		16					
m (g)	93.44	76.62	109.01	200						
n (mol)	0.449	0.497	1.078							
m exp (g)					91.75					
n exp (mol)					0.332					
						0.74	0.427	4.221	0.568	0.329

<u>Total:</u>

AE	E-factor	C-efficiency	RME	Renewable C
0.34	4.54	0.49	0.25	0.63

Green metrics for ISOMAraw synthesis (Figure S4)[4]:

Figure S4: Synthesis of ISOMAraw and its purification.

			4-	DCM					C-	
	Isosorbi	Anhydri	DMAP	(Solven	ISOMA				efficien	
	de	de	(cat)	t)	raw	Yield	AE	E-factor	су	RME
MW (g/mol)	146	106	122		216.4					
Equival ents	1.0	0.7	0.1		1					
nb of C	6	8	7		10.4					
m (g)	29.93	14.522	2.562	332.5						
n (mol)	0.205	0.137	0.021							
m exp (g)					24.843					
n exp (mol)					0.1148					
						0.56	0.94	14.28	0.51	0.53

%renewable C (ISOMA) = $\frac{6}{10} \times 100 = 60\%$

References:

- L. Yuan, Z. Wang, N. M. Trenor, and C. Tang, "Robust amidation transformation of plant oils into fatty derivatives for sustainable monomers and polymers," *Macromolecules*, vol. 48, no. 5, pp. 1320–1328, 2015, doi: 10.1021/acs.macromol.5b00091.
- [2] Z. Demchuk, W. S. J. Li, H. Eshete, S. Caillol, and A. Voronov, "Synergistic Effects of Cardanoland High Oleic Soybean Oil Vinyl Monomers in Miniemulsion Polymers," ACS Sustain. Chem. Eng., vol. 7, no. 10, pp. 9613–9621, May 2019, doi: 10.1021/acssuschemeng.9b01137.
- S. Molina-Gutiérrez, A. Manseri, V. Ladmiral, R. Bongiovanni, S. Caillol, and P. Lacroix-Desmazes,
 "Eugenol: A Promising Building Block for Synthesis of Radically Polymerizable Monomers,"
 Macromol. Chem. Phys., vol. 220, no. 14, p. 1900179, Jul. 2019, doi: 10.1002/macp.201900179.
- [4] A. Badía, A. Agirre, M. J. Barandiaran, and J. R. Leiza, "Removable Biobased Waterborne Pressure-Sensitive Adhesives Containing Mixtures of Isosorbide Methacrylate Monomers," *Biomacromolecules*, vol. 21, no. 11, pp. 4522–4531, Nov. 2020, doi: 10.1021/acs.biomac.0c00474.