

Light Water Reactor Fuel Performance Conference

ANS Meetings

Analysis of transition scenarios from a PWR to a SFR fleet simulated with the CLASS code

Lea Tillard

Ph.D student

Outline

- Context
- New SFR modelling in the CLASS code
- Methods and study cases
- Fuel management strategies
- Impact of SFRs on the fuel cycle
- Conclusion and perspectives

Introduction and motivations

- One of the French strategy
 - Transition towards a 100% SFR fleet
 - Development of innovative SFR-CFV

 \rightarrow ASTRID design

Introduction and motivations

- One of the French strategy
 - Transition towards a 100% SFR fleet
 - Development of innovative SFR-CFV
 → ASTRID design
- Uncertain time frame
 - Deployment of SFRs after 2050?
- Questions raised
 - Plutonium status for the next decades?
 - Dynamic plutonium management with ASTRID-like reactors?

ASTRID-like reactor models

600 MW_e break-even design

O. Fabbris Ph.D. Thesis, CEA, 2014

- Heterogeneous core for low void effect
 - Geometrical characteristics \rightarrow favor neutron leakage
 - 2 Pu contents for inner and outer zones
 - → Challenges: maintain the core heterogeneity & zone interactions
 - → Need: new multizone models in the CLASS code

ASTRID-like reactor models

- Challenges in dynamic fuel cycle calculations
 - A priori unknown fuels
 - Fuel evolution maintaining the heterogeneity of the core *L. Tillard et al., ICAPP 2019*
 - Fuel evolution as a function of fresh fuel
 - EOC composition for each zone
 - Fresh fuel fabrication adapted to available materials, considering 2 criteria

IRSN

- BOC criticality
- Initial power distribution

Multizone fuel fabrication model

- Pu enrichment ratio sets the power distribution in the reactor & *vice versa*
- k_{eff} prediction using Artificial Neural Networks based on fresh fuel compositions

Scenario definitions: goals and methods

Goals

- Observe strategy impact on SFRs
- Understand interactions between the reactors
- *Identify* possible Pu shortage or other issues

Scenario definitions: goals and methods

Methods

- Wide parameter *sweeping methodology*
 - Identify parameters that may impact our evaluation criteria
 - Sample those parameters to quantify their mutual impacts
- Phase a&b with PWRs for an initial Pu inventory

Sampling parameters:

- Number of ASTRID-like reactors
- PWR-UOX burnup
- MOX fraction for PWR
- Stock management (LIFO/FIFO)
- SFR cooling time
- Material flows

Scenario definitions: goals and methods

Methods

- Wide parameter *sweeping methodology*
 - Identify parameters that may impact our evaluation criteria
 - Sample those parameters to quantify their mutual impacts
- Phase a&b with PWRs for an initial Pu inventory

Sampling parameters:

- Number of ASTRID-like reactors
- PWR-UOX burnup
- MOX fraction for PWR
- Stock management (LIFO/FIFO)
- SFR cooling time
- Material flows

Plutonium quantity and isotopic quality in SFRs

• Case A: SFR spent fuels are not reprocessed

→ Isotopic quality & quantity in SFR tend to a steady-state value

Impact of SFR reprocessing on PWR fresh fuels

Case B: SFR spent fuels are reprocessed for SFR or PWR-MOX fresh fuel

- → Possible high plutonium enrichment in PWR-MOX fuel (> 12%)
- → Due to Pu quality in SFR spent fuels?

Impact of SFR reprocessing on PWR fresh fuels

Case A: SFR spent fuels are not reprocessed

→ Pu from SFR spent fuels has often a lower quality than Pu from PWR-UOX spent fuels

Global in-cycle plutonium inventory

• Case B: SFR spent fuels are reprocessed for SFR or PWR-MOX fresh fuel

- Limited number of ASTRID-like reactors deployed (up to 20)
- No Pu stabilization
- → PWR fleet are mainly Pu breeder and the introduction of some ASTRID-like reactors does not change the main behavior of the fleet
- → A mixed fleet with such ASTRID-like reactors imposes a high fraction of SFRs to reach Pu stabilization

Conclusions and perspectives

- New models for ASTRID-like reactors have been implemented in the CLASS code → maintaining core heterogeneity & zone interactions
 - Fresh fuel construction
 - Fuel evolution modelling

Conclusions and perspectives

- New models for ASTRID-like reactors have been implemented in the CLASS code → maintaining core heterogeneity & zone interactions
 - Fresh fuel construction
 - Fuel evolution modelling
- Models have been used for scenario studies
 - Using the Wide Parameter Sweeping Methodology
 - The introduction of some ASTRID-like SFRs in the fleet does not allow to reach Pu stabilization
 - It involves some constraints on the reprocessing strategies for Pu multi-recycling

Conclusions and perspectives

- New models for ASTRID-like reactors have been implemented in the CLASS code → maintaining core heterogeneity & zone interactions
 - Fresh fuel construction
 - Fuel evolution modelling
- Models have been used for scenario studies
 - Using the Wide Parameter Sweeping Methodology
 - The introduction of some ASTRID-like SFRs in the fleet does not allow to reach Pu stabilization
 - It involves some constraints on the reprocessing strategies for Pu multi-recycling
- New models for a SFR burner design has been developed to study their potentialities for Pu management in mixed fleets

Light Water Reactor Fuel Performance Conference

ANS Meetings

Thank you for your attention!

Sincere thanks to J.Clavel¹, X.Doligez², E.Dumonteil¹, M.Ernoult², J.Liang², N.Thiollière³

- 1. IRSN Neutronics Laboratory
- 2. CNRS/IN2P3/Univ. Paris Sud IPNO
- 3. CNRS/IN2P3/Univ. de Nantes Subatech Laboratory

ASTRID-like modelling hypothesis

• Simulation hypothesis \rightarrow for reactors studies and CLASS development

- VESTA-MCNP full core depletion calculations
- Full core loaded with fresh fuel
- 6 depletion zones: 3 fissile & 3 fertile zones
- 2 Pu enrichments for inner and outer zones
- Control assembly extracted

- → Challenge: to maintain the core heterogeneity & zone interactions
- $\rightarrow\,$ New physics models development in CLASS code

ASTRID-like data base

- 1000 depletion simulations with different fresh fuel compositions
 - VESTA-MCNP full core depletion calculations
 - Fuel choice: UOX & MOX fuel recycling \rightarrow LHS sampling
 - Parameters: ²³⁸Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴²Pu, ²⁴¹Am , TPu_{int} & TPu_{ext}

	Min	Max
T_Puint	15	40
T_Puext	15	40
B_Pu238	1	8
B_Pu240	20	40
B_Pu241	0	17
B_Pu242	5	17
B_Am241	0	15

IRSN

ASTRID-like data base

- 1000 depletion simulations with different fresh fuel compositions
 - VESTA-MCNP full core depletion calculations
 - Fuel choice: UOX & MOX fuel recycling \rightarrow LHS sampling
 - Parameters: ²³⁸Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴²Pu, ²⁴¹Am , TPu_{int} & TPu_{ext}

	Min	Max
T_Puint	15	40
T_Puext	15	40
B_Pu238	1	8
B_Pu240	20	40
B_Pu241	0	17
B_Pu242	5	17
B_Am241	0	15

IRSN

Multizone Fuel Irradiation Model

- Input data: Cycle time, initial fuel composition / depletion zone
- Bateman equations resolution for each zone

$$\frac{dN_{i,z}}{dt} = -(\lambda_i + \sigma_{i,r,z}\varphi_z)N_{i,z} + \sum_{j \neq i} (\lambda_{j \to i} + \sigma_{j \to i,r,z}\varphi_z)N_{j,z}$$

$$Loss \qquad Production$$

i Isotope j Parent Isotope r Reaction z Zone

- Decay constants (λ)
- Local cross-sections (σ) \rightarrow Cross-section predictor
- Local flux $(\varphi) \rightarrow$ Flux or Power predictor
 - With

$$\varphi_{z}(t) = \sum_{i} \frac{P_{z}(t)}{\varepsilon_{i}^{fis} \times \sigma_{i,z}^{fis}(t) \times N_{i,z}(t)}$$

$$P_{tot} = \sum_{z} P_{z}(t)$$

- Predictors: ANN generation
 - Generation database: 1000 depletion calculations
 - Parameters: time, zone number, fissile fresh fuel compositions

Multizone Fuel Irradiation Model

Deviation induced on inventory estimation at EOC

Multizone Fuel Fabrication Model

Multizone Fuel Fabrication Model

Scenario definitions

- Fixed parameters
 - Constant power
 - 3 phases: 20y, 50y, 50y
 - Ratio F_{MOX}/F_{UOX} constant (phase b&c)

FP

FP

Q =

- BU_{SFR} 100GWd/t, BU_{MOX} 42GWd/t
- SM_{MOX} LIFO ...
- Sample parameters
 - BU_{UOX} [30;60] GWd/t
 - F_{MOX} [5;15] %
 - N_{SFR} [0;20]
 - SM [LIFO;FIFO]
 - TC_{SFR} [5;10] y
 - Material flows
- Main output
 - Plutonium quality
 - Plutonium quantity
 - Plutonium contents -

Impact of stock feeding SFR fab. plant on PWR fresh fuels

- Case A

- Case B

