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A B S T R A C T

Objectives: Parametric models are routinely used to estimate the benefit of cancer drugs beyond trial follow-up. The advent of
immune checkpoint inhibitors has challenged this paradigm, and emerging evidence suggests that more flexible survival
models, which can better capture the shapes of complex hazard functions, might be needed for these interventions.
Nevertheless, there is a need for an algorithm to help analysts decide whether flexible models are required and, if so,
which should be chosen for testing. This position article has been produced to bridge this gap.

Methods: A virtual advisory board comprising 7 international experts with in-depth knowledge of survival analysis and health
technology assessment was held in summer 2021. The experts discussed 24 questions across 6 topics: the current survival
model selection procedure, data maturity, heterogeneity of treatment effect, cure and mortality, external evidence, and
additions to existing guidelines. Their responses culminated in an algorithm to inform selection of flexible survival models.

Results: The algorithm consists of 8 steps and 4 questions. Key elements include the systematic identification of relevant
external data, using clinical expert input at multiple points in the selection process, considering the future and the observed
hazard functions, assessing the potential for long-term survivorship, and presenting results from all plausible models.

Conclusions: This algorithm provides a systematic, evidence-based approach to justify the selection of survival extrapolation
models for cancer immunotherapies. If followed, it should reduce the risk of selecting inappropriate models, partially
addressing a key area of uncertainty in the economic evaluation of these agents.

Keywords: algorithm, cancer, extrapolation, immunotherapy, survival analysis.
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Introduction

Parametric models are often used for extrapolating the long-
term effects of cancer drugs across the entire time horizon of a
cost-effectiveness analysis.1-3 The family of standard parametric
models that are commonly fitted to the Kaplan-Meier estimates of
the survival function comprises exponential, Weibull, Gompertz,
log-logistic, log-normal, and generalized gamma distributions.
Each of these distributions specifies a particular shape for the
hazard function. The exponential distribution assumes a constant
hazard, whereas the Weibull and Gompertz distributions can
reflect monotonically increasing or decreasing hazards, and the
log-normal and log-logistic distributions are unimodal, whereas
the generalized gamma distribution can assume a variety of shapes
(eg, unimodal, monotonically increasing or decreasing, or bathtub).

Inappropriate parametric model selection can lead to unreli-
able estimates of incremental quality-adjusted life-years and,
consequently, biased estimates of a treatment’s cost-effectiveness.
Therefore, analysts are required to rigorously justify their choice of
15/Copyright ª 2022, International Society for Pharmacoeconomics and Ou
he CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0
extrapolation model. There is current guidance on how this should
be done in a systematic and transparent way, including the Na-
tional Institute for Health and Care Excellence Decision Support
Unit technical support document 14.4

Treatment of advanced cancer with immunotherapy can pro-
duce deep and durable responses in a latent subgroup of patients.
With sufficient trial follow-up, the empirical estimate of the
mortality hazard rate (hereafter, the “observed hazard”) with
these agents is often found to change over time. The cancer-
specific mortality risk is likely to increase at the start of treat-
ment and then decline gradually in the medium term. In the
longer term, the hazard may increase again, due to age-related
mortality, if there is a nontrivial proportion of long-term survi-
vors.5 There is evidence to suggest that flexible survival models
may provide an improved representation of this observed, and
unobserved, survival function over that provided by standard
parametric models.6-8

National Institute for Health and Care Excellence Decision
Support Unit technical support document 21,9 a guide on flexible
tcomes Research, Inc. Published by Elsevier Inc. This is an open access article
/).

www.sciencedirect.com
www.elsevier.com/locate/jval
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jval.2022.07.009&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


186 VALUE IN HEALTH FEBRUARY 2023
methods for survival analysis, was recently published to address
these issues and provide further support on trial-based ap-
proaches for extrapolation when time-varying hazards are
encountered. It recommends extrapolating the treatment and
control arms separately. It also encourages analysts to explicitly
plot the assumed treatment effects in the short and long-term and
the assumed hazards in the long term. Although detailed de-
scriptions and limitations of a variety of flexible models are given,
an algorithm to guide analysts on when to use these models and
which to select for testing was not presented. This position article
has been produced to address this gap.
Methods

A virtual advisory board comprising 7 international experts
was held between June 23, 2021 and July 12, 2021. The experts
were identified using a variety of approaches. Desk research was
undertaken to identify individuals with expertise in survival
analysis or health technology assessment (HTA) methodology.
Publication histories were reviewed, as was any online informa-
tion provided on their academic or professional profiles. In-
dividuals were sought across a wide geographic area to capture a
range of perspectives and opinions.

The virtual advisory panel was conducted using the Within3
platform. Topic selection was informed by an article by Quinn
et al10 on the challenges for assessing the long-term clinical benefit
of cancer immunotherapy. Questions and relevant background
materials were uploaded to the platform (see Appendix Table 1 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2
022.07.009). Responses were visible to all participants. The ex-
perts had the opportunity to build on each other’s ideas or offer
alternative opinions. Moderators (E.F., S.L.K., and J.B.) could ask
follow-up questions or seek clarification when needed. The plat-
form was accessible by the experts and moderators at any time
during the 3-week period the platform was open; this addressed
the issue of experts being in different time zones. Individual
transcripts of responses submitted by the 7 experts were down-
loaded from Within3 after the platform was closed, and consoli-
dated into a single technical report that was shared with the
experts for review. This article was developed from the content of
this technical report. Advice was sought on extrapolation methods
that could be applied to patient-level data from an unspecified
immunotherapy study for an advanced or metastatic cancer.

Advice was sought on extrapolation methods that could be
applied to patient-level data from an unspecified immunotherapy
study for an advanced or metastatic cancer. Out-of-scope topics
included surrogate endpoints for overall survival, evidence syn-
thesis methods for time-varying hazards, and economic model
frameworks.

The experts were asked to respond to and discuss 24 questions
that had been divided into the following 6 topics: (1) the current
selection procedure, (2) data maturity, (3) heterogeneity of
treatment effect, (4) cure and mortality, (5) external evidence (ie,
relevant survival data sourced outside an unspecified cancer
immunotherapy clinical trial), and (6) additions to the existing
guidelines for selecting appropriate models for survival extrapo-
lation. The questions captured common challenges and reflected
experiences of some of the authors in undertaking survival ana-
lyses for cancer immunotherapies. A complete overview of the
questions presented to the experts is provided in the Appendix in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2
022.07.009.

Based on the responses from the experts, an algorithm was
developed for the selection of extrapolation models, with a focus
on the use of flexible methods. This algorithm was shared with,
and revised by, the experts in an iterative process until consensus
was reached.
Results

The algorithm that was developed consists of 8 steps and 4
questions (see Fig. 19,11). The key features of the model selection
process are described in the sections below.

Importance of External Evidence in Extrapolation Model
Selection (See Steps 1, 4, and 7)

It was agreed unanimously that the first step in the selection
process should involve a targeted review to identify external ev-
idence on the intervention and comparators. This evidence should
be identified in a systematic and reproducible way. It is advised
that particular attention should be paid to the patient character-
istics, the length of follow-up, sample size, and the context and
quality of the data to assess its relevance. A variety of tools are
available to aid the systematic identification and assessment of the
external evidence.12,13

Several categories of external evidence were identified. The
first and most relevant source to consider is long-term survival
data of the same products used in the same indication (eg, phase
1/2 trial data for the invention and/or randomized controlled tri-
als, observation studies, or registry data for the comparators). The
second option is to consider more mature data from the same
products, but used in a later line of treatment for the same disease.
The third is to assess evidence from a product with a similar
mechanism of action used in the same indication. For example,
analysts working on a new chimeric antigen receptor T-cell ther-
apy may find long-term survival data reported for other chimeric
antigen receptor T-cell therapies informative. Finally, insights may
be gained from reviewing survival data of the same product used
to treat other advanced cancers.

Several approaches have been proposed to formally use in-
formation from different sources for survival extrapolation
modeling.14-19 Nevertheless, these methods have not been stan-
dardized and the most appropriate method to use in any situation
remains an area of ongoing research.18

Use of Expert Opinion to Aid Model Selection (See Steps 3
and 7)

Clinical expert opinion should be sought before any model
fitting to elicit beliefs on the likely shape of the hazard functions
and expected survival in the medium and long terms (step 3).
Eliciting expert opinion is also of value in helping to select and
validate the most plausible models for the base-case analysis once
those selected for testing have been fitted to the observed data
(step 7).

It was acknowledged that there will be challenges in eliciting
unbiased and meaningful judgments from clinical experts. It was
also highlighted that there are no standard elicitation methods
used to capture uncertainty in the experts’ beliefs. The Sheffield
Elicitation Framework20 was one method the experts cited. This
approach involves asking clinical experts to estimate mean, lower,
and upper limits of landmark survival for a relevant patient
population at, for example, 5, 10, and 20 years after the start of
treatment.8 In addition, analysts could refer to a recently pub-
lished protocol of structured expert elicitation for healthcare de-
cision making for further guidance.21

When fitting different extrapolation models to treatment arms,
careful thought and clear justification should be given to address

https://doi.org/10.1016/j.jval.2022.07.009
https://doi.org/10.1016/j.jval.2022.07.009
https://doi.org/10.1016/j.jval.2022.07.009
https://doi.org/10.1016/j.jval.2022.07.009


Figure 1. Flexible survival model selection algorithm. Where there is a specific preference ordering, this is shown in the algorithm as
numbered bullets with the accompanying text “in priority order.” Note that all of the models described here could be implemented in a
relative survival framework to take account of background mortality (ie, other-cause mortality).9,11 *In addition, standard parametric
models should also be considered for comparative purposes as HTA agencies are likely to expect to see them. Among the standard
parametric models, the generalized gamma, log-logistic, and log-normal would be most suitable where flexible modeling is suggested
given that the other models are not able to capture turning points in the hazard.
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concerns that survival estimates are not simply an artifact of the
different models used. The rationale given could be informed by
the external evidence identified in step 1, differences in mecha-
nism of action of the treatment arms, and clinical expert judgment.

Analyses of Comparative Trial Data (See Steps 2, 4, and 5)

Analyses of comparative trial data are used for assessing the
proportional hazards (PHs) assumption (step 2), to determine
when flexible survival modeling is justified (step 4), and to eval-
uate the possibility of a cure (step 5).

Currently, the PHs assumption is assessed routinely to evaluate
whether, in trials with 2 or more arms, a dependent model can be
fitted (with a hazard ratio ideally applied to disease-specific
mortality22) or whether independent models should be fitted to
each arm.4 The assessment of PHs should involve a combination of
visual inspection of log-cumulative hazard plots and Schoenfeld
residual plots (see Appendix Fig. 1 in Supplemental Materials
found at https://dx.doi.org/10.1016/j.jval.2022.07.009) and statis-
tical tests. The experts highlighted that the Grambsch-Therneau
test23 might be underpowered to detect violations of the PHs
assumption. The Royston-Parmar augmented log-rank test was
cited as an additional statistical test that could be performed.24 It
was noted that visual inspection of plots is subjective and no clear
thresholds are available for determining, for example, whether the
log-cumulative hazard plot can be considered parallel. Research is
ongoing into incorporating time-varying treatment effects that
relax the assumption of a constant treatment effect, and would
remove the need to assess PHs.25,26

The potential for turning points in the hazard (ie, changes in
the direction of the hazard function) should be evaluated to
determine whether there is support for flexible survival modeling
(step 4). It was highlighted that visual inspection to compare the
(log-cumulative) hazard plots and assess the existence of turning
points (either in the trial data or the external evidence) can be
misleading. The application of different types of smoothing and
changes to the kernel density used can have a significant impact
on the smoothed hazards (Fig. 2). In particular, turning points
observed at the tail of the survival data should be assessed for
validity.27 Therefore, both smoothed and unsmoothed hazard es-
timates should be inspected.28

In addition to the potential for turning points in the hazards,
the maturity of the observed survival should be used to guide the
decision of whether to consider flexible models. For illustration,
an immunotherapy case study in advanced renal cell carcinoma
has reported that a minimum follow-up of 39 months was needed
for parametric mixture models and landmark models to provide
reliable estimates of longer-term survival. Recent studies by
Kearns et al,29 Grant et al,30 and Othus et al31 have shown that the
performance of cure modeling methods is heavily dependent on
the maturity of the data. When data are immature, the use of
landmark models, parametric mixture models, and cure models
may only be warranted if robust external data are available to
inform the models.

Evidence of a sustained plateau in overall survival may be
indicative of statistical cure (step 5). Nevertheless, if data are
heavily right censored and the sample size is small, this visual
inspection can be misleading. For treatments suspected to have
potential curative properties, justification for using a cure
model is likely to require external sources of data given that, at
time of HTA submission, trials typically have a median follow-
up of , 24 months. This is considerably less than the mini-
mum length of follow-up required to reliably estimate statistical
cure for many cancers.32 When validated predictive markers for
overall survival are available, which can be assessed in the
relatively short timeframe, this could help support claims of
statistical cure.33

Selection of Plausible Models (See Steps 6a, 6b, and 7)

Mixture and nonmixture cure fraction models could be consid-
eredwhen ameaningful cure fraction is plausible and supported by
robust evidence (step 6a). Nevertheless, the use of cure models for
HTA decision making is an area of contention, and there is no clear
definition of when a cure fraction might be considered “meaning-
ful.” In discussions, one expert suggested using 5% as a ballpark
estimate, provided that the sample size and duration of follow-up
are adequate. To estimate the cure fraction reliably, it is essential
that there are sufficient numbers at risk in the plateau phase of the
overall survival/intermediate endpoint curves.

Irrespective of the potential for cure, the following models
(step 6b) should be considered: (1) cubic spline models; (2)
landmark models, if available evidence justifies their use; (3)
piecewise models; and (4) parametric mixture models. In addi-
tion, standard parametric models should also be fitted. This was
considered necessary in the interest of model parsimony. HTA
agencies would want to see that a complex model had not been
selected when a simpler one could have been equally justified.
Important considerations for each of these model types are pro-
vided in Table 1.9,34

Visual comparison of hazard estimates, used to select plausible
models (step 7), should be interpreted with caution. Often when
inspecting hazard plots and Kaplan-Meier estimates of the sur-
vival function, individuals are inclined to give equal weight to all
time points, regardless of the number of patients at risk. Analysts
may be tempted to consider that a flexible model is required
because standard models appear to poorly fit the tails of these
plots. Presenting the number of patients at risk at relevant time
points and the confidence intervals is recommended to prevent
this from happening. In addition, a suggestion was made to
restrict figures of the plot of the hazards inherent to the trial data
(observed hazard) and Kaplan-Meier estimators to a point in time
when the numbers at risk are still “reasonable.” If this practice
were to be followed, it was agreed the time point should be
justified, and these time-restricted plots presented alongside
those with the complete data. Limited guidance is offered to help
inform the time point at which the plots are curtailed. Pocock
et al35 suggested a point at which 10% to 20% of the patients are
still at risk. More recently, Gebski et al36 suggested a less con-
servative approach, using the size of the decrease of the percent
survival estimate at time point t if 1 extra event should occur
immediately after t.

The experts believed that information criteria (eg, Akaike’s
information criterion [AIC]/Bayesian information criterion [BIC]
goodness-of-fit test statistics) should have the lowest priority for
selecting plausible models, although they might still be useful for
exclusion purposes. All experts rated the importance of the AIC/
BIC statistic below 5, on a scale of 1 (not important) to 10
(extremely important), with an average score, across all experts, of
3.7. Their opinion may be at odds with current practice. Never-
theless, as noted by several experts, “a good statistical fit to the
observed data does not necessarily ensure a model will provide an
accurate estimate of long-term survival.” In a recent simulation
study, Kearns et al33 reported that models with excellent within-
sample fit could sometimes provide poor extrapolation
performance.

Presentation of Results (See Steps 8a and 8b)

When several extrapolation models have been identified that
are all clinically plausible, cost-effectiveness results should be

https://dx.doi.org/10.1016/j.jval.2022.07.009


Figure 2. The potential impact associated with alternative smoothing algorithms. (A) Smoothed hazard. (B) Smoothed hazards with
different smoothing. The potential impact of using a different smoothing algorithm with a different kernel density. This is based on
generated data and not related to any clinical trial or real-world data. In panel A (bandwidth = 5), hazard rates for both treatment arms
are fairly stable for the initial 24 months with both increasing slightly from w25 months onward. Nevertheless, in panel B (bandwidth =
2), although the hazards are again stable for the initial period followed by an increase at approximately 25 months, there is a sharp
downward spike for the control arm atw35 months and a sharp upward spike for the intervention arm atw38 months. These spikes are
artifacts of the different smoothing window (kernel density) used.
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presented to decision makers for all of these models to show the
impact of structural uncertainty (step 8a).

Bayesian model averaging was proposed as an approach that
could be considered when multiple models could be selected for
the base-case analysis.37 Nevertheless, current HTA acceptance of
this method is uncertain, and determining the weights that should
be applied in the Bayesian model averaging approach, as well as
how to incorporate them in a probabilistic analysis, remains an
area of ongoing research.38

In the situation when the cost-effectiveness results are insen-
sitive to the choice of extrapolation model, the most plausible
model should be selected to represent the base case (step 8b). All
other plausible alternatives should then be presented as scenario
analyses.

Irrespective of how the results are presented, in cases when
different extrapolation methods were used for different treatment
arms, analysts should be explicit about the rationale for the
different extrapolation methods. The biological and clinical
plausibility of the models should be discussed. It was also sug-
gested that hazard ratios at different time points should be pre-
sented so that decision makers can better judge whether this
modeling approach was reasonable.
Discussion

Analysts conducting economic evaluations of cancer
immunotherapies now have a wide range of extrapolation
models at their disposal to estimate long-term survival.
Appropriate and fully justified model selection is crucial to
ensure that reliable estimates of quality-adjusted life-years are
used to inform cost-effectiveness analysis. An international
panel of experts was convened to offer guidance on selection of
flexible survival models, taking into consideration the current
positions taken by HTA agencies and the most recent de-
velopments in this field.



Table 1. Overview of different types of models to consider and important considerations for each model.

Type of model Considerations

Models to consider when a meaningful cure fraction is plausible and supported by robust evidence

1. Mixture cure fraction models Assumes there are 2 groups of individuals in a population: those cured of their disease, who
follow general population mortality, and those uncured, who follow a disease-specific survival
function9

2. Nonmixture cure fraction models Does not assume the population is separated into groups, but rather a mathematical function is
used to define an asymptote for the survival function as time tends to infinity (ie, the point at
which the cause-specific mortality becomes zero)

Models to consider irrespective of the potential for a cure

1. Cubic spline models Of the flexible models, the cubic spline models require relatively weak assumptions because they
do not rely on the assumption of certain subgroups. Given that placement of the knots can be
highly subjective, it is advised to place the knots uniformly along the distribution of uncensored
log event times, with boundary knots placed at the minimum and maximum.9

2. Landmark models A strength of this model is that it has intuitive appeal. Nevertheless, selecting the landmark time
point and the choice of response measure can be challenging and difficult to justify. Therefore,
these models are only suitable when there is a well-established landmark time and a strong link
between response and survival.

3. Piecewise models The challenge with these models is to determine the cut points given that these can influence the
results.34 Furthermore, these models imply a sudden change in the hazard, which might be
clinically impossible and lack intuitive appeal.

4. Parametric mixture models These models explicitly acknowledge the heterogeneity in survival. Nevertheless, they require a
relatively large number of parameters to be estimated, with the risk of identification problems
and overfitting. Using parametric mixture models has not been routinely accepted by health
technology assessment agencies.

Models to fit for comparative purposes

1. Standard parametric models The generalized gamma, log-logistic, and log-normal would be the most suitable where flexible
modeling is suggested given that the other models are not able to capture turning points in the
hazard. Standard parametric models typically avoid overfitting to the data but can sometimes fail
to adequately describe observed hazard patterns.
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External evidence and its use to inform appropriate flexible
model selection was a key topic of debate. Multiple articles on this
subject were cited.14-19 When using external evidence, it is
important to assess how closely the survival observed in the trial
population is likely to mirror the long-term external data that
have been identified. Comprehensive guidance on how to incor-
porate different types of external evidence is lacking and is an
important area of future research. This includes how best to elicit
information from clinical experts to inform survival extrapola-
tions. The experts also encourage analysts and decision makers
not to rely solely on AIC/BIC goodness-of-fit statistics to inform
model selection. Careful consideration of the totality of the
available evidence should be given when making decisions
regarding extrapolation.

It is evident that there is no “one size fits all”modeling solution
and that multiple plausible extrapolation models may need to be
considered and examined. Nevertheless, it was also accepted that
testing all conceivable models would be inefficient and time
consuming. Analysts may elect to apply constraints to reduce the
analytical burden and avoid overfitting, especially when using
parametric mixture models. To aid the selection process, the ex-
istence of one or more turning points in the hazard function
would preclude the use of extrapolation models that assume
constant or monotonically increasing, or decreasing, hazards.
Immature data, the lack of external data, and small trial sample
size may also rule out the use of more flexible models such as
mixture cure, parametric mixture, and response-based landmark
models.6,8,31 When there is evidence of time-varying hazards, all
of the experts agreed that cubic spline models should be exam-
ined routinely. This recommendation is supported by a recent
study that evaluated how well standard parametric and spline
models predicted survival when fitted to cancer registry data with
artificially right-censored follow-up times.7 The researchers of this
study found that, across all data sets, spline odds and spline
normal models frequently gave more accurate predictions of 10-
year survival than standard parametric models. It is also worth-
while noting that a Bayesian network meta-analysis approach
exists that uses restricted cubic splines to address the problem of
time-varying hazards.39 This is an important consideration, given
that estimates of relative treatment effects generated by this
network meta-analysis could be readily incorporated into cost-
effectiveness models.

Several limitations to this guide for flexible survival model
selection have been identified. Because of the time constraints
associated with a virtual advisory board, only 6 predefined topics
were open for discussion. Several key topics related to extrapo-
lation, such as the appropriate use of surrogate endpoints and the
application of excess mortality to inform long-term survival pro-
jections, remain to be addressed. The authors are also aware that
survival analysis is an active field of research. As a result, the
presented algorithm would require periodic updates as emerging
methods gain traction. Several promising areas of research have
been identified for possible future inclusion. Joint survival
modeling and dynamic survival models that use time-dependent
coefficients (eg, response, treatment discontinuation, and pro-
gression) in a Cox regression model to predict future hazards are
currently under evaluation.40,41 The application of Bayesian
modeling methods for combining evidence from multiple sources
in extrapolation models builds on work published as early as
2006.42 One approach uses a Bayesian method that allows more
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mature external data to first guide the parametric model selection
and then to provide a priori distributions that are used to inform
the shape parameter of the parametric distribution fitted to the
pivotal trial data.16
Conclusion

The algorithm presented in this article provides a systematic
and evidence-based approach to justify the selection of survival
models, while also considering the latest developments in survival
analysis. This algorithm may also be used to aid in critiques of
approaches to survival model selection. If followed, it should
ensure the use of appropriate models, identifying when more
complex approaches are required and avoiding the use of overly
sophisticated techniques when standard models would suffice.
We believe the algorithm will also improve transparency and
consistency, leading to increased confidence in economic evalua-
tions of cancer immunotherapies. It may also prove useful for
other treatments and diseases where more flexible extrapolation
models may be warranted.
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