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Kinetic plasma-sheath self-organization

Yann Munschy,∗ Emily Bourne, Guilhem Dif-Pradalier, Peter Donnel,

Philippe Ghendrih, Virginie Grandgirard, and Yanick Sarazin
CEA, IRFM, Saint-Paul-lez-Durance, F-13108, France

(Dated: June 7, 2023)

The interaction between a plasma and a solid surface is studied in a (1D-1V) kinetic framework
using a localized particle and convective energy source. Matching the quasineutral plasma region
and sheath horizon is addressed in the fluid framework with a zero heat flux closure. It highlights
non-polytropic nature of the physics of parallel transport. Shortfalls of this approach compared
to a reference kinetic simulation, highlighting the importance of the heat flux, leads to addressing
the sound velocity, non-collisional closure and higher moment closure. No gain in the predictive
capability is obtained. The kinetic constraint at the sheath horizon is discussed and modified to
account for conditions that are actually met in simulations, namely quasineutrality with a small
but finite charge density. Analyzing the distribution functions shows that collisional transfer is
mandatory to achieve steady-state self-organization on the open field lines.

I. INTRODUCTION

The prompt plasma recombination when in contact
with a cold, dense and electrically neutral media drives a
plasma flow towards what then appears as void. Such a
flow characterizes the plasma-wall interaction. It is akin
to that observed in time-dependent boundary conditions
for hyperbolic systems in which discontinuities and shock
waves develop [1]. A vast literature addresses these two
classes of problems. For plasma physics, it goes back to
the pioneering work of Langmuir and Tonks describing
the properties of a plasma in contact with a solid surface
[2, 3]. Unlike the neutral fluids where the shock waves
play a leading role, the plasma/boundary interface can
be resolved when taking into account a departure from
quasineutrality across the narrow sheath region [4]. The
latter scales with the characteristic scale of the Poisson
equation relating the divergence of the electric field to
the charge density. The key issue is then asymptotic
matching between disparate scales, that of the quasineu-
tral plasma 2L∥ with L∥ ≳ 10m, and the Debye scale

λD ≲ 10−4 m. The small parameter εD = λD/L∥ ≲ 10−5

is the control parameter of the self-organization process
of the plasma interacting with a wall, a solid in most cases
although a liquid or a dense gas could be considered.

The physics of plasma-wall interaction in fusion devices
is a growing concern for burning plasma operation. The
region where these physics take place has been named
Scrape-Off Layer (SOL). Field lines in the Scrape-Off
Layer are connected to the wall at both ends. Three
major issues are being investigated. First, parallel trans-
port along the field lines and onto the wall is large so
that particle and energy deposition patterns are narrow
and become challenging problems for the present technol-
ogy of heat and particle extraction. Second, wall erosion
and impurity transport from the wall component into
the confined plasma play a major role in the aging of the
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plasma facing components and on plasma performance.
Third, the variation of the electric field in the SOL mod-
ifies turbulence instabilities and very likely plays a role
on the onset and stability of the edge transport barrier
[5]. Control of such issues mostly depends on the plasma
pressure, electron thermal energy and electric potential.
These fields are shown to result from the balance between
the sources that sustain the plasma on the open field lines
and the losses governed by the sheath properties.

Our aim here is to analyze the self-organization along
a field line between the quasineutral plasma, that we re-
fer to as the SOL plasma, and the sheath boundary layer
where charge separation occurs. The idea addressed in
the companion paper is the means to incorporate the
key results of this physics without having to resolve the
Debye scale. This is especially important for the sim-
ulation effort of turbulent transport in magnetic con-
finement devices. To optimize the numerical codes, this
physics is addressed for quasineutral plasmas so that the
property of near constant fields in the parallel direction
allows contemplating scales of order 100 or more De-
bye lengths when meshing in the parallel direction. The
sheath physics cannot be solved and boundary conditions
incorporating the sheath effects must be introduced, both
in fluid codes stemming from the three coupled Navier
Stokes conservation equations, and more recently gyroki-
netic codes. The specific issues in the gyrokinetic frame-
work are discussed in the companion paper using kinetic
simulations of the SOL and sheath plasma regions as
a test bed for the physics. However, when analyzing
the latter kinetic simulations, novel theoretical consid-
erations have been developed. The scope of this paper is
to present this part of the work, using one of these kinetic
simulations as a reference to illustrate the key findings.

Addressing the full 6D kinetic problem is by far too de-
manding but the problem can conveniently be simplified
to 1D-1V assuming that the chosen direction is parallel
to the magnetic field line. The particle, momentum and
energy source on such a field line is mostly governed by
cross-field transport due to turbulence and collisions. In
the parallel direction, classical transport, in first approxi-

mailto:yann.munschy@cea.fr


2

mation of free streaming particles, governs prompt losses
onto the wall components. The reference problem is then
reduced to a source region for particles and energy, pos-
sibly of momentum, which extends over a large part of
the parallel domain (typically L∥), connected by parallel
transport to the narrow sheath region, which in turn con-
trols the deposition onto the wall. The difference in par-
allel transport between electrons and ions generates an
electric field. In steady state, quasineutrality is sustained
over most of the plasma, in the SOL or presheath regions,
and charge separation is localized in the sheath. To cap-
ture this self-organization process a two species plasma
of electrons and singly charged ions is a minimum plasma
model. An alternative to the kinetic description of the
electron-ion plasma consists in using a fluid projection,
which then depends on the number of moments that are
selected and on the choice made to close the system.

The most familiar analysis of the SOL/sheath self-
organization is addressed using the Mach number, ratio
of the ion mean velocity and sound velocity. Given that
the particles must flow outward at both ends of the field
line, a stagnation point with zero Mach number must be
found. When symmetry is enforced, the stagnation point
is localized in the middle of the plasma domain. Be-
cause of the source terms, plasma acceleration drives an
increase of the Mach number, which remains subsonic in
the SOL region. The transition to a supersonic flow de-
fines the sheath entrance. This is the well known Bohm
condition at the sheath boundary [6]. In a fluid approach
one can then use this boundary condition at the sheath
entrance [7]. In the standard fluid framework based on
particle, momentum, and energy conservation equation,
the Navier-Stokes equations, The boundary conditions of
the even moments, particle and momentum fluxes, are set
by the source terms. Conversely, the Mach 1 condition
defined at the sheath location is the boundary constraint
for the odd moment, the momentum flux. When consid-
ering higher fluid moments, which capture the departure
from Maxwellian distributions, qualitative aspects of the
sheath physics are recovered [8]. However, reference to
the kinetic solution remains crucial to validate such re-
sults.

Besides the fluid approach, the distortion of the dis-
tribution functions away from Maxwellians leads one to
address this problem in the kinetic framework where the
Mach number has little meaning. A kinetic criterion has
been derived by Harrison and Thompson [9], then re-
called in several papers [10–13]. The importance of col-
lisional processes has also been been discusses [14, 15].
Some kinetic details of the sheath physics have been ad-
dressed: regimes with multiple ions [16], the effects of
E × B drift [16, 17] or of grazing angle magnetic fields
[18–21], wall parallel to the magnetic field [22]. An exten-
sive review of plasma models in the vicinity of the sheath,
along with numerical methods used to study plasma-wall
interaction, can be found in Ref.[23].

We address here the self-organization of the
SOL/sheath/wall system in a kinetic framework

aiming at developing immersed boundary conditions
[24–27] that would be appropriate in the gyrokinetic
framework [28, 29]. The Voice code [30] has been
used to perform these simulations, see companion paper
[31]. Analyzing the simulation data has shown that
open issues arise whenever one addresses a problem
with εD small but finite. This is particularly true
when determining the sheath entrance. While the
Bohm criterion appears to be a robust condition since
it is consistent with the picture of a standing shock
wave, the kinetic simulations question the sound wave
that must be used. Using the Bohm criterion is then
model dependent with consequently a reduced predictive
capability. Furthermore, using the kinetic formulation
published by Harrison and Thompson [9] raised new
issues because of spurious sign changes of a quantity
that is defined positive with the assumptions that are
made [9]. We thus revisit these various approaches of
the self-organized SOL/sheath/wall physics. We first
present the SOL-wall interplay model that we address
in Section II: presenting some results from a reference
kinetic simulation that motivate this effort, Section
IIA as well as the underlying equations Section II B,
highlighting the source terms Section II B 2, and collision
operators Section II B 3. We then step to analyzing the
SOL/sheath self-organization in the fluid framework
Section III, starting from the fluid conservation equation
that stem from the kinetic two species equations Section
IIIA. We then step to determining the sound wave
velocity Section III B. The fluid predictions and their
shortfalls in predicting the steady state plasma behavior
are addressed in Section III C. The fluid model is then
completed in Section IIID considering non-collisional
closure Section IIID 1, matching conditions at the
sheath horizon Section IIID 3 and higher moment
closure Section IIID 3. Kinetic issues are discussed in
Section IV. We revisit the previously published kinetic
constraint in Section IVA and show that collisions are
mandatory in the self-organization process Section IVB.
The steady state description of the distribution functions
is presented in Section IVC and the role the source and
collisional terms investigated. Discussion and conclusion
close the paper, Section V.

II. SOURCE TO SINK PLASMA
ACCELERATION

A. First look at open field line self-organization

In this paper and its companion paper we aim at deter-
mining appropriate boundary conditions when address-
ing turbulent plasma transport in magnetically confined
devices. For a strongly magnetized plasma, a strong
asymmetry is enforced between the fast transport in the
parallel direction and the reduced transport transverse
to the magnetic field. The control parameter that ac-
counts for this asymmetry is the parameter ρ⋆ ≪ 10−2,
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ratio of a reference ion Larmor gyration radius and the
plasma minor radius [32]. Because the electron Larmor
radius is smaller than the ion Larmor radius, one expects
the ion dynamics to govern the properties of transverse
transport. The ion Larmor radius then characterizes the
size of the turbulent eddies. The ion Larmor radius being
larger than the Debye scale, quasineutral plasma condi-
tions prevail when addressing turbulent transport. We
address here the plasma region named Scrape-Off Layer
at the bulk plasma outer boundary where field lines are
connected to a wall component. In this region, under
steady state conditions, the transverse transport is bal-
anced by parallel transport. For the latter, the electron
mobility is larger than the ion mobility and determines
the smallest time scale to be addressed. Furthermore,
for a field line connected to a wall component, the Debye
scale cannot be ignored [33]. Based on these simple ar-
guments one finds that the physics of parallel transport
to a wall departs from the conditions that prevail when
investigating plasma transverse transport. The means
of recovering boundary conditions mostly governed by
parallel transport to be used in a framework based on a
quasineutral quasineutral plasma in discussed in the com-
panion paper. Prior to discussing this point, we address
the physics of parallel transport to a wall and the self-
organization in the parallel direction between a quasineu-
tral region and the sheath region where the charge den-
sity drives a large electric field, which in turn governs the
losses to the wall.
For this purpose we consider a 1D-1V kinetic model de-
scribing the parallel physics along a magnetic field line in
the Scrape-Off Layer of a magnetically confined plasma.
This line is connected to a wall at both ends. Simula-
tions of this model have been performed and a reference
simulation is used in this paper as a guideline. The sim-
ulation model and equations are presented in the com-
panion paper. In the present work, magnetic field cur-
vature drifts are neglected although such effects can be
addressed. As reference case, one can have a divertor ge-
ometry in mind. However, the model is more generic and
can be used to address other configurations of plasma-
wall interaction. This field line is then connected to the
divertor low and high field target plates where plasma
promptly recombines. One can note that in the present
model, one only requires prompt recombination so that
the wall component can be a solid, liquid or dense gas.
The key property for the present purpose is that plasma
particles, momentum and energy are absorbed, as if de-
stroyed, when in contact with the wall, meaning on a
scale that is smaller than any scale relevant to plasma
modeling. This condition is akin to that of a gas opening
onto vacuum. For convenience, we shall consider a fixed
location for the wall boundary as for a solid. Achieving
steady state with non vanishing plasma conditions then
requires a source to balance the outflux to the wall at
both field line ends. In the regime we have chosen to ad-
dress, the main source term on the open field lines stems
from the divergence of the cross-field turbulent fluxes.

FIG. 1. Sketch of the geometry: shape and location of the
source terms, plain blue line, versus the curvilinear abscissa
s, here normalized by the Debye length. The vertical dashed
lines indicate the limit of the source region centered on x = 0,
vertical dash-dot line. The wall location, hatched regions,
bound the plasma.

The field line is assumed to intercept the divertor with a
normal incidence, the treatment of a magnetic presheath
in the case of oblique incidence requiring one to address
the Larmor gyration, therefore stepping to at least a 2D-
2V model. Furthermore, in the latter geometries the wall
can be intercepted during the gyration motion at a dis-
tance from the intersection point of the field line with
the wall [34]. This breaks the key assumption made to
address plasma turbulence in the gyrokinetic framework
[35] or the drift expansion for the fluid framework [36].
One therefore addresses a rather standard simplified ge-
ometry as illustrated on FIG.(1).
Before stepping to the description of the kinetic model,
let us recall the expected behavior for the plasma between
the volumetric source and the sink boundary condition as
depicted on FIG.(1). In steady state, the particle source
must be compensated by the build-up of a parallel parti-
cle flux Γ, FIG.(2). Because of the symmetry of the sim-
ulation set-up, only the right hand side of the simulation
region is shown, from the middle of the box at x = 0 to
the wall on the right hand side. As will be recalled in the
following, the growth of the particle flux in the subsonic
regime governs plasma acceleration [4, 33]. Accordingly,
one expects that when the source term vanishes, the par-
ticle flux becomes constant and the plasma acceleration
should stop [4, 33]. Without particular conditions, this
flow with mean velocity ui remains subsonic up to the
wall where a standing shock wave develops. The latter is
characterized by a sharp increase of the gradients so that
very small scales are generated, typically the Debye scale
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FIG. 2. Growth of the particle flux Γ, normalized by Γ0, blue
line closed blue circles, left hand side scale. The shape of the
source terms is Ms, black line open black circles, right hand
side scale. The vertical dashed line indicates the limit of the
source region and the vertical dash-dot line the transition into
the sheath region.

λD. In plasmas, the shock wave discontinuity can be
resolved by addressing a departure from quasineutrality,
typically on the Debye scale [4]. The reference simulation
allows one to illustrate this point. We define the char-
acteristic scales L−1

ui
= |dui/dx|/ui, L

−1
ni

= |dni/dx|/ni.
Here ni stands for the ion density, hence the subscript i,
FIG.(3). The length scale Lui

is the blue curve with open
triangles. It increases in the source region, rolling over to
a range of values of order L∥. Outside the source region,
Lui

levels-off, then, left of the vertical dash-dot line, Lui

exhibits a strong decrease towards values of the order of
10 Debye lengths. The length scale Lni

for the ion den-
sity exhibits the same behavior as Lui

between the end of
the source region and the wall. The behavior is different
in the source region, in particular close to x = 0 where
for symmetry reasons Lui → 0 while Lni → +∞. In a
narrow region close to the wall, on the right hand side
of the vertical dash-dot line on FIG.(3), one observes the
expected sharp increase of the gradients. This effect is
more pronounced for the density than for the mean ve-
locity since Lni is reduced to the order of 1 Debye length.
However, since the Debye scale is resolved, no disconti-
nuity is observed. If one now considers the mean velocity
of the plasma ui, FIG.(4), one can observe first a rapid
increase in the source region, followed by a slower, close
to monotonic increase typically from the source region
to the wall, steepening in the wall vicinity, as expected
from the behavior of Lui

FIG.(3). On FIG.(4), the plot
of ui is the blue curve open circles, and is compared to
that of the thermal velocity V , black curve head-down
open triangles, and an expression of the sound velocity
cs obtained in the fluid framework, black curve head-up

FIG. 3. Variation of the characteristic scales Lni for the ion
density, black curve open triangles and Lui for the mean ion
velocity, blue curve open circles. The vertical dashed black
line is the right hand side limit of the source region and the
black vertical dash-dot line identifies the sheath region to its
right hand side. For the sake of comparison, the source scale
Ls ≲ 100, horizontal dash-dot line, and the size of the simu-
lation domain L∥, horizontal dashed line, are also indicated.

open triangles. The thermal velocity V depends on the
thermal energy T = Te + Ti, sum of the electron Te and
ion Ti thermal velocities: miV

2 = T where mi is the
ion mass. The sound velocity is defined by cs =

√
3 V .

One can readily notice that ui exceeds the thermal ve-
locity V before the end of the source region, then further
increases but does not appear to reach the sound veloc-
ity. With respect to the standard plasma description on
an open field line, as sketched above, the reference sim-
ulation exhibits unexpected features. First, both fields
ni and ui vary in the quasineutral region with vanishing
source, hence constant particle flux Γ, FIG.(2). Second,
the mean velocity does not appear to reach the sound
velocity at the sheath entrance, indicated by the verti-
cal dash-dot line. The latter observation suggests that
either the Bohm criterion does not hold, or the effective
sound velocity is not properly determined by the usual
fluid framework. Since the Bohm criterion is based on
physics arguments, it is tempting to state that the Bohm
criterion is fulfilled but that the sound velocity is not
accurately determined. This problematic discrepancy for
plasma turbulence modeling in the fluid framework is fur-
ther addressed in the following. Alternatively one could
question the location of the sheath entrance. Determin-
ing the sheath entrance is also addressed in the following
and various criteria are analyzed and compared using the
reference kinetic simulation.
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FIG. 4. Profile of the mean plasma velocity ui ≈ ue, blue
line open circle symbols, and of the reference velocities V =√

T/mi, black line open head-down triangle symbols, and

cs =
√
3 V , black line open head-up triangle symbols.

B. Kinetic model to address open field line
self-organization

1. Kinetic equation and normalization

In Section IIA we have presented some of the results
obtained with the reference kinetic simulation. We now
describe the model used in this paper and for the simu-
lations. We address the kinetic behavior of a two species
plasma. For simplicity we shall consider singly charged
ions. The effect of cross-field transport, mostly turbulent
transport, is taken into account by a source term. With
this simplification, one can restrict the model to a sin-
gle field line with one-dimension in position space s and
one dimension in velocity space v. One now introduces
the distribution function fa(s, v, t), expressing the den-
sity of particles of species a, e for electrons and i for ions,
at time t and at point (s, v) of phase space. Mass and
charge of any particle of species a are ma and ea. The
ratio me/mi is a free parameter, usually chosen small.
Varying this parameter gives access to the role of mobil-
ity on the physics at hand. This parameter also controls
the simulation cost since steady state conditions for the
ions is typically

√
mi/me longer than for electrons. For

the reference simulation we have chosen me/mi = 1/400,
which is small and yields a factor 3 gain on the computa-
tion cost compared to that required for a realistic mass
ratio of a deuterium plasma. The electric field E in the
electrostatic limit is determined by the gradient of the
electric potential U , E = −∂sU . The 1D-1V Boltzmann
Eq. (1a) that governs the evolution of the distribution

function fa is then:

∂tfa + v∂sfa −
ea
ma

∂sU ∂vfa = C(fa) + S(fa) (1a)

where C(fa) is the collision operator, standing for both
self-collisions with particles of the same species a and
inter-species collisions, and where S(fa) is the source
term. The electric potential is determined by the Pois-
son equation (1b), the electrostatic limit of the Maxwell-
Gauss equation, which relates the electric potential to
the charge density ρc.

−∂2
sU = ρc/ε0 ; ρc =

∑
species a

eana (1b)

Here we have introduced the local density na of species
a, which is a function of time and space. It is the velocity
space integral of the distribution function na =

∫
dv fa.

In the present paper we only normalize the Poisson equa-
tion introducing the reference thermal energy T0, den-
sity n0, and length scale L0. We define ϕ = eU/T0 and
x = s/L0, so that:

∂tfa + v∂sfa −
T0

ma
∂sϕ ∂vfa = C(fa) + S(fa) (2a)

ε2D∂2
xϕ =

∑
species a

eana

en0
; ε2D =

λ2
D0

L2
0

=
ε0T0

n0e2L2
0

(2b)

We have introduced the Debye length λD0 to define ε2D,
the control parameter in the Poisson equation. In this pa-
per the source term S is the SOL-plasma source mainly
governed by cross-field transport. Specific sink terms
are addressed in the companion paper to implement the
immersed boundary conditions. All simulation data are
normalized. A normalization is used on the various plots
presenting the simulation output, and recalled on each
plot for clarity. On the plots, densities and thermal ener-
gies are normalized by n0 and T0 respectively, and all ve-
locities are normalized by V0 =

√
T0/mi. Consequently,

the particle flux normalization on FIG.(2) is Γ0 = n0V0.
Note that λD, the scale normalization in the plots, stands
for λD0

. This normalization choice on the various plots
differs from the normalization made in the companion
paper. Let us recall that the only normalized variables
in the equations of the present paper are the electric po-
tential ϕ and position x, see Eq.(2).

2. The forcing problem: the plasma source

Because of the plasma losses onto the wall, the source
term is a crucial aspect of the self-organization process
along the SOL field line. In the SOL region of magneti-
cally confined plasmas, cross-field turbulent transport is
found to govern the heat source. The latter, and, depend-
ing on the operating conditions, neutral particle ioniza-
tion on the open field lines determine the particle and
convected energy sources. The chosen source term S in
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Eq.(2a) is similar to theGysela source terms [37]. While
in Gysela this term stands for actual particle, momen-
tum and energy source governed by particle ionization,
torque injection and plasma heating, the source term in
the present 1D model is understood to be the divergence
of the cross-field fluxes from neighboring field lines. Con-
sidering that turbulent transport is observed to be bal-
looned to the low field side [38, 39], it is reasonable to
address a localized source term as done here, which then
differs from the homogeneous source addressed in some
works [4]. One could extend the model and consider a
particle source by electron impact ionization of neutrals,
or a spurious external heating of SOL electrons [40]. One
could also address problems with charge or momentum
sources, which would induce parallel electric currents and
break the symmetry of the plasma region. We focus here
on conditions that enforce the symmetry of the plasma
and that minimize the role of atomic processes as suitable
to perform global gyrokinetic turbulent transport simula-
tions with somewhat reduced complexity. Neglecting the
SOL ionization source in the present work is consistent
with the SOL behavior in standard limiter configurations
and in the so-called sheath limited divertor regime. Some
features of the transition into the high recycling diver-
tor regime could also be addressed insofar that atomic
processes can be ignored to explain the plasma proper-
ties. The SOL problem of interest is therefore that of the
hot plasma regime where atomic processes are expected
to have a relatively weak effect. This particular regime
has implications when addressing the plasma collisional-
ity, see Section II B 3. The particular self-organization
problem is to determine the plasma total pressure and
the plasma thermal energies on the open the field lines,
given the wall losses monitored by the parallel transport,
the sheath constraints on the fluxes as well as the source
properties. A particular choice of the source term is made
in this paper and the companion paper. While one can
expect E × B drift convection to act as a source of par-
ticles and heat from the neighborhood of the field line
and a sink of particles and heat from the chosen field
line, suggesting a BGK-like source term, we have cho-
sen a particle and convected energy source independent
of the plasma condition on the field line. The source in
the kinetic equation Eq.(2a) is proportional to a target
distribution function, chosen to be a Maxwellian, with
zero mean velocity, and therefore no momentum trans-
fer. This source term determines a particle and convected
energy source with zero heat source –energy source with
zero particle source, therefore exchanging a cold by a hot
particle.

S(fa) = Ms(x)
sk√

2πTs/ma

exp

(
−mav

2
a

2Ts

)
(3)

The mask Ms, plotted in black on FIG.(2), right hand
side scale, localizes the source region in the central part
of the plasma. The shape is based on hyperbolic tangent
functions. The width of the transition region is compa-
rable to the width of the source region so that there is no

flat top in the source amplitude. This mask function is
defined so that its integral in the plasma volume is equal
to 1. The parameter sk then defines the source ampli-
tude as the number of particles of species a injected in
the plasma per unit time. The source thermal energy
Ts determines the energy of the injected particles, and
therefore the convected energy source. These two con-
trol parameters are chosen to be species independent and
constant both in space and time. This source does not
depend on the SOL-plasma conditions and is symmetric
with respect to the center of the simulation domain at
x = 0. Together with the absence of momentum and
charge source, this enforces the symmetry of the solu-
tion with respect to x = 0 that defines consequently the
stagnation point where the plasma mean velocity is null.
A notable simplification is made here compared to in-
termittent transport that is understood to prevail in the
SOL region [41]. With intermittent cross-field transport
events, avalanches or blobs, the source term exhibits a
time dependent pattern with a short burst of plasma con-
vected into the SOL, with hot and dense plasma condi-
tions, followed by a quiescent phase prior to a new burst
[42]. Both the duration of the bursts and that of the
quiescent phase play a role on transport properties and
therefore on the source properties. The interesting issues
raised by such dynamics of the source term and interplay
with the parallel transport are left for future work. The
constant source approximation allows one to address the
steady state properties without having to perform statis-
tical averages on the distribution of burst properties.

3. Collisions

In the simulations, the collision operator C(fa) in the
simulations of the Boltzmann equation Eq. (2a) is the
sum of the linearized self and inter species collision op-
erators. A detailed description of the chosen linearized
operators is given in the companion paper. As will be dis-
cussed, it is critical to include a self scattering mechanism
in our system so that a steady state can be reached. This
illustrates the fundamental difference between a collision-
less plasma with ν⋆0 = 0 and a weakly collisional plasma,
for which ν⋆0 → 0+. The dimensionless control parame-
ter ν⋆0 is defined in Eq. (4). It is similar to the standard
ν⋆ parameter used in Gysela [43], slightly modified to
account for properties of the SOL collisional transport.
The collisional regularizing operator in velocity space
must handle cases with large departure from Maxwellian
distributions. Furthermore, to investigate the possible
role of collisions on the sheath physics, it must address
a regime characterized by variations on the Debye scale.
While the non-linear Landau and Lenard-Balescu colli-
sion operators do not prescribe near Maxwellian distribu-
tions [44], their derivation assumes spatial scale separa-
bility, i.e. that each distribution function only depends on
velocities at the Debye scale. To our knowledge, there is
no published closure of the kinetic hierarchy allowing the
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calculation of a collision operator that would remain valid
in conditions with plasma inhomogeneity on the Debye
scale. Further collisional issues are met when stepping
to realistic SOL conditions where electron-impurity and
ion-neutral collisions become particularly important in
the high recycling and detached divertor regime. From
a fundamental point of view, there does not exist ex-
pressions of kinetic collisional operators to address all
these processes and regimes. However, our aim is to
first address the so-called sheath limited regime in the
gyrokinetic simulations of turbulent transport, hence a
low-collisionality SOL regime where such complex atomic
processes can be ignored. Finally, in the simulations we
take into account collisions with two linearized opera-
tors, one specific of inter-species electron-ion collisions,
and the other for self-collisions, both electron-electron
and ion-ion collisions. The latter has the key features
to recover the properties of parallel transport, namely
that the collision exchange decreases with particle ve-
locity. This is most important in determining the elec-
tron heat diffusivity, which is a key point to address the
divertor regimes. The chosen expression is devised to
satisfy the fundamental conservation properties of elas-
tic binary collisions. The self-collision operator Caa we
use is inspired from [39]. It conserves density, momen-
tum and energy and Maxwellian distribution functions
belong to its kernel. This collision operator exhibits the
1/|v| velocity dependence of the the Landau and Lenard-
Balescu non-linear operators [44]. The inter species col-
lision operator is adapted from [45]. It is set to drive
the distribution functions towards thermal equipartition
and equal mean velocity. The amplitude of the collisional
term is determined by the chosen collisionality ν⋆0 , such
that ν⋆0 = ν⋆D0L∥/λD0.

ν⋆0 =
4
√
π

3

( e2

4πε0

)2 n0

T 2
0

log Λ L∥ = ν⋆D0

L∥

λD0
=

L∥

Lcoll
(4)

where log Λ is the Coulomb logarithm. The control pa-
rameter ν⋆0 does not depend on particle mass. It is more
convenient for SOL physics than the standard ν∗ param-
eter since the parallel transport process does not depend
on trapped particles. The control parameter ν⋆0 can be
read as the collisional mean free path divided by the refer-
ence field line length in the SOL: L∥ ≈ πqR, R stands for
the major radius and q is a relevant value of the safety fac-
tor, typically the value taken one energy e-folding length
within the separatrix.
Collisions in the plasma are a continuous random walk
process and thus contribute even for ν⋆0 ≤ 1. Further-
more, their effective amplitude depends on both the con-
trol parameter ν⋆0 and on the values taken by the oper-
ator. For the self-collision operator, the latter vanishes
for Maxwellian distributions and one can expect values
larger than unity whenever the velocity space derivative
becomes large. It is also important to keep in mind that
the expression of ν⋆0 is an average value where the low
velocity particle have a strong weight. Supra thermal
electrons exhibit lower collisionality, at twice the ther-

mal velocity, Eq.(4) indicates a factor four reduction of
collisionality for this class of particles.

III. ANALYSIS OF SOL-SHEATH
SELF-ORGANIZATION WITHIN THE FLUID

FRAMEWORK

The fluid framework is most often understood to be re-
stricted to the Navier-Stokes equations, namely the three
first moments of the Boltzmann equation. A closure is
introduced to bound the infinite fluid hierarchy to these
three first moments. In the literature of fusion plasma
turbulence this closure is usually a collisional closure that
determines the heat fluxes in terms of the temperature
gradients. The Navier Stokes equations are also interest-
ing when analyzing the kinetic results since these pro-
vide physical insight into the ongoing processes. How-
ever, given the mismatch between the expected behavior
and simulation results presented in Section IIA, one can
expect a shortfall of the standard Navier-Stokes closure.
In this Section we compare the fluid predictions to the
kinetic reference simulation. Non-collisional closure and
higher moment closure are addressed, but do not provide
a predictive guideline to analyze the simulation evidence.

A. Fluid description of a 1-D plasma

1. Navier-Stokes conservation equations

The Navier-Stokes fluid moments can be computed
using the dimensional form of the Boltzmann equation
Eq.(1a). For species a, one readily obtains:

∂tna +∇sΓa = Sa
n (5a)

ma∂tΓa +∇sΠa = −eana∇sU + Ca
mΓ (5b)

∂tEa +∇sQa = −eaΓa∇sU + Ca
E + Sa

E (5c)

where Ca
mΓ and Ca

E stand for the momentum and energy
collisional exchange and Sa

n, S
a
E for the particle and en-

ergy sources. With the standard definitions of the density
na, particle flux Γa, momentum flux Πa, energy density
Ea, and energy flux Qa for species a:

na =

∫ +∞

−∞
dv fa (6a)

Γa =

∫ +∞

−∞
dv v fa = naua (6b)

Πa =

∫ +∞

−∞
dv mav

2 fa = naTa +manau
2
a = 2Ea (6c)

Qa =

∫ +∞

−∞
dv 1

2mav
2 v fa = qa + ua

(
Ea + pa

)
(6d)

These definitions also introduce the mean particle veloc-
ity ua, the thermal pressure pa = naTa, the thermal en-
ergy Ta, and the heat flux qa. The latter is the difference
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between the energy flux Qa and the convective energy
flux Qca = ua

(
Ea+pa

)
. In the 1-D limit, the momentum

flux Πa and energy density Ea are related Πa = 2Ea. One
can thus remark that the Navier Stokes system Eq.(5) is
closed but for the term qa and eventually the collisional
exchange terms. Possible closures are either setting these
terms to zero, or reducing these terms to functions of the
three first moments na, Γa and Πa, and setting the other
contributions to zero. Conversely, any specific kinetic
feature, by definition not taken into account by this fluid
description, must translate into a behavior of qa and the
collisional exchange terms that cannot be approximated
by zero or functions of the three first moments.

2. Two species plasma conservation equations

For a two species plasma with electrons, charge ee =
−e and massme, in singly charged ions, charge ei = e and
massmi, one can conveniently split the system into equa-
tions that are related to charge and equations addressing
the mass center. The latter system will be named plasma
since it combines the electrons and the ions. Because of
the large mass ratio mi ≫ me, charge and electron bal-
ance equations contribute to the part of the system evolv-
ing on the electron time scale, while the other part can
be approximated to the part of the system evolving on
the ion time scale. Regarding particle balance, we shall
consider the ion particle balance and the charge balance,
defining the charge density ρc = e(ni−ne) = eη, η is the
density difference η = ni − ne, and the total electrical
current j = e(Γi − Γe), therefore:

∂tni +∇sΓi = Sn (7a)

∂tρc +∇sj = 0 (7b)

We assume here that there is no charge source, hence
Si
n = Se

n = Sn. The total plasma momentum and energy
conservation equations are completed by those for the
electrons.

∂t(meΓe) +∇sΠe = ene∇sU + Ce
mΓ (8a)

∂t(miΓi +meΓe) +∇s(Πi +Πe) = −ρc∇sU (8b)

∂tEe +∇sQe = eΓe∇sU + Ce
E + SE (8c)

∂t(Ee + Ei) +∇s(Qe +Qi) = −j∇sU + 2SE (8d)

In the chosen model we have furthermore assumed that
the energy source is identical for the ion and electron
channel Se

E = Si
E = SE , hence the factor 2 in Eq.(8d).

3. Quasineutral and large mass ratio limits

In the quasineutral limit one assumes that the charge
density ρc can be set to zero, therefore ignoring the dif-
ference between electron and ion densities. This regime is
enforced by the Poisson equation Eq.(2b) in the asymp-
totic limit ε2D → 0. The charge balance equation Eq.(7b)

then enforces that ∇sj = 0, hence a 1-D current that is
constant along the field line. Although a non vanishing
current can exist, it must be sustained by a potential dif-
ference. Assuming the wall to be grounded, so that no
potential difference is generated within the wall and be-
tween the two ends of the field line, enforces the electrical
current to be null, j = 0. For the two species plasma, the
small departure from neutrality end forces ne ≈ ni = n,
η ≪ ni, so that the j = 0 yields Γe ≈ Γi = Γ. The
quasi-identical density and particle flux enforces ue ≈ ui.
Given the large mass ratio mi/me ≫ 1, we assume the
ordering miniu

2
i + meneu

2
e ≈ miniu

2
i and Πe ≈ neTe.

The plasma balance equations are then:

∂tn+∇sΓ = Sn (9a)

mi∂tΓ +∇sΠ = −ρc∇sU (9b)

∂tE +∇sQ = 2SE (9c)

where Π = Πe + Πi = pe + pi +miniu
2
i , E = Ee + Ei =

Π/2, and Q = Qe + Qi. As written here, we have not
enforce ρc → 0. One is led to consider this term when one
addresses steady state conditions on the time scale of the
electron evolution. This also enforces ∇sj = 0, hence j =
0 and equality of the fluxes. Provided mi/me ≫ ni/ne,
one recovers the ordering miniu

2
i + meneu

2
e ≈ miniu

2
i

and Πe ≈ neTe and the plasma balance equations Eq.(9).
However, because of this coupling to ρc, this system must
be completed by the electron conservation equations and
the Poisson equation relating the electric potential ϕ to
the charge density ρc. More generally, one can state that
whenever j ≈ 0, meaning |j| ≪ e|Γi| and provided |ρc| ≪
enemi/me, one recovers Eq.(9).

4. Plasma balance equations in steady state

Let us now consider the steady state regime with re-
spect to the ion evolution time. The various field now
only vary in space and one can replace the space deriva-
tive ∇s by ds.

dsΓ = Sn (10a)

dsΠ = −ρcdsU (10b)

dsQ = 2SE (10c)

Since the energy source is convective, proportional to the
particle source Sn, and Ts/2 energy per injected particle,
this model yields 2SE = TsSn. Using this relation to
modify Eq.(10c) and the quasineutral regime ρc → 0 to
modify Eq.(10b), the system takes the form:

dsΓ = Sn (11a)

dsΠ = 0 (11b)

ds
(
Q− TsΓ

)
= 0 (11c)
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Since both Γ and Q are anti-symmetric with respect to
the mid-box s = 0 while Π is symmetric, one obtains:

Γ =

∫ s

0

ds Sn (12a)

Π = constant (12b)

Q = ΓTs (12c)

In the region with vanishing source, left hand side of
the vertical dashed line on FIG.(2), Γ = Γw is constant
and equal to the particle flux impinging onto the wall.
Consequently Q = Qw, the energy flux impinging onto
the wall. In the reference simulation these three conser-
vation properties are observed Γ/Γ0 = 0.992 ± 2. 10−3,
Π/Π0 = 1.1814 ± 3. 10−4, Q/Q0 = 1.00075 ± 3.5 10−4.
Since all normalized values are of order 1, the relative and
absolute error are identical. One finds that the largest
error is made on the particle flux, with a systematic error
with respect to the expected value Γ/Γ0 = 1. Since the
particle flux is a moment of the distribution functions, de-
termined without requiring any approximation, one can
use this comparison to estimate the numerical error of the
simulation, typically smaller than 10−2. The kinetic sim-
ulation is therefore found to exhibit 3 conserved fluxes of
the fluid description while the distribution functions vary
with no direct constraint enforcing such conservation.

B. Plasma sound waves

1. Sound waves in quasineutral plasma

As discussed in Section IIA and illustrated by FIG.(4),
an important issue when using the fluid framework to dis-
cuss the physics of the SOL plasma self-organization is
the sound velocity. To address this point we consider
fluctuations of various moments of the distribution func-
tions

M
(a)
ℓ (s, t) =

∫
dv vℓfa(s, v, t) (13a)

M
(a)
0 = na ; M

(a)
1 = M

(a)
0 ua = Γa (13b)

Then defining w = v − ua one defines:

N
(a)
ℓ (s, t) =

∫
dv wℓfa(s, v, t) (13c)

N
(a)
0 = M

(a)
0 ; N

(a)
1 = 0 (13d)

The moment Mℓ is related to the lower moments Nj ,
j ≤ m, and the moment Nℓ to the lower moments Mj ,

j ≤ m.

M
(a)
ℓ =

∫
dv (w + ua)

ℓfa =

m∑
j=0

Cj
ℓ (ua)

jN
(a)
m−j (14a)

N
(a)
ℓ =

∫
dv (v − ua)

ℓfa =

m∑
j=0

Cj
ℓ (−ua)

jM
(a)
m−j (14b)

Cj
ℓ =

m!

(m− j)!j!
(14c)

Let us consider the fluid hierarchy for species a:

∂tM
(a)
ℓ + ∂sM

(a)
ℓ+1 = X

(a)
ℓ + C(m)

a + S(m)
a (15a)

X
(a)
ℓ =

ea
ma

∂sU mM
(a)
m−1 (15b)

C(m)
a =

∫
dv vmCa(fa) ; S(m)

a =

∫
dv vmSa(fa) (15c)

The mass center combination of the moments miM
(i)
ℓ +

meM
(e)
ℓ = (mi +me)Mℓ then yields:

∂tMℓ + ∂sMℓ+1

= e∂sUℓ
M

(i)
ℓ−1 −M

(e)
ℓ−1

mi +me
+

miC
(ℓ)
i +meC

(ℓ)
e

mi +me

+
miS

(ℓ)
i +meS

(ℓ)
e

mi +me
(16a)

For particle conservation m = 0, the order 0 moment M0

is the density, the order 1 M1 is the particle flux Γ. For
ρc = 0 and j = 0 these are identical for the two species.
Furthermore the particle source term is identical for both
species to conserve charge, and collisions conserve parti-
cles, therefore Eq.(16a) leads to Eq.(9a).

∂tM0 + ∂sM1 = Sn (16b)

For momentum conservation, moment m = 1, collisions
conserve the total momentum, the electrical force is pro-
portional to the charge density ρc = 0, and we have as-
sumed no momentum source. Eq.(16a) therefore leads
to:

∂tM1 + ∂sM2 = 0 (16c)

Similarly for kinetic energy conservationm = 2, the Joule
heating is proportional to j = 0, collisions conserve the
kinetic energy, and the energy source is identical for each
species, therefore:

∂tM2 + ∂sM3 =
4

mi +me
SE (16d)

For the higher moments, the left hand side of the moment
equations keeps the same structure as found in Eq.(16a).
However, on the right hand side the contribution propor-
tional to the electric field, the collisional exchange and
the source contribution will not be null. In the large
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mass ratio limit mi ≫ me, the system for the three first
moments then takes the form:

∂tn+∇sΓ = Sn (17a)

∂tΓ +∇s

(
Π/mi

)
= 0 (17b)

∂t
(
Π/mi

)
+∇s

(
2Q/mi

)
= 4SE/mi (17c)

Let us now consider fluctuations of a steady state solu-
tion. We assume that these fluctuations are not driven
by fluctuations of the source term, these are chosen fixed.
The fluctuation amplitudes are assumed to be small, al-
lowing us to linearize the evolution equations, and use
Fourier modes as convenient basis to determine the eigen-
modes. The phase of the Fourier modes is chosen to be
−ωt+ks, so that the phase velocity of interest is c = ω/k.
In the quasineutral limit, the system Eq. (17) is closed
but for the coupling to higher moments governed by the
heat flux q contributing to the total energy flux Q. To
compute the possible values of c, we close the fluid hi-
erarchy by assuming the linearized energy flux to be a
linear combination of the lower moments, density n, par-
ticle flux Γ and momentum flux Π. We then find that
non-trivial solutions are obtained when the following de-
terminant is null.∣∣∣∣∣∣

−c 1 0
0 −c 1
an aΓ aπ − c

∣∣∣∣∣∣ = 0 (18a)

Where the coefficients are define as: an = ∂n(2Q/mi) at
fixed Γ and Π, aΓ = ∂Γ(2Q/mi) at fixed n and Π and
aπ = ∂Π(2Q) at fixed n and Γ. The dispersion equation
is therefore cubic in c:

c3 − aπ c2 − aΓ c− an = 0 (18b)

Finding the roots of this dispersion equation is eased
when the chosen closure allows a class of density fluc-
tuations to exhibit a phase velocity c equal to the mean
velocity u.

2. Density fluctuations propagating at mean plasma velocity

We address here a particular behavior of the system
that stems from the left hand side structure of the mo-
ment equation Eq.(16a). Removing the drive of the fluc-
tuations by the source terms, setting the electric field
E = −∂U to zero and ignoring the contribution of the
collisions. These assumptions ensure that the plasma
moment equations are similar to that of a neutral fluid
at local thermodynamic equilibrium, only the left hand
side is retained.

∂tMℓ + ∂sMℓ+1 = 0 (19a)

When stepping to the dispersion relation this linear equa-
tion readily leads to:

M̂ℓ+1 = c M̂ℓ (19b)

which yields the structure highlighted by the two first
lines in the determinant Eq.(18a), the third being deter-
mined by the chosen closure. Stepping back to Eq.(14a),
one finds that if the eigenmode is chosen such thatNj = 0
for j > 0, then all the moment equations are equivalent
to:

M̂1 = c M̂0 (20a)

Further choosing the eigenmode such that ũ = 0, then
leads to: (

c− u
)
M̂0 = 0 (20b)

and the dispersion equation c = u for this particular
eigenmode. Density fluctuations, with no other fluctuat-
ing field, are then found to exhibit a phase at rest in the
frame moving at the plasma velocity u. From the kinetic
point of view, the chosen fluid eigenmode corresponds
to a perturbation of the distribution functions, identical
for electrons and ions, of the form ñ gM (v, u, TM → 0)
where gM is a Maxwellian with mean velocity u, thermal
energy TM → 0 and v-space integral equal to 1. All mo-
ments of this perturbation are then proportional to ñ and
to the mean velocity at some power, uℓ for the moment
of order ℓ. This property is readily recovered with the

system Eq.(17) when setting ũ = 0, T̃ = 0 and q̃ = 0,

so that Γ̃ = uñ, Π̃/mi = u2ñ, and 2Q̃/mi = u3ñ. For
this eigenmode, one finds the dispersion relation c = u.
This properly designed eigenmode enforces that one of
the roots of the cubic dispersion equation is c = u. The
procedure to specify the eigenmode generating a partic-
ular eigenvalue is related to the fluid closure. For the
dispersion relation Eq.(18b) requiring the system to ex-
hibit the root c = u enforces following constraint on the
closure coefficients.

u3 − aπ u2 − aΓ u− an = 0 (21a)

This equation can be read as a constraint on one of the
coefficients, aπ, aΓ or an, typically an = u3−aπ u2−aΓ u
so that the dispersion relation allowing c = u as possible
root should then also read:(

c2 + (u− aπ)c+ u2 − aπu− aΓ
)(
c− u

)
= 0 (21b)

For plasmas, unlike the case of standard neutral fluids,
requiring this particular eigenmode and eigenvalue does
not appear to be generic. For instance, for the moments
ℓ > 3 both the electrical force and collisions will modify
the dispersion relation. Furthermore, the closure that is
chosen can rule out this particular eigenmode and eigen-
value. This issue will be further discussed in the follow-
ing.

3. Sound wave with null heat-flux closure

For a quasineutral plasma, given T = Te+Ti, one finds
the following expressions for Π and the convective energy
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flux:

Π = nT +minu
2 = 2E (22a)

Qc = u(E + pe + pi) =
Γ

n

(
γcnT + 1

2minu
2
)

(22b)

For a 1D geometry, with no energy exchange with other
dimensions, γc =

1
2 + 1. We generalize these expressions

by introducing σV and σp analogous to the heat capacity
of thermodynamics. For an ideal mono-atomic gas in a
space of dimension d, σV = d/2 and σp = σn + 1. The
modified expressions of Π and Qc are then:

Π/mi =
(
2σV V

2 +
Γ2

n2

)
n (23a)

2Qc/mi =
(
2σpV

2 +
Γ2

n2

)
Γ (23b)

With the chosen zero heat flux closure q = 0 we must
express Q = Qc in terms of the chosen independent vari-
ables n, Γ, Π/mi.

2Qc

mi
=

σp

σV

Π/mi

n
+

Γ3

n2

(
1− σp

σV

)
(24a)

Ignoring the contribution of the heat-flux q to the plasma
energy flux Q, one can determine the three coefficients
aπ, aΓ and an: an = a′n = ∂n(2Qc/mi), aΓ = a′Γ =
∂Γ(2Qc/mi) and aπ = a′π = ∂Π(2Qc). Using Eq.(24a)
one then obtains:

a′π =
σp

σV
u ; a′Γ = 2σpV

2 + u2
(
3− 2

σp

σV

)
(25a)

a′n =− 2σpV
2u+ u3

( σp

σV
− 2

)
(25b)

With these coefficients the constraint Eq.(21a) is satisfied
and c = u is therefore one of the roots of the dispersion
equation. The two other roots are then determined by a
quadratic equation, see Eq.(21b).

c =
σp/σV − 1

2
u±

(
2σpV

2 + u2 (σp/σV − 3)2

4

)1/2

(26a)

The phase velocity of the sound wave is computed to
be the sum of a Doppler shift proportional to the fluid
mean velocity (γp − 1)u/2, with γp = σp/σV , plus or
minus the sound velocity c2s = 2σpV

2 + u2(γp − 3)2/4.
If one enforces the Doppler shift velocity to be the mean
velocity u, then one must have γp = 3 identical to the
perfect gas adiabatic index in 1D. One then finds that
the sound velocity does not depend on the mean velocity
u,

c− u = ±
√

2σp V (26b)

Therefore c2s = 2σpV
2. The condition to achieve a stand-

ing shock wave c = 0 is met for u = cs. For the standard
ideal gas values σp = 3/2 and σn = 1/2, hence γp = 3,
one obtains:

c2s = 3 V 2 (26c)

Referring to the simulation results, FIG.(4), one finds
that the sheath entrance is observed for u = 1.505 V ,
which then requires 2σp = 2.265 < 3, approximately 25%
smaller than the ideal gas value. Accordingly one must
have 2σV = 0.755 < 1.
The ideal gas values of the coefficients σV and σp, namely
σV = 1/2, σp = 3/2 are those obtained when computing
the moments of the kinetic equation. The departure of
σV and σp from these values that suggests the compari-
son to the simulation evidence indicates that the chosen
closure is not appropriate to accurately determine the
sound velocity. An alternative closure is addressed in
Section III B 4.

4. Sound wave velocity with the polytropic closure

In many papers the sound velocity is determined in
the polytropic framework. The latter assumes a closure
of the form:

dp

p
− γp

dn

n
= 0 (27a)

where γp is the polytropic index, which can be different
from the adiabatic index. This state equation is used to
close the first moment equation. Using Eq.(16b) with
zero source and Eq.(16c) we then have:

∂tM0 + ∂sM1 = 0 (27b)

∂tM1 + ∂sM2 = 0 (27c)

According to Eq.(14a) one can identify M2 to:

M2 = N2 +M0u
2 (27d)

where we have taken into account N1 = 0, N0 = M0 and
u = M1/M0 by definition. According to the polytropic
closure, one has:

∂sN2 =
γpN2

M0
∂sM0 (28a)

One can then determine the expression of ∂sM2.

∂sM2 =
γpN2

M0
∂sM0 + 2

M1

M0
∂sM1 −

M2
1

M2
0

∂sM0 (28b)

Stepping to Fourier space and linearizing the latter ex-
pression, one obtains therefore:

− cM̂0 + M̂1 = 0 (29a)

− cM̂1 + M̂2 = 0 (29b)

M̂2 =
γpN2

M0
M̂0 + 2

M1

M0
M̂1 −

M2
1

M2
0

M̂0 (29c)

Consequently:

M̂0

(
(c− u)2 − γpN2

M0

)
= 0 (30a)
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Non trivial solutions with M̂0 ̸= 0 are obtained when the
dispersion relation is fulfilled

c− u = ±
(γpN2

M0

)1/2

= ±
( γpp

min

)1/2

(30b)

By construction, the polytropic closure excludes the root
c = u since N2 is not null. However, the dispersion re-
lation Eq.(30b) allows one to recover the sound velocity
c2s = γpV

2. With no heat exchange γp = σp/σn = 3 is the
adiabatic index and one recovers the same sound veloc-
ity as obtained in Section III B 3, Eq.(26c). If one now
identifies this result to the simulation result, one finds
γp = 2.265, which is 25% smaller than the adiabatic in-
dex. This result suggests that heat transport plays a role
so that the temperature variation is less important than
would be expected with the adiabatic closure.

5. Sound wave velocity with higher moment closure

The moment equation of order ℓ Eq.(16a) is of the
form:

∂sMℓ = Zℓ (31a)

For the sound waves we step to Fourier space, therefore:

ikM̂ℓ = Ẑℓ (31b)

As in the previous Sections, we shall consider here the
case with null electric field and neglect the collisional
contributions. If one sets Zℓ = Sℓ−1 in Eq.(31a), one
can use this fluid hierarchy to determine the steady state
solutions. Addressing Eq.(31b) in the fluctuation frame-
work, one assumes that there is no drive by source fluc-
tuations, so that Zℓ is identified to the time derivative of
moment ℓ − 1. With such assumption, the steady state
and fluctuation equations, the drive term Zℓ in Eq.(31)
is then written as:

Zℓ = Sℓ−1 (32a)

when addressing the steady state solutions, while for the
fluctuations in Fourier space one has:

Ẑℓ = iωM̂ℓ−1 (32b)

As already highlighted, the fluid hierarchy in Fourier
space exhibits a very simple structure given the phase
velocity c = ω/k

M̂ℓ = c M̂ℓ−1 (33a)

For the purpose of the following calculation, it is useful
to use the identity:

Wℓ =

ℓ∑
j=1

jCj
ℓ (−u)j−1Mℓ−j

jCj
ℓ = j

ℓ!

j!(ℓ− j)!
= ℓ

(ℓ− 1)!

(j − 1)!(ℓ− 1− j − 1))!
= ℓC

(j−1)
ℓ−1

Wℓ = ℓ

ℓ∑
j=1

C
(j−1)
ℓ−1 (−u)j−1Mℓ−1−(j−1)

= ℓ

ℓ−1∑
j′=0

Cj′

ℓ−1(−u)j
′
Mℓ−1−j′ = ℓNℓ−1

therefore:

ℓ∑
j=1

jCj
ℓ (−u)j−1Mℓ−j = ℓNℓ−1 (34)

Linearizing Eq. (14b) in Fourier space, one determines

M̂ℓ−1:

N̂ℓ =

ℓ∑
j=0

Cj
ℓ (−u)jM̂ℓ−j −

ℓ∑
j=1

jCj
ℓ (−u)j−1Mℓ−j û

The second term can be simplified according to the iden-
tity Eq.(34):

For ℓ ≥ 2 one then finds:

N̂ℓ =
(
c− u

)ℓ
M̂0 − ℓNℓ−1û (35a)

while for ℓ = 1:

N̂1 = M̂1 − uM̂0 −M0û (35b)

M0 û =
(
c− u

)
M̂0 (35c)

From the latter equation one can determine û, which can
be used in Eq.(35a) to obtain for ℓ ≥ 2:

N̂ℓ =
(
c− u

)ℓ
M̂0 − ℓ

Nℓ−1

M0

(
c− u

)
M̂0 (36a)

Closing the fluid hierarchy at moment ℓ, one finds the
dispersion relation.((

c− u
)ℓ − ℓ

Nℓ−1

M0

(
c− u

))
M̂0 − N̂ℓ = 0 (36b)

In this expression we have retained the term N̂ℓ to be able
to address the specific closures for the moment ℓ = 2:

(c− u)2 =
N̂2

M̂0

The polytropic closure could be used here leading to the
results of Section III B 4. As an alternative, we define
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N2 = V 2M0 with V 2 constant so that N̂2/M̂0 = V 2, one
then obtains c2s = V 2 and:

c = u± V (37a)

This corresponds to the isothermal closure which is in
fact a particular case of the polytropic closure for γp = 1.
Regarding the closure at moment ℓ = 3, setting N3 = 0
corresponds to the closure q = 0 of Section III B 3.(

c− u
)3 − 3

N2

M0

(
c− u

)
= 0 (37b)

which yields the root c = u together with c2s = 3V 2 and
the roots:

c = u±
√
3 V = 0 (37c)

One recovers the result of Section III B 3. If one now
assumes Nℓ = 0 as rule for the closure at moment ℓ > 2,

the existence of non-trivial solutions M̂0 ̸= 0 allows one
to simplify the dispersion relation Eq.(36b).((

c− u
)ℓ−1 − ℓ

Nℓ−1

M0

)(
c− u

)
= 0 (38)

One can then generalize the result obtained for ℓ = 3, a
root c = u together with the roots:(

c− u
)ℓ−1

= cℓ−1
s (39a)

cs =
(
ℓ
Nℓ−1

M0

)1/(ℓ−1)

(39b)

The sound velocity crucially depends on Nℓ−1 for which
we have no particular insight for ℓ > 2. The roots will
depend on the sign of Nℓ−1 as well as on the parity of
ℓ. Odd values of ℓ will allow the roots ±cs, while even
values require that c−u has the sign of the roots cs. One
can note that applying Eq.(39) to the case ℓ = 2, yields
cs = 0. The results for ℓ = 2 have been obtained because
we have used another closure than Nℓ = 0. Stepping to
higher moments can be used to adjust the fluid predic-
tion to the simulation result but one does not gain in
predictive capability. Indeed, defining the transition into
the sheath region with the Bohm criterion M2 = 1, with
M = u/cs, does not provide a boundary condition on u
since cs depends on the chosen closure.
Given the result of Section III B 3, recovered in Eq.(37c),

we shall consider cs =
√
3 V , unless specified differently,

and, for convenience, we define MV = u/V , such that

MV =
√
3 M .

C. Steady state plasma conditions

In steady state conditions discussed in Section IIIA 4,
we have obtained the conservation equations for the par-
ticle flux Γ, the total plasma momentum flux Π and the
energy flux Q. Since no heat is injected by transverse

transport, a reasonable assumption to close this system is
to set the parallel heat flux to zero q = 0, hence Q ≈ Qc.
To simplify the expressions we directly use 2γc = 3. In
the quasineutral limit, we also substitute Πqn to Π, with
Πqn = niT + nimiu

2, and therefore Π = Πqn − ηTe:

Γ =

∫ s

0

ds Sn ; Γw =

∫ L∥

0

ds Sn (40a)

Πqn = constant (40b)

Γ
(
3T +miu

2 − 2Ts

)
= 0 (40c)

With the previously chosen notations one can write Γ =
niMV V , Πqn = niT (1 + M2

V ) and Qc = ΓT (3 + M2
V ).

According to Eq. (40), Γ increases from 0 at x = 0 to
a maximum value Γw in the source region and is then
constant up to the wall. When η = 0 in the quasineutral
regime, Π ≈ Πqn is constant. Finally, given Eq.(40c),
one can determine T in terms of MV .

T =
2Ts

3 +M2
V

(41a)

Given the expression of Πqn, one can determine p =
Πqn/(1 + M2

V ), then dp/p = 2MV dMV /(1 + M2
V )

2.
Given dT/T = −2MV dMv/(3 + M2

v ), one then finds
dni/ni = −4MV dMV /(3 + M2

V )/(1 + M2
V ). Since the

polytropic index γp is defined by dp/p = γpdni/ni, one
then finds:

γp =
3 +M2

V

2
(41b)

This index is not constant and varies monotonically with
M2

V . in particular, it ranges in the plasma region from a
minimum value of 3/2 for M2

V = 0, to the value of the
adiabatic index γp = 3 for M2

V = 3. One finds therefore
that the present model, with the chosen fluid closure
q = 0, does not support the polytropic closure since γp
is not a constant. However, both models yield identical
expressions of the sound velocity.

Let us now replace the density in the plasma pressure
Πqn by Γ/(MV V ), so that Πqn = T/V Γ(MV + 1/MV ).
One can then set ΠqnV/(ΓT ) = 2/A, and the change of
variable 2/A = MV + 1/MV [4]. However, T/V = miV
also depends on MV as found in Eq. (41a). It is then
more relevant for this non-isothermal case to consider a
further change of variable.

A2
s =

16Γ2miTs

9Π2
qn

=
8M2

(
1 +M2)

)(
1 + 3M2

)2 (41c)

One then finds that M increases from M = 0 at the
stagnation point with Γ = 0 and therefore A2

s = 0
to M = 1 for A2

s = 1 where A2
s is maximum. For

M > 1, A2
s decreases and at M → +∞, A2

s → 8/9.
In Eq. (41c), we have replaced MV by the actual Mach

number M = MV /
√
3 and we have normalized the defi-

nition of As so that A2
s = 1 at its maximum value. One



14

FIG. 5. Mach number M versus As, Eq. (41c), maximum of
As = 1 at M = 1.

can also use Eq. (41c) to determine M2 as a solution of a
second order equation. When varying As, one finds a first
regime with a single positive solution for 0 ≤ A2

s ≤ 8/9.
For A2

s = 8/9, the system is singular since Eq. (41c)
reduces to a first order equation in M2 with positive
solution M2 = 1/3. When A2

s > 8/9, two positive so-
lutions of the quadratic equation are obtained for M2.
At constant momentum flux Πqn and positive particle
source Sn ≥ 0, the parameter As in the source region
increases monotonically from 0 at s = 0. It leads to
M2 ≤ 1 in the quasineutral plasma. The matching con-
straint presented in Section ?? is similar to that used in
Ref.[4] yields M ≥ 1 in the sheath region, with therefore
M2 = 1 at the sheath entrance. The self-organization
process therefore enforces that the momentum flux is ad-
justed so that As = 1 when Γ = Γw.

Πqn = 4
3

√
miTs Γw (41d)

With such steady state conditions, one can then write
As = Γ/Γw so that As is fully determined by the parti-
cle source, which in turn yields M given Eq. (41c), and
T = (Ts/3) 2/(1 +M2), Eq. (41a). At constant momen-
tum flux Πqn, set by Eq. (41d), the density ni decreases
from the value at the stagnation point M2 = 0, nM0 =
Πqn/(2(Ts/3)), nM0 = 2

√
mi/Ts Γw, to nM1 = nM0/2

at M2 = 1, since n = ni = nM0(1 + M2)/(1 + 3M2).
With further assumptions, one can step to determining
Ti and Te.
A first regime is found at high collisionality, such that
the equipartition transfer is the leading contribution in
the energy balance equations. In this asymptotic regime
one then finds Te = Ti = T/2 and therefore:

Te = Ti = (Ts/3)/(1 +M2) (42)

TABLE I. Reference simulation parameters.

L∥/λD0 Γw/Γ0 Ts/T0 mi/me ν⋆
0

≈ 202 1 1 400 0.1

Splitting the energy balance equation into the electron
and ion energy balance equations, then neglecting the
collisional equipartition as well as the Joule energy trans-
fer eΓ|dsU | from the electrons to the ions, one obtains:

ds
(
Γ( 32Ti +

3
2TM

2 − 1
2Ts)

)
= 0 (43a)

ds
(
Γ( 32Te − 1

2Ts)
)
= 0 (43b)

This yields:

Te = (Ts/3) (44a)

Ti = (Ts/3)
1−M2

1 +M2
(44b)

The possible change of sign of Ti can be read as the sig-
nature that the Joule heating of the ions by the electrons
cannot be ignored. This energy transfer corresponds to
the ion acceleration by the expanding electrons. One can
remark that with these assumptions Te ≥ Ti so that the
collisional energy transfer would also occur from the elec-
trons to the ions. This result can therefore be understood
as yielding an upper bound for Te and a lower bound for
Ti.
In the previous calculations, the sheath constraints are
not taken into account. In particular, at the wall one
must recover Qe = γeΓTe where γe is the sheath electron
energy transmission factor, γe > 3/2. Balancing this heat
exhaust with the energy source for the electron channel
then yields:

Te = (Ts/3)
3

2γe
(45a)

Ti = (Ts/3)
2γe − 1

2γe
(
1 +M2

) (45b)

This constraint on the energy exhaust can be seen as
giving a lower bound for Te and consequently an upper
bound for Ti. One can note that in such a regime one
finds that Ti > Te for M2 small enough. Collisional
energy exchange then transfers energy from the ions to
the electrons and is opposite to the Joule energy transfer.

1. Fluid interpretation of the kinetic simulation

The control parameters of the reference simulation
used as evidence are listed in Table I. The simulation
is run until steady state conditions are achieved. The
various moments of the distribution that define the fluid
quantities are then computed by integrating the electron
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FIG. 6. Profile of the mean plasma velocity ui ≈ ue, and
of the effective sound velocity 1.505 V , left hand side axis.
Profile of As, right hand side axis, As > 1 beyond x ≈ 38,
vertical black dash-dot line. ui blue line open circle symbols.
1.505 V black line open squares. As blue line closed circles.

and ion distribution functions. The electric potential is
an output of the simulation.

We first address the variation of ui ≈ ue as on FIG.(4),
but comparing ui to ceff = 1.505 V for x ranging from
the stagnation point at x = 0 to the sheath entrance.
The sound velocity ceff is determined from the simula-
tion data to intersect ui at the sheath entrance. The
variation of As, Eq.(41c), is also plotted, right hand side
axis. The control parameter is computed using the sim-
ulation output for Γ and Πqn One can observe that As

becomes constant outside of the source region, to the left
of the vertical dashed black line. Furthermore, As ex-
ceeds unity for x ≥ 38, indicated by the vertical black
dash-dot line. Since the value of Γ is close to that pre-
dicted, As is overestimated by ≈ 12% because Πqn is
observed to be ≈ 12% smaller in the kinetic output than
predicted by the fluid model Eq.(41d).
In the region where As levels off at the end of the source
region, one finds that V < ui <

√
3 V , however ui is still

increasing while V ise decreasing so that the ratio ui/V ,
proportional to the Mach number, is increasing with As

constant. In the kinetic simulation, the Mach number
cannot only depend on As.

Let us now address the energy flux. The energy source
Qs = ΓTs/2 is identical for both species and determined
by the particle source and the thermal energy of the in-
jected particles Ts. The latter is used to define T0 nor-
malizing energies of the simulation output, see Table I.
Within the source region, one finds that the electron and
ion energy flux, respectively Qe and Qi, increase with
the energy source Qs, FIG. (7). Qe is the blue curve

FIG. 7. Plasma energy flux Q = Qe + Qi, where Qe and
Qi are the electron and ion energy flux respectively. Energy
source for either species Qs. Qe blue line closed circles. Qi

black line open circles. Qs dashed black line. Vertical dashed
line source boundary, vertical dash-dot line sheath entrance.

with closed circles, Qi the black curve with open cir-
cles, and Qs the black dashed curve. Towards the end of
the source region, Qe tends to level off Qe < Qs, before
decreasing. Conversely, Qi steadily increases, Qi > Qs.
One finds that energy is transferred from the electrons to
the ions at conserved total energy, Q = 2Qs = Qe +Qi.
At the sheath entrance, the ion channel has increased to
60% of the total energy flux Q, and the electron channel
is reduced to 40% of Q. One finds therefore that about
20% of Qs, the energy coupled to the electron channel,
has been transferred to the ion channel. As will be shown
in the following Ti ≥ Te. The energy transfer is governed
by the term eΓE from the electrons to the ions, which
must also balance the collisional equipartition transfer
from the ions to the electrons.
One can split the total energy flux Q = Qc+ q into con-
vective flux Qc up to 75% of Q and heat-flux q, typically
25% of Q. Both Qc and q mostly build-up in the source
region, to the left of the vertical dashed line. Towards
the end of the source region and up to the wall, there
is a slight energy transfer from q to Qc, FIG.(8). Black
curve head-up open triangles for Q, blue curve open tri-
angles for Qc and black curve head-down closed triangles
for q. One can notice that the heat-flux is sustained at
a level of about 20% of Q at the wall, where Q must
absorbed in steady state conditions, the plasma energy
sink at the wall surface must compensate the plasma vol-
umetric energy source. This implies that the heat-flux q
must contribute to the energy flux leaving the plasma via
the sheath and deposited onto the wall.
For the ions, FIG. (9), one finds that most of the energy
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FIG. 8. Profile of the plasma energy fluxes, convective energy
flux Qc, heat-flux q and total energy flux Q = Qc+q. Q black
curve open triangles. q black curve closed triangles. Qc blue
line squares. Vertical dashed line source boundary, vertical
dash-dot line sheath entrance.

flux Qi is convective Qci. The ion heat flux qi levels off
at less at about 10% of Qs and slowly decreases towards
the wall. Black curve head-up open triangles for Qi, blue
curve open squares for Qci, black curve head-down closed
triangles for qi, and dash-dot black curve for Qs.
For the electrons, FIG. (10), the energy flux Qe, the con-
vected energy flux Qce and the heat-flux qe increase in
the source region and then gradually decreases. Black
curve open head-up triangle Qe, blue curve open squares
Qce, black curve closed head-down triangles qe and Qs

dash-dot curve. One also finds that the convective flux
account for slightly more than 50% of the electron en-
ergy flux. It is therefore of the same magnitude as the
heat flux qe. Both components of the electron energy
flux tend to decrease downstream from the source. To-
wards the end of the source region, when the source tends
to zero, one can observe that the convective energy flux
Qce is roughly constant, while the total energy flux Qe

decreases with the heat-flux qe. The combined effect of
collisions and energy transfer via the electric field eΓE
govern a rather complex reorganization process of the
energy transport. As for the total heat-flux q, both the
ion and electron heat flux do not vanish towards the wall
and contribute to the energy exhaust. This point will be
further discussed when addressing non-collisional closure
in Section IIID. With such a closure, one finds that the
heat-flux exhibits a projection on the particle flux. This
result does not agree with the understanding of the heat-
flux as being an energy transfer with zero net particle
transfer. The latter picture of the heat-flux suggests an
exchange of hot against cold particles with equal particle

FIG. 9. Profiles of the ion energy flux Qi, sum of the convec-
tive energy flux Qci and of the heat-flux qi, compared to the
energy source on the ion channel Qs. Qi black curve open
head-up triangles. Qci blue curve open squares. qi black line
closed head-down triangles. Qs black dash-dot curve. Verti-
cal dashed line source boundary, vertical dash-dot line sheath
entrance.

flux in opposite directions. At the wall contact, a non-
vanishing heat-flux then requires a particle flux moving
out of the wall, contradicting the complete plasma ab-
sorption by the wall. One is then led to argue that the
wording heat-flux for the flux proportional to the fluid
moment N3 might be inappropriate when kinetic features
cannot be ignored. Coupling to higher moments must
then be addressed and consequently the understanding
of the moment N3 should be adapted.
The electron thermal energy Te determined by the ref-
erence simulation is characterized by a near constant
value. It very slightly increases in the source region with
Te/Ts ≈ 0.163. The variation of Te is small x = 0 to
x ≈ 100, then slowly decreasing towards Te/Ts ≈ 0.148
at the sheath entrance, see FIG.(11). Blue curve closed
circles, Te. Black curve open triangles Teq the ther-
mal energy of each species assuming equipartition, com-
puted here by reducing the effective source temperature
to account for the heat-flux channel. Black horizon-
tal dashed line Te/Ts = 0.148 Compared to the three
cases addressed above to predict the electron thermal
energy, this result excludes the case with strong equipar-
tition Eq.(42), which governs a variation by nearly a fac-
tor 2. Note that Teq the prediction for Te considering
equipartition is Te/Ts ≈ 0.15. The fluid description using
qe = qi = 0 as closure, leads to Te constant Te/Ts = 1/3,
therefore too large by roughly a factor 2. Reducing the
effective source of convective energy flux to account for
the energy transferred to the electron heat-flux qe yields a
reasonable order of magnitude at x = 0, Te/Ts ≈ 0.154,
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FIG. 10. Profiles of the electron energy flux Qe, blue line open
circles, of the convective contribution Qce, blue line closed
squares, and of the heat flux qi, blue line closed triangles.

FIG. 11. Profile of the electron thermal energy Te of the
equipartition thermal energy taking into account the non
vanishing heat-flux Teq. Blue line closed circles Te. Black
line open triangles Teq, dashed horizontal black lines, sheath
value of Te leading to the electron sheath transmission factor
γe ≈ 3.4.

but increasing with x and overestimating Te/Ts by a fac-
tor 1.7 at the wall boundary. When using expression
Eq.(45a), and using Te/Ts at the sheath entrance to de-
termine the electron sheath transmission factor, one finds
γe ≈ 3.4, dashed horizontal line on FIG.(11). This large
value can be understood by the energy transfer from the

FIG. 12. Profile of the ion thermal energy Ti, of the equiparti-
tion thermal energy equipartition thermal energy taking into
account the non vanishing heat-flux Teq, and Tiγ . Ti blue line
closed circles, Teq black line open triangles, Tiγ black curve
open diamonds.

electrons to the ions accounting for the ion presheath ac-
celeration via the electric field, the energy exchange term
|eΓ∂sU |.
The ion thermal energy Ti is closer to the value one
expects when neglecting the heat flux, FIG.(12). Blue
curve closed circles Ti, black curve open triangles Teq,
black curve open diamonds Tiγ . One finds however that
Ti is smaller than the equipartition value Eq.(42) but
exhibits a comparable profile. Correcting this value to
account for the heat-flux yields Teq, which is found to
underestimate Ti and to give a similar profile although
with reduced amplitude. One can expect that Teq gives
a lower bound of Ti because of the energy transfer from
the electrons to the ions due to the ion acceleration. Fi-
nally one determines Ti assuming that Te/Ts = 1/(2γe),
Tiγ = (2γe − 1)/(6γe(1 + M2)). The latter expression
gives a fair agreement with Ti underestimating Ti close to
x = 0 and then overestimating Ti. One can notice than
Teq is close to the values of Ti and consequently Te at
the sheath entrance. Equipartition is observed Ti ≈ Te

at this location. Otherwise, from x = 0 to the sheath
entrance one observes that Ti > Te. Despite the same
energy source for the ion and electron channel, the fact
that the ion energy flux is larger than the electron energy
flux and that the electron heat-flux is large than the ion
heat-flux qe > qi enforces that 3Ti +miu

2
i is sufficiently

larger than 3Te to enforce Ti > Te despite the large value
taken by ui in most of the plasma region. If one now
steps to determining the ion sheath transmission factor
γi = Qi/(ΓTi) with values chosen at the sheath entrance,
one obtains γi ≈ 5.4. This large value reflects the impor-
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tance of the energy proportional to u2
i in the energy flux.

D. Completing the fluid description of the
SOL-sheath self-organization

1. Non-collisional closure

The fluid closure we have chosen in Section III C is to
set the heat-flux to zero. We have seen when comparing
the fluid prediction to the evidence of the kinetic sim-
ulation that this simplifying assumption does not hold
in particular for the electrons. This shortfall emphasizes
the kinetic nature of the self-organization process. How-
ever, this does not mean that a fluid description cannot
achieve address the heat-flux physics since one can in-
crease the number of moments used in the fluid descrip-
tion, or address a better closure of the Navier-Stokes 3-
moment fluid model by allowing the heat to be finite. In
many models of plasma-wall interaction a collisional clo-
sure for the heat flux is retained, so that for a species a
qa = −κa∂sTa. One finds that κa does not depend on
density, exhibits a non-linear dependence on the ther-

mal energy T
5/2
a , and is typically proportional to the

inverse of the mass square root 1/
√
ma. Such a local

formulation assumes that Lcoll∂sTa/Ta ≪ 1 where Lcoll

is the collision mean free path. When addressing plasma-
wall interaction this assumption is an issue so that non-
local features are being addressed [46, 47]. Regarding the
comparison to the low collisionality reference simulation,
ν⋆0 = 0.1, see Table I, the collision mean free path is typi-
cally 10L∥ so that the random walk conditions underlying
the collisional closure are not fulfilled. Furthermore, we
have observed that the electron heat-flux qe builds-up
in the source region at nearly constant, or even slightly
positive temperature gradient. It then appears more in-
teresting to address a non-collisional closure such that
the heat-flux q is a linear combination of the lower mo-
ments [48–50]. The starting point are the linearized time
dependent fluid equations.

∂tñ+∇sΓ̃ = 0 (46a)

∂tΓ̃ +∇s

(
p̃e/me

)
= enŨ/me (46b)

∂t
(
Π̃e/me

)
+∇s

(
2(Q̃e)/me

)
= 2eΓŨ/me (46c)

Setting y = ω/(kVe) with meV
2
e = T0, p0 = n0T0, and

linearizing nŨ ≈ n0Ũ and ΓŨ ≈ Γ0Ũ one then obtains
in Fourier space:

y
n̂

n0
=

Γ̂

n0Ve
(47a)

y
Γ̂

n0Ve
=

p̂e
p0

− eÛ

T0
(47b)

y
p̂e
p0

=
2Q̂e

p0Ve
− 2Γ0

n0Ve

eÛ

T0
(47c)

As done when determining the sound velocity in Section

III B 3, 2Q̂e/(p0Ve) is then projected on the lower mo-

ments n̂, Γ̂ and Π̂e ≈ p̂e, therefore:

2Q̂e

p0Ve
= an

n̂

n0
+ aΓ

Γ̂

n0Ve
+ aπ

p̂e
p0

(48a)

So that Eq. (47c) becomes(
y − aπ

) p̂e
nT0

=
(
an + yaΓ

) n̂
n
− 2Γ0

n0Ve
ϕ̂ (48b)

and therefore Eq. (47b) becomes

n̂

n
= ϕ̂

y − aπ + 2Γ0/(n0Ve)

an + yaΓ + y2aπ − y3
(48c)

In Section III B 3, the projection coefficients an, aΓ and
aπ were determined by approximation Qe ≈ Qce. In the
proposed non-collisional closure we determine these co-
efficient by matching the relation between the electron
density response to fluctuations of the electric potential
of the fluid and kinetic frameworks. In that case, using
the Poisson equation, one enforces the same dispersion
relation for Langmuir waves, recovering Landau damp-
ing in the fluid framework. However, a perfect match
between the electron density response of the fluid and ki-
netic framework is not possible and we restrict here the
match to the first terms of an expansion in y, hence for
y → 0 and c = ω/k ≪ Ve.
In the kinetic framework on considers the linearized
Vlasov equation for the electrons, the distribution func-

tion fe being split into fluctuations f̃e and equilibrium
fe contributions:

∂tf̃e + v∂sf̃e +
e

me
∂sŨ ∂vfe = 0 (49a)

so that one obtains for the Fourier modes :(
v − ω

k

)
f̂e = − T0

me
ϕ̂ ∂vfe (49b)

The equilibrium contribution is chosen to be a shifted
Maxwellian:

fe =
n√
2πVe

exp(−z2)

where w2 = (v − u)2/(2V 2
e ) and such that ∂vfe =√

2wfe/Ve, therefore:

f̂e =
(
1 +

z

w − z

)
ϕ̂ fe (50a)

z =
|ω/k − u|√

2Ve

=

√
2

2
|y − εu| (50b)

with εu = u/Ve. Integrating over v, one then finds:

n̂

n0
=

1√
π

∫ +∞

−∞
dw

(
1 +

z

w − z

)
e−w2

ϕ̂ (50c)
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The Fried and Conte function Z is defined by:

Z(z) =
1√
π

∫ +∞

−∞
dw

e−w2

w − z

one obtains:

n̂

n
=

(
1 + zZ(z)

)
ϕ̂ (50d)

The Taylor expansion of the Fried and Conte function to
first order is Z(z) ≈ i

√
π−2z so that the kinetic relation

between the density and electric fluctuations is:

n̂

n
=

(
1 + i

√
π

2
|y − εu| − (y − εu)

2 + . . .
)
ϕ̂ (51a)

Linearizing with respect to εu one then obtains:

n̂

n
=

(
1− εuRi + y

(
Ri + 2εu

)
− y2 + . . .

)
ϕ̂ (51b)

Ri = i

√
π

2
sign(y − εu) (51c)

To identify the fluid and kinetic result one must now
expand Eq. (48c)

n̂

n
= ϕ̂

y + b

an + aΓy + aπy2 − y3
(52a)

b = −aπ + 2εu

n̂

n
= ϕ̂

1

an

(
b+ y

)(
1− aΓ

an
y − aπ

an
y2 +

a2Γ
a2n

y2 + . . .
)

n̂

n
= ϕ̂

( b

an
+

1

an

(
1− baΓ

an

)
y

+
(ba2Γ
a3n

− baπ
a2n

− aΓ
a2n

)
y2 + . . .

)
(52b)

Identifying the kinetic and the fluid expansions then
yields the following relations:

b =
(
1− εuRi

)
an(

1− b
aΓ
an

)
= an

(
Ri + 2εu

)
aΓ
an

(
1− b

aΓ
an

)
+

b

an
aπ = an

aπ = − b

an
an + 2εu

aΓ
b

an
= 1− an

(
Ri + 2εu

)
aΓ

b

an

(
Ri + 2εu

)
+

b2

a2n
aπ = an

b

an

(
Ri + 2εu

)
+ 2εu

b2

a2n
= an

( b

an
+
(
Ri + 2εu

)2
+

b3

a3n

)
an

(
2 +R2

i − εuRi + 4εuRi − 3εuRi

)
= Ri + 4εu

an =
Ri

2 +R2
i

+ εu
4

2 +R2
i

aπ = − Ri

2 +R2
i

+ εu
3R2

i

2 +R2
i

aΓ =
2

2 +R2
i

− εu
4Ri

2 +R2
i

Given 2R2
i = −π these expressions can readily be simpli-

fied:

an =
2Ri

4− π
+ εu

8

4− π
(53a)

aπ = − 2Ri

4− π
− εu

3π

4− π
(53b)

aΓ =
4

4− π
− εu

8Ri

4− π
(53c)

At order 0 in εu, an = −aπ and both are complex while
the order 1 contributions to both an and aπ are real.
Conversely, at order 0 aΓ is real while the order 1 is com-
plex. The complex contributions account for the Landau
damping. More interesting for our purpose is the Con-

tribution AΓ that leads to Q̃e = T0Γ̃2/(4−π) ≈ 2.33T0Γ̃
this contribution is larger that the electron convective

energy flux 3
2T0Γ̃. This indicates that the heat flux con-

tributes to the energy flux and exhibits a contribution
proportional to the particle flux typically of the form

γhΓ̃Te with γh = 0.83.

2. Modified sound velocity with non-collisional closure

When the non-collisional closure is taken into account,
hence without assuming an = a′n, aΓ = a′Γ and aπ = a′π,
as in Eq.(25), but those obtained with the non-collisional
closure Eq.(53), one can readily expect a departure from
the fluid prediction Eq. (26). We concentrate on the real
contribution since imaginary terms will govern damping
or instability processes. We now consider Eq. (18b)

c3 − aπ c2 − aΓ c− an = 0 (54a)

where the three coefficients aπ, aΓ and an are modified
by taking into account the non-collisional closure of the
electron heat flux qe so that an ≈ a′n, aΓ ≈ a′Γ+2γhTe/mi

and aπ ≈ a′π. This closure yields coefficients that exclude
the root c = u.

aπ = 3u ; aΓ = 3
(
V 2 − u2

)
+ 2γh

Te

mi
(54b)

an =u3 − aπu
2 − a′Γu (54c)

Using Eq. (54c) and defining δV 2 = 2γh
Te

mi
one then

obtains: (
c− u

)3 − 3V 2
(
c− u

)
− δV 2c = 0 (55)

The root such that = u is excluded. We consider the root
c0 = u + δu and assume δu ≪ V so that the dispersion
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equation is then:(
c− c0 + δu

)3 − 3V 2
(
c− c0 + δu

)
− δV 2

(
c− c0)− δV 2c0 = 0 (56)

Assuming δu ≪ V , the dispersion equation is then:(
c− c0

)((
c− c0

)2
+ 3δu

(
c− c0

)
− 3V 2 − δV 2

)
− 3V 2δu − δV 2c0 = 0 (57)

At lowest order in δu, the constraint to ensure that c0 is
a root is therefore:

δu = −δV 2

3V 2
u (58)

Then for c ̸= c0 one must solve:(
c− c0

)2
+ 3

(
c− c0

)
δu− 3V 2 − δV 2 = 0 (59)

The roots of this equation are then:

c± − c0 = ±
√
3V 2

[
1 +

δV 2

6V 2

(
1± 3

u√
3V 2

)]
(60)

One finds that the sound wave with positive phase ve-
locity c+ is shifted to a sound velocity larger than

√
3V 2

while the sound wave with negative phase velocity, hence
opposite to the fluid velocity for the right hand side
sheath, is shifted to a modulus of the sound velocity
smaller than

√
3V 2 provided u ≥ 1

3

√
3V 2. This down-

shift of the sound velocity for the sound waves propagat-
ing against the mean fluid flow is only approximate since
it has been determined in the limit δV 2 ≪ 3V 2.

3. Asymptotic matching of SOL at the sheath horizon

We address here the plasma properties at the sheath
horizon within the fluid framework. The horizon is as-
sumed to be at z → +∞ and we expand the various fluid
moments in powers of 1/z [4]. Within the sheath, the
total momentum flux of the plasma Π can be written as:

Π = Πqn − ρcTe ; Πqn =
2Qc/3

ui
+ 2

3miΓui (61a)

As done for the SOL plasma Qc stands for the convec-
tive energy flux, equal to the total energy flux when ne-
glecting the heat flux. The asymptotic conditions are
determined by assuming that Π is constant so that in
Eq. (61a), the variation of Πqn is balanced by the vari-
ation of the last term. One therefore expands Πqn in
powers of 1/z and identify this expansion with the ex-
pansion of ρcTe. One determines ρc using the Poisson
equation so that ρc ∝ d2zδϕ. The term Πqn is shown to
be a function of δϕ where δϕ is the variation of ϕ. One
therefore expects a shift by two orders of the expansion of

ρc compared to that of δϕ and therefore of Πqn(δϕ). Such
a shift together with the identification of the remaining
leading order contributions, then yields consistency con-
straints at the sheath horizon.
When the electron thermal energy Te is taken constant,
the momentum balance for the electrons yields the stan-
dard adiabatic response for the electron density:

n = n∞eδϕ ; δϕ = ϕ− ϕ∞ (61b)

Choosing the space normalization defining z to be the
Debye length at the heath horizon, λ2

D = ε0Te/(e
2n∞),

the normalized charge density η = ρc/n∞ determined by
the Poisson equation then allows one to determine the
ion density ni:

ρc = −n∞∆ϕ ; ni = ne − ρc (61c)

Let us now define the δϕ functions that determine the
ion density.

F (δϕ) = exp(δϕ)− 1 ; G(δϕ) = ∆ϕ = ∆δϕ (62a)

One can then write:

ni = n∞

(
1 + F (δϕ)−G(δϕ)

)
(62b)

Due to scale separation, one can assume that the varia-
tion of both the particle flux Γ and energy flux Qc are
small, consequently negligible at the relevant scale at the
sheath horizon. One thus finds that the variation of Πqn

only depends on that of the ion mean velocity ui = Γ/ni.
Therefore, given Γ = Γ∞ one can write:

1

ui
=

ni

Γ
=

1

u∞

(
1 + F (δϕ)−G(δϕ)

)
(62c)

1

u∞

=
n∞

Γ∞

(62d)

Let us now define ΠQ, ΠΓ and Πη:

ΠQ =
2Qc/3

u∞

; ΠΓ = 2
3miΓu∞ ; Πη = n∞Te (63a)

One can then write:

Π = Π∞ = ΠQ

(
1 + F (δϕ)−G(δϕ)

)
+ΠΓ

1

1 + F (δϕ)−G(δϕ)
+ ΠηG(δϕ) (63b)

At the sheath horizon z → +∞ and δϕ → 0 so that one
can expand the latter expression in powers of F (δϕ) −
G(δϕ) given that by definition F (δϕ)−G(δϕ) → 0.

Π = Π∞ = ΠQ

(
1 + F (δϕ)−G(δϕ)

)
+ΠηG(δϕ)

+ ΠΓ

(
1−

(
F (δϕ)−G(δϕ)

))
+ΠΓ

((
F (δϕ)−G(δϕ)

)2
+ . . .

)
(64a)
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and therefore:

Π∞ = ΠQ +ΠΓ +
(
ΠQ −ΠΓ

)
F (δϕ)

−
(
ΠQ −ΠΓ −Πη

)
G(δϕ)

+ ΠΓ

(
F (δϕ)2 − 2F (δϕ)G(δϕ) + . . .

)
(64b)

If one now assumes the leading order term of F (δϕ) to
be:

F (δϕ) = AF
K

1

zK
+ . . .

One can then determines the leading term in the expan-
sion of G

G(δϕ) = K(K + 1)AF
K

1

zK+2
+ . . .

Since Π is assumed to be constant, Π = Π∞ , one then
obtains the two first constraints:

Π∞ = ΠQ +ΠΓ (65a)

0 = ΠQ −ΠΓ (65b)

so that the remaining contributions to the expansion are
then:

0 = ΠηG(δϕ) + ΠΓ

(
F (δϕ)2 + . . .

)
(65c)

The constraint ΠQ = ΠΓ yields:

Q∞ = miΓ∞u2
∞

therefore:

n∞

(
3
2T∞ + 1

2miu
2
∞

)
= min∞u2

∞

and consequently determines both u∞ and Π:

miu
2
∞

= 3T∞ (66a)

Π = Π∞ = 4n∞T∞ (66b)

Finally one must enforce that the chosen solution is not
the trivial solution F (δϕ) = 0 and G(δϕ) = 0 of Eq. (65c)
by enforcing the lowest order constraint:

0 = ΠηK(K + 1)AF
K

1

zK+2
+ 1

2Π∞

(
AF

K

1

zK

)2

(67a)

which yields:

K = 2 (67b)

AF
2 = −3Te

T∞

(67c)

To close this calculation one can note that F (δϕ) ≈ δϕ.
Since AF

K , δϕ ≤ 0, the sheath electric potential is smaller
than the value at the sheath horizon, and similarly for

the densities since ne ≈ ni ≈ δϕ. Since ρc = −n∞G(δϕ),
and given the constraint Eq. (65c), one finds that:

ρc = −n∞G(δϕ) = n∞

ΠΓ

Πη

(
F (δϕ)2 + . . .

)
ρc ≈ n∞

Π∞

2Πη
δϕ2 = n∞

2T∞

Te
δϕ2 ≥ 0 (68a)

dρc
dδϕ

= n∞

4T∞

Te
δϕ ≤ 0 (68b)

One therefore recovers that the charge density within the
sheath is positive ni ≥ ne and that the charge density
derivative with respect to δϕ has the same sign as δϕ
and is therefore negative. Taking into account that ϕ =
ϕ∞ + δϕ, one can recast the latter property as:

dne

dϕ
≥ dni

dϕ
(68c)

This constraint holds within the sheath and the equality
being satisfied at the sheath horizon z → +∞.

To perform the expansion we have assumed that Π
is constant in the neighborhood of the sheath horizon,
therefore neglecting the electric force −ρc∇ϕ compared
to the variation of ∇Πqn and Te∇ρc, Te being assumed
constant. The constraint of balancing the variation
of Πqn by that of ρcTe, Eq. (67a) is satisfied at order
1/z4 so that we have used Π constant up to order 1/z5

with no constraints on the higher order terms of the
expansion, terms of order 1/z6 and higher. Since ρc
is of order 1/z4 and ∇ϕ of order 1/z3, one finds that
−ρc∇ϕ of order 1/z7. This term only contributes to the
variation of Π at order 1/z6 which is not addressed by
the analysis. One finds therefore that the variation of Π
governed by the electric force −ρc∇ϕ can be neglected
at the sheath horizon so that Π is constant within the
required precision of the calculation.

With this analysis of the plasma variation at the sheath
horizon we have found two constraints: u2

∞
= 3V 2

∞
, which

corresponds to the Bohm criterion given the sound veloc-
ity c2s = 3V 2, and dne/dϕ ≥ dni/dϕ. Using the control
parameter As Eq. (41c), one can readily show that these
two constraints are equivalent in the fluid framework. At
the sheath horizon, the particle flux Γ is constant, there-
fore dΓ/dϕ = 0. One then finds that the sign of dAs/dϕ is
opposite to the sign of dΠqn/dϕ. According to Eq. (61a)
and given Π = constant the sign of dΠqn/dϕ is identical
to that of dρc/dϕ.

dAs

Asdϕ
= − dΠqn

Πqndϕ
=

dM

Mdϕ

1−M2

(1 +M2)(1 + 3M2)

dM

Mdϕ
= − 1

1 + 2M2

dn

ndϕ
< 0

dΠqn

Πqndϕ
=

dρc
ρcdϕ
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Combining these expressions one finds that the sign
of dρc/dϕ is determined by the sign of 1 − M2. The
sheath condition M2 ≥ 1 is therefore equivalent to the
condition dρc/dϕ ≤ 0, the equality being met at the
sheath horizon. The two fluid constraints that we have
obtained are found to be equivalent.

The understanding of the transition into the sheath
regime that stems from the matching of the SOL and
sheath behavior is governed by the variation of the con-
trol parameter As. In the SOL, the region of quasineutral
plasma As increases with the particle flux Γ with Πqn

constant. When As reaches its maximum value As = 1,
M2 = 1, at the sheath horizon, the variation of As be-
come negligible with respect to the increase of Pis gov-
erned by the departure from quasineutrality. The control
parameter As then decreases and the fluid can access the
supersonic regime without generating a discontinuity. At
the sheath horizon, for z → +∞ where z is linear in s
with origin at the wall, no discontinuity is found because
of the typical dependence on z−2. According to the be-
havior at the sheath entrance, the expansion in 1/z for
large values of z suggests that the discontinuity, if any,
will take place at the wall location as z → 0. By construc-
tion of the sheath entrance, the behavior at this point is
in the continuity of that of the SOL plasma, therefore
similar to that in the SOL plasma. It is only the starting
point of a gradual increase of the gradients that become
maximum at the wall position.

4. Discontinuity of the steady-state solution

In this Section we use the formalism of Section III B 5
to investigate the transition into the sheath, and exam-
ine the criterion based on the discontinuity of the steady
state solution. The starting point is therefore the sys-
tem Eq.(31) for steady state conditions and restricting
the right hand side term Zℓ to the source term as in
Eq.(32a) We therefore consider Zℓ = Sℓ−1 completed by
Eq. (14b).

dsMℓ = Sℓ−1 (69a)

Nℓ =

ℓ∑
j=0

Cj
ℓ (−u)jMℓ−j (69b)

We differentiate Eq.(69b) and therefore:

dsNℓ =

ℓ∑
j=0

Cj
ℓ (−u)jdsMℓ−j

− dsu

ℓ∑
j=1

jCj
ℓ (−u)j−1Mℓ−j

One can then replace dsMℓ−j by the source Sℓ−j−1 ac-
cording to Eq.(69a), with some caution when handling
S−1 that we set by construction identical to dsM0, S−1 =

dsM0. One take into account that M0dsu + udsM0 =
dsM1 = S0 and, recall the relation Eq.(34) obtained in
Section III B 5:

ℓ∑
j=1

jCj
ℓ (−u)j−1Mℓ−j = ℓNℓ−1

One then relates the derivatives of M0 and Nℓ to the
source terms:

−
(
u
ℓNℓ−1

M0
+ (−u)ℓ

)
dsM0 + dsNℓ

=

ℓ−2∑
j=0

Cj
ℓ (−u)jSℓ−j−1 + ℓ

(
(−u)ℓ−1 − Nℓ−1

M0

)
S0 (70)

Two types of closures have been addressed in Section
III B 5, for ℓ = 2, we have defined N2 = V2M0 with V 2

constant, while for ℓ ≥ 3Nℓ = 0 has been considered. For
either choice of the closure, one can then use Eq.(70) to
determine udsM0. A singularity will appear if the coeffi-
cient of udsM0 on the left hand side of Eq.(70) vanishes
while the right hand side cannot be null.
For ℓ = 2, we have dsN2 = V2dsM0. Given N1 = 0, this
leads to: (

V 2 − u2
)
dsM0 = S1 − 2uS0 (71a)

One finds that the derivative dsM0 diverges for u2 → V 2

whenever S1 − 2uS0 ̸= 0. At the divergence point
u2 = V 2, we have shown that the phase velocity of the
sound wave verifies (c−u)2 = V 2 = c2s, Eq.(37a), so that
one finds (c − u)2 = u2 and therefore either c = 2u or
c = 0. The latter condition leading to a standing shock
at the divergence point. However, if S1 − 2uS0 = 0 can
be satisfied, then V 2 − u2 = 0 where S1 − 2uS0 = 0, so
that there is no divergence and a smooth transition at
u2 = V 2. When replacing Π with Πeq, one modifies S1,
S1 ≈ Tedsη/mi. Here we have neglected the contribu-
tion proportional to the electric field E, eηE/mi, assum-
ing that the condition Tedsη/mi ≫ eηE/mi previously
verified when discussing the expansion at the sheath hori-
zon, Section IIID 3. In the reference simulation the ratio
between these two terms exceeds 100 in the region of in-
terest, prior to the sheath entrance and nearly up to the
wall. Close to the wall these two terms become compara-
ble. A smooth transition at the Bohm condition u2 = c2s
occurs together with the constraint:

dsη =
2miuS0

Te
(71b)

If one lets S0 small, one obtains a threshold in dsη ≥ 0.
Since S1 is assumed null for η = 0 in the quasineutral
region, the transition at u2 = V 2, therefore the sheath
entrance is characterized by the Bohm criterion M2 = 1,
together with dsη → 0+. When relaxing the quasineu-
trality constraint, one removes the singularity at M2 = 1
by enforcing the constraint Eq.(71b) at the sheath en-
trance. Then both denominator and numerator change
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sign so thatM0 remains a monotonically decreasing func-
tion.
For ℓ = 3, one closes the hierarchy with N3 = 0, so that
Eq.(70) with N2 = V 2M0 reads:

− u dsM0

(
3V 2 − u2

)
= S2 − 3uS1 + 3S0

(
u2 − V 2

)
= S0

(2Ts

mi
+ 3u2 − 3V 2

)
− 3u

Te

mi
dsη

When taking into account Eq.(40c) yielding 2Ts/mi =
3V 2 + u2 to obtain:

− u dsM0

(
3V 2 − u2

)
= 4u2S0 − 3u

Te

mi
dsη (72a)

One finds that there is no singularity for u = 0 and that
the singularity for u2 = 3V 2 is avoided provided:

dsη =
4miuS0

3Te
(72b)

This constraint is similar to that determined for ℓ = 2
and indicates that for S0 → 0 the sheath constraint is
set by dsη ≥ 0, the condition dsη = 0 being met when
u2 = 3V 2, the Bohm condition M2 = 1. The sheath
entrance is therefore characterized by the continuity of
the derivative dsM0 with a value corresponding to that
of the SOL plasma, M0 monotonically decreasing on the
characteristic length scales of the SOL, prior to a sharper
decrease with variations on the Debye scale towards the
wall.
Generalizing the result obtained for ℓ = 3 with the clo-
sure Nℓ defined to be null, therefore dsNℓ = 0, one ob-
tains dsM0:

− udsM0 =
Nℓ

Dℓ
(73a)

Nℓ =

ℓ−1∑
j=0

Cj
ℓ (−u)jSℓ−j−1 − ℓ

Nℓ−1

M0
S0 (73b)

Dℓ =
ℓNℓ−1

M0
− (−u)ℓ−1 (73c)

One recovers the possible divergence when the denom-
inator Dℓ is null. The latter condition occurs when
(−u)ℓ−1 = cℓ−1

s , therefore depending on the sound veloc-
ity, Eq.(39). One recovers here sign issues for the even
values of ℓ = 2ℓ′ that can only be resolved if N2ℓ′−1 ≤ 0.
For the odd values of ℓ, Dℓ = 0 yields u = ±cs where
cs verifies Eq.(39b). For example, for ℓ = 4, D4 = 0
leads to u3 = −4N3/M0. The sign of the solution for u
is the opposite of the sign of N3. This condition is not
met in the reference kinetic simulation where the heat
flux q ∝ N3 exhibits the same sign as the mean velocity
u. One can override such difficulties by prescribing that
the closure Nℓ = 0 can only be considered for odd values
of ℓ. The divergence of udsM0 governed by Dℓ = 0 can
be removed by setting the numerator to zero Nℓ = 0.
As discussed for S1, one must include possible contri-
butions proportional to the electric field in the source

terms Sj with j > 2. One can still prescribe a condition
on dsη, but the constraint will become more complicated.

The analysis of possible discontinuity of the derivative
of the moment M0 = n, and consequently of other fields
such as the Mach number, is found to be closely related
to the sound velocity and occurring via a vanishing de-
nominator at Mach 1. Analyzing the numerator, one
finds that it vanishes when a constraint of the derivative
of η = ni − ne, dsη, is equal to a value the tends to
zero. A smooth transition is thus enforced where both
denominator and numerator change sign. The plasma
then switches from subsonic with dsη → 0 to supersonic
when dsη becomes finite. We therefore recover the re-
sults obtained by asymptotic expansion in the vicinity
of the sheath horizon Section IIID 3. These results are
also illustrated by the results of the reference kinetic
simulation, see FIG(3) in particular. One observes a
smooth transition into the sheath region, the gradients
only steepening as one gets closer to the wall limit.

5. Fluid prediction capability of SOL-sheath
self-organization

The fluid prediction of the plasma behavior, compared
to the reference kinetic simulation, appears to give a
qualitative description of the plasma variation from the
source region to the wall. Conserved fluxes are recov-
ered. The fluid mean velocity and the thermal energies
of each species determined with the fluid model exhibit
the appropriate trends but the agreement is rather poor.
Another shortfall of the fluid description is that outside
the source region, where the plasma particle, momentum
and energy fluxes are constant, one can observe varia-
tions of the thermal energies, mean fluid velocity, heat
flux, etc. Such variations are not expected in the fluid
framework. These can only be understood as kinetic ef-
fects, including collisions, that modify the distribution
functions.
One can also observe that the actual value of the mo-
mentum flux Π is smaller in the kinetic simulation than
predicted. The self-organization properties are different.
Given these differences, there is no accurate prediction
regarding the sound velocity. Consequently the Bohm
criterion does not provide a predictive capability to de-
termine the sheath entrance. However, knowing the lo-
cation of the sheath entrance, and therefore the value of
the fluid mean velocity at that location, one can modify
the closure properties to recover consistency.
Another difference, is the contribution of heat-fluxes to
the energy flux. The latter is modest for the ion chan-
nel but amounts to nearly 50% of the electron channel.
The heat-fluxes are also found to contribute to the energy
fluxes to the wall, a property that does not agree with
the picture of the heat-flux being an energy exchange at
zero particle flux. Alternative closures have been inves-
tigated, polytropic, non-collisional, at higher fluid mo-
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ments. These do not readily improve the predictive ca-
pability. However they remain a tool for interpreting the
evidence from kinetic simulations.

IV. KINETIC CONSTRAINT ON THE ION
OUTFLUX

We now analyze the kinetic constraint that determines
the sheath entrance. It was first published in ref.[9], then
in later papers [11]. We first present the original deriva-
tion and then adapt it to the actual conditions met in the
simulations. The constraint is addressed in steady state
at the sheath horizon assumed to be standing at x → +∞
from the wall. The starting point is the normalized Pois-
son equation Eq. (2b), slightly modified here to account
for a possible change of the normalization length scale L.

ε2D

( d

dx

)2

ϕ = −ρc (74a)

This equation takes the form of a Newton equation with
mass ε2D = λ2

D0/L
2, position ϕ, time x and applied force

−ρc = ne−ni. The sheath entrance stands at the horizon
x → +∞ and is labeled ∞. In a first step we compute
the first integral, multiplying Eq.(74a) by dϕ/dx and in-
tegrating over x.

1
2ε

2
D

(dϕ
dx

)2

− 1
2ε

2
D

(dϕ
dx

)2∣∣∣
∞

= G(ϕ) (74b)

G(ϕ) = −
∫ ϕ

ϕ∞

dϕ′ ρc (74c)

At the sheath horizon x → +∞, the potential ϕ∞ is
assumed to have a finite value, which enforces a vanishing
derivative dϕ/dx. The function G(ϕ), the opposite of the
potential energy of the dynamical system, is expanded in
the neighborhood of ϕ∞ , which yields:

1
2ε

2
D

(dϕ
dx

)2

= G(ϕ∞) +G′(ϕ∞)
(
ϕ− ϕ∞

)
+ 1

2G
′′(ϕ∞)

(
ϕ− ϕ∞

)2
+ . . . (75a)

By definition G(ϕ∞) and G′(ϕ∞) = −ρ∞ . Since quasineu-
trality holds at the sheath horizon ρ∞ → 0, one then finds
that:

1
2ε

2
D

(dϕ
dx

)2

≈ 1
2G

′′(ϕ∞)
(
ϕ− ϕ∞

)2
(75b)

The sheath horizon constraint is therefore that G′′(ϕ∞) ≥
0, so that:

dne

dϕ

∣∣∣
ϕ∞

− dni

dϕ

∣∣∣
ϕ∞

≥ 0 (76a)

This constraint is not specific of either the fluid or kinetic
framework and indeed one can readily show that this con-
straint is equivalent to the Bohm constraint on the Mach

FIG. 13. Change of the ion kinetic energyK when varying the
electric potential ϕ0 − ϕ difference, where ϕ0 is a maximum
at the symmetry point x = 0. Given the sign of the velocity
sign(v), ions evolve to the right for positive velocities and to
the left for negative velocities according to the blue arrows.
The distribution indicated by the shaded region splits accord-
ingly, generating particular a gap in the neighborhood of the
axis K = 0.

number M2 ≥ 1. The kinetic formulation of ref.[9] is
determined by computing dni/dϕ and obtaining an ex-
pression depending on the ion distribution function fi.
To achieve this calculation we consider the neighborhood
of the sheath horizon and the energy conservation of the
ions with potential energy ϕ, hence H = K+ϕ where the
K = 1

2v
2. Here H is the total particle energy normalized

by the thermal energy T0 so that the velocity appear-
ing in K is the phase space velocity normalized by the
ion thermal velocity. For electrons, v will stand for the
phase space velocity normalized by the electron thermal
velocity. For both cases, ϕ is the previously normalized
electric potential. When neglecting the collisional inter-
actions H is conserved along the characteristics so that
one can relate the distribution function fi(K,ϕ) to that
at the sheath horizon f∞ = fi(K∞ , ϕ∞). In fact, starting
from the SOL symmetry point at x = 0 where the electric
potential is maximum, FIG.(13), and a source distribu-
tion function initially generated at x = 0. Positive veloc-
ity particles evolve to the right, for the ions along along
the characteristics K = K0+ϕ0−ϕ, the subscript 0 refers
to the position x = 0. Conversely, the negative velocities
evolve to the left. In terms of the kinetic energy, this
evolution opens a gap in the neighborhood of the axis
K = 0. In the simulations, this gap in the distribution
function is filled by the source term and by the collisions
that act as a restoring force towards a Maxwellian distri-
bution, therefore with non vanishing values for all values
of K. One can note that the particles born within the
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FIG. 14. Change of the ion kinetic energy K with the varia-
tion electric potential difference ϕ∞ − ϕ. Ions for positive ve-
locities, plain blue line and dashed blue line accelerate towards
the wall on the right hand side. When neglecting the possible
occurrence of trapped ions, plain and dashed black lines, the
ion distribution function at ϕ is identical to that at ϕ∞ as
sketched by the shaded region. In this framework, there is a
gap with no ions for K ≤ Kg at ϕ and for K ≤ Kg − (ϕ∞ −ϕ)
at ϕ∞ .

gap, such that K ≤ ϕ0 − ϕ, are trapped by the electro-
static potential and cannot reach the point x = 0 along
the characteristics, an example is given by the dashed
black lines on FIG.(13). Let us now consider the neigh-
borhood of the sheath horizon with electric potential ϕ∞

and given a decreasing electric potential towards the right
hand side where the wall is localized, dashed region on
the right hand side. We first only consider positive ve-
locities since no ions are assumed to flow back from the
wall. From ϕ∞ , black dash-dot vertical line, to ϕ < ϕ∞ ,
black dashed vertical line, the distribution indicated by
the shaded region is convected along the characteristics,
plain and dashed blue lines. Since there is no source term
in this region, the gap that is generated between K = 0
andKϕ = ϕ∞−ϕ can only be fed by collisions. On a small
distance, comparable to the Debye scale, we shall first as-
sume that collisions are negligible and that no particles
are generated within the gap. At position ϕ, the den-
sity can be determined by the velocity integration of the
distribution function fi(v, ϕ) from vg to +∞. Here vg is
such that for v < vg, the distribution fi(v, ϕ) = 0. Here
vg is taken positive because we assume that the ion pop-
ulation is outgoing and no particles stream back from the
wall. Given Kg = 1

2v
2
g , one must also have Kg ≥ ϕ∞ −ϕ.

ni(ϕ) =

∫ +∞

vg

dv fi(v, ϕ) =

∫ +∞

0

dK
fi(K,ϕ)

v(K,ϕ)

To perform the next steps we have conveniently set the
lower bound of the integral to zero, which leaves the in-
tegral unchanged because of the gap without particles,
and use the kinetic energy as integration variable. In
the calculation, one can then take into account that the
characteristics conserve δK, δK = δK∞ and that the dis-
tribution is constant along the characteristics fi(K,ϕ) =
fi(K∞ , ϕ∞) provided K+ϕ = K∞+ϕ∞ . One then obtains
the identity fi(K,ϕ)dK = fi(K∞ , ϕ∞)dK∞ . The density
ni(ϕ) can then be determined by the values of the distri-
bution function at the sheath horizon fi(K∞ , ϕ∞).

ni(ϕ) =

∫ +∞

0

dK∞

fi(K∞ , ϕ∞)

v(K,ϕ)

One can then use v(K,ϕ) =
√
2(K∞ + ϕ∞ − ϕ) to deter-

mine dni/dϕ:

dni

dϕ

∣∣∣
ϕ
=

∫ +∞

0

dK∞

fi(K∞ , ϕ∞)

v(K,ϕ)3

Then setting ϕ → ϕ∞ one finally obtains:

dni

dϕ

∣∣∣
ϕ∞

=

∫ +∞

0

dv∞
fi(K∞ , ϕ∞)

v2
∞

(76b)

A. Kinetic constraint on the ion outflux

The simulations results highlight several shortfalls of
the constraints proposed in the previous Sections to de-
termine the location of the sheath entrance. Regarding
the fluid approach, a key issue is the closure of the Navier-
Stokes system Eq. (9). In 1-D, one finds that both the
particle and momentum balance equation are exact since
it only relies on the definitions of the fluid moments. The
only issue is therefore the closure of the third equation
and the importance of the heat flux. As discussed ear-
lier, modifying this closure will change the value of the
sound velocity, so that the Bohm criterion M = 1 is not
applicable in the kinetic framework because the sound
velocity is not readily determined.
In the analysis of the sheath constraint at the sheath
horizon an important issue is that of charge neutral-
ity, quasineutrality with εD → 0. In realistic cases,this
asymptotic limit is not met since εD is small but finite.
Furthermore, as the distance to the wall decreases, the
effective value of εD, which controls the variation of the
electric field E = −dϕ/dx, gradually increases. The pic-
ture of a transition from neutral to sheath conditions
does not hold. When plotting |ρc| obtained in the refer-
ence simulation, FIG. (16) one finds four regions. In the
two first regions |ρc| ≈ ε2D and changes sign with the sign
of the curvature of the electric potential, hence the dips
where ρc changes sign, FIG. (16) blue curve. In the third
region, the electric potential exhibits a weak curvature:
ρc is positive and ρc ≪ ε2D. It is also observed to increase
exponentially towards the fourth region, in the vicinity
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FIG. 15. Change of the electron kinetic energy K when vary-
ing the electric potential ϕ∞−ϕ close the vicinity of the sheath
horizon. Electrons with positive velocity are slowed down to-
wards the wall. Those with energy K ≤ ϕ∞ − ϕ are trapped,
and reflected with negative velocity before reaching the wall.
The passing electrons with K > ϕ∞ − ϕ are absorbed by the
wall. For the electrons the existence of trapped particles does
not allow one to identify the electron density at ϕ given the
distribution function at ϕ∞ . An indicator of this issue is the
singularity of the integral Eq.(76b) as v → 0 since the distri-
bution function has finite values at v = 0.

FIG. 16. Profile of |ρc|, blue curve in log-scale. The reference
value of the small control parameter in the Poisson equation
ε2D is indicated by the horizontal dash-dot line. One can ob-
serve that ρc shoots-up above ε2D in the vicinity of the wall.

of the wall, where ρc ≫ ε2D and ρc exhibits a sharp expo-
nential growth by 4 orders of magnitude. One can note
that the transition point where ρc = ε2D occurs at the po-
sition x = 195.1, therefore at a distance ≈ 8λD0

from the
wall. The presheath exponential growth is characterized
by an e-folding length of 21λD0

, while the sharp expo-
nential growth is characterized by an e-folding length of
0.43λD0 .
The SOL charge density being small but finite, the key

assumption ε2D → 0, consequently ρc → 0, used to de-
scribe the sheath horizon and the expansion at the sheath
horizon, such as Eq.(75a), does not hold. One must then
consider the complete expression of the electric field vari-
ation.

E2 ≈ E2
ps −

dρc
dϕ

∣∣∣
s

(
ϕ− ϕqn

)2
ε2D

(77a)

E2
ps ≈ E2

qn − 2
ρqn

(
ϕ− ϕqn

)
ε2D

(77b)

As written here, the electric field variation determined
by the presheath conditions is Eps. It is characterized
by a change of the charge density ρc and of the electric
potential variation ϕ − ϕqn on the typical scale L∥. In
that case both ρqn and the electric potential ϕ− ϕqn are
small. When d|ρc|/dϕ remains small, in the presheath
regime one must then observe E ≈ Eps. However, a
rapid increase of |dρc/dϕ| will govern an increase of |ρc|
and the transition into the sheath regime where a vari-
ation of the electric field potential on the characteristic
scale λD0

is required to ensure steady state charge bal-
ance. The variation of E2 depicted on FIG. (17) is in
qualitative agreement with this description: E2 in the
downstream region from the source (ϕ0 is the value of
the electric potential at x = 0), blue curve, exhibits first
a linear regime black line open circles, switching into a
quadratic regime, black curve closed circles, and then a
sharper increase as expected in the sheath. One finds
that the sharp slope of these fields is localized close to
the wall, see FIG.(18) for a zoom of the variation of the
charge density ρc, blue curve. The point where ρc = ε2D,
labeled Qn, is indicated by the vertical black dashed line,
and the level ε2D is identified by the horizontal black dash-
dot line. Finally the intersection of the two regimes of
exponential growth yields the sheath transition point de-
termined using the field ρc, vertical blue dash-dot line.
Let us now consider the transition from presheath to
sheath characterized by a change in the slope of dρc/dϕ.
The latter governs a change of the charge density ρc,
and therefore the derivative of the electric field E and
consequently the curvature of the electric potential ϕ.
Accordingly, one expects that the change in the slope
of |dρc/dϕ|, between SOL and sheath regimes, will pro-
vide a sensitive criterion to determine the transition into
the sheath region, FIG. (19). Similarly to the variation
of ρc close to the wall, one can observe a transition be-
tween two exponential growth for |dρc/dϕ|, FIG. (19)
blue curve. The transition from one to another giving a
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FIG. 17. Variation of the electric field E2 with the electric
potential difference ϕ − ϕ0, blue curve. A presheath regime
with a close to linear variation is identified, black line open
circles, followed by a quadratic regime, black curve closed
circles. Towards the wall, a much faster variation of E2 with
ϕ− ϕ0 is observed as expected in the sheath.

TABLE II. Reference simulation parameters.

wall ϕ E ρc dρc/dϕ Qn R

202.6 202.3 200.5 198.6 195.9 195.1 201.5

possible definition of the sheath entrance xsheath. The
analysis of the change in slope of various fields define
different transition points into the sheath region. The
results are summarized in Table II. For the reference sim-
ulation, one can read in this table the wall position, xw

and the transition points for ϕ, E, ρc, |dρc/dϕ| and finally
the point where ρc = ε2D labeled Qn. As can be expected,
one finds that the higher the derivative order, the further
upstream from the wall one observes the sheath entrance.
The sheath transition is gradual, and, when defining the
transition according to the change of slope of |dρc/dϕ|,
hence xsheath ≈ 196, one finds that most plasma param-
eters exhibit the same behavior, the large increase of the
derivatives being mostly located close to the wall.

In view of the latter discussion, one could expect that
the kinetic criterion Eq. (76a), using Eq. (76b) to deter-
mine dni/dϕ, should provide a means to determine the
sheath horizon. For convenience, let us define the ion

FIG. 18. Profile of ρc, blue curve in log-scale. The reference
value of the small control parameter in the Poisson equation
ε2D is indicated by the horizontal dash-dot line. One can ob-
serve that ρc shoots-up above ε2D in the vicinity of the wall.

FIG. 19. Profile of |dρc/dϕ|, blue curve in log-scale. One can
observe a change in the exponential growth located at xsheath,
vertical blue dash-dot line.

density nK determined with Eq. (76b)

nK(ϕ) =

∫ +∞

0

dv fi(K,ϕ) ;
dnK

dϕ
=

∫ +∞

0

dv
fi(K,ϕ)

v2
(78a)

R(ϕ) =
dne

dϕ

∣∣∣
ϕ
− dnK

dϕ

∣∣∣
ϕ

(78b)

In the previous calculation, |dρc/dϕ|, both dne/dϕ and
dni/dϕ were computed with the derivatives of ne and ni
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with respect to ϕ using the moment 0 of the distribution
functions to determine the densities. The computation
of R(x) in Eq. (78) is therefore an alternative calcula-
tion of |dρc/dϕ| where the derivative of the ion density
with respect to ϕ is determined directly in the kinetic
framework. Provided the latter calculation is correct,
one expects that R ≥ 0, to be small for x < xsheath, and
to increase when x > xsheath.
One can note that the kinetic criterion does not address
the ion and electron population on the same footing al-
though the calculation of dni/dϕ is by no means species
specific. However, as sketched on FIG. 15, the slowing
down of the electrons towards the wall generates a pop-
ulation of trapped electrons so that one cannot identify
the distribution function at ϕ with that at ϕ∞ . Further-
more, the electron population in the trapped region and
in particular for K = 0 will govern a singularity of the
integral Eq. (76b). In simulations, the same issue arises
for the ions since collisions will tend to populate the gap
region, with both positive and negative velocities so that
the calculation of the ion density at ϕ when restricting
the integral to positive velocities with will tend to under-
estimate the ion density. The kinetic formula will there-
fore yield nK such that nK < ni where ni is the exact
value. Furthermore, the singularity of the integral for
K → 0 will tend to yield dnK/dϕ > dni/dϕ because of
the finite value of the distribution function for v → 0+.
Depending on the values of the distribution function fi,
the fraction fi/v

2 for v → 0+ can dominate the integral
in Eq. (78a). This discrepancy will tend to increase as the
potential difference |ϕ−ϕ∞ | increases because of the grow-
ing possibility of generating ions in the trapped region by
collisions. However, towards the wall and on the Debye
scale the probability of injecting ions in the gap region
is reduced and the kinetic calculation should to be more
accurate. The results of the reference simulation con-
firm that the kinetic formulation of the sheath boundary
conditions Eq. (78) are difficult to use. First comparing
dnK/dϕ, red curve open triangles on FIG. (20) is found
to seriously overestimate dni/dϕ, black curve open cir-
cles for ϕ − ϕ0 > −0.15. For ϕ − ϕ0 < −0.15 the two
curves get closer but one now finds dni/dϕ ≥ dnK/dϕ.
The kinetic formulation Eq. (78) is not at all accurate
and yields misleading values. In the quasineutral region
ϕ − ϕ0 > −0.13, one finds R(ϕ) ≪ −1 while the direct
calculation yields −dρc/dϕ → 0+. Indeed, the deriva-
tive of the two densities dni/dϕ and dne/dϕ, blue curve
open circles, are found to converge for ϕ ≥ ϕsheath, verti-
cal black dash-dot line. However, the intersection point
R(ϕK) = 0 is found to occur at xK ≈ 201.5, much closer
to the wall than the sheath entrance determined using
dρc/dϕ, FIG. (19).

B. Mandatory collisional process in steady state

Let us consider the again the phase space characteris-
tics using the variables Ksign(v) in velocity and ϕ0 − ϕ

FIG. 20. Derivatives with respect to ϕ of the electron density
ne, blue curve closed circles, and ion density ni, black curve
open circles, compared to the kinetic calculation dnK/dϕ, red
curve open triangles. While the derivatives of ne and ni con-
verge in the quasineutral region ϕ > ϕsheath, vertical dash
dot line, the derivatives of ne and nK intersect at ϕK , ver-
tical black dashed line. Note that the bottom scale for ϕ is
reversed so that the wall still stands on the right hand.

in position. The energy conservation for the electrons
leads to K = K0 − (ϕ0 − ϕ). We choose here the stagna-
tion point at x = 0 as reference phase space location
K0, ϕ0. We then consider the source at this location
Sδt. The chosen source for the model does not depend
on the distribution function and is assumed to be pro-
portional to a Maxwellian. We shall consider this case
to illustrate the need for phase space collisional trans-
port to achieve steady state conditions. For simplicity
we shall consider the source contribution to the distribu-
tion function at x = 0 and follow the characteristics from
x = 0. Given ϕw the electric potential of the plasma
at x = xw, namely the wall position, one then obtains
Kw = K0 − (ϕ0 − ϕw). When K0 ≥ (ϕ0 − ϕw) one then
finds Kw ≥ 0, these electrons reach the wall and are ab-
sorbed by the wall. Conversely, for K0 < (ϕ0 − ϕw) the
electrons to not reach the wall and the velocity changes
sign at position, ϕ such that K0 = ϕ0 − ϕ. The lat-
ter class of electrons are trapped by the variation of the
electric potential between x0 and xw. The variation of
the electric potential is twofold, in the quasineutral SOL
plasma, the electric potential drop is governed by the
density drop, and consequently the plasma acceleration,
and, towards the wall, the electric potential drops to en-
sure charge balance by enforcing equal ion and electron
flux to the wall. Based on this argument the typical
potential drop is ϕ0 − ϕw ≈ Log(2

√
mi/me). In the ref-

erence simulation mi/me = 400 so that ϕ0 − ϕw ≈ 3.5.
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FIG. 21. Electron phase space characteristics using Ksign(v)
as velocity coordinate with K = 1

2
v2/v2T0a

and ϕ0−ϕ as posi-
tion coordinate. Trapped electrons are confined to the shaded
region, bounded by the characteristics issued from K = Kt

at ϕ = ϕ0. For a source localized at ϕ = ϕ0, all electrons gen-
erated with K < Kt cannot be lost unless collisional transfer
from K < Kt to K > Kt is taken into account.

For the present discussion the exact value of the poten-
tial drop is not needed. On FIG. (21) the characteristics
starting from x = 0, ϕ = ϕ0 are plotted. For convenience
the velocity space coordinate is chosen to be Ksign(v),
which allows one to track the velocity reversal. On this
plot the potential drop ϕ0 − ϕw is set to unity. The
shadowed area corresponds to the region of trapped elec-
trons. At the stagnation point, the critical electron ki-
netic energy is Kt = ϕ0 − ϕw: electrons generated by
the source at ϕ = ϕ0 with K < Kt are trapped and the
electrons generated with K > Kt are lost to the wall.
Plotting the phase space characteristics for the electrons
illustrates the kinetic behavior of the electrons generated
by the source in steady state conditions. The blue line
for K = Kt at ϕ = ϕ0 splits this population between the
trapped and loss regions. One thus finds that all elec-
trons generated with K < Kt are confined and cannot
be lost. With this physics, the particle source is always
larger than the particle sink, and a steady state regime
with source and sink balance cannot be achieved. Colli-
sions are then the only available physical mechanism of
phase space transport that allows steady state conditions
to be achieved. Trapped electrons accumulate due to the
source term until collisional detrapping is efficient enough
to transfer all the electrons generated with K < Kt into
the phase space region K > Kt, as required to achieve
steady state conditions. As illustrated on FIG. (22), for
Kt = 3.5 = less than 1 % of the particle flux governed
by a Maxwellian source is directly injected in the loss re-

FIG. 22. Fraction of the source population with a Maxwellian
distribution generated in the loss region with K > Kt. For a
typical value of the potential drop ϕ0 − ϕw = Kt ≈ 3.5, one
finds that less than 1% of the source in injected directly in
the loss region. Particle conservation then requires that the
collisional flux from K < Kt to K > Kt balances the source
flux to the trapped region, ensuring source sink balance.

gion. All the particle flux injected in the trapped region
must then be balanced by a collisional flux from K < Kt

to K > Kt. While the particle source is localized, the
collisional particle transfer from the trapped to the loss
regions can take place in the whole plasma. One thus
finds that the electron population is split in two popu-
lations coupled by the collisions, both electron-electron
and electron-ion. This particular kinetic feature cannot
be captured within the fluid framework unless two elec-
tron fluids are used together with ad hoc transfer mecha-
nisms. Furthermore, the constant evaporation of the fast
particles governs a specific cooling of the trapped electron
population so that one readily expects Te < Ts where Ts

is the thermal energy of the particle source. This cooling
is enhanced by the energy transfer from the electrons to
the ions governed by the ion acceleration mechanism via
the electric field confining the electrons. All these kinetic
effects depend on the plasma collisionality and underline
the fundamental difference between weak collisionality
and non-collisional regimes.

C. Distribution functions

Two keys properties of the distribution functions have
been addressed in the previous Sections. First we have
used the conservation of the distribution function along
the characteristics at constant energy Ea = Ka + Zaϕ
for species a, where Ka is the normalized kinetic energy
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FIG. 23. Ion distribution function at x = 0, plain blue curve
closed circles. It departs from the Maxwellian with identical
fluid moments fMi , thin blue curve open circles, but is well
approximated by ffit, black curve open diamonds, the sum
of a cold Maxwellian, black dashed line open triangles, and a
hot Maxwellian, black dashed line open squares.

Ka = 1
2v

2 and Za = −1, Zi = 1 is the normalized charge.
These characteristics account for the kinetic equation but
for the collision and source terms. We can therefore use
them to investigate the specific effects on the distribution
functions governed by these two terms.
Let us first examine the distribution function at x = 0.
These are symmetric fa(v) = fa(−v) because of the sym-
metry of the simulation domain. One finds that the
distribution departs from the Maxwellian built with the
same, density ni(x = 0) = 2.47, mean velocity and ther-
mal energy Ti(x = 0) = 0.31, blue line open circles.
It is better recovered with the sum of two Maxwellians
with a cold component with density nci and thermal
energy Tci ≈ 0.11 and a hot component with density
nhi and thermal energy Thi ≈ 0.85 and nhi/nci ≈ 0.11.
The hot component can be related to the source ther-
mal energy Ts = 1, while the cold component that is
dominant at small normalized velocity |v| ≤ 1 exhibits
a thermal energy that is closer to that of the electrons
Te(x = 0) = 0.16. A similar analysis can be performed
for the electrons, but the hot component The ≈ 0.87 has
a much smaller density nhe/nce ≈ 5 10−3 than the cold
component that is consequently close the fit by a single
Maxwellian.

We investigate the properties of the distribution func-
tions in phase space using ϕ as position coordinate and
K sign(v) as velocity coordinate. The constant energy
characteristics, conserved energy Ke−ϕ for the electrons
and Ke + ϕ for the ions, are then straight lines. For the
electrons, the contour plots of log10(fe) are compared to

FIG. 24. Phase space contour plot, plain blue curve open
circles and open squares, of the electron distribution function
log10(fe), coordinates ϕ− ϕ0 for the position and Ke sign(v)
for the velocity, with Ke < 1. The wall is located on the right
hand side in the direction of decreasing ϕ − ϕ0. The black
lines with closed circles are the constant energy characteristics
Ke = K0 + ϕ − ϕ0 plotted for different values of the kinetic
energy Ke0 at x = 0.

the constant energy characteristics Ke = Ke0 +(ϕ−ϕ0).
On FIG. (24), the phase space is restricted to the small
velocities Ke ≤ 1. Note that the electric potential is in-
verted for convenience so that the particles with positive
velocities head from the symmetry point x = 0, ϕ = ϕ0

towards the wall located on the right hand side. Con-
versely, particles with negative velocities flow towards
x = 0 and beyond towards the wall on the left hand side.
The contour lines for the values -2.5, -1.5, and -1 are the
blue curves with open circles. For the electron trapped
in the electric potential variation, the contour levels are
-0.09 and 0.13 and the contours are the blue curves with
open squares. The constant energy characteristics cor-
respond to the black lines with closed circles. They are
computed to intersect the contour curves at Ke = 0 for
the trapped electrons and otherwise at ϕ − ϕ0 = −0.2.
One finds little departure between the contour curves and
the constant energy characteristics for Ke < 1 except for
ϕ → ϕ0 and Ke sign(v) < −0.5. This effect is clear when
stepping to Ke sign(v) < −1, FIG. (25), where the value
of the contour line range from -6 to -3 with steps of 0.5,
blues lines open circles. The departure between the con-
tour curves and the constant energy characteristics can
be attributed to the effect of the source terms that lies
to the left of the vertical dash-dot line and is maximum
for ϕ → ϕ0. This source is found to induce a broaden-
ing of the distribution function by adding particle with
thermal energy Ts = 1. This effect is observed to be
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FIG. 25. Phase space contour plot, plain blue curve open
circles and open squares, of the electron distribution function
log10(fe), coordinates ϕ− ϕ0 for the position and Ke sign(v)
for the velocity, with Ke sign(v) < −1. The wall is located
on the right hand side in the direction of decreasing ϕ − ϕ0.
The black lines with closed circles are the constant energy
characteristics Ke = K0 + ϕ− ϕ0 plotted for different values
of the kinetic energy Ke0 at x = 0.

much more important than the changes governed by the
energy conservation, FIG. (25). One can also note that a
distortion with respect to the constant energy character-
istics occurs for −0.075 > ϕ− ϕ0 > −0.13. In this range
of values the source is null and only collisions can ex-
plain this departure. One can also remark that the source
should govern the development of a hot Maxwellian con-
tribution to the distribution functions, with comparable
properties for both electrons and ions. However, this
hot component at x = 0 is observed to be much smaller
for the electrons than for the ions with a ratio ≈ 510−2

FIG. (23). One also finds that the observed density of the
hot ion component is typically a factor 0.63 smaller than
would be obtained with only the source term at work.
Finally, for both species one observes that the thermal
energy of the hot component at x = 0 is ≈ 0.85, therefore
smaller than Ts. These features highlight the role of col-
lisions, and as discussed in Section IVB, the mandatory
evaporation of the hot electrons sustained by collisional
transfer. For Ke sign(v) > 1, one can also observe the
broadening of the distribution function governed by the
source term, and, prior to the source region, by collisions.
However, in this part of the distribution function, these
changes are larger but comparable in magnitude to the
variation along the constant energy characteristics. We
now step to the properties of the ion distribution func-
tion. We first consider the small kinetic energy region
of the phase space with Ki < 0.2 and the contour of

FIG. 26. Phase space contour plot, plain blue curve open
circles and open squares, of the ion distribution function
log10(fi), coordinates ϕ− ϕ0 for the position and Ki sign(v)
for the velocity, with Ki < 0.2. The wall is located on the
right hand side in the direction of decreasing ϕ − ϕ0. The
black lines with closed circles are the constant energy charac-
teristics Ki = K0− (ϕ−ϕ0) plotted for different values of the
kinetic energy Ki0 at x = 0.

log10(fi), FIG. (26). The contour levels with blue curves
open circles range from -2 to 0.25 with steps of 0.25. The
constant energy characteristics for Ki sign(v) < 0, black
line closed circles, is very different from the contour lines
that are consistent with the effect of the source term for
a vanishing ion distribution with negative velocity and
ϕ < −0.075, between the source region and the wall. The
contour lines also appear to pinch towards the Ki = 0
line, then opening a region of very small values of the
distribution function for Ki < 0.05. as ϕ − ϕ0 → −0.2
one finds that the contour line tend to be parallel to
the constant energy characteristics for the smaller values
of log10(fi), with an important mismatch at the larger
values of log10(fi). For the larger values of Ki sign(v),
Ki sign(v) > 0.2, FIG.(27), one finds that the contour
plot are aligned on the constant energy characteristics
for typically ϕ − ϕ0 < −0.13. For ϕ − ϕ0 > −0.13, one
recovers a behavior that is comparable to that reported
for the electrons, a broadening governed by the source
term on the left-hand side of the vertical dash-dot black
line, ϕ − ϕ0 > −0.075, and a broadening that can only
be attributed to collisions for −0.075 > ϕ−ϕ0 > −0.13.

V. DISCUSSION AND CONCLUSION

In this paper we have addressed the self-organization
of a plasma with perfectly absorbing boundary condi-
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FIG. 27. Phase space contour plot, plain blue curve open
circles and open squares, of the ion distribution function
log10(fi), coordinates ϕ− ϕ0 for the position and Ki sign(v)
for the velocity, with Ki sign(v) > 0.2. The wall is located
on the right hand side in the direction of decreasing ϕ − ϕ0.
The black lines with closed circles are the constant energy
characteristics Ki = K0− (ϕ−ϕ0) plotted for different values
of the kinetic energy Ki0 at x = 0.

tions. The problem we have in mind is the physics of
the Scrape-Off Layer plasma of magnetic confinement
devices dedicated to fusion. We have also restricted the
analysis to a 1-D geometry, typically in the direction
parallel to the magnetic field, and assumed the location
of the absorbing boundary condition to be fixed, as when
the plasma interacts with a solid. However, the problem
at hand is not specific of fusion plasma conditions and
our results are therefore more general. It is well known
that under such conditions a boundary layer develops in
the vicinity of the wall. The so-called sheath then stands
between a bulk plasma that remains quasineutral and
the wall where the plasma promptly recombines. The
sheath is well known to be a region with positive charge
density extending on several Debye scales and where
the electric field confining the electrons becomes large.
Our specific interest is the self-organization problem
of the SOL plasma sustained by particle momentum
and energy source terms and in contact via the sheath
boundary layer with a perfect particle, momentum
and energy sink. The sheath transmission properties
together with the sources then determine the SOL
plasma properties, in particular the plasma momentum
flux (also called total plasma pressure) and the plasma
electric potential. Our approach does not aim as ad-
dressing the sheath physics as a stand alone problem but
rather the particular balance between the plasma source
and the sheath transmission. A specific interest of this

analysis is to define appropriate boundary conditions
for simulations dedicated to plasma turbulent transport
where quasineutrality is enforced and the Debye scale
not resolved. The simulation effort is two fold, a large
body of SOL simulation codes use the fluid represen-
tation, and, more recently the gyrokinetic framework
has been used for SOL simulations. The problem is
then to define appropriate boundary conditions such
that the SOL properties are recovered without having
to address the physics on the Debye scale. To illustrate
our theoretical analysis we have used the results of a
reference kinetic simulation with the 1D-1V VOICE
code [30] evolving a two species plasma, electrons and
singly charged ions, and where penalized wall conditions
are used, see the companion paper [31]. In the present
work, we have considered that the plasma source, mostly
governed by cross-field turbulent transport is localized
and symmetric, so that the stagnation point with zero
mean velocity for either species stands in the middle of
the plasma region. In this work, we furthermore assume
that the source injects hot particles, hence a particle and
energy source, with no heat, charge or momentum source.

We consider a quasineutral plasma with zero electric
current. The fluid model we first address is the standard
Navier Stokes model for particle, momentum and energy
conservation, either for each species or summing the
latter to obtain the plasma conservation equations used
instead of the ion conservation equations. The plasma
equations, considering the particle flux, the total mo-
mentum flux and the total energy flux, with null charge
density and electric current are found to be independent.
In steady state, analytical results are obtained when
neglecting both electron and ion heat fluxes. One finds
that the mean ion and electron velocity as well as the
plasma thermal energy T = Te + Ti vary with the
particle flux, itself governed by the particle source. The
analysis of the present work is described in terms of the
dependence of the Mach number on a control parameter.
It follows the same steps as previously published for the
isothermal closure [4]. The plasma-sheath transition is
found to exhibit a twofold behavior. In the quasineutral
SOL, the source terms governs the increase of the
control parameter, so that the subsonic Mach number
increases. At the sheath horizon, the control parameter
goes through a maximum and decreases into the sheath
while the Mach number increases into the supersonic
regime. This bifurcation from a subsonic to a supersonic
regime without a discontinuity is made possible because
of the departure from quasineutrality. Such an approach
assumes the sound velocity to be determined so that the
Mach number can be defined. In this paper, the sound
velocity is determined by analyzing both the sound wave
using as independent variables the density, the particle
flux and the total plasma flux –the latter being akin
to the energy density for a 1-D model– completed by
analyzing the possible discontinuity of the equations
for the variables, density, mean plasma velocity and
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plasma thermal energy. The sound velocity for this non-
isothermal solution is then found to be cs =

√
3T/mi to

be compared to
√

T/mi for the isothermal model. This
result cannot be obtained using a constant polytropic
index since the solution we obtain yields a varying
polytropic index. This behavior is readily expected
since the use of the polytropic index is based on the
assumption of prompt thermodynamic equilibrium
induced by small scale turbulence, which clearly does
not make sense for parallel plasma transport. In such
a fluid framework, the self organization between the
SOL and the sheath conditions determines the plasma
momentum flux and requires that the sound velocity
is reached at the end of the particle and energy source
region, the solution then remaining constant up to the
sheath entrance. These fluid predictions are compared
to a kinetic simulation and qualitative agreement is
found. However, key differences are observed. First,
the heat energy for the electrons is comparable to the
convected energy and contributes to the total energy
flux impinging onto the wall. Second, the variation
of the steady state solution is not restricted to the
source region. The energy exchange between the species
and between the convected and heat flux components
continues from the end of the source region up to the
wall. Similarly, the mean particle velocity continues to
increase monotonically between the end of the source
region and the wall. It also appears to remain smaller
than the sound velocity cs but larger than

√
T/mi so

that a Bohm criterion defining the sheath entrance is
not operational.

Given these shortfalls, a non-collisional closure is
used to determine the heat flux in terms of the lower
moments, namely the density, the particle flux and the
total plasma momentum flux. The analysis in Fourier
space indicates that the heat flux exhibits a contribution
along the particle flux with a real proportionality
coefficient, while the proportionality coefficients for the
density and total momentum flux are imaginary driving
a damping behavior recovering consistency with the
so-called Landau damping. This non-collisional closure
is interesting insofar that the heat flux contribution
proportional to the particle flux provides an explanation
for the heat flux contribution to the total plasma
energy outflux. However, such a contribution would
tend to further increase the sound velocity so that the
discrepancy between the values achieved by the mean
velocity and a Bohm criterion based on such a sound
velocity is even more pronounced. Closures using higher
moments of the fluid hierarchy are also discussed. One
finds that the sound velocity and the discontinuity of
the steady state balance equation are in agreement but
depend entirely on the choice made for the closure. This
arbitrary result cannot then be used to determine a
suitable Bohm criterion defining the sheath entrance.
The predictions of the fluid models using a closure at
higher moments can be improved when compared to

the kinetic simulation. However, they do not provide a
predictive capability. The kinetic simulation guideline
remains crucial in determining the transition from the
quasineutral SOL plasma into the sheath region,and
consequently to define the sheath entrance. To put
things bluntly, one can expect that the Mach 1 Bohm
criterion holds at the sheath horizon but one has no
means to specify the sound velocity so that this fluid
criterion is not operational.

In the kinetic framework, the Mach number, and
therefore a Bohm criterion, does not emerge as a key
point. A specific kinetic criterion to define the sheath
horizon has been determined by Harrison and Thompson
[9]. The constraint is based on an integral involving
the ion distribution function. It has been regarded
as the most relevant to determine the sheath horizon
in the kinetic framework [11–13]. We have revisited
the derivation of this criterion and found that the ion
distribution integral stands for the derivative of the
ion density with respect to the electric potential. The
criterion is obtained when expanding the electric field
energy, typically E2 in terms of an electric potential
difference. At the sheath horizon, it is assumed that the
plasma is neutral ne → ni so that the constraint E2 ≥ 0
enforces that the derivative of ne with respect to the
electric potential is larger than that of ni. At this stage,
the criterion involves the densities and is not specific of
either the kinetic or the fluid framework. The derivative
of the electron density is directly determined, usually for
adiabatic electrons, while the derivative of the ion den-
sity is computed using the ion distribution function and
the characteristics at constant energy E = K + ϕ. The
transfer of kinetic energy K to electric potential energy
ϕ along the characteristic then allows one to compute
the ion density derivative with respect to ϕ. However,
this calculation exhibits a divergence for K → 0 that
is only alleviated if the ion distribution function tends
to zero fast enough when K → 0. Furthermore, the
use of the constant energy characteristics to determine
the ion distribution function is only appropriate when
both collisions and source/sink terms are not taken into
account. In the kinetic simulation, one finds that the
Harrison-Thompson formula to compute dni/dϕ departs
from the actual value in most of the plasma region and
only becomes similar, but not identical, to the latter
towards the wall. One can also note that applying this
formalism to the kinetic simulation is not appropriate
because quasineutrality is not neutrality for the SOL
plasma so that the assumptions made when defining this
criterion do not hold. Furthermore, collisions however
weak will play a role when the distribution function
exhibit strong variations in velocity space, which is
the case for the ion distribution function towards the
wall. The Harrison-Thompson criterion must therefore
be adapted to actual plasma behavior as displayed in
the kinetic simulation. We can then use the change in
scale of the variation with respect to position. In the
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quasineutral SOL the characteristic scale is the size of
the domain L ≫ λD0

while the variation in the sheath
region is comparable to λD0

. Monitoring the rapid
change of variation, then allows one to identify turning
points from one asymptotic behavior to the other. How-
ever, depending on the chosen field this transition occurs
as different distances from the wall. As can be expected,
this sensitivity increases when stepping from the electric
potential to the electric field and then to the charge
density and the derivative of the charge density with
respect to the potential. The gradual transition from
quasineutral to Debye scale dependence does not provide
a unique definition of the sheath entrance. However,
a suitable criterion for the sheath horizon appears to
be the change of variation scale of dne/dϕ − dni/dϕ.
It combines the fact that it is a precursor, responding
when the other field have not yet changed behavior, and
that it is rather straightforward to compute. For the
reference kinetic simulation, dne/dϕ − dni/dϕ exhibits
an exponential growth in the quasineutral region with
e-folding length ≊ 20λD0

, which decreases to ≊ 0.5λD0

within the sheath. From the sheath entrance to the
wall, therefore over a distance of ≊ 7λD0

, the charge
density then increases from the small value expected in
the quasineutral region to a value of order unity.

An important feature revealed by the model used
in this paper is the importance of collisions. We have
shown that the electron population at the symmetry
point, the stagnation point, can be split into trapped
electrons with kinetic energy smaller than the electric
potential drop from the stagnation point to the wall
and electrons with larger enough kinetic energy to be
able to reach the wall. The particle and energy source
term injects hot particles into the plasma. The source
distribution function will also be split into injected
electrons that are confined by the electric potential drop
and those that can stream to the wall, and lost to the
wall. Collisions are the only mechanism that can transfer
electrons from trapped to streaming. These are found to
be mandatory to achieve steady state. The evaporation
mechanism driven by the collisions governs a cooling
down of the electrons to low thermal energy. Following
the constant energy characteristics from the stagnation
point towards the wall, and comparing these to the
contour lines of the distribution functions, allows one to
identify the role of the source and collision operators.
One finds relative agreement towards the wall where the
electric field becomes large and can be expected to be
the drive for the changes in the distribution functions.
For the electrons, dominated by a cold component at the
stagnation point, the source effect is mostly observed
at large kinetic energy, yielding hot component with
quite small density. This source effect appears to be
balanced by collisional cooling in the source region and
close to the source region. Regarding the ions, collisional
cooling is also observed since fast ions are lost faster
than the slow ions, but this effect is less pronounced

than for electrons. Consequently, the density of the hot
ion component is larger. The departure between the
contour lines and the constant energy characteristics
also indicates that collisions play a role everywhere. One
also finds that they tend to fill the energy gap Ki → 0
so that the distribution function is small but tends to a
finite value as Ki → 0.

The importance of kinetic effects is highlighted by
the distortion of the distribution functions away from
Maxwellians. As discussed above the collisional transfer
is also an important kinetic effect. When considering the
Navier Stokes fluid equations, one finds that the kinetic
effects are described by the heat flux and the inter-species
collisional equipartition towards identical mean velocity
and thermal energy. All the other terms appearing in
the equations are definitions, therefore not specific of the
kinetic framework. In the reference kinetic simulation,
we find that the heat flux amounts to a fourth of the
plasma energy flux and close to half the electron energy
flux. The impact on the plasma momentum flux that is
achieved due to the self-organized balance between the
sources and sinks via the sheath is observed to be rather
modest in the reference kinetic simulation, typically a
drop of 10 %. The heat flux is found to build-up in the
source region and sustained, although slightly decaying,
up to the wall, where the heat flux therefore contributes
to the flux impinging onto the wall. As discussed above,
the non-collisional closure indicates that this heat flux
exhibits a component that is proportional to the particle
flux. Unlike the result of the collisional closure that de-
scribes the heat flux as a diffusive process exchanging en-
ergy with zero net particle flux, we find in this work that
the heat flux contributes to the energy flux convected
with the particles out of the plasma. Furthermore, it ap-
pears that this contribution must be coupled to higher
moments of the fluid hierarchy to recover a Bohm cri-
terion. We find therefore that defining the heat flux as
an energy transfer with no net particle transfer, which is
consistent with the result of the collisional closure, does
not account for our observations in the kinetic regime.
A better understanding of the physics of the heat flux,
the skewness of the probability distribution functions, its
dependence on collisionality and connection to the distor-
tion of the distribution functions, appears to be impor-
tant to assess the kinetic features of parallel transport.
This issue is further discussed in the paper dedicated to
the simulations, together with the heat transmission fac-
tor.
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