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Introduction and motivations

• One of the French strategy 
- Transition towards a 100% SFR fleet 

- Development of innovative SFR-CFV  
→ ASTRID design
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Introduction and motivations

• One of the French strategy 
- Transition towards a 100% SFR fleet 

- Development of innovative SFR-CFV  
→ ASTRID design

• Uncertain time frame
- Deployment of SFRs after 2050?

• Questions raised
- Plutonium status for the next decades?

- Dynamic plutonium management with 
ASTRID-like reactors?
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ASTRID-like reactor models

• 600 MWe break-even design

• Heterogeneous core for low void effect 
- Geometrical characteristics → favor neutron leakage

- 2 Pu contents for inner and outer zones 
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→ Challenges: maintain the core 

heterogeneity & zone interactions

→ Need: new multizone models in the 

CLASS code
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ASTRID-like reactor models

• Challenges in dynamic fuel cycle calculations
- A priori unknown fuels

- Fuel evolution maintaining the heterogeneity 
of the core

 Fuel evolution as a function of fresh fuel

 EOC composition for each zone

- Fresh fuel fabrication adapted to available 
materials, considering 2 criteria

 BOC criticality 

 Initial power distribution 

L. Tillard et al., ICAPP 2019
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• Pu enrichment ratio sets the power 
distribution in the reactor & vice versa

• keff prediction using Artificial Neural 
Networks based on fresh fuel compositions 

Multizone fuel fabrication model
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• Goals 
- Observe strategy impact on SFRs

- Understand interactions between the reactors

- Identify possible Pu shortage or other issues

Scenario definitions: goals and methods 

5



• Methods
- Wide parameter sweeping methodology

 Identify parameters that may impact our evaluation criteria

 Sample those parameters to quantify their mutual impacts 

- Phase a&b with PWRs for an initial Pu inventory

Scenario definitions: goals and methods 

Sampling parameters:
- Number of ASTRID-like reactors

- PWR-UOX burnup

- MOX fraction for PWR

- Stock management (LIFO/FIFO)

- SFR cooling time

- Material flows 
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• Methods
- Wide parameter sweeping methodology

 Identify parameters that may impact our evaluation criteria

 Sample those parameters to quantify their mutual impacts 

- Phase a&b with PWRs for an initial Pu inventory

Scenario definitions: goals and methods 

Sampling parameters:
- Number of ASTRID-like reactors

- PWR-UOX burnup

- MOX fraction for PWR

- Stock management (LIFO/FIFO)

- SFR cooling time

- Material flows 
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Plutonium quantity and isotopic quality in SFRs

• Case A: SFR spent fuels are not reprocessed

→ SFR: Breeder or Burner

depending on the Pu quality 

→ Isotopic quality & quantity in SFR 

tend to a steady-state value
6



Impact of SFR reprocessing on PWR fresh fuels

• Case B: SFR spent fuels are reprocessed for SFR or PWR-MOX fresh fuel

→ Possible high plutonium enrichment in 

PWR-MOX fuel (> 12%)

→ Due to Pu quality in SFR spent fuels?
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Impact of SFR reprocessing on PWR fresh fuels

• Case A: SFR spent fuels are not reprocessed
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→ Pu from SFR spent fuels has often a 

lower quality than Pu from PWR-UOX 

spent fuels
S



Global in-cycle plutonium inventory

• Case B: SFR spent fuels are reprocessed for SFR or PWR-MOX fresh fuel

→ PWR fleet are mainly Pu breeder and 

the introduction of some ASTRID-like 

reactors does not change the main 

behavior of the fleet

→ A mixed fleet with such ASTRID-like 

reactors imposes a high fraction of 

SFRs to reach Pu stabilization 
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- Limited number of ASTRID-like 
reactors deployed (up to 20)

- No Pu stabilization



Conclusions and perspectives

• New models for ASTRID-like reactors have been implemented in the 
CLASS code → maintaining core heterogeneity & zone interactions 

- Fresh fuel construction

- Fuel evolution modelling 
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Conclusions and perspectives

• New models for ASTRID-like reactors have been implemented in the 
CLASS code → maintaining core heterogeneity & zone interactions 

- Fresh fuel construction

- Fuel evolution modelling 

• Models have been used for scenario studies
- Using the Wide Parameter Sweeping Methodology

- The introduction of some ASTRID-like SFRs in the fleet does not allow to reach Pu 
stabilization 

- It involves some constraints on the reprocessing strategies for Pu multi-recycling
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Conclusions and perspectives

• New models for ASTRID-like reactors have been implemented in the 
CLASS code → maintaining core heterogeneity & zone interactions 

- Fresh fuel construction

- Fuel evolution modelling 

• Models have been used for scenario studies
- Using the Wide Parameter Sweeping Methodology

- The introduction of some ASTRID-like SFRs in the fleet does not allow to reach Pu 
stabilization 

- It involves some constraints on the reprocessing strategies for Pu multi-recycling

• New models for a SFR burner design has been developed to study their 
potentialities for Pu management in mixed fleets
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ASTRID-like modelling hypothesis

• Simulation hypothesis → for reactors studies and CLASS development
- VESTA-MCNP full core depletion calculations

- Full core loaded with fresh fuel

- 6 depletion zones: 3 fissile & 3 fertile zones

- 2 Pu enrichments for inner and outer zones 

- Control assembly extracted

→ Challenge: to maintain the core heterogeneity 

& zone interactions

→ New physics models development in CLASS code
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ASTRID-like data base

• 1000 depletion simulations with 
different fresh fuel compositions

- VESTA-MCNP full core depletion 
calculations

- Fuel choice: UOX & MOX fuel recycling 
→ LHS sampling

- Parameters: 238Pu, 240Pu, 241Pu, 242Pu, 
241Am , TPuint & TPuext

Min Max

T_Puint 15 40

T_Puext 15 40

B_Pu238 1 8

B_Pu240 20 40

B_Pu241 0 17

B_Pu242 5 17

B_Am241 0 15



ASTRID-like data base
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Multizone Fuel Irradiation Model

• Input data: Cycle time, initial fuel composition / depletion zone
• Bateman equations resolution for each zone

- Decay constants (λ) 

- Local cross-sections (σ) ➞ Cross-section predictor

- Local flux (𝜑) ➞ Flux or Power predictor

 With

• Predictors: ANN generation 
- Generation database: 1000 depletion calculations

- Parameters: time, zone number, fissile fresh fuel compositions

𝑑𝑁𝑖,𝑧
𝑑𝑡
= − λ𝑖 + 𝜎𝑖,𝑟,𝑧𝜑𝑧 𝑁𝑖,𝑧 + 

𝑗≠𝑖

λ𝑗→𝑖 + 𝜎𝑗→𝑖,𝑟,𝑧𝜑𝑧 𝑁𝑗,𝑧

ProductionLoss

i Isotope

j Parent Isotope

r Reaction

z Zone

𝑃𝑡𝑜𝑡 = 

𝑧

𝑃𝑧(𝑡)𝜑𝑧(𝑡) = 

𝑖

𝑃𝑧(𝑡)

𝜀𝑖
𝑓𝑖𝑠 × 𝜎𝑖,𝑧

𝑓𝑖𝑠(𝑡) × 𝑁𝑖,𝑧(𝑡)



Multizone Fuel Irradiation Model

• Deviation induced on inventory estimation at EOC
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Multizone Fuel Fabrication Model

• Pz(target) & 𝒌eff_BOC(target)  User choice

• Predictors: ANN generation 
- Generation database: 1000 depletion calculations

- Parameters: time, fissile fresh fuel compositions

𝑭𝒖𝒆𝒍𝒊𝒏𝒕,𝑭𝒖𝒆𝒍𝒆𝒙𝒕
to be loaded

𝑻𝑷𝒖
𝒎𝒆𝒂𝒏

𝑴𝑷𝒖𝒄𝒐𝒓𝒆

Stock

𝑴𝑷𝒖_𝒊𝒏𝒕
𝑴𝑷𝒖_𝒆𝒙𝒕

𝒙𝑻 =
𝑻𝑷𝒖_𝒊𝒏𝒕
𝑻𝑷𝒖_𝒆𝒙𝒕

𝑭𝒖𝒆𝒍𝒊𝒏𝒕,𝑭𝒖𝒆𝒍𝒆𝒙𝒕
to be tested

Predictor

𝒌eff_BOC(pred) ? 𝒌eff_BOC(target)

Adjustment of

𝑴𝑷𝒖𝒄𝒐𝒓𝒆 & 𝑻𝑷𝒖
𝒎𝒆𝒂𝒏



Multizone Fuel Fabrication Model

𝑥T =
𝑇𝑃𝑢_𝑖𝑛𝑡

𝑇𝑃𝑢_𝑒𝑥𝑡

𝑥M =
𝑀𝑖𝑛𝑡
𝑀𝑒𝑥𝑡

𝑇𝑃𝑢
𝑚𝑒𝑎𝑛
=
𝑇𝑃𝑢_𝑖𝑛𝑡𝑀𝑖𝑛𝑡+𝑇𝑃𝑢_ex𝑡𝑀𝑒𝑥𝑡

𝑀𝑖𝑛𝑡+𝑀𝑒𝑥𝑡

𝑀𝑃𝑢𝑐𝑜𝑟𝑒 = 𝑇𝑃𝑢𝑚𝑒𝑎𝑛 ×𝑀𝑐𝑜𝑟𝑒

𝑇𝑃𝑢_𝑖𝑛𝑡 = 𝑥T × 𝑇𝑃𝑢_ex𝑡

𝑇𝑃𝑢_𝑒𝑥𝑡 = 𝑇𝑃𝑢𝑚𝑒𝑎𝑛 ×
𝑀𝑖𝑛𝑡+𝑀𝑒𝑥𝑡

𝑥T 𝑀𝑖𝑛𝑡+𝑀𝑒𝑥𝑡

𝑀𝑃𝑢𝑖𝑛𝑡 = 𝑀𝑃𝑢𝑐𝑜𝑟𝑒 ×
𝑥M 𝑥T

1+𝑥M 𝑥T

𝑀𝑃𝑢𝑒𝑥𝑡 = 𝑀𝑃𝑢𝑐𝑜𝑟𝑒 ×
1

1+𝑥M 𝑥T



Scenario definitions
• Fixed parameters

- Constant power

- 3 phases: 20y, 50y, 50y

- Ratio FMOX/ FUOX constant (phase b&c)

- BUSFR 100GWd/t, BUMOX 42GWd/t

- SMMOX LIFO   …

• Sample parameters
- BUUOX [30;60] GWd/t

- FMOX [5;15] %

- NSFR [0;20]

- SM [LIFO;FIFO]

- TCSFR [5;10] y

- Material flows

• Main output
- Plutonium quality

- Plutonium quantity

- Plutonium contents   …

Case A

Case B

𝑄 =
𝑁239𝑃𝑢 + 𝑁241𝑃𝑢

𝑁238𝑃𝑢 + 𝑁240𝑃𝑢 + 𝑁242𝑃𝑢



Impact of stock feeding SFR fab. plant on PWR fresh fuels

- Case A - Case B



Pu stabilization with a 100% SFR fleet

- In-cycle Plutonium - Plutonium outside reactors


