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Kinetic plasma-sheath self-organization

Yann Munschy,∗ Emily Bourne, Guilhem Dif-Pradalier, Peter Donnel,

Philippe Ghendrih, Virginie Grandgirard, and Yanick Sarazin
CEA, IRFM, Saint-Paul-lez-Durance, F-13108, France

(Dated: July 24, 2023)

The interaction between a plasma and a solid surface is studied in a (1D-1V) kinetic framework
using a localized particle and convective energy source. Matching the quasineutral plasma region
and sheath horizon is addressed in the fluid framework with a zero heat flux closure. It highlights
non-polytropic nature of the physics of parallel transport. Shortfalls of this approach compared
to a reference kinetic simulation, highlighting the importance of the heat flux, leads to addressing
the sound velocity, non-collisional closure and higher moment closure. No gain in the predictive
capability is obtained. The kinetic constraint at the sheath horizon is discussed and modified to
account for conditions that are actually met in simulations, namely quasineutrality with a small
but finite charge density. Analyzing the distribution functions shows that collisional transfer is
mandatory to achieve steady-state self-organization on the open field lines.

I. INTRODUCTION

The prompt plasma recombination when in contact
with a cold, dense and electrically neutral media drives
a plasma flow towards this medium, which then appears
as void for the plasma. Such a flow characterizes the
plasma-wall interaction. It is akin to that observed in
time-dependent boundary conditions for hyperbolic sys-
tems in which discontinuities and shock waves develop
[1]. A vast literature addresses these two classes of prob-
lems. For plasma physics, it goes back to the pioneering
work of Langmuir and Tonks describing the properties of
a plasma in contact with a solid surface [2, 3]. Unlike
the neutral fluids where the shock waves are not resolved
in the fluid framework, the shock waves in plasmas –
such as the plasma/boundary interface– can be resolved
when taking into account a departure from quasineutral-
ity across a narrow region [4], the sheath region at the
plasma/boundary. The width of the latter region de-
pends on the characteristic scale of the Poisson equation
relating the divergence of the electric field to the charge
density. The key issue is then asymptotic matching be-
tween disparate scales, that of the quasineutral plasma
2L∥ with L∥ ≳ 10m, and the Debye scale λD ≲ 10−4 m.

The small parameter εD = λD/L∥ ≲ 10−5 is the control
parameter of the self-organization process of the plasma
interacting with a wall, a solid in most cases although a
liquid or a dense gas could be considered.

The physics of plasma-wall interaction in fusion de-
vices is a growing concern for burning plasma operation
[5]. The region where these physics take place has been
named Scrape-Off Layer (SOL). Field lines in the Scrape-
Off Layer are connected to the wall at both ends. Three
major issues are being investigated. First, parallel trans-
port along the field lines and onto the wall is large so
that particle and energy deposition patterns are narrow
and become challenging problems for the present tech-
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nology of heat and particle extraction [5, 6]. Second,
wall erosion and impurity transport from the wall com-
ponent into the confined plasma play a major role in the
aging of the plasma facing components and on plasma
performance. Third, the variation of the electric field in
the SOL modifies turbulence instabilities and very likely
plays a role on the onset and stability of the edge trans-
port barrier [7]. Control of such issues mostly depends
on the plasma pressure, electron thermal energy and elec-
tric potential. These fields are shown to result from the
balance between the sources that sustain the plasma on
the open field lines and the losses governed by the sheath
properties.

Our aim here is to analyze the self-organization along
a field line between the quasineutral plasma, that we re-
fer to as the SOL plasma, and the sheath boundary layer
where charge separation occurs. The idea addressed in
the companion paper is the means to incorporate the
key results of this physics without having to resolve the
Debye scale. This is especially important for the sim-
ulation effort of turbulent transport in magnetic con-
finement devices. To optimize the numerical codes, this
physics is addressed for quasineutral plasmas so that the
property of near constant fields in the parallel direction
allows contemplating scales of order 100 or more De-
bye lengths when meshing in the parallel direction. The
sheath physics cannot be solved and boundary conditions
incorporating the sheath effects must be introduced, both
in fluid codes stemming from the three coupled Navier
Stokes conservation equations, and more recently gyroki-
netic codes. The specific issues in the gyrokinetic frame-
work are discussed in the companion paper using kinetic
simulations of the SOL and sheath plasma regions as
a test bed for the physics. However, when analyzing
the latter kinetic simulations, novel theoretical consid-
erations have been developed. The scope of this paper is
to present this part of the work, using one of these kinetic
simulations as a reference to illustrate the key findings.

Addressing the full 6D kinetic problem is by far too de-
manding but the problem can conveniently be simplified
to 1D-1V assuming that the chosen direction is parallel
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to the magnetic field line. The particle, momentum and
energy sources on such a field line is mostly governed by
cross-field transport due to turbulence and collisions. In
the parallel direction, classical transport, in first approxi-
mation of free streaming particles, governs prompt losses
onto the wall components. The reference problem is then
reduced to a source region for particles and energy, pos-
sibly of momentum, which extends over a large part of
the parallel domain (typically L∥), connected by parallel
transport to the narrow sheath region, which in turn con-
trols the deposition onto the wall. The difference in par-
allel transport between electrons and ions generates an
electric field. In steady state, quasineutrality is sustained
over most of the plasma, in the SOL or presheath regions,
and charge separation is localized in the sheath. To cap-
ture this self-organization process a two species plasma
of electrons and singly charged ions is a minimum plasma
model. An alternative to the kinetic description of the
electron-ion plasma consists in using a fluid projection,
which then depends on the number of moments that are
selected and on the choice made to close the system.

The most familiar analysis of the SOL/sheath self-
organization is addressed using the Mach number, ratio
of the ion mean velocity and sound velocity. Given that
the particles must flow outward at both ends of the field
line, a stagnation point with zero Mach number must be
found. When symmetry is enforced, the stagnation point
is localized in the middle of the plasma domain. Be-
cause of the source terms, plasma acceleration drives an
increase of the Mach number, which remains subsonic in
the SOL region. The transition to a supersonic flow de-
fines the sheath entrance. This is the well known Bohm
condition at the sheath boundary [8]. In a fluid approach
one can then use this boundary condition at the sheath
entrance [9]. In the standard fluid framework based on
particle, momentum, and energy conservation equation,
the Navier-Stokes equations, the boundary conditions of
the even moments, particle and momentum fluxes, are set
by the source terms. Conversely, the Mach=1 condition
defined at the sheath location is the boundary constraint
for the odd moment, the momentum flux. When consid-
ering higher fluid moments, which capture the departure
from Maxwellian distributions, qualitative aspects of the
sheath physics are recovered [10]. However, reference to
the kinetic solution remains crucial to validate such re-
sults.

Besides the fluid approach, the distortion of the dis-
tribution functions away from Maxwellians leads one to
address this problem in the kinetic framework where the
Mach number has little meaning. A kinetic criterion has
been derived by Harrison and Thompson [11], then re-
called in several papers [12–15]. The importance of col-
lisional processes has also been been discussed [16, 17].
Some kinetic details of the sheath physics have been ad-
dressed: regimes with multiple ions [18], the effects of
E × B drift [18, 19] or of grazing angle magnetic fields
[20–23], wall parallel to the magnetic field [24]. An exten-
sive review of plasma models in the vicinity of the sheath,

along with numerical methods used to study plasma-wall
interaction, can be found in Ref.[25].

We address here the self-organization of the
SOL/sheath/wall system in a kinetic framework.
The companion paper [26] aims at developing immersed
boundary conditions [27–30] that would be appropriate
in the gyrokinetic framework [31, 32]. The Voice
code [33] has been used to perform the simulations, see
companion paper [26]. Analyzing the simulation data
has shown that open issues arise whenever one addresses
a problem with εD small but finite. This is particularly
true when determining the sheath entrance. While the
Bohm criterion appears to be a robust condition since
it is consistent with the picture of a standing shock
wave, the kinetic simulations indicate that the relevant
sound wave is not readily determined. Using the Bohm
criterion is then model dependent with consequently
a reduced predictive capability. In the course of the
present paper, this issue appears to be coupled to the
the number of degrees of freedom used in the model,
ranging from a small number in usual fluid descriptions
to infinite in the kinetic descriptions. Furthermore,
using the kinetic formulation published by Harrison
and Thompson [11] raised new issues. Applying this
formulation to the simulation output yields spurious sign
changes of a quantity that is defined positive according
to the assumptions made in Ref.([11]).

We thus revisit these various approaches of the self-
organized SOL/sheath/wall physics. We first present
the SOL-wall interplay model that we address in Sec-
tion II: presenting some results from a reference kinetic
simulation that motivate this effort (Section IIA) as well
as the underlying equations (Section II B), highlighting
the source terms (Section II B 2), and collision opera-
tors (Section II B 3). We then step to analyzing the
SOL/sheath self-organization in the fluid framework Sec-
tion III, starting from the fluid conservation equation
that stem from the kinetic two species equations (Sec-
tion IIIA). We then step to determining the sound wave
velocity (Section III B). The fluid predictions and their
shortfalls in predicting the steady state plasma behavior
are addressed in (Section III C). The fluid model is then
completed in Section III E considering non-collisional clo-
sures (Section III E 1), matching conditions at the sheath
horizon (Section III E 3) and higher moment closure (Sec-
tion III E 3). Kinetic issues are discussed in Section IV.
We revisit the previously published kinetic constraint in
Section IVA and show that collisions are mandatory in
the self-organization process (Section IVB). The steady
state description of the distribution functions is presented
in Section IVC and the role the source and collisional
terms investigated. Discussion and conclusion close the
paper in Section V.
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II. SOURCE TO SINK PLASMA
ACCELERATION

A. First look at open field line self-organization

In this paper and its companion paper [26] we aim at
determining appropriate boundary conditions when ad-
dressing turbulent plasma transport in magnetically con-
fined devices. For a strongly magnetized plasma, a large
asymmetry is enforced between the fast transport in the
parallel direction and the reduced transport transverse to
the magnetic field. In the chosen geometry of the mag-
netic field, the parallel transport is free at first approx-
imation while it is hindered in the transverse directions
and restricted to the Larmor gyration. This confinement
in the directions transverse to the magnetic field is re-
duced by collisional and turbulent cross-field transport,
both scaling typically with the Larmor gyration radius.
The control parameter that accounts for this asymme-
try is the parameter ρ⋆ ≪ 10−2, ratio of a reference
ion Larmor gyration radius and the plasma minor ra-
dius [34]. Because the electron Larmor radius is smaller
than the ion Larmor radius, one expects the ion dynam-
ics to govern the properties of transverse transport. The
ion Larmor radius then characterizes the size of the tur-
bulent eddies. The ion Larmor radius being larger than
the Debye scale, quasineutral plasma conditions prevail
when addressing turbulent transport. We address here
the plasma region named Scrape-Off Layer at the bulk
plasma outer boundary where field lines are connected
to a wall component. In this region, under steady state
conditions, the transverse transport is balanced by par-
allel transport. For the latter, the electron mobility is
larger than the ion mobility and determines the smallest
time scale to be addressed. Furthermore, for a field line
connected to a wall component, the Debye scale cannot
be ignored [35]. Based on these simple arguments one
finds that the physics of parallel transport to a wall de-
parts from the conditions that prevail when investigating
plasma transverse transport. The means of recovering
boundary conditions mostly governed by parallel trans-
port to be used in a quasineutral plasma framework is
discussed in the companion paper [26]. We address here
the physics of parallel transport to a wall and the self-
organization in the parallel direction between a quasineu-
tral region and the sheath region where the charge den-
sity drives a large electric field, which in turn governs the
losses to the wall.
For this purpose we consider a 1D-1V kinetic model de-
scribing the parallel physics along a magnetic field line in
the Scrape-Off Layer of a magnetically confined plasma.
This line is connected to a wall at both ends. Simulations
of this model have been performed and a reference simu-
lation is used in this paper as a guideline. The simulation
model and equations are presented in the companion pa-
per [26]. In the present work, magnetic field curvature
drifts are neglected because these are small compared to
the turbulent transport taken into account by the source

terms. The role of these drifts can be addressed and mod-
eled by charge sources and sinks, which will modify the
symmetry. As reference case, one can have a divertor ge-
ometry in mind. However, the model is more generic and
can be used to address other configurations of interest.
This field line is then connected to the divertor low and
high field target plates where plasma promptly recom-
bines. One can note that in the present model, one only
requires prompt recombination so that the wall compo-
nent can be a solid, liquid or dense gas. The key property
for the present purpose is that plasma particles, momen-
tum and energy are absorbed, as if destroyed, when in
contact with the wall, meaning on a time and space scale
that is smaller than any scale relevant to plasma mod-
eling. This condition is akin to that of a gas opening
onto vacuum. For convenience, we shall consider a fixed
location for the wall boundary as for a solid. Achieving
steady state with non vanishing plasma conditions then
requires a source to balance the outflux to the wall at
both field line ends. In the regime we have chosen to ad-
dress, the main source term on the open field lines stems
from the divergence of the cross-field turbulent fluxes.
The field line is assumed to intercept the divertor with a
normal incidence, the treatment of a magnetic presheath
in the case of oblique incidence requiring one to address
the Larmor gyration, therefore stepping to at least a 2D-
2V model. Furthermore, in the latter geometries the wall
can be intercepted during the gyration motion at a dis-
tance from the intersection point of the field line with the
wall [36]. This introduces a dependence on the particle
gyro-angle which questions the key assumption made to
address plasma turbulence in the gyrokinetic framework
[37] or the drift expansion for the fluid framework [38].
To avoid such issues we address here the rather standard
simplified geometry illustrated on FIG.(1). Of course
such issues are important and 6D kinetic simulations in
simplified geometries of plasma-wall interaction will en-
able one to identify the gyrokinetic shortfalls and means
to circumvent them when addressing realistic geometries
of plasma-wall interaction.
Before stepping to the description of the kinetic model,
let us recall the expected behavior for the plasma between
the volumetric source and the sink boundary condition as
depicted on FIG.(1). In steady state, the particle source
must be compensated by the build-up of a parallel par-
ticle flux Γ, FIG.(2). Because of the symmetry of the
simulation set-up, only the right hand side of the simula-
tion region is shown, from the middle of the box at x = 0
to the wall on the right hand side. As will be recalled
in the following, the growth of the particle flux in the
subsonic regime, hence in the plasma region prior to the
sheath, governs plasma acceleration [4, 35]. Accordingly,
one expects that when the source term vanishes in such
a quasineutral region, the particle flux becomes constant
and plasma acceleration stops [4, 35]. Without particu-
lar conditions, this flow with mean velocity ui remains
subsonic up to the wall where a standing shock wave
appears to develop. The latter is in fact characterized



4

FIG. 1. Sketch of the geometry: shape and location of the
source terms, plain blue line, versus the curvilinear abscissa
s, here normalized by the Debye length. The vertical dashed
lines indicate the limit of the source region centered on x = 0,
vertical dash-dot line. The wall locations, hatched regions,
bound the plasma.

by a sharp increase of the gradients so that very small
scales are generated, typically at the Debye scale λD. In
plasmas, the shock wave discontinuity can be resolved
by addressing a departure from quasineutrality, typically
on the Debye scale [4]. The reference simulation allows
one to illustrate this point. We define the characteristic
scales L−1

ui
= |dui/dx|/ui, L

−1
ni

= |dni/dx|/ni. Here ni

stands for the ion density, hence the subscript i, FIG.(3).
The length scale Lui

is the blue curve with open trian-
gles. It increases in the source region, rolling over to a
range of values of order L∥. Outside the source region,
Lui

levels-off, then, left of the vertical dash-dot line, Lui

exhibits a strong decrease towards values of the order of
10 Debye lengths. The length scale Lni for the ion den-
sity exhibits the same behavior as Lui between the end
of the source region and the wall. The behavior is dif-
ferent in the source region, in particular close to x = 0
where for symmetry reasons Lui → 0 while Lni → +∞.
In a narrow region close to the wall, on the right hand
side of the vertical dash-dot line on FIG.(3), one observes
the expected sharp increase of the gradients. This effect
is more pronounced for the density than for the mean
velocity. Indeed Lni

is reduced to the order of 1 Debye
length. However, since the Debye scale is resolved, no
discontinuity is observed.
If one now considers the mean velocity of the plasma
ui, FIG.(4), one can observe first a rapid increase in the
source region, followed by a slower, close to monotonic in-
crease typically from the source region to the wall, steep-
ening in the wall vicinity, as expected from the behavior

FIG. 2. Growth of the particle flux Γ, normalized by Γ0,
blue line closed blue circles, left hand side scale. The shape
of the source term is identical to that of the particle source
Sn, black line open black circles, right hand side scale. The
vertical dashed line indicates the limit of the source region
and the vertical dash-dot line the transition into the sheath
region.

FIG. 3. Variation of the characteristic scales Lni for the ion
density, black curve open triangles and Lui for the mean ion
velocity, blue curve open circles. The vertical dashed black
line is the right hand side limit of the source region and the
black vertical dash-dot line identifies the sheath region to its
right hand side. For the sake of comparison, the source scale
Ls ≲ 100, horizontal dash-dot line, and the size of the simu-
lation domain L∥, horizontal dashed line, are also indicated.
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FIG. 4. Profile of the mean plasma velocity ui ≈ ue, blue
line open circle symbols, and of the reference velocities V =√

T/mi, black line open head-down triangle symbols, and

cs =
√
3 V , black line open head-up triangle symbols.

of Lui
FIG.(3). On FIG.(4), the plot of ui is the blue

curve open circles, and is compared to that of the ther-
mal velocity V , black curve head-down open triangles,
and an expression of the sound velocity cs obtained in
the fluid framework, black curve head-up open triangles.
The thermal velocity V depends on the thermal energy
T = Te + Ti, sum of the electron Te and ion Ti ther-
mal velocities: miV

2 = T where mi is the ion mass.
The sound velocity is defined by cs =

√
3 V . One can

readily notice that ui exceeds the thermal velocity V be-
fore the end of the source region, then further increases
but does not appear to reach the sound velocity. With
respect to the standard plasma description on an open
field line [4, 35], as sketched above, the reference sim-
ulation exhibits unexpected features. First, both fields
ni and ui vary in the quasineutral region with vanishing
source, hence constant particle flux Γ, FIG.(2). We stress
here that these are steady state features of the simula-
tion. Second, the mean velocity does not appear to reach
the sound velocity at the sheath entrance, indicated by
the vertical dash-dot line. The latter observation sug-
gests that either the Bohm criterion does not hold, or
the effective sound velocity is not properly determined
by the usual fluid framework. Since the Bohm criterion
is based on physics arguments, it is tempting to state
that the Bohm criterion is fulfilled but that the sound
velocity is not accurately determined. This problematic
discrepancy for plasma turbulence modeling in the fluid
framework is further addressed in the following. Alter-
natively one could question the location of the sheath
entrance. Determining the sheath entrance is also ad-
dressed in the following and various criteria are analyzed

and compared using the reference kinetic simulation.

B. Kinetic model to address open field line
self-organization

1. Kinetic equation and normalization

In Section IIA we have presented some of the results
obtained with the reference kinetic simulation. We now
describe the model used in this paper and for the simu-
lations. We address the kinetic behavior of a two species
plasma. For simplicity we shall consider singly charged
ions. The effect of cross-field transport, mostly turbu-
lent transport, is taken into account by a source term.
With this simplification, one can restrict the model to
a single field line with one-dimension in position space
s and one dimension in velocity space v. One now in-
troduces the distribution function fa(s, v, t), expressing
the density of particles of species a, e for electrons and
i for ions, at time t and at point (s, v) of phase space.
Mass and charge of any particle of species a are ma and
ea. The ratio me/mi is a free parameter, usually cho-
sen small. Varying this parameter gives access to the
role of mobility on the physics at hand. The differen-
tial mobility between positive and negative charge plays
a strong role in the sheath physics, for a plasma the neg-
ative charge mobility is smaller than the positive charge
mobility, while the inverse is met in dusty plasmas. This
parameter also controls the simulation cost since steady
state conditions for the ions is typically

√
mi/me longer

than for electrons. For the reference simulation we have
chosenme/mi = 1/400, which is small and yields a factor
3 gain on the computation cost compared to that required
for a realistic mass ratio of a deuterium plasma. In the
companion paper [26] simulations scanning the mass ra-
tio and including realistic mass ratios, are presented and
analyzed. The electric field E in the electrostatic limit
is determined by the gradient of the electric potential U ,
E = −∂sU . The 1D-1V Boltzmann Eq. (1a) that governs
the evolution of the distribution function fa is then:

∂tfa + v∂sfa −
ea
ma

∂sU ∂vfa = C(fa) + S(fa) (1a)

where C(fa) is the collision operator, standing for both
self-collisions with particles of the same species a and
inter-species collisions, and where S(fa) is the source
term. The electric potential is determined by the Pois-
son equation (1b), the electrostatic limit of the Maxwell-
Gauss equation, which relates the electric potential to
the charge density ρc.

−∂2
sU = ρc/ε0 ; ρc =

∑
species a

eana (1b)

Here we have introduced the local density na of species
a, which is a function of time and space. It is the velocity
space integral of the distribution function na =

∫
dv fa.
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In the present paper we only normalize the Poisson equa-
tion introducing the reference thermal energy T0, den-
sity n0, and length scale L0. We define ϕ = eU/T0 and
x = s/L0, so that:

∂tfa + v∂sfa −
T0

ma
∂sϕ ∂vfa = C(fa) + S(fa) (2a)

ε2D∂2
xϕ =

∑
species a

eana

en0
; ε2D =

λ2
D0

L2
0

=
ε0T0

n0e2L2
0

(2b)

We have introduced the Debye length λD0 to define ε2D,
the control parameter in the Poisson equation. In this pa-
per the source term S is the SOL-plasma source mainly
governed by cross-field transport. Specific sink terms
are addressed in the companion paper to implement the
immersed boundary conditions. All simulation data are
normalized. A normalization is used on the various plots
presenting the simulation output, and recalled on each
plot for clarity. On the plots, densities and thermal ener-
gies are normalized by n0 and T0 respectively, and all ve-
locities are normalized by V0 =

√
T0/mi. Consequently,

the particle flux normalization on FIG.(2) is Γ0 = n0V0.
Note that λD, the scale normalization in the plots, stands
for λD0

. This normalization choice on the various plots
differs from the normalization made in the companion
paper. Let us recall that the only normalized variables
in the equations of the present paper are the electric po-
tential ϕ and position x, see Eq.(2).

2. The forcing problem: the plasma source

Because of the plasma losses onto the wall, the source
term is a crucial aspect of the self-organization process
along the SOL field line. In the SOL region of magneti-
cally confined plasmas, cross-field turbulent transport is
found to govern the heat source. The latter, and, depend-
ing on the operating conditions, neutral particle ioniza-
tion on the open field lines determine the particle and
convected energy sources. The chosen source term S in
Eq.(2a) is similar to theGysela source terms [39]. While
in Gysela this term stands for actual particle, momen-
tum and energy source governed by particle ionization,
torque injection and plasma heating, the source term in
the present 1D model is understood to be the divergence
of the cross-field fluxes from neighboring field lines. Con-
sidering that turbulent transport is observed to be bal-
looned to the low field side [40, 41], it is reasonable to
address a localized source term as done here, which then
differs from the homogeneous source addressed in some
works [4]. One could extend the model and consider a
particle source by electron impact ionization of neutrals,
or a spurious external heating of SOL electrons as that
investigated for Lower Hybrid launchers [42]. One could
also address problems with charge or momentum sources,
which would induce parallel electric currents and break
the symmetry of the plasma region. We focus here on
conditions that enforce the symmetry of the plasma and

that minimize the role of atomic processes as suitable
to perform global gyrokinetic turbulent transport simu-
lations with somewhat reduced complexity. Neglecting
the SOL ionization source in the present work is con-
sistent with the SOL behavior in standard limiter con-
figurations and in the so-called sheath limited divertor
regime. Some features of the transition into the high
recycling divertor regime could also be addressed inso-
far that atomic processes can be ignored to explain the
plasma properties. Estimating the particle source by im-
pact ionization, coupling the gyrokinetic plasma to ki-
netic neutrals, or accounting for impurity line radiation
in a kinetic framework can be developed. It will require
appropriate testing of the physics and of the computation
cost, typically in simplified setting such as that provided
by Voice [33]. The SOL problem of interest is therefore
that of the hot plasma regime where atomic processes
are expected to have a relatively weak effect [43]. This
particular regime has implications when addressing the
plasma collisionality, see Section II B 3. The particular
self-organization problem is to determine the plasma to-
tal pressure and the plasma thermal energies on the open
field lines, given the wall losses monitored by the parallel
transport, the sheath constraints on the fluxes as well as
the source properties. A particular choice of the source
term is made in this paper and the companion paper.
While one can expect E ×B drift convection to act as a
source of particles and heat from neighboring field lines
and a sink of particles and heat from the chosen field
line, suggesting a BGK-like source term, we have cho-
sen a particle and convected energy source independent
of the plasma condition on the field line. The source in
the kinetic equation Eq.(2a) is proportional to a target
distribution function, chosen to be a Maxwellian, with
zero mean velocity, and therefore no momentum trans-
fer. This source term determines a particle and convected
energy source with zero heat source –energy source with
zero particle source, therefore exchanging a cold by a hot
particle.

S(fa) = Ms(x)
sk√

2πTs/ma

exp

(
−mav

2
a

2Ts

)
(3)

The mask Ms, plotted in black on FIG.(2), right hand
side scale, localizes the source region in the central part
of the plasma. The shape is based on hyperbolic tangent
functions. The width of the transition region is compa-
rable to the width of the source region so that there is no
flat top in the source amplitude. This mask function is
defined so that its integral in the plasma volume is equal
to 1. The parameter sk then defines the source ampli-
tude as the number of particles of species a injected in
the plasma per unit time. The source thermal energy
Ts determines the energy of the injected particles, and
therefore the convected energy source. These two con-
trol parameters are chosen to be species independent and
constant both in space and time. This source does not
depend on the SOL-plasma conditions and is symmetric
with respect to the center of the simulation domain at
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x = 0. Together with the absence of momentum and
charge source, this enforces the symmetry of the solu-
tion with respect to x = 0 that defines consequently the
stagnation point where the plasma mean velocity is null.
A notable simplification is made here compared to in-
termittent transport that is understood to prevail in the
SOL region [44]. With intermittent cross-field transport
events, avalanches or blobs, the source term exhibits a
time dependent pattern with a short burst of plasma con-
vected into the SOL, with hot and dense plasma condi-
tions, followed by a quiescent phase prior to a new burst
[45]. Both the duration of the bursts and that of the
quiescent phase play a role on transport properties and
therefore on the source properties. One can then use the
statistics or time traces of the divergence of turbulent
fluxes to determine the time dependence of the source
term inVoice simulations [26, 33]. The interesting issues
raised by such dynamics of the source term and interplay
with the parallel transport are left for future work. The
constant source approximation allows one to address the
steady state properties without having to perform statis-
tical averages on the distribution of burst properties.

3. Collisions

In the simulations, the collision operator C(fa) in the
simulations of the Boltzmann equation Eq. (2a) is the
sum of the linearized self and inter species collision op-
erators. A detailed description of the chosen linearized
operators is given in the companion paper [26].
Collisions are important as regularizing operators
smoothing the velocity space variations of the distribu-
tion functions. They are also observed to contribute
to the transport process and are found to be crucial
to achieve steady state conditions, see Section IVB. In
the self-organization physics on open field lines, one re-
covers the fundamental difference between a collisionless
plasma with ν⋆0 = 0 and a weakly collisional plasma,
ν⋆0 → 0+. The dimensionless control parameter ν⋆0 is
defined in Eq. (4), similar to the standard ν⋆ parame-
ter [46] which is used in Gysela [47]. However, it is
slightly modified to account for the fact that we do not
emphasize trapped particles in the SOL collisional trans-
port, see also [5]. To address the so-called sheath lim-
ited regime in gyrokinetic simulations of turbulent trans-
port, hence a low-collisionality SOL regime without com-
plex atomic collisions, simplified collision operators can
be considered. In the Voice simulations [26, 33], the
collision operators stand for self-collisions as in [41] and
inter-species collisions adapted from [48]. They conserve
density, momentum and energy. Maxwellian distribution
functions belong to the kernel of the self-collision ker-
nel. The latter also exhibits the 1/|v| velocity depen-
dence of the the Landau and Lenard-Balescu non-linear
operators [49]. The inter-species collisions are set to drive
the distribution functions towards thermal equipartition
and equal mean velocity. For the present purpose, we

assume that the details of the collisional process are not
crucial so that the chosen features of the collision opera-
tors are sufficient. The amplitude of the collisional term
is determined by the chosen collisionality ν⋆0 , such that
ν⋆0 = ν⋆D0L∥/λD0.

ν⋆0 =
4
√
π

3

( e2

4πε0

)2 n0

T 2
0

log Λ L∥ = ν⋆D0

L∥

λD0
=

L∥

Lcoll
(4)

where log Λ is the Coulomb logarithm. The control pa-
rameter ν⋆0 does not depend on particle mass. It is more
convenient for SOL physics than the standard ν∗ pa-
rameter since the parallel transport process does not de-
pend on trapped particles. The control parameter ν⋆0
can be read as the inverse of the collisional mean free
path divided by the reference field line length in the SOL:
L∥ ≈ πqR, R stands for the major radius and q is a rele-
vant value of the safety factor, typically the value taken
one energy e-folding length within the separatrix.

III. ANALYSIS OF SOL-SHEATH
SELF-ORGANIZATION WITHIN THE FLUID

FRAMEWORK

The fluid framework is most often understood to be re-
stricted to the Navier-Stokes equations, namely the three
first moments of the Boltzmann equation. A closure is
introduced to bound the infinite fluid hierarchy to these
three first moments. In the literature of fusion plasma
turbulence this closure is usually a collisional closure that
determines the heat fluxes in terms of the temperature
gradients. The Navier Stokes equations are also interest-
ing when analyzing the kinetic results since these pro-
vide physical insight into the ongoing processes. How-
ever, given the mismatch between the expected behavior
and simulation results presented in Section IIA, one can
expect a shortfall of the standard Navier-Stokes closure.
In this Section we compare the fluid predictions to the
kinetic reference simulation. Non-collisional closure and
higher moment closure are addressed. It turns out that
neither closure is able but to provide a predictive guide-
line to analyze the simulation evidence.

A. Fluid description of a 1-D plasma

1. Navier-Stokes conservation equations

The Navier-Stokes fluid moments can be computed
using the dimensional form of the Boltzmann equation
Eq.(1a). For species a, one readily obtains:

∂tna +∇sΓa = Sa
n (5a)

ma∂tΓa +∇sΠa = −eana∇sU + Ca
mΓ (5b)

∂tEa +∇sQa = −eaΓa∇sU + Ca
E + Sa

E (5c)
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where Ca
mΓ and Ca

E stand for the momentum and energy
collisional exchange and Sa

n, S
a
E for the particle and en-

ergy sources. With the standard definitions of the density
na, particle flux Γa, momentum flux Πa, energy density
Ea, and energy flux Qa for species a:

na =

∫ +∞

−∞
dv fa (6a)

Γa =

∫ +∞

−∞
dv v fa = naua (6b)

Πa =

∫ +∞

−∞
dv mav

2 fa = naTa +manau
2
a = 2Ea (6c)

Qa =

∫ +∞

−∞
dv 1

2mav
2 v fa = qa + ua

(
Ea + pa

)
(6d)

These definitions also introduce the mean particle ve-
locity ua, the thermal pressure pa = naTa, the thermal
energy Ta, and the heat flux qa. The latter is the dif-
ference between the energy flux Qa and the convective
energy flux Qca = ua

(
Ea + pa

)
. In the 1-D limit, the

momentum flux Πa and energy density Ea are related
Πa = 2Ea. One can thus remark that the Navier Stokes
system Eq.(5) is closed but for the term qa and eventu-
ally the collisional exchange terms. Possible closures are
either setting these terms to zero, or reducing these terms
to functions of the three first moments na, Γa and Πa,
and setting the other contributions to zero. Conversely,
any specific kinetic feature, by definition not taken into
account by this fluid description, must translate into a
behavior of qa and the collisional exchange terms that
cannot be approximated by zero or the chosen functions
of the first three moments.

2. Two species plasma conservation equations

For a two species plasma with electrons, charge ee =
−e and massme, in singly charged ions, charge ei = e and
massmi, one can conveniently split the system into equa-
tions that are related to charge and equations address-
ing the mass center. The latter system will be named
plasma since it combines the electrons and the ions. Be-
cause of the large mass ratio mi ≫ me, charge and elec-
tron balance equations evolve on the electron time scale,
while the plasma balance equations evolve on the ion time
scale. Regarding particle balance, we shall consider the
ion particle balance and the charge balance, defining the
charge density ρc = e(ni − ne) = eη, η is the density
difference η = ni − ne, and the total electrical current
j = e(Γi − Γe), therefore:

∂tni +∇sΓi = Sn (7a)

∂tρc +∇sj = 0 (7b)

We assume here that there is no charge source, hence
Si
n = Se

n = Sn. The total plasma momentum and energy

conservation equations are completed by those for the
electrons.

∂t(meΓe) +∇sΠe = ene∇sU + Ce
mΓ (8a)

∂t(miΓi +meΓe) +∇s(Πi +Πe) = −ρc∇sU (8b)

∂tEe +∇sQe = eΓe∇sU + Ce
E + SE (8c)

∂t(Ee + Ei) +∇s(Qe +Qi) = −j∇sU + 2SE (8d)

In the chosen model we have furthermore assumed that
the energy source is identical for the ion and electron
channel Se

E = Si
E = SE , hence the factor 2 in Eq.(8d).

3. Quasineutral and large mass ratio limits

In the quasineutral limit one assumes that the charge
density ρc can be set to zero, therefore ignoring the dif-
ference between electron and ion densities. This regime is
enforced by the Poisson equation Eq.(2b) in the asymp-
totic limit ε2D → 0. The charge balance equation Eq.(7b)
then enforces that ∇sj = 0, hence a 1-D current that is
constant along the field line. Although a non vanishing
current can exist, it must be sustained by a potential dif-
ference. Assuming the wall to be grounded, so that no
potential difference is generated within the wall and be-
tween the two ends of the field line, enforces the electrical
current to be null, j = 0. For the two species plasma, the
small departure from neutrality end forces ne ≈ ni = n,
η ≪ ni, so that the j = 0 yields Γe ≈ Γi = Γ. The
quasi-identical density and particle flux enforces ue ≈ ui.
Given the large mass ratio mi/me ≫ 1, we assume the
ordering miniu

2
i + meneu

2
e ≈ miniu

2
i and Πe ≈ neTe.

The plasma balance equations are then:

∂tn+∇sΓ = Sn (9a)

mi∂tΓ +∇sΠ = −ρc∇sU (9b)

∂tE +∇sQ = 2SE (9c)

where Π = Πe + Πi = pe + pi +miniu
2
i , E = Ee + Ei =

Π/2, and Q = Qe + Qi. As written here, we have not
enforced ρc → 0. One is led to consider this term when
one addresses steady state conditions on the time scale of
the electron evolution. This also enforces ∇sj = 0, hence
j = 0 and equality of the fluxes. Provided mi/me ≫
ni/ne ≈ 1, one recovers the ordering miniu

2
i +meneu

2
e ≈

miniu
2
i and Πe ≈ neTe and the plasma balance equations

Eq.(9). However, because of this coupling to ρc, this
system must be completed by the electron conservation
equations and the Poisson equation relating the electric
potential ϕ to the charge density ρc. More generally, one
can state that whenever j ≈ 0, meaning |j| ≪ e|Γi| and
provided |ρc| ≪ enemi/me, one recovers Eq.(9).

4. Plasma balance equations in steady state

Let us now consider the steady state regime with re-
spect to the ion evolution time. The various fields now
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only vary in space and one can replace the space deriva-
tive ∇s by ds.

dsΓ = Sn (10a)

dsΠ = −ρcdsU (10b)

dsQ = 2SE (10c)

Since the energy source is convective, proportional to the
particle source Sn, and Ts/2 energy per injected particle,
this model yields 2SE = TsSn. Using this relation to
modify Eq.(10c) and the quasineutral regime ρc → 0 to
modify Eq.(10b), the system takes the form:

dsΓ = Sn (11a)

dsΠ = 0 (11b)

ds
(
Q− TsΓ

)
= 0 (11c)

Since both Γ and Q are anti-symmetric with respect to
the mid-box s = 0 while Π is symmetric, one obtains:

Γ =

∫ s

0

ds Sn (12a)

Π = constant (12b)

Q = ΓTs (12c)

In the region with vanishing source, left hand side of the
vertical dashed line on FIG.(2), Γ = Γw is constant and
equal to the particle flux impinging onto the wall. Con-
sequently Q = Qw, the energy flux impinging onto the
wall. In the reference simulation these three conservation
properties are observed Γ/Γ0 = 0.992± 2. 10−3, Π/Π0 =
1.1814 ± 3. 10−4, Q/Q0 = 1.00075 ± 3.5 10−4, where
V 2
0 = T0/mi, Γ0 = n0V0, Π0 = n0T0 and Q0 = n0T0V0.

Since all normalized values are of order 1, the relative and
absolute error are identical. One finds that the largest
error is made on the particle flux, with a systematic error
with respect to the expected value Γ/Γ0 = 1. Since the
particle flux is a moment of the distribution functions, de-
termined without requiring any approximation, one can
use this comparison to estimate the numerical error of the
simulation, typically smaller than 10−2. The kinetic sim-
ulation is therefore found to exhibit 3 conserved fluxes of
the fluid description while the distribution functions vary
with no direct constraint enforcing such conservation.

B. Plasma sound waves

1. Sound waves in quasineutral plasma

As discussed in Section IIA and illustrated by FIG.(4),
an important issue when using the fluid framework to dis-
cuss the physics of the SOL plasma self-organization is
the sound velocity. To address this point we consider
fluctuations of various moments of the distribution func-

tions

M
(a)
ℓ (s, t) =

∫
dv vℓfa(s, v, t) (13a)

M
(a)
0 = na ; M

(a)
1 = M

(a)
0 ua = Γa (13b)

Then defining w = v − ua one defines:

N
(a)
ℓ (s, t) =

∫
dv wℓfa(s, v, t) (13c)

N
(a)
0 = M

(a)
0 ; N

(a)
1 = 0 (13d)

The moment Mℓ is related to the lower moments Nj ,
j ≤ ℓ, and the moment Nℓ to the lower moments Mj ,
j ≤ ℓ.

M
(a)
ℓ =

∫
dv (w + ua)

ℓfa =

ℓ∑
j=0

Cj
ℓ (ua)

jN
(a)
ℓ−j (14a)

N
(a)
ℓ =

∫
dv (v − ua)

ℓfa =

ℓ∑
j=0

Cj
ℓ (−ua)

jM
(a)
ℓ−j (14b)

Cj
ℓ =

ℓ!

(ℓ− j)!j!
(14c)

Let us consider the fluid hierarchy for species a:

∂tM
(a)
ℓ + ∂sM

(a)
ℓ+1 = X

(a)
ℓ + C

(a)
ℓ + S

(a)
ℓ (15a)

X
(a)
ℓ =

ea
ma

∂sU ℓM
(a)
ℓ−1 (15b)

C
(a)
ℓ =

∫
dv vℓCa(fa) ; S

(a)
ℓ =

∫
dv vℓSa(fa) (15c)

The mass center combination of the moments miM
(i)
ℓ +

meM
(e)
ℓ = (mi +me)Mℓ then yields:

∂tMℓ + ∂sMℓ+1

= e∂sUℓ
M

(i)
ℓ−1 −M

(e)
ℓ−1

mi +me
+

miC
(i)
ℓ +meC

(e)
ℓ

mi +me

+
miS

(i)
ℓ +meS

(e)
ℓ

mi +me
(16a)

For particle conservation ℓ = 0, the order 0 moment M0

is the density, the order 1 M1 is the particle flux Γ. For
ρc = 0 and j = 0 these are identical for the two species.
Furthermore the particle source term is identical for both
species to conserve charge, and collisions conserve parti-
cles, therefore Eq.(16a) leads to Eq.(9a).

∂tM0 + ∂sM1 = Sn (16b)

For momentum conservation, moment ℓ = 1, collisions
conserve the total momentum, the electrical force is pro-
portional to the charge density ρc = 0, and we have as-
sumed no momentum source. Eq.(16a) therefore leads
to:

∂tM1 + ∂sM2 = 0 (16c)
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Similarly for kinetic energy conservation ℓ = 2, the Joule
heating is proportional to j = 0, collisions conserve the
kinetic energy, and the energy source is identical for each
species, therefore:

∂tM2 + ∂sM3 =
4

mi +me
SE (16d)

For the higher moments, the left hand side of the moment
equations keeps the same structure as found in Eq.(16a).
However, on the right hand side the contribution propor-
tional to the electric field, the collisional exchange and
the source contribution will not be null. In the large
mass ratio limit mi ≫ me, the system for the three first
moments then takes the form:

∂tn+∇sΓ = Sn (17a)

∂tΓ +∇s

(
Π/mi

)
= 0 (17b)

∂t
(
Π/mi

)
+∇s

(
2Q/mi

)
= 4SE/mi (17c)

Let us now consider fluctuations of a steady state solu-
tion. We assume that these fluctuations are not driven
by fluctuations of the source term, these are chosen fixed.
The fluctuation amplitudes are assumed to be small, al-
lowing us to linearize the evolution equations, and use
Fourier modes as convenient basis to determine the eigen-
modes. The phase of the Fourier modes is chosen to be
−ωt+ks, so that the phase velocity of interest is c = ω/k.

The fluctuating part of any field F is noted F̃ and its

Fourier amplitude F̂ . In the quasineutral limit, the sys-
tem Eq. (17) is closed but for the coupling to higher mo-
ments governed by the heat flux q contributing to the
total energy flux Q. To compute the possible values of
c, we close the fluid hierarchy by assuming the linearized
energy flux to be a linear combination of the lower mo-
ments, density n, particle flux Γ and momentum flux Π.
We then find that non-trivial solutions are obtained when
the following determinant is null.∣∣∣∣∣∣

−c 1 0
0 −c 1
an aΓ aπ − c

∣∣∣∣∣∣ = 0 (18a)

Where the coefficients are define as: an = ∂n(2Q/mi) at
fixed Γ and Π, aΓ = ∂Γ(2Q/mi) at fixed n and Π and
aπ = ∂Π(2Q) at fixed n and Γ. The dispersion equation
is therefore cubic in c:

c3 − aπ c2 − aΓ c− an = 0 (18b)

Finding the roots of this dispersion equation is eased
when the chosen closure allows a class of density fluc-
tuations to exhibit a phase velocity c equal to the mean
velocity u.

2. Density fluctuations propagating at mean plasma velocity

We address here a particular behavior of the system
that stems from the left hand side structure of the mo-
ment equation Eq.(16a). Removing the drive of the fluc-
tuations by the source terms, setting the electric field

E = −∂sU to zero and ignoring the contribution of the
collisions. These assumptions ensure that the plasma
moment equations are similar to that of a neutral fluid
at local thermodynamic equilibrium, only the left hand
side is retained.

∂tMℓ + ∂sMℓ+1 = 0 (19a)

When stepping to the dispersion relation this linear equa-
tion readily leads to:

M̂ℓ+1 = c M̂ℓ (19b)

which yields the structure highlighted by the two first
lines in the determinant Eq.(18a), the third being deter-
mined by the chosen closure. Stepping back to Eq.(14a),
one finds that if the eigenmode is chosen such thatNj = 0
for j > 0, then all the moment equations are equivalent
to:

M̂1 = c M̂0 (20a)

Further choosing the eigenmode such that ũ = 0, then
leads to: (

c− u
)
M̂0 = 0 (20b)

and the dispersion equation c = u for this particular
eigenmode. Density fluctuations, with no other fluctuat-
ing field, are then found to exhibit a phase at rest in the
frame moving at the plasma velocity u. From the kinetic
point of view, the chosen fluid eigenmode corresponds
to a perturbation of the distribution functions, identical
for electrons and ions, of the form ñ gM (v, u, TM → 0)
where gM is a Maxwellian with mean velocity u, thermal
energy TM → 0 and v-space integral equal to 1. All mo-
ments of this perturbation are then proportional to ñ and
to the mean velocity at some power, uℓ for the moment
of order ℓ. This property is readily recovered with the

system Eq.(17) when setting ũ = 0, T̃ = 0 and q̃ = 0,

so that Γ̃ = uñ, Π̃/mi = u2ñ, and 2Q̃/mi = u3ñ. For
this eigenmode, one finds the dispersion relation c = u.
This properly designed eigenmode enforces that one of
the roots of the cubic dispersion equation is c = u. The
procedure to specify the eigenmode generating a partic-
ular eigenvalue is related to the fluid closure. For the
dispersion relation Eq.(18b) requiring the system to ex-
hibit the root c = u enforces following constraint on the
closure coefficients.

u3 − aπ u2 − aΓ u− an = 0 (21a)

This equation can be read as a constraint on one of the
coefficients, aπ, aΓ or an, typically an = u3−aπ u2−aΓ u
so that the dispersion relation allowing c = u as possible
root should then also read:(

c2 + (u− aπ)c+ u2 − aπu− aΓ
)(
c− u

)
= 0 (21b)

For plasmas, unlike the case of standard neutral fluids,
requiring this particular eigenmode and eigenvalue does
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not appear to be generic. For instance, for the moments
ℓ > 3 both the electrical force and collisions will modify
the dispersion relation. Furthermore, the closure that is
chosen can rule out this particular eigenmode and eigen-
value. This issue will be further discussed in the follow-
ing.

3. Sound wave with null heat-flux closure

For a quasineutral plasma, given T = Te+Ti, one finds
the following expressions for Π and the convective energy
flux:

Π = nT +minu
2 = 2E (22a)

Qc = u(E + pe + pi) =
Γ

n

(
γcnT + 1

2minu
2
)

(22b)

For a 1D geometry, with no energy exchange with other
dimensions, γc =

1
2 + 1. We generalize these expressions

by introducing σV and σp, with γp = σp/σV , analogous
to the heat capacities of thermodynamics. For an ideal
mono-atomic gas in a space of dimension d, σV = d/2
and σp = σV + 1. The modified expressions of Π and Qc

are then:

Π/mi =
(
2σV V

2 +
Γ2

n2

)
n (23a)

2Qc/mi =
(
2σpV

2 +
Γ2

n2

)
Γ (23b)

With the chosen zero heat flux closure q = 0 we must
express Q = Qc in terms of the chosen independent vari-
ables n, Γ, Π/mi.

2Qc

mi
=

σp

σV

Π/mi

n
+

Γ3

n2

(
1− σp

σV

)
(24a)

Ignoring the contribution of the heat-flux q to the plasma
energy flux Q, one can determine the three coefficients
aπ, aΓ and an: an = a′n = ∂n(2Qc/mi), aΓ = a′Γ =
∂Γ(2Qc/mi) and aπ = a′π = ∂Π(2Qc). Here the prime
notation indicates that the total energy flux is replaced
by the convective energy flux in the definition of the clo-
sure coefficients. Using Eq.(24a) one then obtains:

a′π =
σp

σV
u ; a′Γ = 2σpV

2 + u2
(
3− 2

σp

σV

)
(25a)

a′n =− 2σpV
2u+ u3

( σp

σV
− 2

)
(25b)

With these coefficients the constraint Eq.(21a) is satisfied
and c = u is therefore one of the roots of the dispersion
equation. The two other roots are then determined by a
quadratic equation, see Eq.(21b).

c =
σp/σV − 1

2
u±

(
2σpV

2 + u2 (σp/σV − 3)2

4

)1/2

(26a)

The phase velocity of the sound wave is computed to
be the sum of a Doppler shift proportional to the fluid
mean velocity (γp − 1)u/2, with γp = σp/σV , plus or
minus the sound velocity c2s = 2σpV

2 + u2(γp − 3)2/4.
If one enforces the Doppler shift velocity to be the mean
velocity u, then one must have γp = 3 identical to the
perfect gas adiabatic index in 1D. One then finds that
the sound velocity does not depend on the mean velocity
u,

c− u = ±
√
2σp V (26b)

Therefore c2s = 2σpV
2. The condition to achieve a stand-

ing shock wave c = 0 is met for u = cs. For the standard
ideal gas values σp = 3/2 and σV = 1/2, hence γp = 3,
one obtains:

c2s = 3 V 2 (26c)

Referring to the simulation results, FIG.(4), one finds
that the sheath entrance is observed for u = 1.505 V ,
which then requires 2σp = 2.265 < 3, approximately 25%
smaller than the ideal gas value. Accordingly one must
have 2σV = 0.755 < 1.
The ideal gas values of the coefficients σV and σp, namely
σV = 1/2, σp = 3/2 are those obtained when computing
the moments of the kinetic equation. The departure of
σV and σp from these values that suggests the compari-
son to the simulation evidence indicates that the chosen
closure is not appropriate to accurately determine the
sound velocity. An alternative closure is addressed in the
following Section III B 4.

4. Sound wave velocity with the polytropic closure

In many papers the sound velocity is determined in
the polytropic framework. The latter assumes a closure
of the form:

dp

p
− γp

dn

n
= 0 (27a)

where γp is the polytropic index, which can be different
from the adiabatic index. This state equation is used to
close the first moment equation. Using Eq.(16b) with
zero source and Eq.(16c) we then have:

∂tM0 + ∂sM1 = 0 (27b)

∂tM1 + ∂sM2 = 0 (27c)

According to Eq.(14a) one can identify M2 to:

M2 = N2 +M0u
2 (27d)

where we have taken into account N1 = 0, N0 = M0 and
u = M1/M0 by definition. According to the polytropic
closure, one has:

∂sN2 =
γpN2

M0
∂sM0 (28a)
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One can then determine the expression of ∂sM2.

∂sM2 =
γpN2

M0
∂sM0 + 2

M1

M0
∂sM1 −

M2
1

M2
0

∂sM0 (28b)

Stepping to Fourier space and linearizing the latter ex-
pression, one obtains therefore:

− cM̂0 + M̂1 = 0 (29a)

− cM̂1 + M̂2 = 0 (29b)

M̂2 =
γpN2

M0
M̂0 + 2

M1

M0
M̂1 −

M2
1

M2
0

M̂0 (29c)

Consequently:

M̂0

(
(c− u)2 − γpN2

M0

)
= 0 (30a)

Non trivial solutions with M̂0 ̸= 0 are obtained when the
dispersion relation is fulfilled

c− u = ±
(γpN2

M0

)1/2

= ±
( γpp

min

)1/2

(30b)

By construction, the polytropic closure excludes the root
c = u since N2 is not null. However, the dispersion re-
lation Eq.(30b) allows one to recover the sound velocity
c2s = γpV

2. With no heat exchange γp = σp/σn = 3 is the
adiabatic index and one recovers the same sound veloc-
ity as obtained in Section III B 3, Eq.(26c). If one now
identifies this result to the simulation result, one finds
γp = 2.265, which is 25% smaller than the adiabatic in-
dex. This result suggests that heat transport plays a role
so that the temperature variation is less important than
would be expected with the adiabatic closure.

5. Sound wave velocity with higher moment closure

The moment equation of order ℓ Eq.(16a) is of the
form:

∂sMℓ = Zℓ (31a)

For the sound waves we step to Fourier space, therefore:

ikM̂ℓ = Ẑℓ (31b)

As in the previous Sections, we shall consider here the
case with null electric field and neglect the collisional
contributions. If one sets Zℓ = Sℓ−1 in Eq.(31a), one
can use this fluid hierarchy to determine the steady state
solutions. Addressing Eq.(31b) in the fluctuation frame-
work, one assumes that there is no drive by source fluc-
tuations, so that Zℓ is identified to the time derivative of
moment ℓ − 1. With such assumption, the steady state
and fluctuation equations, the drive term Zℓ in Eq.(31)
is then written as:

Zℓ = Sℓ−1 (32a)

when addressing the steady state solutions, while for the
fluctuations in Fourier space one has:

Ẑℓ = iωM̂ℓ−1 (32b)

As already highlighted, the fluid hierarchy in Fourier
space exhibits a very simple structure given the phase
velocity c = ω/k

M̂ℓ = c M̂ℓ−1 (33a)

For the purpose of the following calculation, it is useful
to use the identity:

Wℓ =

ℓ∑
j=1

jCj
ℓ (−u)j−1Mℓ−j

jCj
ℓ = j

ℓ!

j!(ℓ− j)!
= ℓ

(ℓ− 1)!

(j − 1)!(ℓ− 1− (j − 1))!
= ℓC

(j−1)
ℓ−1

Wℓ = ℓ

ℓ∑
j=1

C
(j−1)
ℓ−1 (−u)j−1Mℓ−1−(j−1)

= ℓ

ℓ−1∑
j′=0

Cj′

ℓ−1(−u)j
′
Mℓ−1−j′ = ℓNℓ−1

therefore:

ℓ∑
j=1

jCj
ℓ (−u)j−1Mℓ−j = ℓNℓ−1 (34)

Linearizing Eq. (14b) in Fourier space, one determines

M̂ℓ−1:

N̂ℓ =

ℓ∑
j=0

Cj
ℓ (−u)jM̂ℓ−j −

ℓ∑
j=1

jCj
ℓ (−u)j−1Mℓ−j û

The second term can be simplified according to the iden-
tity Eq.(34):

For ℓ ≥ 2 one then finds:

N̂ℓ =
(
c− u

)ℓ
M̂0 − ℓNℓ−1û (35a)

while for ℓ = 1:

N̂1 = M̂1 − uM̂0 −M0û (35b)

M0 û =
(
c− u

)
M̂0 (35c)

From the latter equation one can determine û, which can
be used in Eq.(35a) to obtain for ℓ ≥ 2:

N̂ℓ =
(
c− u

)ℓ
M̂0 − ℓ

Nℓ−1

M0

(
c− u

)
M̂0 (36a)

Closing the fluid hierarchy at moment ℓ, one finds the
dispersion relation.((

c− u
)ℓ − ℓ

Nℓ−1

M0

(
c− u

))
M̂0 − N̂ℓ = 0 (36b)
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In this expression we have retained the term N̂ℓ to be able
to address the specific closures for the moment ℓ = 2:

(c− u)2 =
N̂2

M̂0

The polytropic closure could be used here leading to the
results of Section III B 4. As an alternative, we define

N2 = V 2M0 with V 2 constant so that N̂2/M̂0 = V 2, one
then obtains c2s = V 2 and:

c = u± V (37a)

This corresponds to the isothermal closure which is in
fact a particular case of the polytropic closure for γp = 1.
Regarding the closure at moment ℓ = 3, setting N3 = 0
corresponds to the closure q = 0 of Section III B 3.(

c− u
)3 − 3

N2

M0

(
c− u

)
= 0 (37b)

which yields the root c = u together with c2s = 3V 2 and
the roots:

c = u±
√
3 V = 0 (37c)

One recovers the result of Section III B 3. If one now
assumes Nℓ = 0 as rule for the closure at moment ℓ > 2,

the existence of non-trivial solutions M̂0 ̸= 0 allows one
to simplify the dispersion relation Eq.(36b).((

c− u
)ℓ−1 − ℓ

Nℓ−1

M0

)(
c− u

)
= 0 (38)

One can then generalize the result obtained for ℓ = 3, a
root c = u together with the roots:(

c− u
)ℓ−1

= cℓ−1
s (39a)

cs =
(
ℓ
Nℓ−1

M0

)1/(ℓ−1)

(39b)

The sound velocity crucially depends on Nℓ−1 for which
we have no particular insight for ℓ > 2. The roots will
depend on the sign of Nℓ−1 as well as on the parity of
ℓ. Odd values of ℓ will allow the roots ±cs, while even
values require that c−u has the sign of the roots cs. One
can note that applying Eq.(39) to the case ℓ = 2, yields
cs = 0. The results for ℓ = 2 have been obtained because
we have used another closure than Nℓ = 0. Stepping to
higher moments can be used to adjust the fluid predic-
tion to the simulation result but one does not gain in
predictive capability. Indeed, defining the transition into
the sheath region with the Bohm criterion M2 = 1, with
M = u/cs, does not provide a boundary condition on u
since cs depends on the chosen closure.
Given the result of Section III B 3, recovered in Eq.(37c),

we shall consider cs =
√
3 V , unless specified differently,

and, for convenience, we define MV = u/V , such that

MV =
√
3 M .

C. Steady state plasma conditions

In steady state conditions discussed in Section IIIA 4,
we have obtained the conservation equations for the par-
ticle flux Γ, the total plasma momentum flux Π and the
energy flux Q. Since no heat is injected by transverse
transport, a reasonable assumption to close this system is
to set the parallel heat flux to zero q = 0, hence Q = Qc.
To simplify the expressions we directly use 2γc = 3. In
the quasineutral limit, we also substitute Πqn to Π, with
Πqn = niT + nimiu

2, and therefore Π = Πqn − ηTe:

Γ =

∫ s

0

ds Sn ; Γw =

∫ L∥

0

ds Sn (40a)

Πqn = constant (40b)

Γ
(
3T +miu

2 − 2Ts

)
= 0 (40c)

With the previously chosen notations one can write Γ =
niMV V , Πqn = niT (1 + M2

V ) and Qc = ΓT (3 + M2
V ).

According to Eq. (40), Γ increases from 0 at x = 0 to
a maximum value Γw in the source region and is then
constant up to the wall. When η = 0 in the quasineutral
regime, Π ≈ Πqn is constant. Finally, given Eq.(40c),
one can determine T in terms of MV .

T =
2Ts

3 +M2
V

(41a)

Given the expression of Πqn, one can determine p =
Πqn/(1 + M2

V ), then dp/p = 2MV dMV /(1 + M2
V )

2.
Given dT/T = −2MV dMv/(3 + M2

v ), one then finds
dni/ni = −4MV dMV /(3 + M2

V )/(1 + M2
V ). Since the

polytropic index γp is defined by dp/p = γpdni/ni, one
then finds:

γp =
3 +M2

V

2
(41b)

This index is not constant and varies monotonically with
M2

V . In particular, it ranges in the plasma region from
a minimum value of 3/2 for M2

V = 0, to the value of the
adiabatic index γp = 3 for M2

V = 3. One finds therefore
that the present model, with the chosen fluid closure
q = 0, does not support the polytropic closure since γp
is not a constant. However, both the calculation of the
sound velocity based on three fluid moments Eq.(37c)
and the analysis in terms of the polytropic index yield
identical expressions for the sound velocity.

Let us now replace the density in the plasma pressure
Πqn by Γ/(MV V ), so that Πqn = T/V Γ(MV + 1/MV ).
One can then set ΠqnV/(ΓT ) = 2/A, and the change of
variable 2/A = MV + 1/MV [4]. However, T/V = miV
also depends on MV as found in Eq. (41a). It is then
more relevant for this non-isothermal case to consider a
further change of variable.

A2
s =

16Γ2miTs

9Π2
qn

=
8M2

(
1 +M2

)(
1 + 3M2

)2 (41c)
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FIG. 5. Mach number M versus As, Eq. (41c), maximum of
As = 1 at M = 1.

One then finds that M increases from M = 0 at the
stagnation point with Γ = 0 and therefore A2

s = 0
to M = 1 for A2

s = 1 where A2
s is maximum. For

M > 1, A2
s decreases and at M → +∞, A2

s → 8/9.
In Eq. (41c), we have replaced MV by the actual Mach

number M = MV /
√
3. The numerical coefficients that

appear in the definition of As are chosen to enforce that
A2

s = 1 is the maximum value of As. One can also use
Eq. (41c) to determine M2 as a solution of a second or-
der equation. When varying As, one finds a first regime
with a single positive solution for 0 ≤ A2

s ≤ 8/9. For
A2

s = 8/9, the system is singular since Eq. (41c) reduces
to a first order equation in M2 with positive solution
M2 = 1/3. When A2

s > 8/9, two positive solutions of
the quadratic equation are obtained for M2. At con-
stant momentum flux Πqn and positive particle source
Sn ≥ 0, the parameter As in the source region increases
monotonically from 0 at s = 0. It leads to M2 ≤ 1 in
the quasineutral plasma. The matching constraint pre-
sented in Section III E 3 is similar to that used in Ref.[4]
and yields M ≥ 1 in the sheath region, with therefore
M2 = 1 at the sheath entrance. The self-organization
process therefore enforces that the momentum flux is ad-
justed so that As = 1 when Γ = Γw.

Πqn = 4
3

√
miTs Γw (41d)

The plasma total momentum flux in the SOL Π is iden-
tical to Πqn when quasineutrality holds. It appears to be
determined by the upstream source, as highlighted by the
dependence on Γw and Ts, and to the sheath constraints
via the matching condition.
With such steady state conditions, one can then write
As = Γ/Γw so that As is fully determined by the parti-
cle source, which in turn yields M given Eq. (41c), and

T = (Ts/3) 2/(1 +M2), Eq. (41a). At constant momen-
tum flux Πqn, set by Eq. (41d), the density ni decreases
from the value at the stagnation point M2 = 0, nM0 =
Πqn/(2(Ts/3)) = nM0 = 2

√
mi/Ts Γw, to nM1 = nM0/2

at M2 = 1, since n = ni = nM0(1 + M2)/(1 + 3M2).
With further assumptions, one can step to determining
Ti and Te.
A first regime is found at high collisionality, such that the
equipartition transfer is the leading contribution in the
energy balance equations. In this asymptotic regime one
then finds Te = Ti = T/2 and therefore from Eq.(41a):

Te = Ti = (Ts/3)/(1 +M2) (42)

In a second regime characterized by weak energy cou-
pling between ions and electrons, one splits the energy
balance equation into the electron and ion energy bal-
ance equations assumed to be independent. One thus
neglects the collisional equipartition as well as the Joule
energy transfer eΓ|dsU | from the electrons to the ions.
With these assumptions, one obtains:

ds
(
Γ( 32Ti +

3
2TM

2 − 1
2Ts)

)
= 0 (43a)

ds
(
Γ( 32Te − 1

2Ts)
)
= 0 (43b)

This yields:

Te = (Ts/3) (44a)

Ti = (Ts/3)
1−M2

1 +M2
(44b)

The possible change of sign of Ti can be read as the sig-
nature that the Joule heating of the ions by the electrons
cannot be ignored. This energy transfer corresponds to
the ion acceleration by the expanding electrons. One can
remark that with these assumptions Te ≥ Ti so that the
collisional energy transfer would also occur from the elec-
trons to the ions. This result can therefore be understood
as yielding an upper bound for Te and a lower bound for
Ti.
In the previous calculations, the sheath constraints are
not taken into account. At the wall one should recover
Q = γΓT sh

e where γ is the sheath energy transmission
factor, γ > 3 and T sh

e is the electron thermal energy at
the sheath entrance. A third calculation of the thermal
energies Te and Ti is achieved by enforcing the sheath
conditions. Balancing the energy exhaust Q = γΓT sh

e

with the energy source ΓTs then yields the electron ther-
mal energy Te ≈ T sh

e when assuming the electron thermal
energy to be constant in the parallel direction.

Te = (Ts/3)
3

γ
(45a)

Then setting γ̄i = γQci/Q, one obtains:

Ti = (Ts/3)
2γ̄i − 3M2

γ
(
1 +M2

)
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TABLE I. Reference simulation parameters.

L∥/λD0 Γw/Γ0 Ts/T0 mi/me ν⋆
0

≈ 202 1 1 400 0.1

The ratio Qci/Q must still be estimated. Neglecting the
heat fluxes, one can assume the same energy on the elec-
tron and ion channel so that Qci/Q ≈ 1

2 , therefore:

Ti = (Ts/3)
γ − 3M2

γ
(
1 +M2

) (45b)

This constraint on the energy exhaust can be seen as
giving a lower bound for Te and consequently an upper
bound for Ti. One can note that in such a regime one
finds that Ti > Te for M2 small enough. Collisional
energy exchange then transfers energy from the ions to
the electrons and is opposite to the Joule energy transfer.

D. Fluid interpretation of the kinetic simulation

The control parameters of the reference simulation
used as evidence are listed in Table I. The mass ratio
mi/me is a free parameter in the simulations and is
scanned in the companion paper [26] including realistic
values. The size of the simulation domain L∥/λD0 is also
a free parameter. For the chosen reference simulation,
both mass ratio and domain size are chosen to reduce
the simulation cost in the appropriate asymptotic regime
mi ≫ me, L∥ ≫ λD0

. The collisionality ν⋆0 is chosen to
be consistent with the effect of collisions in the sheath
limited divertor regime. The source, proportional to a
Maxwellian with zero mean velocity, is characterized by
two control parameters, the injected particle flux Γw

and the injected energy flux Qw = ΓwTs, where Ts is
the source thermal energy. The latter defines T0. Given
T0, L∥/λD0

and ν⋆0 are two functions of the remaining
unknowns, L∥ and n0. The normalization parameters n0

and T0, and consequently λD0
, are therefore defined by

the control parameters.
The simulation is run until steady state conditions are
achieved. The various moments of the distribution
that define the fluid quantities are then computed by
integrating the electron and ion distribution functions.
The electric potential is an output of the simulation.

Before analyzing the simulation evidence, we first
introduce key positions, the position characterizing
the end of the source region xsce, the sheath entrance
xsh and the wall location xw. The sheath entrance is
determined in Section IVA, Table III –criterion dρc/dϕ.
The wall location, with penalized wall conditions, is
addressed in the companion paper [26]. The three
reference positions are presented in Table II. In most
figures, the end of the source region is indicated by a

TABLE II. Reference locations in the simulation domain.

source: xsce sheath: xsh wall: xw

≈ 95 195.9 202.6

vertical dashed line and the sheath entrance by a thin
vertical dash-dot line, the wall position is the maximum
value on the x-axis.

We first address the variation of ui ≈ ue as on FIG.(4),
but comparing ui to ceff = 1.505 V for x ranging from
the stagnation point at x = 0 to the sheath entrance.
This sound velocity ceff is determined from the simula-
tion data to intersect ui at the sheath entrance. The
latter is a smooth transition out of quasineutrality con-
ditions. The choice of ceff = 1.505 V would have to be
slightly adapted to changes in the sheath entrance defini-
tion. The variation of As, Eq.(41c), is also plotted, right
hand side axis. The control parameter is computed using
the simulation output for Γ and Πqn. One can observe
that As becomes constant outside of the source region, to
the left of the vertical dashed black line. Furthermore,
As exceeds unity for x ≥ 38, indicated by the vertical
black dash-dot line. Since the value of Γ is close to that
predicted, As is overestimated by ≈ 12% because Πqn is
observed to be ≈ 12% smaller in the kinetic output than
predicted by the fluid model Eq.(41d).
In the region where As levels off at the end of the source
region, one finds that V < ui <

√
3 V , however ui is still

increasing while V is decreasing so that the ratio ui/V ,
proportional to the Mach number, is increasing with As

constant. In the kinetic simulation, the Mach number
cannot only depend on As. In the fluid framework, the
number of degrees of freedom is fixed by the number of
chosen moments. We find here that with three degrees of
freedom, the Navier-Stokes system does not capture all
the feature of the kinetic physics.

Let us now address the energy flux. The energy source
Qs = ΓTs/2 is identical for both species and determined
by the particle source and the thermal energy of the in-
jected particles Ts. The latter is used to define T0 nor-
malizing energies of the simulation output, see Table I.
Within the source region, one finds that the electron and
ion energy flux, respectively Qe and Qi, increase with
the energy source Qs, FIG.(7). Qe is the blue curve with
closed circles, Qi the black curve with open circles, and
Qs the black dashed curve. Towards the end of the source
region, Qe tends to level off Qe < Qs, before decreasing.
Conversely, Qi steadily increases, Qi > Qs. One finds
that energy is transferred from the electrons to the ions
at conserved total energy, Q = 2Qs = Qe + Qi. At the
sheath entrance, the ion channel has increased to 60% of
the total energy flux Q, and the electron channel is re-
duced to 40% of Q. One finds therefore that about 20%
of Qs, the energy coupled to the electron channel, has
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FIG. 6. Profile of the mean plasma velocity ui ≈ ue, and
of the effective sound velocity 1.505 V , left hand side axis.
Profile of As, right hand side axis, As > 1 beyond x ≈ 38,
vertical black dash-dot-dot line. ui blue line open circle sym-
bols. 1.505 V black line open squares. As blue line closed
circles. On this figure, the maximum of x is the sheath en-
trance.

FIG. 7. Plasma energy flux Q = Qe + Qi, where Qe and
Qi are the electron and ion energy flux respectively. Energy
source for either species Qs. Qe blue line closed circles. Qi

black line open circles. Qs dashed black line. Vertical dashed
line source boundary, vertical dash-dot line sheath entrance.

been transferred to the ion channel. As will be shown in
the following Ti ≥ Te. The energy transfer is governed
by the term eΓE from the electrons to the ions, which
must also balance the collisional equipartition transfer
from the ions to the electrons.

FIG. 8. Profile of the plasma energy fluxes, convective energy
flux Qc, heat-flux q and total energy flux Q = Qc+q. Q black
curve open triangles. q black curve closed triangles. Qc blue
line squares. Vertical dashed line source boundary, vertical
dash-dot line sheath entrance.

One can split the total energy flux Q = Qc+ q into con-
vective flux Qc up to 75% of Q and heat-flux q, typically
25% of Q. Both Qc and q mostly build-up in the source
region, to the left of the vertical dashed line. Towards
the end of the source region and up to the wall, there is a
slight energy transfer from q to Qc, FIG.(8). Black curve
head-up open triangles for Q, blue curve open triangles
for Qc and black curve head-down closed triangles for q.
One can notice that the heat-flux is sustained at a level
of about 20% of Q at the wall, where Q must be absorbed
in steady state conditions, the plasma energy sink at the
wall surface must compensate the plasma volumetric en-
ergy source. This implies that the heat-flux q as well as
the convective energy flux must contribute to the energy
flux leaving the plasma via the sheath and deposited onto
the wall.
For the ions, FIG.(9), one finds that most of the energy
flux Qi is convective Qci. The ion heat flux qi levels
off at less than 10% of Qs and slowly decreases towards
the wall. Black curve head-up open triangles for Qi, blue
curve open squares for Qci, black curve head-down closed
triangles for qi, and dash-dot black curve for Qs.
For the electrons, FIG.(10), the energy flux Qe, the con-
vected energy flux Qce and the heat-flux qe increase in
the source region and then gradually decreases. Black
curve open head-up triangle Qe, blue curve open squares
Qce, black curve closed head-down triangles qe and Qs

dash-dot curve. One also finds that the convective flux
account for slightly more than 50% of the electron en-
ergy flux. It is therefore of the same magnitude as the
heat flux qe. Both components of the electron energy
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FIG. 9. Profiles of the ion energy flux Qi, sum of the convec-
tive energy flux Qci and of the heat-flux qi, compared to the
energy source on the ion channel Qs. Qi black curve open
head-up triangles. Qci blue curve open squares. qi black line
closed head-down triangles. Qs black dash-dot curve. Verti-
cal dashed line source boundary, vertical dash-dot line sheath
entrance.

flux tend to decrease downstream from the source. To-
wards the end of the source region, when the source tends
to zero, one can observe that the convective energy flux
Qce is roughly constant, while the total energy flux Qe

decreases with the heat-flux qe. The combined effect of
collisions and energy transfer via the electric field eΓE
govern a rather complex reorganization process of the
energy transport. As for the total heat-flux q, both the
ion and electron heat flux do not vanish towards the wall
and contribute to the energy exhaust. This point will be
further discussed when addressing non-collisional closure
in Section III E. With such a closure, one finds that the
heat-flux is a function of the particle flux – it exhibits a
non-zero projection on the particle flux. This result does
not agree with the understanding of the heat-flux as be-
ing an energy transfer with zero net particle transfer.
The latter picture of the heat-flux suggests an exchange
of hot against cold particles with equal particle flux in
opposite directions. At the wall contact, a non-vanishing
heat-flux then requires a particle flux moving out of the
wall, contradicting the complete plasma absorption by
the wall. One is then led to argue that the wording
heat-flux for the flux proportional to the fluid moment
N3 might be inappropriate when kinetic features cannot
be ignored. Coupling to higher moments must then be
addressed and consequently the understanding of the mo-
ment N3 should be adapted.
The electron thermal energy Te determined by the ref-
erence simulation is characterized by a near constant
value. It very slightly increases in the source region

FIG. 10. Profiles of the electron energy flux Qe, blue line open
circles, of the convective contribution Qce, blue line closed
squares, and of the heat flux qi, black line closed triangles.

FIG. 11. Profile of the electron thermal energy Te of the
equipartition thermal energy taking into account the non van-
ishing heat-flux Teq. Blue line closed circles Te. Black line
open triangles Teq, dashed horizontal black lines, sheath value
of Te leading to the sheath transmission factor γ ≈ 6.8.

with Te/Ts ≈ 0.163. The variation of Te is small
x = 0 to x ≈ 100, then slowly decreasing towards
Te/Ts ≈ 0.148 at the sheath entrance, see FIG.(11). Blue
curve closed circles, Te. The equipartition value Teq is
given in Eq.(42) but taking into account that Qc/Q < 1
due to the non-vanishing contribution of the heat-flux,
Teq = Ts/(3(1 +M2))Qc/Q. Black curve open triangles



18

FIG. 12. Profile of the ion thermal energy Ti, of the equiparti-
tion thermal energy equipartition thermal energy taking into
account the non vanishing heat-flux Teq, and Tiγ . Ti blue line
closed circles, Teq black line open triangles, Tiγ black curve
open diamonds.

Teq/Ts. Note that Teq the equipartition prediction of Te

yields Te/Ts ≈ 0.15 at the sheath entrance. The equipar-
tition condition appears to be met close to the sheath
entrance. This could be a coincidence. The fluid descrip-
tion using qe = qi = 0 as closure, leads to Te constant
Te/Ts = 1/3, therefore too large by roughly a factor 2.
Reducing the effective source of convective energy flux to
account for the energy transferred to the electron heat-
flux qe yields a reasonable order of magnitude at x = 0,
Te/Ts ≈ 0.154, but increasing with x and overestimat-
ing Te/Ts by a factor 1.7 at the wall boundary. Given
Eq.(45a), and the value of Te/Ts = 0.148 at the sheath
entrance, one can determine the sheath transmission fac-
tor γ ≈ 6.8. Sheath constrained electron thermal energy
Te/Ts = 0.148, dashed horizontal line on FIG.(11). One
finds that the equipartition value overestimates Te while
the sheath constraint underestimates Te.
The ion thermal energy Ti exhibits a variation in the
parallel direction in qualitative agreement with the ex-
pected behavior when neglecting the heat flux, FIG.(12).
Blue curve closed circles Ti, black curve open triangles
Teq, black curve open diamonds Tiγ . One finds however
that Ti is smaller than the equipartition value Eq.(42)
but exhibits a comparable profile. Correcting this value
to account for the heat-flux yields Teq, which is found
to underestimate Ti and to give a similar profile al-
though with reduced amplitude. One can expect that
Teq gives a lower bound of Ti because of the energy trans-
fer from the electrons to the ions via the parallel electric
field. Finally one determines Ti according to Eq.(45b),
Tiγ = Ts(γ−3M2)/(3γe(1+M2)). The latter expression

gives a fair agreement with Ti overestimating Ti close to
x = 0 and then underestimating Ti for x ≳ 100. One
can notice than Teq is close to the values of Ti and con-
sequently Te at the sheath entrance. Equipartition is ob-
served Ti ≈ Te at this location. Otherwise, from x = 0 to
the sheath entrance, one observes that Ti > Te. Despite
the same energy source for the ion and electron channel,
the fact that the ion energy flux is larger than the elec-
tron energy flux and that the electron heat-flux is larger
than the ion heat-flux qe > qi enforces that 3Ti+miu

2
i is

sufficiently larger than 3Te to yield Ti > Te despite the
large value taken by ui in most of the plasma region.
One can also determine the sheath transmission factor
for each species γi = Qi/(ΓTi) and γe = Qe/(ΓTe), which
yields γi ≈ 4.1 and γe = 2.7 both values being larger than
1.5. The large value for γi reflects the importance of the
energy proportional to u2

i , of order 3(Ti + Te), in the ion
energy flux.

E. Completing the fluid description of the
SOL-sheath self-organization

1. Non-collisional closure

The fluid closure we have chosen in Section III C is to
set the heat-flux to zero. We have seen when comparing
the fluid prediction to the evidence of the kinetic simu-
lation that this simplifying assumption does not hold in
particular for the electrons. This shortfall emphasizes the
kinetic nature of the self-organization process. However,
this does not mean that a fluid description cannot address
the heat-flux physics since one can increase the number of
moments used in the fluid description, or address a bet-
ter closure of the Navier-Stokes 3-moment fluid model
by allowing the heat to be finite. In many models of
plasma-wall interaction a collisional closure for the heat
flux is retained, so that for a species a qa = −κa∂sTa.
One finds that κa does not depend on density, exhibits

a non-linear dependence on the thermal energy T
5/2
a ,

and is typically proportional to the inverse of the mass
square root 1/

√
ma. Such a local formulation assumes

that Lcoll∂sTa/Ta ≪ 1 where Lcoll is the collision mean
free path. When addressing plasma-wall interaction this
assumption is an issue so that non-local features are being
addressed [50, 51]. Regarding the comparison to the low
collisionality reference simulation, ν⋆0 = 0.1, see Table I,
the collision mean free path is typically 10L∥ so that the
random walk conditions underlying the collisional closure
are not fulfilled. Furthermore, we have observed that
the electron heat-flux qe builds-up in the source region
at nearly constant, or even slightly positive temperature
gradient. It then appears more interesting to address a
non-collisional closure such that the heat-flux q is a linear
combination of the lower moments [52–54]. The starting
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point are the linearized time dependent fluid equations.

∂tñ+∇sΓ̃ = 0 (46a)

∂tΓ̃ +∇s

(
p̃e/me

)
= enŨ/me (46b)

∂t
(
Π̃e/me

)
+∇s

(
2(Q̃e)/me

)
= 2eΓŨ/me (46c)

Setting Ω = ω/(kVe) with meV
2
e = T0, p0 = n0T0, and

linearizing nŨ ≈ n0Ũ and ΓŨ ≈ Γ0Ũ one then obtains
in Fourier space:

Ω
n̂

n0
=

Γ̂

n0Ve
(47a)

Ω
Γ̂

n0Ve
=

p̂e
p0

− eÛ

T0
(47b)

Ω
p̂e
p0

=
2Q̂e

p0Ve
− 2Γ0

n0Ve

eÛ

T0
(47c)

As done when determining the sound velocity in Section

III B 3, 2Q̂e/(p0Ve) is then projected on the lower mo-

ments n̂, Γ̂ and Π̂e ≈ p̂e, therefore:

2Q̂e

p0Ve
= an

n̂

n0
+ aΓ

Γ̂

n0Ve
+ aπ

p̂e
p0

(48a)

So that Eq. (47c) becomes(
Ω− aπ

) p̂e
n0T0

=
(
an +ΩaΓ

) n̂

n0
− 2Γ0

n0Ve
ϕ̂ (48b)

and therefore Eq. (47b) becomes

n̂

n0
= ϕ̂

Ω− aπ + 2Γ0/(n0Ve)

an +ΩaΓ +Ω2aπ − Ω3
(48c)

In Section III B 3, the projection coefficients an, aΓ and
aπ were determined by approximation Qe ≈ Qce. In the
proposed non-collisional closure we determine these co-
efficient by matching the relation between the electron
density response to fluctuations of the electric potential
of the fluid and kinetic frameworks. In that case, using
the Poisson equation, one enforces the same dispersion
relation for Langmuir waves, recovering Landau damp-
ing in the fluid framework. However, a perfect match
between the electron density response of the fluid and ki-
netic framework is not possible and we restrict here the
match to the first terms of an expansion in Ω, hence for
Ω → 0 and c = ω/k ≪ Ve.
In the kinetic framework one considers the linearized
Vlasov equation for the electrons, the distribution func-

tion fe being split into fluctuations f̃e and equilibrium
fe contributions:

∂tf̃e + v∂sf̃e +
e

me
∂sŨ ∂vfe = 0 (49a)

so that one obtains for the Fourier modes :(
v − ω

k

)
f̂e = − T0

me
ϕ̂ ∂vfe (49b)

The equilibrium contribution is chosen to be a shifted
Maxwellian:

fe =
n0√
2πVe

exp(−w2)

where w2 = (v − u)2/(2V 2
e ) and such that ∂vfe =√

2wfe/Ve, therefore:

f̂e =
(
1 +

y

w − y

)
ϕ̂ fe (50a)

y =
|ω/k − u|√

2Ve

=

√
2

2
|Ω− εu| (50b)

with εu = u/Ve. The definition of y proportional to the
absolute value of Ω − εu anticipates on the integration
over w in the complex plane and the continuity require-
ment when Ω− εu changes sign. Integrating over w, one
then finds:

n̂

n0
=

1√
π

∫ +∞

−∞
dw

(
1 +

y

w − y

)
e−w2

ϕ̂ (50c)

The Fried and Conte function Z is defined by:

Z(y) =
1√
π

∫ +∞

−∞
dw

e−w2

w − y

one obtains:

n̂

n0
=

(
1 + yZ(y)

)
ϕ̂ (50d)

The Taylor expansion of the Fried and Conte function to
first order is Z(y) ≈ i

√
π−2y so that the kinetic relation

between the density and electric fluctuations is:

n̂

n0
=

(
1 + i

√
π

2
|Ω− εu| − (Ω− εu)

2 + . . .
)
ϕ̂ (51a)

Linearizing with respect to εu one then obtains:

n̂

n0
=

(
1− εuRi +Ω

(
Ri + 2εu

)
− Ω2 + . . .

)
ϕ̂ (51b)

Ri = i

√
π

2
sign(Ω− εu) (51c)

To identify the fluid and kinetic result one must now
expand Eq. (48c)

n̂

n0
= ϕ̂

Ω+ b

an + aΓΩ+ aπΩ2 − Ω3
(52a)

b = −aπ + 2εu

n̂

n0
= ϕ̂

1

an

(
b+Ω

)(
1− aΓ

an
Ω− aπ

an
Ω2 +

a2Γ
a2n

Ω2 + . . .
)

n̂

n0
= ϕ̂

( b

an
+

1

an

(
1− baΓ

an

)
Ω

+
(ba2Γ
a3n

− baπ
a2n

− aΓ
a2n

)
Ω2 + . . .

)
(52b)
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Identifying the kinetic and the fluid expansions then
yields the following relations:

b =
(
1− εuRi

)
an(

1− b
aΓ
an

)
= an

(
Ri + 2εu

)
aΓ
an

(
1− b

aΓ
an

)
+

b

an
aπ = an

aπ = − b

an
an + 2εu

aΓ
b

an
= 1− an

(
Ri + 2εu

)
aΓ

b

an

(
Ri + 2εu

)
+

b2

a2n
aπ = an

b

an

(
Ri + 2εu

)
+ 2εu

b2

a2n
= an

( b

an
+
(
Ri + 2εu

)2
+

b3

a3n

)
an

(
2 +R2

i − εuRi + 4εuRi − 3εuRi

)
= Ri + 4εu

an =
Ri

2 +R2
i

+ εu
4

2 +R2
i

aπ = − Ri

2 +R2
i

+ εu
3R2

i

2 +R2
i

aΓ =
2

2 +R2
i

− εu
4Ri

2 +R2
i

Given 2R2
i = −π these expressions can readily be simpli-

fied:

an =
2Ri

4− π
+ εu

8

4− π
(53a)

aπ = − 2Ri

4− π
− εu

3π

4− π
(53b)

aΓ =
4

4− π
− εu

8Ri

4− π
(53c)

At order 0 in εu, an = −aπ and both are complex while
the order 1 contributions to both an and aπ are real.
Conversely, at order 0 aΓ is real while the order 1 is com-
plex. The complex contributions account for the Landau
damping. More interesting for our purpose is the contri-

bution AΓ that leads to Q̃e = T0Γ̃2/(4 − π) ≈ 2.33T0Γ̃
this contribution is larger than the electron convective

energy flux 3
2T0Γ̃. This indicates that the heat flux con-

tributes to the energy flux and exhibits a contribution
proportional to the particle flux typically of the form

γhΓ̃Te with γh = 0.83. This result is consistent with
the fact that the heat-flux contributes to the energy flux
impinging onto the wall. This closure also modifies the
calculation of the sound wave velocity as addressed in the
following Section.

2. Modified sound velocity with non-collisional closure

With the non-collisional closure one has determined
the linear dependence of the heat-flux on the lower or-
der moments, namely n, Γ and Π. One can then com-
pute the coefficients an = ∂n(2Q/mi), aΓ = ∂Γ(2Q/mi)
and aπ = ∂Π(2Q/mi) stepping beyond the approxima-
tion Q = Qc as in Eq.(25). The coefficients an, aΓ and
aπ obtained with the non-collisional closure Eq.(53), can
then be used to determine the sound velocity and the de-
parture from that previously obtained Eq. (26). We con-
centrate on the real contribution since imaginary terms
will govern damping or instability processes. We now
consider Eq. (18b)

c3 − aπ c2 − aΓ c− an = 0 (54a)

where the three coefficients aπ, aΓ and an are modified
by taking into account the non-collisional closure of the
electron heat flux qe so that an ≈ a′n, aΓ ≈ a′Γ+2γhTe/mi

and aπ ≈ a′π. The coefficients a′n = ∂n(2Qc/mi), a
′
Γ =

∂Γ(2Qc/mi) and a′π = ∂Π(2Qc/mi) are those previously
used to determine the sound velocity Eq.(25). The non-
collisional closure yields coefficients that do not meet the
constraint Eq.(21a) and therefore exclude the root c = u.

aπ = 3u ; aΓ = 3
(
V 2 − u2

)
+ 2γh

Te

mi
(54b)

an =u3 − aπu
2 − a′Γu (54c)

Using Eq. (54c) and defining δV 2 = 2γh
Te

mi
one then

obtains: (
c− u

)3 − 3V 2
(
c− u

)
− δV 2c = 0 (55)

The root such that c = u is excluded. We consider the
root c0 = u+ δu and assume δu ≪ V so that the disper-
sion equation is then:(

c− c0 + δu
)3 − 3V 2

(
c− c0 + δu

)
− δV 2

(
c− c0)− δV 2c0 = 0 (56)

Assuming δu ≪ V , the dispersion equation is then:(
c− c0

)((
c− c0

)2
+ 3δu

(
c− c0

)
− 3V 2 − δV 2

)
− 3V 2δu− δV 2c0 = 0 (57)

At lowest order in δu, the constraint to ensure that c0 is
a root is therefore:

δu = −δV 2

3V 2
u (58)

Then for c ̸= c0 one must solve:(
c− c0

)2
+ 3

(
c− c0

)
δu− 3V 2 − δV 2 = 0 (59)

The roots of this equation are then:

c± − c0 = ±
√
3V 2

[
1 +

δV 2

6V 2

(
1± 3

u√
3V 2

)]
(60)
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One finds that the sound wave with positive phase ve-
locity c+ is shifted to a sound velocity larger than

√
3V 2

while the sound wave with negative phase velocity, hence
opposite to the fluid velocity for the right hand side
sheath, is shifted to a modulus of the sound velocity
smaller than

√
3V 2 provided u ≥ 1

3

√
3V 2. We there-

fore find that the fluid velocity that must be reached
so that the sound waves propagating against the flow
are at rest in the frame attached to the wall, is smaller
than previously computed. The condition to generate a
standing shock wave are therefore met for a mean ve-
locity u smaller than

√
3 V . This trend agrees with the

observation made in the reference simulation where the
sheath horizon location suggests that u ≈ 1.5 V <

√
3 V ,

see FIG. 4 and discussion in Section IIA and Section
IIID. Note that the downshift of the sound velocity for
the sound waves propagating against the mean fluid flow
computed here is only approximate since it has been de-
termined in the limit δV 2 ≪ 3V 2.

3. Asymptotic matching of SOL at the sheath horizon

We address here the plasma properties at the sheath
horizon within the fluid framework. The horizon is as-
sumed to be at z → +∞ where z is the curvilinear ab-
scissa with origin at the wall and oriented towards the
plasma. We then expand the various fluid moments in
powers of 1/z [4]. Within the sheath, the total momen-
tum flux of the plasma Π can be written as:

Π = Πqn − ηTe ; Πqn =
2Qc/3

ui
+ 2

3miΓui (61a)

As done for the SOL plasma Qc stands for the convec-
tive energy flux, equal to the total energy flux when ne-
glecting the heat flux. The asymptotic conditions are
determined by assuming that Π is constant so that in
Eq. (61a), the variation of Πqn is balanced by the vari-
ation of the last term. One therefore expands Πqn in
powers of 1/z and identify this expansion with the expan-
sion of ηTe. One determines η = ρc/e using the Poisson
equation such that ρc ∝ d2zδϕ. The term Πqn is shown
to be a function of δϕ where δϕ is the variation of ϕ.
We choose as reference electric potential the asymptotic
value at the sheath horizon ϕ∞ . One therefore expects
a shift by two orders of the expansion of η compared to
that of δϕ and therefore of Πqn(δϕ). Such a shift to-
gether with the identification of the remaining leading
order contributions, then yields consistency constraints
at the sheath horizon.
When the electron thermal energy Te is taken constant,
the momentum balance for the electrons yields the stan-
dard adiabatic response for the electron density:

ne = n∞eδϕ ; δϕ = ϕ− ϕ∞ (61b)

Choosing the space normalization defining z to be the
Debye length at the sheath horizon, λ2

D = ε0Te/(e
2n∞),

the normalized charge density η = ρc/n∞ determined by
the Poisson equation then allows one to determine the
ion density ni:

ρc = −n∞∆ϕ ; ni = ne − ρc (61c)

Let us now define the δϕ functions that determine the
ion density.

F (δϕ) = exp(δϕ)− 1 ; G(δϕ) = ∆ϕ = ∆δϕ (62a)

One can then write:

ni = n∞

(
1 + F (δϕ)−G(δϕ)

)
(62b)

Due to scale separation, one can assume that the varia-
tion of both the particle flux Γ and energy flux Qc are
small, consequently negligible at the relevant scale at the
sheath horizon. One thus finds that the variation of Πqn

only depends on that of the ion mean velocity ui = Γ/ni.
Therefore, given Γ = Γ∞ one can write:

1

ui
=

ni

Γ
=

1

u∞

(
1 + F (δϕ)−G(δϕ)

)
(62c)

1

u∞

=
n∞

Γ∞

(62d)

Let us now define ΠQ, ΠΓ and Πη:

ΠQ =
2Qc/3

u∞

; ΠΓ = 2
3miΓu∞ ; Πη = n∞Te (63a)

One can then write:

Π = Π∞ = ΠQ

(
1 + F (δϕ)−G(δϕ)

)
+ΠΓ

1

1 + F (δϕ)−G(δϕ)
+ ΠηG(δϕ) (63b)

At the sheath horizon z → +∞ and δϕ → 0 so that one
can expand the latter expression in powers of F (δϕ) −
G(δϕ) given that by definition F (δϕ) → 0 and G(δϕ) → 0
so that F (δϕ)−G(δϕ) → 0.

Π = Π∞ = ΠQ

(
1 + F (δϕ)−G(δϕ)

)
+ΠηG(δϕ)

+ ΠΓ

(
1−

(
F (δϕ)−G(δϕ)

))
+ΠΓ

((
F (δϕ)−G(δϕ)

)2
+ . . .

)
(64a)

and therefore:

Π∞ = ΠQ +ΠΓ +
(
ΠQ −ΠΓ

)
F (δϕ)

−
(
ΠQ −ΠΓ −Πη

)
G(δϕ)

+ ΠΓ

(
F (δϕ)2 − 2F (δϕ)G(δϕ) + . . .

)
(64b)

If one now assumes the leading order term of F (δϕ) to
be:

F (δϕ) = AF
K

1

zK
+ . . .
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One can then determine the leading term in the expan-
sion of G

G(δϕ) = K(K + 1)AF
K

1

zK+2
+ . . .

Since Π is assumed to be constant, Π = Π∞ , one then
obtains the two first constraints:

Π∞ = ΠQ +ΠΓ (65a)

0 = ΠQ −ΠΓ (65b)

so that the remaining contributions to the expansion are
then:

0 = ΠηG(δϕ) + ΠΓ

(
F (δϕ)2 + . . .

)
(65c)

The constraint ΠQ = ΠΓ yields:

Q∞ = miΓ∞u2
∞

therefore:

n∞

(
3
2T∞ + 1

2miu
2
∞

)
= min∞u2

∞

and consequently determines both u∞ and Π:

miu
2
∞

= 3T∞ (66a)

Π = Π∞ = 4n∞T∞ (66b)

Finally one must enforce that the chosen solution is not
the trivial solution F (δϕ) = 0 and G(δϕ) = 0 of Eq. (65c)
by enforcing the lowest order constraint:

0 = ΠηK(K + 1)AF
K

1

zK+2
+ 1

2Π∞

(
AF

K

1

zK

)2

(67a)

which yields:

K = 2 (67b)

AF
2 = −3Te

T∞

(67c)

To close this calculation one can note that F (δϕ) ≈ δϕ.
Since AF

K , δϕ ≤ 0, the sheath electric potential is smaller
than the value at the sheath horizon, and similarly for
the densities since ne ≈ ni ≈ δϕ. Since ρc = −n∞G(δϕ),
and given the constraint Eq. (65c), one finds that:

ρc = −n∞G(δϕ) = n∞

ΠΓ

Πη

(
F (δϕ)2 + . . .

)
ρc ≈ n∞

Π∞

2Πη
δϕ2 = n∞

2T∞

Te
δϕ2 ≥ 0 (68a)

dρc
dδϕ

= n∞

4T∞

Te
δϕ ≤ 0 (68b)

One therefore recovers that the charge density within the
sheath is positive ni ≥ ne and that the charge density
derivative with respect to δϕ has the same sign as δϕ

and is therefore negative. Taking into account that ϕ =
ϕ∞ + δϕ, one can recast the latter property as:

dne

dϕ
≥ dni

dϕ
(68c)

This constraint holds within the sheath and the equality
being satisfied at the sheath horizon z → +∞.

To perform the expansion we have assumed that Π
is constant in the neighborhood of the sheath horizon,
therefore neglecting the electric force −ρc∇ϕ compared
to the variation of ∇Πqn and Te∇ρc, Te being assumed
constant. The constraint of balancing the variation
of Πqn by that of ρcTe, Eq. (67a) is satisfied at order
1/z4 so that we have used Π constant up to order 1/z5

with no constraints on the higher order terms of the
expansion, terms of order 1/z6 and higher. Since ρc
is of order 1/z4 and ∇ϕ of order 1/z3, one finds that
−ρc∇ϕ of order 1/z7. This term only contributes to
the variation of Π at order 1/z6 which is not addressed
by the analysis. One finds therefore that the variation
of Π governed by the electric force −ρc∇ϕ can be
neglected at the sheath horizon so that Π is constant
within the required precision of the calculation. It is
also interesting to underline that taking into account the
departure from quasineutrality on the Debye scale, there
is no discontinuity at the sheath horizon. Furthermore,
the high order expansion in 1/z suggests that the sheath
horizon is smooth with little variation. The strong
gradients are found to develop for z → 0 towards the
wall location.

With this analysis of the plasma variation at the sheath
horizon we have found two constraints: u2

∞
= 3V 2

∞
, which

corresponds to the Bohm criterion given the sound veloc-
ity c2s = 3V 2 Eq.(66a), and dne/dϕ ≥ dni/dϕ Eq.(68c).
Using the control parameter As Eq. (41c), one can read-
ily show that these two constraints are equivalent in the
fluid framework. At the sheath horizon, the particle flux
Γ is constant, therefore dΓ/dϕ = 0. One then finds that
the sign of dAs/dϕ is opposite to the sign of dΠqn/dϕ.
According to Eq. (61a) and given Π = constant the sign
of dΠqn/dϕ is identical to that of dρc/dϕ.

dAs

Asdϕ
= − dΠqn

Πqndϕ
=

dM

Mdϕ

1−M2

(1 +M2)(1 + 3M2)

dM

Mdϕ
= − 1

1 + 2M2

dn

ndϕ
< 0

dΠqn

Πqndϕ
=

dρc
ρcdϕ

Combining these expressions one finds that the sign
of dρc/dϕ is determined by the sign of 1 − M2. The
sheath condition M2 ≥ 1 is therefore equivalent to
the condition dρc/dϕ ≤ 0, the equality being met at
the sheath horizon. As expected and discussed in the
literature, these two fluid constraints are found to be
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equivalent.

The understanding of the transition into the sheath
regime that stems from the matching of the SOL and
sheath behavior is governed by the variation of the con-
trol parameter As. In the SOL, the region of quasineutral
plasma As increases with the particle flux Γ with Πqn

constant. When As reaches its maximum value As = 1,
M2 = 1, at the sheath horizon, the variation of As be-
come negligible with respect to the increase of Πs gov-
erned by the departure from quasineutrality. The control
parameter As then decreases and the fluid can access the
supersonic regime without generating a discontinuity. At
the sheath horizon, for z → +∞ where z is linear in s
with origin at the wall, no discontinuity is found because
of the typical dependence on z−2. According to the be-
havior at the sheath entrance, the expansion in 1/z for
large values of z suggests that the discontinuity, if any,
will take place at the wall location as z → 0. By construc-
tion of the sheath entrance, the behavior at this point is
in the continuity of that of the SOL plasma, therefore
similar to that in the SOL plasma. It is only the starting
point of a gradual increase of the gradients that become
maximum at the wall position.

4. Discontinuity of the steady-state solution

In this Section we use the formalism of Section III B 5
to investigate the transition into the sheath, and exam-
ine the criterion based on the discontinuity of the steady
state solution. The starting point is therefore the sys-
tem Eq.(31) for steady state conditions and restricting
the right hand side term Zℓ to the source term as in
Eq.(32a) We therefore consider Zℓ = Sℓ−1 completed by
Eq. (14b).

dsMℓ = Sℓ−1 (69a)

Nℓ =

ℓ∑
j=0

Cj
ℓ (−u)jMℓ−j (69b)

We differentiate Eq.(69b) and therefore:

dsNℓ =

ℓ∑
j=0

Cj
ℓ (−u)jdsMℓ−j

− dsu

ℓ∑
j=1

jCj
ℓ (−u)j−1Mℓ−j

One can then replace dsMℓ−j by the source Sℓ−j−1 ac-
cording to Eq.(69a), with some caution when handling
S−1 that we set by construction identical to dsM0, S−1 =
dsM0. One take into account that M0dsu + udsM0 =
dsM1 = S0 and, recall the relation Eq.(34) obtained in
Section III B 5:

ℓ∑
j=1

jCj
ℓ (−u)j−1Mℓ−j = ℓNℓ−1

One then relates the derivatives of M0 and Nℓ to the
source terms:

−
(
u
ℓNℓ−1

M0
+ (−u)ℓ

)
dsM0 + dsNℓ

=

ℓ−2∑
j=0

Cj
ℓ (−u)jSℓ−j−1 + ℓ

(
(−u)ℓ−1 − Nℓ−1

M0

)
S0 (70)

Two types of closures have been addressed in Section
III B 5, for ℓ = 2, we have defined N2 = V2M0 with V 2

constant, while for ℓ ≥ 3Nℓ = 0 has been considered. For
either choice of the closure, one can then use Eq.(70) to
determine udsM0. A singularity will appear if the coeffi-
cient of udsM0 on the left hand side of Eq.(70) vanishes
while the right hand side cannot be null.
For ℓ = 2, we have dsN2 = V2dsM0. Given N1 = 0, this
leads to: (

V 2 − u2
)
dsM0 = S1 − 2uS0 (71a)

One finds that the derivative dsM0 diverges for u2 → V 2

whenever S1 − 2uS0 ̸= 0. At the divergence point u2 =
V 2, we have shown that the phase velocity of the sound
wave verifies (c − u)2 = V 2 = c2s, Eq.(37a), so that one
finds (c− u)2 = u2 and therefore either c = 2u or c = 0.
The latter condition leading to a standing shock at the
divergence point. However, if S1−2uS0 = 0 can be satis-
fied, then V 2−u2 = 0 where S1−2uS0 = 0, so that there
is no divergence and a smooth transition at u2 = V 2.
When replacing Π with Πeq, Π = Πqn−ηTe Eq.(61a), one
modifies S1, S1 ≈ Tedsη/mi. Here we have neglected the
contribution proportional to the electric field E, eηE/mi,
assuming that the condition Tedsη/mi ≫ eηE/mi pre-
viously verified when discussing the expansion at the
sheath horizon, Section III E 3. In the reference simu-
lation the ratio between these two terms exceeds 100 in
the region of interest, prior to the sheath entrance and
nearly up to the wall. Close to the wall these two terms
become comparable. A smooth transition at the Bohm
condition u2 = c2s occurs together with the constraint:

dsη =
2miuS0

Te
(71b)

If one lets S0 small, one obtains a threshold in dsη ≥ 0.
Since S1 is assumed null for η = 0 in the quasineutral
region, the transition at u2 = V 2, therefore the sheath
entrance is characterized by the Bohm criterion M2 = 1,
together with dsη → 0+. When relaxing the quasineu-
trality constraint, one removes the singularity at M2 = 1
by enforcing the constraint Eq.(71b) at the sheath en-
trance. Then both denominator and numerator change
sign so thatM0 remains a monotonically decreasing func-
tion.
For ℓ = 3, one closes the hierarchy with N3 = 0, so that
Eq.(70) with N2 = V 2M0 reads:

− u dsM0

(
3V 2 − u2

)
= S2 − 3uS1 + 3S0

(
u2 − V 2

)
= S0

(2Ts

mi
+ 3u2 − 3V 2

)
− 3u

Te

mi
dsη
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When taking into account Eq.(40c) yielding 2Ts/mi =
3V 2 + u2 to obtain:

− u dsM0

(
3V 2 − u2

)
= 4u2S0 − 3u

Te

mi
dsη (72a)

One finds that there is no singularity for u = 0 and that
the singularity for u2 = 3V 2 is avoided provided:

dsη =
4miuS0

3Te
(72b)

This constraint is similar to that determined for ℓ = 2
and indicates that for S0 → 0 the sheath constraint is
set by dsη ≥ 0, the condition dsη = 0 being met when
u2 = 3V 2, the Bohm condition M2 = 1. The sheath
entrance is therefore characterized by the continuity of
the derivative dsM0 with a value corresponding to that
of the SOL plasma, M0 monotonically decreasing on the
characteristic length scales of the SOL, prior to a sharper
decrease with variations on the Debye scale towards the
wall.
Generalizing the result obtained for ℓ = 3 with the clo-
sure Nℓ defined to be null, therefore dsNℓ = 0, one ob-
tains dsM0:

− udsM0 =
Nℓ

Dℓ
(73a)

Nℓ =

ℓ−1∑
j=0

Cj
ℓ (−u)jSℓ−j−1 − ℓ

Nℓ−1

M0
S0 (73b)

Dℓ =
ℓNℓ−1

M0
− (−u)ℓ−1 (73c)

One recovers the possible divergence when the denom-
inator Dℓ is null. The latter condition occurs when
(−u)ℓ−1 = cℓ−1

s , therefore depending on the sound veloc-
ity, Eq.(39). One recovers here sign issues for the even
values of ℓ = 2ℓ′ that can only be resolved if N2ℓ′−1 ≤ 0.
For the odd values of ℓ, Dℓ = 0 yields u = ±cs where
cs verifies Eq.(39b). For example, for ℓ = 4, D4 = 0
leads to u3 = −4N3/M0. The sign of the solution for u
is the opposite of the sign of N3. This condition is not
met in the reference kinetic simulation where the heat
flux q ∝ N3 exhibits the same sign as the mean velocity
u. One can override such difficulties by prescribing that
the closure Nℓ = 0 can only be considered for odd values
of ℓ. The divergence of udsM0 governed by Dℓ = 0 can
be removed by setting the numerator to zero Nℓ = 0.
As discussed for S1, one must include possible contri-
butions proportional to the electric field in the source
terms Sj with j > 2. One can still prescribe a condition
on dsη, but the constraint will become more complicated.

The possible discontinuity of the derivative of the mo-
ment M0 = n, and consequently of other fields such as
the Mach number, is found to be closely related to the
sound velocity and occurring via a vanishing denomina-
tor at Mach = 1. Analyzing the numerator, one finds
that it vanishes when a constraint of the derivative of the

charge density η = ni − ne is satisfied, namely dsη ∝ S0,
S0 being the particle source. A smooth transition is
thus enforced where both denominator and numerator
change sign. The plasma then switches from subsonic
with dsη → 0 to supersonic when dsη becomes finite.
We therefore recover the results obtained by asymptotic
expansion in the vicinity of the sheath horizon Section
III E 3. In the asymptotic limit of the sheath, one as-
sumes that S0 → 0 so that the sheath criterion is dsη ≥ 0
and the sheath entrance the point where dsη departs from
zero. However, the asymptotic matching in Ref.[4] is de-
termined for a finite value of S0, and the sheath entrance
atMach = 1 is therefore shown to occur for dsη > 0. One
must remark here that in Ref.[4], the asymptotic match-
ing is performed by assuming that at constant thermal
energy T the unique control parameter is A, therefore As

Eq.(41c) with varying thermal energy. This meaning that
all quantities of interest, therefore both the Mach number
and dsη only depend on As. In the reference simulation,
S0 → 0 so that in the fluid framework one expects the
sheath entrance to correspond to the point where dsη
departs from zero. However, the simulation evidence in-
dicates that other control parameters than As are at play
since the mean velocity varies while As is constant, see
FIG.(6). This suggests that the actual sheath entrance
criterion is a change in the scale dependence of dsη rather
than the point where dsη departs from zero. One must
stress here that the actual quasineutrality limit η → 0
departs from the condition η = 0 that is enforced, the
latter requiring dsη = 0 while the former only requires
|dsη| → 0. A criterion base on the change in the scale
dependence of dsη is therefore in better agreement with
the physics, and, quite consistently, much easier to im-
plement when analyzing the simulation evidence.
We have found that a possible discontinuity of the deriva-
tive of the momentM0 = n atMach = 1 is resolved when
enforcing a criterion on dsη, the gradient of the charge
density. This criterion governs a smooth transition from
subsonic to supersonic flow regime. The understanding
of the sheath as a standing shock wave corresponds to
the asymptotic limit L∥/λD0 → +∞. When addressing
charge separation on the Debye scale λD0 , hence for finite
values of L∥/λD0 , the discontinuity is resolved. However,
the scale of the gradients changes from typically L∥ to
λD0

≪ L∥ within the sheath. One predicts therefore a
smooth transition into the sheath region, the gradients
only steepening as one gets closer to the wall limit, in
agreement with the simulation evidence, see FIG.(3).

5. Fluid prediction capability of SOL-sheath
self-organization

The fluid prediction of the plasma behavior, compared
to the reference kinetic simulation, appears to give a
qualitative description of the plasma variation from the
source region to the wall. Conserved fluxes are recovered.
The fluid mean velocity and the thermal energies of each
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species determined with the fluid model exhibit the ap-
propriate trends but the agreement is rather poor. An-
other shortfall of the fluid description is that outside the
source region, where the plasma particle, momentum and
energy fluxes are constant, one can observe variations of
the thermal energies, mean fluid velocity, heat flux, etc.
Such variations are not expected in the fluid framework.
These can only be understood as kinetic effects, including
collisions, that modify the distribution functions. In the
kinetic response one finds therefore that the number of
degrees of freedom of the system is larger than the three
retained within the fluid Navier-Stokes framework.
One can also observe that the actual value of the mo-
mentum flux Π is smaller in the kinetic simulation than
predicted. The self-organization properties are different.
Given these differences, there is no accurate prediction
regarding the sound velocity. Consequently the Bohm
criterion does not provide a predictive capability to de-
termine the sheath entrance. However, knowing the lo-
cation of the sheath entrance, and therefore the value of
the fluid mean velocity at that location, one can modify
the closure properties to recover consistency.
Another difference, is the contribution of heat-fluxes to
the energy flux. The latter is modest for the ion chan-
nel but amounts to nearly 50% of the electron channel.
The heat-fluxes are also found to contribute to the energy
fluxes to the wall, a property that does not agree with
the picture of the heat-flux being an energy exchange at
zero particle flux. (Since no plasma outflux from the wall
is possible, with only neutral outflux after plasma perfect
recombination, therefore zero plasma particle outflux, the
zero net particle flux constraint for heat exchange then
enforces zero heat-flux to the wall.)
Alternative closures have been investigated: polytropic,
non-collisional, and at higher fluid moments. These do
not readily improve the predictive capability. However
they remain a tool for interpreting the evidence from ki-
netic simulations. They provide in particular a means to
understand the role of heat-flux in the self-organization
process between the SOL plasma and the sheath con-
straints.
Finally, the analysis of the transition into the sheath indi-
cates that one expects a change in the characteristic scale
of the charge density gradient dsη > 0 at the sheath en-
trance. Resolving the Debye scale then removes the shock
wave like discontinuity at the sheath entrance, driving a
smooth transition into the sheath and steepening of the
gradients on the Debye scale towards the wall.

IV. KINETIC CONSTRAINT ON THE ION
OUTFLUX

We now analyze the kinetic constraint that determines
the sheath entrance. It was first published in ref.[11],
then in later papers [13]. We first present the original
derivation and then adapt it to the actual conditions
met in the simulations. The constraint is addressed in

steady state at the sheath horizon assumed to be stand-
ing at x → +∞ from the wall. The starting point is the
normalized Poisson equation Eq. (2b), slightly modified
here to account for a possible change of the normalization
length scale L.

ε2D

( d

dx

)2

ϕ = −ρc (74a)

This equation takes the form of a Newton equation with
mass ε2D = λ2

D0/L
2, position ϕ, time x and applied force

−ρc = ne−ni. The sheath entrance stands at the horizon
x → +∞ and is labeled ∞. In a first step we compute
the first integral, multiplying Eq.(74a) by dϕ/dx and in-
tegrating over x.

1
2ε

2
D

(dϕ
dx

)2

− 1
2ε

2
D

(dϕ
dx

)2∣∣∣
∞

= G(ϕ) (74b)

G(ϕ) = −
∫ ϕ

ϕ∞

dϕ′ ρc (74c)

At the sheath horizon x → +∞, the potential ϕ∞ is
assumed to have a finite value, which enforces a vanishing
derivative dϕ/dx. The function G(ϕ), the opposite of the
potential energy of the dynamical system, is expanded in
the neighborhood of ϕ∞ , which yields:

1
2ε

2
D

(dϕ
dx

)2

= G(ϕ∞) +G′(ϕ∞)
(
ϕ− ϕ∞

)
+ 1

2G
′′(ϕ∞)

(
ϕ− ϕ∞

)2
+ . . . (75a)

By definition G(ϕ∞) = 0 and G′(ϕ∞) = −ρ∞ . Since
quasineutrality holds at the sheath horizon ρ∞ → 0, one
then finds that:

1
2ε

2
D

(dϕ
dx

)2

≈ 1
2G

′′(ϕ∞)
(
ϕ− ϕ∞

)2
(75b)

The sheath horizon constraint is therefore that G′′(ϕ∞) ≥
0, so that:

dne

dϕ

∣∣∣
ϕ∞

− dni

dϕ

∣∣∣
ϕ∞

≥ 0 (76a)

This constraint is not specific of either the fluid or kinetic
framework and indeed one can readily show that this con-
straint is equivalent to the Bohm constraint on the Mach
number M2 ≥ 1. The kinetic formulation of ref.[11] is
determined by computing dni/dϕ and obtaining an ex-
pression depending on the ion distribution function fi.
To achieve this calculation we consider the neighborhood
of the sheath horizon and the energy conservation of the
ions with potential energy ϕ, hence H = K + ϕ where
K = 1

2v
2. Here H is the total particle energy normalized

by the thermal energy T0 so that the velocity appear-
ing in K is the phase space velocity normalized by the
ion thermal velocity. For electrons, v will stand for the
phase space velocity normalized by the electron thermal
velocity. For both cases, ϕ is the previously normalized
electric potential. When neglecting the collisional inter-
actions H is conserved along the characteristics so that
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FIG. 13. Change of the ion kinetic energyK when varying the
electric potential ϕ0 − ϕ difference, where ϕ0 is a maximum
at the symmetry point x = 0. Given the sign of the velocity
sign(v), ions evolve to the right for positive velocities and to
the left for negative velocities according to the blue arrows.
The distribution indicated by the shaded region splits accord-
ingly, generating in particular a gap in the neighborhood of
the axis K = 0.

one can relate the distribution function fi(K,ϕ) to that
at the sheath horizon f∞ = fi(K∞ , ϕ∞). Let us consider a
source distribution function initially generated at x = 0,
the SOL symmetry point where the electric potential is
maximum, FIG.(13). Positive velocity particles evolve to
the right, x > 0, for the ions along the characteristics
K = K0 + ϕ0 − ϕ, the subscript 0 refers to the position
x = 0. Conversely, the negative velocities evolve to the
left, x < 0. In terms of the kinetic energy, this evolu-
tion opens a gap in the neighborhood of the axis K = 0.
In the simulations, this gap in the distribution function
is filled by the source term and by the collisions that
act as a restoring force towards a Maxwellian distribu-
tion, therefore with non vanishing values for all values of
K. One can note that the particles born within the gap,
such that K ≤ ϕ0 − ϕ, are trapped by the electrostatic
potential and cannot reach the point x = 0 along the
characteristics, an example is given by the dashed black
lines on FIG.(13).
Let us now consider the neighborhood of the sheath hori-
zon with electric potential ϕ∞ and given a decreasing elec-
tric potential towards the right hand side where the wall
is localized, dashed region on the right hand side. We
first only consider positive velocities since no ions are as-
sumed to flow back from the wall. From ϕ∞ , black dash-
dot vertical line, to ϕ < ϕ∞ , black dashed vertical line,
the distribution indicated by the shaded region is con-
vected along the characteristics, plain and dashed blue
lines. Since there is no source term in this region, the

FIG. 14. Change of the ion kinetic energy K with the vari-
ation electric potential difference ϕ∞ − ϕ. Ions for positive
velocities, plain blue line and dashed blue line accelerate to-
wards the wall on the right hand side. When neglecting the
possible occurrence of trapped ions, plain and dashed black
lines, the ion distribution function at ϕ is identical to that
at ϕ∞ as sketched by the shaded region. In such a frame-
work, there is a gap with no ions for K ≤ Kg at ϕ and for
K ≤ Kg − (ϕ∞ − ϕ) at ϕ∞ .

gap that is generated between K = 0 and Kϕ = ϕ∞ − ϕ
can only be fed by collisions. On a small distance, com-
parable to the Debye scale, we shall first assume that
collisions are negligible and that no particles are gener-
ated within the gap. At position ϕ, the density can be
determined by the velocity integration of the distribu-
tion function fi(v, ϕ) from vg to +∞. Here vg is such
that for v < vg, the distribution fi(v, ϕ) = 0. Here vg
is taken positive because we assume that the ion popu-
lation is outgoing and no particles stream back from the
wall. Given Kg = 1

2v
2
g , one must also have Kg ≥ ϕ∞ −ϕ.

ni(ϕ) =

∫ +∞

vg

dv fi(v, ϕ) =

∫ +∞

0

dK
fi(K,ϕ)

v(K,ϕ)

To perform the next steps we have conveniently set the
lower bound of the integral to zero, which leaves the in-
tegral unchanged because of the gap without particles,
and use the kinetic energy as integration variable. In
the calculation, one can then take into account that the
characteristics conserve δK, δK = δK∞ and that the dis-
tribution is constant along the characteristics fi(K,ϕ) =
fi(K∞ , ϕ∞) provided K+ϕ = K∞+ϕ∞ . One then obtains
the identity fi(K,ϕ)dK = fi(K∞ , ϕ∞)dK∞ . The density
ni(ϕ) can then be determined by the values of the distri-
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bution function at the sheath horizon fi(K∞ , ϕ∞).

ni(ϕ) =

∫ +∞

0

dK∞

fi(K∞ , ϕ∞)

v(K,ϕ)

One can then use v(K,ϕ) =
√
2(K∞ + ϕ∞ − ϕ) to deter-

mine dni/dϕ:

dni

dϕ

∣∣∣
ϕ
=

∫ +∞

0

dK∞

fi(K∞ , ϕ∞)

v(K,ϕ)3

Then setting ϕ → ϕ∞ one finally obtains:

dni

dϕ

∣∣∣
ϕ∞

=

∫ +∞

0

dv∞
fi(K∞ , ϕ∞)

v2
∞

(76b)

We have therefore recovered the expression of Ref.([11])
and the intrinsic difficulties in handling this expression
[13, 14]. Indeed such a result only holds if the ion pop-
ulation at small or negative velocity is fully depleted so
that fi(v∞)/v2

∞
→ 0 as v∞ → 0. As will be shown in the

following Section IVA, this proves to restrict the use of
this elegant result.

A. Kinetic constraint on the ion outflux

The simulation results highlight several shortfalls of
the constraints proposed in the previous Sections to de-
termine the location of the sheath entrance. Regarding
the fluid approach, a key issue is the closure of the Navier-
Stokes system Eq. (9). In 1-D, one finds that both the
particle and momentum balance equation are exact since
it only relies on the definitions of the fluid moments. The
only issue is therefore the closure of the third equation
and the importance of the heat flux. As discussed ear-
lier, modifying this closure will change the value of the
sound velocity, so that the Bohm criterion M = 1 is not
applicable in the kinetic framework because the sound
velocity is not readily determined.
In the analysis of the sheath constraint at the sheath
horizon, an important issue is that of charge neutral-
ity, quasineutrality with εD → 0. In realistic cases, this
asymptotic limit is not met since εD is small but finite.
Furthermore, when defining as εD as εD = λD0/L∥, we
have implicitly assumed that a unique scale character-
izes the SOL behavior. However, as the distance to the
wall decreases, the relevant scale in the parallel direction
can be seen to decrease. The effective value of εD, which
controls the variation of the electric field E = −dϕ/dx,
therefore gradually increases. The picture of an abrupt
change from scale L∥ to scale λD0

does not hold, in agree-
ment with the idea of a smooth transition into the sheath
conditions.
When plotting |ρc| obtained in the reference simulation,
FIG.(16) one finds four regions. In the two first regions
|ρc| ≈ ε2D and changes sign with the sign of the curvature
of the electric potential, hence the dips where ρc changes

FIG. 15. Change of the electron kinetic energy K when vary-
ing the electric potential ϕ∞−ϕ close the vicinity of the sheath
horizon. Electrons with positive velocity are slowed down to-
wards the wall. Those with energy K ≤ ϕ∞ − ϕ are trapped,
and reflected with negative velocity before reaching the wall.
The passing electrons with K > ϕ∞ − ϕ are absorbed by the
wall. For the electrons the existence of trapped particles does
not allow one to identify the electron density at ϕ given the
distribution function at ϕ∞ . An indicator of this issue is the
singularity of the integral Eq.(76b) as v → 0 since the distri-
bution function has finite values at v = 0.

FIG. 16. Profile of |ρc|, blue curve in log-scale. The reference
value of the small control parameter in the Poisson equation
ε2D is indicated by the horizontal dash-dot line. One can ob-
serve that ρc shoots-up above ε2D in the vicinity of the wall.
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sign, FIG.(16) blue curve. In the third region, the elec-
tric potential exhibits a weak curvature: ρc is positive
and ρc ≪ ε2D. It is also observed to increase exponen-
tially towards the fourth region, in the vicinity of the
wall, where ρc ≫ ε2D and ρc exhibits a sharp exponen-
tial growth by 4 orders of magnitude. One can note that
the transition point where ρc = ε2D occurs at the posi-
tion x = 195.1, therefore at a distance ≈ 8λD0 from the
wall. The presheath exponential growth is characterized
by an e-folding length of 21λD0 , while the sharp expo-
nential growth is characterized by an e-folding length of
0.43λD0 .

The SOL charge density being small but finite, the
key assumption ε2D = 0, consequently ρc = 0, used to de-
scribe the sheath horizon and the expansion at the sheath
horizon in Eq.(75a) does not hold. One must then con-
sider the complete expression of the electric field vari-
ation, and a transition from a regime where both G′(ϕ)
and G′′(ϕ) are small to a regime where G′′(ϕ) = −dρc/dϕ
increases above a threshold, driving an increase of ρc
above the values expected in the quasineutral regime,
see FIG.(16). At this transition point, the SOL behav-
ior still prevails so that the change of regime is gradual,
not a bifurcation from quasineutral to finite charge den-
sity. Zooming the variation of the charge density ρc in
the sheath region, blue curve on FIG.(17), one can notice
that the sharp gradients are localized close to the wall.
The point where ρc = ε2D, labeled Qn, is indicated by
the vertical black dashed line, and the level ε2D is iden-
tified by the horizontal black dash-dot-dot line. Finally
the intersection of the two regimes of exponential growth
yields the sheath transition point determined using the
field ρc, vertical blue dash-dot line.
Let us now consider the transition from presheath to
sheath characterized by a change in the slope of dρc/dϕ.
The latter governs a change of the charge density ρc,
and therefore the derivative of the electric field E and
consequently the curvature of the electric potential ϕ.
Accordingly, one expects that the change in the slope
of |dρc/dϕ|, between SOL and sheath regimes, will pro-
vide a sensitive criterion to determine the transition into
the sheath region, FIG.(18). Similarly to the variation
of ρc close to the wall, one can observe a transition be-
tween two exponential growth for |dρc/dϕ|, FIG.(18) blue
curve. The transition from one to another giving a possi-
ble definition of the sheath entrance xsheath. The analy-
sis of the change in slope of various fields define different
transition points into the sheath region. The results are
summarized in Table III. For the reference simulation,
one can read in this table the wall position, xw and the
transition points for ϕ, E, ρc, |dρc/dϕ| and finally the
point where ρc = ε2D labeled Qn. As can be expected,
one finds that the higher the derivative order, the further
upstream from the wall one observes the sheath entrance.
The sheath transition is gradual, and, when defining the
transition according to the change of slope of |dρc/dϕ|,
hence xsheath ≈ 196, one finds that most plasma param-
eters exhibit the same behavior, the large increase of the

FIG. 17. Profile of ρc, blue curve in log-scale. The reference
value of the small control parameter in the Poisson equation
ε2D is indicated by the horizontal dash-dot line. One can ob-
serve that ρc shoots-up above ε2D in the vicinity of the wall.

FIG. 18. Profile of |dρc/dϕ|, blue curve in log-scale. One can
observe a change in the exponential growth located at xsheath,
vertical blue dash-dot line.

derivatives being mostly located close to the wall.

In view of the latter discussion, one could expect that
the kinetic criterion Eq. (76a), using Eq. (76b) to deter-
mine dni/dϕ, should provide a means to determine the
sheath horizon. For convenience, let us define the ion
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TABLE III. Location in x where the various fields switch from
a SOL behavior to sheath variation on the Debye scale. The
position labeled Qn corresponds to the point where ρc ≥ εD.
The position of the transition point increases with the order
of integration from that for dρc/dϕ to that of ϕ. The wall
position is recalled as well as the transition point determined
when using R defined in Eq.(77b). The position xsheath is
defined as the transition point for dρc/dϕ, xsheath = 195.9.

Qn dρc/dϕ ρc E ϕ wall R

195.1 195.9 198.6 200.5 202.3 202.6 201.5

density nK determined with Eq. (76b)

nK(ϕ) =

∫ +∞

0

dv fi(K,ϕ) ;
dnK

dϕ
=

∫ +∞

0

dv
fi(K,ϕ)

v2
(77a)

R(ϕ) =
dne

dϕ

∣∣∣
ϕ
− dnK

dϕ

∣∣∣
ϕ

(77b)

In the previous calculation, |dρc/dϕ|, both dne/dϕ and
dni/dϕ were computed with the derivatives of ne and ni

with respect to ϕ using the moment 0 of the distribution
functions to determine the densities. The computation
of R(x) in Eq. (77) is therefore an alternative calcula-
tion of |dρc/dϕ| where the derivative of the ion density
with respect to ϕ is determined directly in the kinetic
framework. Provided the latter calculation is correct,
one expects that R ≥ 0, to be small for x < xsheath, and
to increase when x > xsheath.
One can note that the ”kinetic” criterion Eq.(76a ) does
not address the ion and electron population on the same
footing although the calculation leading to the expression
of dni/dϕ can be performed for any species. However, as
sketched on FIG. 15, the slowing down of the electrons
towards the wall generates a population of trapped elec-
trons so that one cannot identify the distribution function
at ϕ with that at ϕ∞ . Furthermore, the electron popu-
lation in the trapped region and in particular for K = 0
will govern a singularity of the integral Eq. (76b). In
simulations, the same issue arises for the ions since col-
lisions will tend to populate the gap region, with both
positive and negative velocities so that the calculation of
the ion density at ϕ when restricting the integral to pos-
itive velocities with will tend to underestimate the ion
density. The kinetic formula will therefore yield nK such
that nK < ni where ni is the exact value. Furthermore,
the singularity of the integral for K → 0 will tend to
yield dnK/dϕ > dni/dϕ because of the finite value of the
distribution function for v → 0+. Depending on the val-
ues of the distribution function fi, the fraction fi/v

2 for
v → 0+ can dominate the integral in Eq. (77a). This dis-
crepancy will tend to increase as the potential difference
|ϕ − ϕ∞ | increases because of the growing possibility of
generating ions in the trapped region by collisions. Con-
sistently, as one approaches the wall, the probability of
ion collisional transfer from the bulk into the gap region
tends to decrease with the distance to the wall. The ki-

FIG. 19. Derivatives with respect to ϕ of the electron density
ne, blue curve closed circles, and ion density ni, black curve
open circles, compared to the kinetic calculation dnK/dϕ, red
curve open triangles. While the derivatives of ne and ni con-
verge in the quasineutral region ϕ > ϕsheath, vertical dash
dot line, the derivatives of ne and nK intersect at ϕK , ver-
tical black dashed line. Note that the bottom scale for ϕ is
reversed so that the wall still stands on the right hand, typi-
cally at ϕ− ϕ0 = −0.2.

netic calculation should become more accurate.
The results of the reference simulation confirm that the
kinetic formulation of the sheath boundary conditions
Eq. (77) are difficult to use. First dnK/dϕ, red curve
open triangles on FIG.(19) is found to seriously overesti-
mate dni/dϕ, black curve open circles for ϕ−ϕ0 > −0.15.
For ϕ−ϕ0 < −0.15 the two curves get closer but one now
finds dni/dϕ ≥ dnK/dϕ. Note that ni and dni/dϕ are
exact values determined using the simulation evidence.
Conversely, the kinetic formulation Eq. (77) is an approx-
imate expression, which is therefore found to be not at all
accurate and yields misleading values. In the quasineu-
tral region ϕ − ϕ0 > −0.13, one finds R(ϕ) ≪ −1 while
the direct calculation yields −dρc/dϕ → 0+. Indeed, the
derivative of the two densities dni/dϕ and dne/dϕ, blue
curve open circles, are found to converge for ϕ ≥ ϕsheath,
vertical black dash-dot line. In that regime, the calcula-
tion leading to R(ϕ) does not hold. Closer to the wall,
towards decreasing values of ϕ, the difference between
the direct calculation dni/dϕ and the approximate for-
mulation dnK/dϕ tends to reduce. One can then define
ϕK at the intersection point R(ϕK) = 0. The poten-
tial ϕK is found to be reached at xK ≈ 201.5, much
closer to the wall than the sheath entrance xsheath, with
ϕsheath = ϕ(xsheath), determined using the criterion on
dρc/dϕ, FIG.(18).



30

B. Mandatory collisional process in steady state

Let us consider the again the phase space characteris-
tics using the variables Ksign(v) in velocity and ϕ0−ϕ in
position. The energy conservation for the electrons leads
to K = K0 − (ϕ0 − ϕ). We choose here the stagnation
point at x = 0 as reference phase space location K0, ϕ0.
We then consider the source at this location Sδt. The
chosen source for the model does not depend on the dis-
tribution function and is assumed to be proportional to
a Maxwellian. We shall consider this case to illustrate
the need for phase space collisional transport to achieve
steady state conditions. For simplicity we shall consider
the source contribution to the distribution function at
x = 0 and follow the characteristics from x = 0. Given
ϕw the electric potential of the plasma at x = xw, namely
the wall position, one then obtains Kw = K0−(ϕ0−ϕw).
When K0 ≥ (ϕ0−ϕw) one then finds Kw ≥ 0, these elec-
trons reach the wall and are absorbed by the wall. Con-
versely, for K0 < (ϕ0 − ϕw) the electrons to not reach
the wall and the velocity changes sign at position, ϕ
such that K0 = ϕ0 − ϕ. The latter class of electrons
are trapped by the variation of the electric potential
between x0 and xw. The variation of the electric po-
tential is twofold, in the quasineutral SOL plasma, the
electric potential drop is governed by the density drop,
and consequently the plasma acceleration, and, towards
the wall, the electric potential drops to ensure charge
balance by enforcing equal ion and electron flux to the
wall. Based on this argument the typical potential drop
is ϕ0 − ϕw ≈ Log(2

√
mi/me). In the reference simu-

lation mi/me = 400 so that ϕ0 − ϕw ≈ 3.5. For the
present discussion the exact value of the potential drop
is not needed, see companion paper [26]. On FIG.(20) the
characteristics starting from x = 0, ϕ = ϕ0 are plotted.
For convenience the velocity space coordinate is chosen
to be Ksign(v), which allows one to track the velocity
reversal. On this plot the potential drop ϕ0−ϕw is set to
unity. The shadowed area corresponds to the region of
trapped electrons, subscript t. At the stagnation point,
the critical electron kinetic energy is Kt = ϕ0−ϕw: elec-
trons generated by the source at ϕ = ϕ0 with K < Kt

are trapped and the electrons generated with K > Kt are
lost to the wall. Plotting the phase space characteristics
for the electrons illustrates the kinetic behavior of the
electrons generated by the source in steady state condi-
tions. The blue line for K = Kt at ϕ = ϕ0 splits this
population between the trapped and loss regions. One
thus finds that all electrons generated with K < Kt are
confined and cannot be lost. With this physics, the par-
ticle source is always larger than the particle sink, and
a steady state regime with source and sink balance can-
not be achieved. In the framework of the present model,
collisions are the only available physical mechanism of
phase space transport that allows steady state conditions
to be achieved. Trapped electrons accumulate due to the
source term until collisional detrapping is efficient enough
to transfer all the electrons generated with K < Kt into

FIG. 20. Electron phase space characteristics using Ksign(v)
as velocity coordinate with K = 1

2
v2/v2T0a

and ϕ0−ϕ as posi-
tion coordinate. Trapped electrons are confined to the shaded
region, bounded by the characteristics issued from K = Kt

at ϕ = ϕ0. For a source localized at ϕ = ϕ0, all electrons gen-
erated with K < Kt cannot be lost unless collisional transfer
from K < Kt to K > Kt is taken into account.

the phase space region K > Kt, as required to achieve
steady state conditions. As illustrated on FIG.(21), for
Kt = 3.5 less than 1 % of the particle flux governed by
a Maxwellian source is directly injected in the loss re-
gion. All the particle flux injected in the trapped region
must then be balanced by a collisional flux from K < Kt

to K > Kt. While the particle source is localized, the
collisional particle transfer from the trapped to the loss
regions can take place in the whole plasma. One thus
finds that the electron population is split in two popu-
lations coupled by the collisions, both electron-electron
and electron-ion. This particular kinetic feature cannot
be captured within the fluid framework unless two elec-
tron fluids are used together with ad hoc transfer mecha-
nisms. Furthermore, the constant evaporation of the fast
particles governs a specific cooling of the trapped electron
population so that one readily expects Te < Ts where Ts

is the thermal energy of the particle source. This cooling
is enhanced by the energy transfer from the electrons to
the ions governed by the ion acceleration mechanism via
the electric field confining the electrons. All these kinetic
effects depend on the plasma collisionality and underline
the fundamental difference between weak collisionality
and non-collisional regimes.
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FIG. 21. Fraction of the source population with a Maxwellian
distribution generated in the loss region with K > Kt. For a
typical value of the potential drop ϕ0 − ϕw = Kt ≈ 3.5, one
finds that less than 1% of the source in injected directly in
the loss region. Particle conservation then requires that the
collisional flux from K < Kt to K > Kt balances the source
flux to the trapped region, ensuring source sink balance.

C. Distribution functions

Two keys properties of the distribution functions have
been addressed in the previous Sections. First we have
used the conservation of the distribution function along
the characteristics at constant energy Ea = Ka + Zaϕ
for species a, where Ka is the normalized kinetic energy
Ka = 1

2v
2 and Ze = −1, Zi = 1 are the normalized

charges. These characteristics account for the kinetic
equation but for the collision and source terms. We can
therefore use them to investigate the specific effects on
the distribution functions governed by these two terms.
Let us first examine the distribution function at x = 0.
These are symmetric fa(v) = fa(−v) because of the sym-
metry of the simulation domain. One finds that the
distribution departs from the Maxwellian built with the
same, density ni(x = 0) = 2.47, mean velocity and ther-
mal energy Ti(x = 0) = 0.31, blue line open circles.
It is better recovered with the sum of two Maxwellians
with a cold component with density nci and thermal
energy Tci ≈ 0.11 and a hot component with density
nhi and thermal energy Thi ≈ 0.85 and nhi/nci ≈ 0.11.
The hot component can be related to the source ther-
mal energy Ts = 1, while the cold component that is
dominant at small normalized velocity |v| ≤ 1 exhibits
a thermal energy that is closer to that of the electrons
Te(x = 0) = 0.16. A similar analysis can be performed
for the electrons, but the hot component The ≈ 0.87 has
a much smaller density nhe/nce ≈ 5. 10−3 than the cold

FIG. 22. Ion distribution function at x = 0, plain blue curve
closed circles. It departs from the Maxwellian with identical
fluid moments fMi , thin blue curve open circles, but is well
approximated by ffit, black curve open diamonds, the sum
of a cold Maxwellian, black dashed line open triangles, and a
hot Maxwellian, black dashed line open squares.

component that is consequently close to the fit by a single
Maxwellian.

We investigate the properties of the distribution func-
tions in phase space using ϕ as position coordinate and
K sign(v) as velocity coordinate. The constant energy
characteristics, conserved energy Ke−ϕ for the electrons
and Ke + ϕ for the ions, are then straight lines. For the
electrons, the contour plots of log10(fe) are compared to
the constant energy characteristics Ke = Ke0 +(ϕ−ϕ0).
On FIG.(23), the phase space is restricted to the small
velocities Ke ≤ 1. Note that the electric potential is in-
verted for convenience so that the particles with positive
velocities head from the symmetry point x = 0, ϕ = ϕ0

towards the wall located on the right hand side. Con-
versely, particles with negative velocities flow towards
x = 0 and beyond towards the wall on the left hand side.
The contour lines for the values -2.5, -1.5, and -1 are the
blue curves with open circles. For the electron trapped
in the electric potential variation, the contour levels are
-0.09 and 0.13 and the contours are the blue curves with
open squares. The constant energy characteristics cor-
respond to the black lines with closed circles. They are
computed to intersect the contour curves at Ke = 0 for
the trapped electrons and otherwise at ϕ − ϕ0 = −0.2.
One finds little departure between the contour curves and
the constant energy characteristics for Ke < 1 except for
ϕ → ϕ0 and Ke sign(v) < −0.5. This effect is clear when
stepping to Ke sign(v) < −1, FIG.(24), where the value
of the contour line range from -6 to -3 with steps of 0.5,
blues lines open circles. The departure between the con-
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FIG. 23. Phase space contour plot, plain blue curve open
circles and open squares, of the electron distribution function
log10(fe), coordinates ϕ− ϕ0 for the position and Ke sign(v)
for the velocity, with Ke < 1. The wall is located on the right
hand side in the direction of decreasing ϕ − ϕ0. The black
lines with closed circles are the constant energy characteristics
Ke = K0 + ϕ − ϕ0 plotted for different values of the kinetic
energy Ke0 at x = 0.

tour curves and the constant energy characteristics can
be attributed to the effect of the source terms that lies
to the left of the vertical dash-dot line and is maximum
for ϕ → ϕ0. This source is found to induce a broaden-
ing of the distribution function by adding particle with
thermal energy Ts = 1. This effect is observed to be
much more important than the changes governed by the
energy conservation, FIG.(24). One can also note that a
distortion with respect to the constant energy character-
istics occurs for −0.075 > ϕ− ϕ0 > −0.13. In this range
of values the source is null and only collisions can ex-
plain this departure. One can also remark that the source
should govern the development of a hot Maxwellian con-
tribution to the distribution functions, with comparable
properties for both electrons and ions. However, this
hot component at x = 0 is observed to be much smaller
for the electrons than for the ions with a ratio ≈ 5. 10−2

FIG.(22). One also finds that the observed density of the
hot ion component is typically a factor 0.63 smaller than
would be obtained with only the source term at work.
Finally, for both species one observes that the thermal
energy of the hot component at x = 0 is ≈ 0.85, therefore
smaller than Ts. These features highlight the role of col-
lisions, and as discussed in Section IVB, the mandatory
evaporation of the hot electrons sustained by collisional
transfer. For Ke sign(v) > 1, one can also observe the
broadening of the distribution function governed by the
source term, and, prior to the source region, by collisions.

FIG. 24. Phase space contour plot, plain blue curve open
circles and open squares, of the electron distribution function
log10(fe), coordinates ϕ− ϕ0 for the position and Ke sign(v)
for the velocity, with Ke sign(v) < −1. The wall is located
on the right hand side in the direction of decreasing ϕ − ϕ0.
The black lines with closed circles are the constant energy
characteristics Ke = K0 + ϕ− ϕ0 plotted for different values
of the kinetic energy Ke0 at x = 0.

However, in this part of the distribution function, these
changes are larger but comparable in magnitude to the
variation along the constant energy characteristics. We
now step to the properties of the ion distribution func-
tion. We first consider the small kinetic energy region
of the phase space with Ki < 0.2 and the contour of
log10(fi), FIG.(25). The contour levels with blue curves
open circles range from -2 to 0.25 with steps of 0.25. The
nearly closed contour line is governed by the variation of
the ion density. The constant energy characteristics for
Ki sign(v) < 0, black line closed circles, is very different
from the contour lines that are consistent with the effect
of the source term for a vanishing ion distribution with
negative velocity and ϕ < −0.075, between the source re-
gion and the wall. The contour lines also appear to pinch
towards the Ki = 0 line, then opening a region of very
small values of the distribution function for Ki < 0.05.
as ϕ − ϕ0 → −0.2 one finds that the contour lines tend
to be parallel to the constant energy characteristics for
the smaller values of log10(fi), with an important mis-
match at the larger values of log10(fi). For the larger
values of Ki sign(v), Ki sign(v) > 0.2, FIG.(26), one
finds that the contours are aligned on the constant en-
ergy characteristics for typically ϕ − ϕ0 < −0.13. For
ϕ − ϕ0 > −0.13, one recovers a behavior that is com-
parable to that reported for the electrons, a broadening
governed by the source term on the left-hand side of the
vertical dash-dot black line, ϕ − ϕ0 > −0.075, and a
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FIG. 25. Phase space contour plot, plain blue curve open
circles and open squares, of the ion distribution function
log10(fi), coordinates ϕ− ϕ0 for the position and Ki sign(v)
for the velocity, with Ki < 0.2. The wall is located on the
right hand side in the direction of decreasing ϕ − ϕ0. The
black lines with closed circles are the constant energy charac-
teristics Ki = K0− (ϕ−ϕ0) plotted for different values of the
kinetic energy Ki0 at x = 0.

FIG. 26. Phase space contour plot, plain blue curve open
circles and open squares, of the ion distribution function
log10(fi), coordinates ϕ− ϕ0 for the position and Ki sign(v)
for the velocity, with Ki sign(v) > 0.2. The wall is located
on the right hand side in the direction of decreasing ϕ − ϕ0.
The black lines with closed circles are the constant energy
characteristics Ki = K0− (ϕ−ϕ0) plotted for different values
of the kinetic energy Ki0 at x = 0.

broadening that can only be attributed to collisions for
−0.075 > ϕ− ϕ0 > −0.13.

V. DISCUSSION AND CONCLUSION

In this paper we have addressed the self-organization
of a plasma with perfectly absorbing boundary condi-
tions. The problem we have in mind is the physics of
the Scrape-Off Layer plasma of magnetic confinement
devices dedicated to fusion. We have also restricted the
analysis to a 1-D geometry, typically in the direction
parallel to the magnetic field, and assumed the location
of the absorbing boundary condition to be fixed, as when
the plasma interacts with a solid. However, the problem
at hand is not specific of fusion plasma conditions and
our results are therefore more general. It is well known
that under such conditions a boundary layer develops in
the vicinity of the wall. The so-called sheath then stands
between a bulk plasma that remains quasineutral and
the wall where the plasma promptly recombines. The
sheath is well known to be a region with positive charge
density extending on several Debye scales and where
the electric field confining the electrons becomes large.
Our specific interest is the self-organization problem
of the SOL plasma sustained by particle momentum
and energy source terms and in contact via the sheath
boundary layer with a perfect particle, momentum
and energy sink. The sheath transmission properties
together with the sources then determine the SOL
plasma properties, in particular the plasma momentum
flux (also called total plasma pressure) and the plasma
electric potential. Our approach does not aim at ad-
dressing the sheath physics as a stand alone problem but
rather the particular balance between the plasma source
and the sheath transmission. A specific interest of this
analysis is to define appropriate boundary conditions
for simulations dedicated to plasma turbulent transport
where quasineutrality is enforced and the Debye scale
not resolved. The simulation effort is twofold, a large
body of SOL simulation codes use the fluid represen-
tation, and, more recently the gyrokinetic framework
has been used for SOL simulations. The problem is
then to define appropriate boundary conditions such
that the SOL properties are recovered without having
to address the physics on the Debye scale. To illustrate
our theoretical analysis we have used the results of a
reference kinetic simulation with the 1D-1V VOICE
code [33] evolving a two species plasma, electrons and
singly charged ions, and where penalized wall conditions
are used, see the companion paper [26]. In the present
work, we have considered that the plasma source, mostly
governed by cross-field turbulent transport is localized
and symmetric, so that the stagnation point with zero
mean velocity for either species stands in the middle of
the plasma region. In this work, we furthermore assume
that the source injects hot particles, hence a particle and
energy source, with no heat, charge or momentum source.
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We consider a quasineutral plasma with zero electric
current. The fluid model we first address is the standard
Navier Stokes model for particle, momentum and energy
conservation, either for each species or summing the
latter to obtain the plasma conservation equations used
instead of the ion conservation equations. The plasma
equations, considering the density, particle flux, the total
momentum flux with null charge density and electric
current are found to be independent when neglecting
both electron and ion heat-fluxes. We use this system
with three degrees of freedom, the three fields plasma
density, particle flux and momentum flux, to determine
analytic steady-state solutions. One finds that the mean
ion and electron velocity as well as the plasma thermal
energy T = Te + Ti vary with the particle flux, itself
governed by the particle source. The analysis of the
present work is described in terms of the dependence of
the Mach number on a control parameter. It follows the
same steps as previously published for the isothermal
closure [4]. The plasma-sheath transition is found to
exhibit a twofold behavior. In the quasineutral SOL,
the source terms governs the increase of the control
parameter, so that the subsonic Mach number increases.
At the sheath horizon, the control parameter goes
through a maximum and decreases into the sheath while
the Mach number increases into the supersonic regime.
This bifurcation from a subsonic to a supersonic regime
without a discontinuity is made possible because of
the departure from quasineutrality. Such an approach
assumes the sound velocity to be determined so that the
Mach number can be defined. In this paper, the sound
velocity is determined by analyzing both the sound wave
using as independent variables the density, the particle
flux and the total plasma flux –the latter being akin
to the energy density for a 1-D model– completed by
analyzing the possible discontinuity of the equations
for the variables, density, mean plasma velocity and
plasma thermal energy. The sound velocity for this non-
isothermal solution is then found to be cs =

√
3T/mi to

be compared to
√

T/mi for the isothermal model. This
result cannot be obtained using a constant polytropic
index since the solution we obtain yields a varying poly-
tropic index. This behavior is readily expected since the
use of the polytropic index is based on the assumption
of prompt thermodynamic equilibrium induced by small
scale turbulence, which clearly does not make sense for
parallel plasma transport. In such a fluid framework,
the self organization between the SOL and the sheath
conditions determines the plasma momentum flux and
requires that the sound velocity is reached at the end of
the particle and energy source region, the solution then
remaining constant up to the sheath entrance. These
fluid predictions are compared to a reference kinetic
simulation and qualitative agreement is found. However,
key differences are observed. First, the heat-flux for the
electrons is comparable to the convected energy flux and
contributes to the total energy flux impinging onto the

wall. Second, the variation of the steady state solution
is not restricted to the source region. The energy
exchange between the species and between the convected
and heat-flux components continues from the end of
the source region up to the wall. Similarly, the mean
particle velocity continues to increase monotonically
between the end of the source region and the wall. It
also appears to remain smaller than the sound velocity
cs but larger than

√
T/mi so that a Bohm criterion

defining the sheath entrance is not operational. These
differences suggests that the kinetic simulation involves
more degrees of freedom than selected when handling
the Navier-Stokes system.

Given these shortfalls, a non-collisional closure is
used to determine the heat-flux in terms of the lower
moments, namely the density, the particle flux and
the total plasma momentum flux. The analysis of this
projection in Fourier space indicates that the heat-flux
exhibits a contribution along the particle flux with a real
proportionality coefficient. Conversely, the proportion-
ality coefficients for the density and total momentum
flux are imaginary, driving a damping behavior and
consistency with the so-called Landau damping. This
non-collisional closure is interesting insofar that the
heat-flux contribution proportional to the particle flux
provides an explanation for the heat-flux contribution to
the total plasma energy outflux. Such a contribution also
modifies the sound velocity, introducing an asymmetry
between the co and counter sound waves with respect
to the mean plasma velocity. The counter propagating
waves are found to be slower, so that a shock wave gen-
erated when the flow velocity cancels the sound velocity,
hence with standing waves in the wall reference frame,
occurs at a lowered flow velocity. This trend is consistent
with the observations from the reference simulation.
Closures using higher moments of the fluid hierarchy are
also discussed. One finds that the sound velocity and
the discontinuity of the steady state balance equation
are in agreement but depend entirely on the choice made
for the closure. This arbitrary result cannot then be
used to determine a suitable Bohm criterion defining
the sheath entrance. The predictions of the fluid models
using a closure at higher moments can be improved
when compared to the kinetic simulation. However,
they do not provide a predictive capability. The kinetic
simulation guideline remains crucial in determining the
transition from the quasineutral SOL plasma into the
sheath region,and consequently to define the sheath
entrance. To put things bluntly, one can expect that the
Mach 1 Bohm criterion holds at the sheath horizon but
one has no means to specify the sound velocity, so that
this fluid criterion is not operational.

In the kinetic framework, the Mach number, and
therefore a Bohm criterion, does not emerge as a key
point. A specific kinetic criterion to define the sheath
horizon has been determined by Harrison and Thompson
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[11]. The constraint is based on an integral involving
the ion distribution function. It has been regarded
as the most relevant to determine the sheath horizon
in the kinetic framework [13–15]. We have revisited
the derivation of this criterion and found that the ion
distribution integral stands for the derivative of the
ion density with respect to the electric potential. The
criterion is obtained when expanding the electric field
energy, typically E2 in terms of an electric potential
difference. At the sheath horizon, it is assumed that the
plasma is neutral ne → ni so that the constraint E2 ≥ 0
enforces that the derivative of ne with respect to the
electric potential is larger than that of ni. At this stage,
the criterion involves the densities and is not specific of
either the kinetic or the fluid framework. The derivative
of the electron density is directly determined, usually for
adiabatic electrons, while the derivative of the ion den-
sity is computed using the ion distribution function and
the characteristics at constant energy E = K + ϕ. The
transfer of kinetic energy K to electric potential energy
ϕ along the characteristic then allows one to compute
the ion density derivative with respect to ϕ. However,
this calculation exhibits a divergence for K → 0 that
is only alleviated if the ion distribution function tends
to zero fast enough when K → 0. Furthermore, the
use of the constant energy characteristics to determine
the ion distribution function is only appropriate when
both collisions and source/sink terms are not taken into
account. In the kinetic simulation, one finds that the
Harrison-Thompson formula to compute dni/dϕ departs
from the actual value in most of the plasma region and
only becomes similar, but not identical, to the latter
towards the wall. One can also note that applying this
formalism to the kinetic simulation is not appropriate
because collisions, however weak, will play a role when
the distribution function exhibit strong variations in
velocity space, which is the case for the ion distribution
function towards the wall.
The Harrison-Thompson criterion must therefore be
adapted to actual plasma behavior as displayed in the
kinetic simulation. In particular, one must consider
that quasineutrality does not enforce a null charge
density. We must then use a different reference scale,
intermediate between the domain size L∥ and the Debye
scale, and changing with the distance to the wall. In
the quasineutral SOL the characteristic scale is typically
the size of the domain L∥ ≫ λD0

while the variation
in the sheath region is comparable to λD0

. Monitoring
the rapid change of variation scales, then allows one to
identify turning points from one asymptotic behavior
to the other. However, depending on the chosen field
this transition occurs as different distances from the
wall. As can be expected, this sensitivity increases
when stepping from the electric potential to the electric
field and then to the charge density and the derivative
of the charge density with respect to the potential.
The gradual transition from quasineutral to Debye
scale dependence does not provide a unique definition

of the sheath entrance. However, a suitable criterion
for the sheath horizon appears to be the change of
variation scale of dne/dϕ− dni/dϕ. It combines the fact
that it is a precursor, responding when the other field
have not yet changed behavior, and that it is rather
straightforward to compute. For the reference kinetic
simulation, dne/dϕ − dni/dϕ exhibits an exponential
growth in the quasineutral region with e-folding length
≊ 20λD0 , which decreases to ≊ 0.5λD0 within the sheath.
From the sheath entrance to the wall, therefore over a
distance of ≊ 7λD0 , the charge density then increases
from the small value expected in the quasineutral region
to a value of order unity.

An important feature revealed by the model used
in this paper is the importance of collisions, and the
coupling it drives between the various degrees of freedom
of the kinetic solution. We have shown that the electron
population at the symmetry point, the stagnation
point, can be split into trapped electrons with kinetic
energy smaller than the electric potential drop from the
stagnation point to the wall and electrons with large
enough kinetic energy to be able to reach the wall.
The kinetic source term injects hot particles into the
plasma. The source distribution function will also be
split into injected electrons that are confined by the
electric potential drop and those that can stream to
the wall, and lost to the wall. Collisions are the only
mechanism that can transfer electrons from trapped to
streaming. These are found to be mandatory to achieve
steady state. The evaporation mechanism driven by the
collisions governs a cooling down of the electrons to low
thermal energy. Following the constant energy charac-
teristics from the stagnation point towards the wall, and
comparing these to the contour lines of the distribution
functions, allows one to identify the role of the source
and collision operators. One finds relative agreement
towards the wall where the electric field becomes large
and can be expected to be the drive for the changes in
the distribution functions. For the electrons, dominated
by a cold component at the stagnation point, the source
effect is mostly observed at large kinetic energy, yielding
a small density for the hot component. This source
effect appears to be balanced by collisional cooling in the
source region and close to the source region. Regarding
the ions, collisional cooling is also observed since fast
ions are lost faster than the slow ions, but this effect
is less pronounced than for electrons. Consequently,
the density of the hot ion component is larger. The
departure between the contour lines and the constant
energy characteristics also indicates that collisions play
a role everywhere. One also finds that they tend to fill
the energy gap Ki → 0 so that the distribution function
is small but tends to a finite value as Ki → 0.

The importance of kinetic effects is highlighted by
the distortion of the distribution functions away from
Maxwellians. As discussed above the collisional transfer
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is also an important kinetic effect. When considering the
Navier Stokes fluid equations, one finds that the kinetic
effects are described by the heat flux and the inter-species
collisional equipartition towards identical mean velocity
and thermal energy. All the other terms appearing in the
equations are definitions, therefore not specific of the ki-
netic framework. In the reference kinetic simulation, we
find that the heat-flux amounts to a fourth of the plasma
energy flux and close to half the electron energy flux.
A crucial feature of the SOL/sheath self-organization is
the plasma pressure that is achieved given the parti-
cle and energy source on the one hand, and the sheath
constraints on the other hand. In fact, in models for
plasma wall interaction, such as the 2-point model [35],
the plasma total pressure is linked to the upstream par-
ticle and energy flux and to sheath constraints [43, 55].
Let us use here the subscript div to indicate that the val-
ues are taken at the sheath entrance. The notation div
is the standard one when addressing plasma-wall interac-
tion. This is readily illustrated using the expressions for
the energy flux Qdiv and particle flux Γdiv at the sheath
entrance: Qdiv = γΓdivTe,div with Γdiv = ndivVdivMdiv.
We define here miV

2
div = Tdiv, Tdiv being the sum of

the electron and ion thermal energies at the sheath en-
trance. Given Vdiv one defines Mdiv, the mean plasma
velocity divided by the thermal velocity Vdiv. Note that
Mdiv is not the Mach number but corresponds to MV at
the sheath entrance; it does not depend on the defini-
tion of the sound velocity. Without losses along the field
line, Qdiv = Qup and Γdiv = Γup, where Qup and Γup

are the injected energy and particle flux, the subscript
up standing for upstream. Given these expressions, one
then finds:

Π2 =
mi

γTe,div/Tdiv
ΓupQup

(
Mdiv +

1

Mdiv

)2

(78)

To determine this relation we have used the fact that Π is
constant along the field line, hence Πdiv = Π. The plasma
total momentum flux Π therefore depends on the injected
particle and energy fluxes, Γup and Qup, and on sheath
constraints, γTe,div/Tdiv and Mdiv. Using results from
the analytical Navier-Stokes model presented in Section
III C, one can show that γTe,div/Tdiv = (3 + M2

div)/2
so that one recovers the expression given in Eq.(41d).
In the reference simulation, the plasma total momentum

flux Π is observed to be constant along the field line up
to the sheath entrance. The self-organization feature is
recovered, however the value of Π is 10 % smaller than
predicted by the Navier-Stokes model.
The heat-flux is found to build-up in the source region
and the to be sustained, although it slightly decays, up
to the wall, where the heat-flux therefore contributes to
the flux impinging onto the wall. As discussed above,
the non-collisional closure indicates that this heat-flux
exhibits a component that is proportional to the particle
flux. Unlike the result of the collisional closure that de-
scribes the heat-flux as a diffusive process exchanging en-
ergy with zero net particle flux, we find in this work that
the heat-flux contributes to the energy flux convected
with the particles out of the plasma. Furthermore, it ap-
pears that this contribution must be coupled to higher
moments of the fluid hierarchy to recover a Bohm cri-
terion. We find therefore that defining the heat-flux as
an energy transfer with no net particle transfer, which is
consistent with the result of the collisional closure, does
not account for our observations in the kinetic regime.
A better understanding of the physics of the heat flux,
the skewness of the probability distribution functions, its
dependence on collisionality and connection to the distor-
tion of the distribution functions, appears to be impor-
tant to assess the kinetic features of parallel transport.
This issue is further discussed in the paper dedicated to
the simulations [26], together with the heat transmission
factor.
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