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ABSTRACT

It is well known that the first structures that form from small fluctuations in a self-gravitating, collisionless, and initially smooth cold
dark matter (CDM) fluid are pancakes. We studied the gravitational force generated by such pancakes just after shell crossing and
have found a simple analytical formula for the force along the collapse direction, which can be applied to both the single- and multi-
stream regimes. We tested the formula on the early growth of CDM proto-haloes seeded by two or three crossed sine waves. Adopting
the high-order Lagrangian perturbation theory (LPT) solution as a proxy for the dynamics, we confirm that our analytical prediction
agrees well with the exact solution computed via a direct resolution of the Poisson equation, as long as the local caustic structure
remains sufficiently one-dimensional. These results are further confirmed by comparisons of the LPT predictions performed this way
to measurements in Vlasov simulations performed with the public code ColDICE. We also show that the component of the force
orthogonal to the collapse direction preserves its single-stream nature – it does not change qualitatively before or after the collapse
– allowing sufficiently high-order LPT acceleration to be used to approximate it accurately as long as the LPT series converges. As
expected, solving the Poisson equation on the density field generated with LPT displacement provides a more accurate force than the
LPT acceleration itself, as a direct consequence of the faster convergence of the LPT series for the positions than for the accelerations.
This may provide a clue as to how we can improve standard LPT predictions. Our investigations represent a very needed first step in
the study of gravitational dynamics in the multi-stream regime analytically: we estimate, at the leading order in time and space, the
proper backreaction on the gravitational field inside the pancakes.
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1. Introduction

Cold dark matter (CDM) is widely believed to dominate the
matter content of the Universe and is microscopically modelled
as a self-gravitating collisionless fluid that obeys the Vlasov-
Poisson equations (Peebles 1982, 1984; Blumenthal et al. 1984).
Due to its initially virtually null local velocity dispersion,
the CDM phase-space distribution function can be described
as a 3D sheet evolving in 6D phase-space. This sheet orig-
inally represents a single-stream flow, but as a consequence
of the evolution under self-gravity, it can at some point self-
intersect in configuration space. Such shell crossings mark
the formation of singularities of various kinds, in particular
pancake-like structures accompanied by apparent divergences
of the density field (see e.g. Zel’dovich 1970; Arnold et al.
1982; Shandarin & Zeldovich 1989; Gouda & Nakamura 1988;
Melott & Shandarin 1989; Hidding et al. 2014; Feldbrugge et al.
2018). After the first shell crossings, the sheet repeatedly self-
interacts and folds to form intricate multi-stream structures,
which include filaments and dark matter haloes. Although
numerical simulations have revealed a number of details regard-
ing the dynamical history of dark matter, it is still difficult to
develop an analytical theory capable of predicting the entire

growth history of these structures in a fully self-consistent way
due to the highly non-linear processes involved in multi-stream
dynamics. An accurate description of the early stages of the evo-
lution of multi-stream regions is fundamental to understanding
these processes, and this must go through the calculation of the
gravitational force field sourced by pancakes, which is the object
of this article.

While we primarily focus on perturbation theory (PT) and
multi-stream dynamics around the first shell-crossing time, it
is also interesting to note that pancakes represent, at the coarse
level (that is, after a certain level of smoothing to remove small-
scale fluctuations in the matter distribution), fundamental build-
ing blocks of large-scale structures. They lie at the frontiers of
voids in the galaxy distribution, and their presence can influ-
ence local Hubble flow estimates. Combined with voids, pan-
cakes could therefore be used as powerful dynamical tools for
studying, for example, the origin of the Hubble constant tension
between the late and early Universe (see e.g. Verde et al. 2019;
Riess 2020; Perivolaropoulos & Skara 2022), as discussed in, for
example, Gurzadyan et al. (2023).

To approximate dark matter dynamics on large scales, one
usually relies on PT (see e.g. Bernardeau et al. 2002, for a
review). This theory has been widely used to predict, in the
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weakly non-linear regime, large-scale structure statistics
such as power-spectrum and higher-order correlations.
Many techniques have been developed in this frame-
work (e.g. Crocce & Scoccimarro 2006, 2008; Valageas
2007; Taruya & Hiramatsu 2008; Matsubara 2008, 2011;
Bernardeau et al. 2008, 2012, 2014; Pietroni 2008; Taruya et al.
2009, 2012; Valageas et al. 2013) and applied to observational
data in order to constrain cosmological models (e.g. Blake et al.
2011; Beutler et al. 2017; Zhao et al. 2019; Ivanov et al. 2020;
Tröster et al. 2020). In standard PT, a single-stream flow is
imposed, and the small parameter is the Eulerian density
contrast. However, the single-stream approximation is valid
only during the early phases of structure formation, and its
relevance can be questioned in the PT formalism (see e.g.
Bernardeau et al. 2014; Blas et al. 2014; Nishimichi et al. 2016;
Halle et al. 2020). Beyond the single-stream approximation, it is
challenging to incorporate backreactions from the multi-stream
regions into the analytical predictions in generic situations (see
e.g. Rampf 2021, for a recent review). A way to account for
multi-streaming in large-scale structure statistics consists in
using effective field theory (Baumann et al. 2012; Carrasco et al.
2012; Hertzberg 2014; Baldauf et al. 2015). While effective
field theory can provide meaningful constraints on cosmological
models from observational data for practical applications
(e.g. Ivanov et al. 2020; d’Amico et al. 2020), it involves free
parameters that need to be calibrated with N-body simulations.
For a more rigorous treatment beyond the phenomenological
approach, one solid approach would be to consider high-
order velocity moments of Vlasov equations that account for
multi-streaming. Recently, Garny et al. (2023a,b) succeeded in
making the problem analytically tractable, greatly facilitating
the convergence of PT predictions. However, the approach they
developed still depends on simplifying assumptions, and there is
room for improvement. Accurately incorporating multi-stream
effects into statistical predictions of large-scale structure is thus
now considered an important factor for properly extracting
cosmological information from observations.

Pancakes generally correspond to the first stages of
multi-stream evolution; filaments and then dark matter haloes
represent the next stages when shell crossing subsequently
occurs along transverse directions of motion. The importance
of accounting for multi-stream flows has therefore also been
recognised in the formation process of proto-haloes that
supposedly develop monolithically during an early violent
relaxation phase (Lynden-Bell 1967) and subsequently, in the
CDM scenario, merge hierarchically to form larger haloes with
a universal density profile (Navarro et al. 1996, 1997). Although
numerical investigations have revealed important properties
of proto-haloes, for example their power-law density profile,
ρ(r) ∼ r−α, with a logarithmic slope α ≈ 1.5 (Moutarde et al.
1991; Diemand et al. 2005; Ishiyama 2014; Angulo et al. 2017;
Ogiya & Hahn 2018; Delos et al. 2018a,b; Colombi 2021;
Delos & White 2022, 2023; White 2022), there is no exact
analytical theory that accounts for multi-stream dynamics inside
dark matter haloes, despite the multiple approaches to the
problem, for instance, self-similarity (Fillmore & Goldreich
1984; Bertschinger 1985; Henriksen & Widrow 1995;
Sikivie et al. 1997; Yano & Gouda 1998; Yano et al. 2004;
Zukin & Bertschinger 2010a,b; Alard 2013) or entropy
maximisation (Lynden-Bell 1967; Hjorth & Williams 2010;
Carron & Szapudi 2013; Pontzen & Governato 2013).

One way to push the dynamics beyond shell crossing
while preserving total mass conservation consists in using
a Lagrangian approach that follows the motion of matter

elements as functions of their initial position. Lagrangian
perturbation theory (LPT), according to which the displace-
ment field is the small parameter, has been widely employed
to accurately describe the large-scale matter distribution in
the quasi-linear regime, even beyond shell crossing (e.g.
Zel’dovich 1970; Shandarin & Zeldovich 1989; Bouchet et al.
1992, 1995; Buchert 1992; Buchert & Ehlers 1993; Bernardeau
1994). Unfortunately, LPT quickly becomes inaccurate after
shell crossing because it does not correctly account for the force
feedback inside multi-stream regions. Recently, some progress
has been achieved in this regard in the 1D case, which corre-
sponds to the simplest dynamical setup, that is, a pure pancake
that reduces to the interaction between infinite parallel planes.
In 1D, linear LPT is exact prior to shell crossing (Novikov
1969), but subsequent multi-stream evolution still does not have
a fully general analytical solution. However, it is possible to
derive some approximate, asymptotically exact solutions just
after shell crossing based on LPT but extended beyond collapse
and correctly taking the backreaction of the gravitational force
inside the multi-stream region into account (Colombi 2015;
Taruya & Colombi 2017; Rampf et al. 2021). This article aims
to generalise this post-collapse PT approach to 3D by calculating
the gravitational force in proto-pancakes with the idea of devel-
oping a general analytical treatment of the early stages of multi-
stream motion.

Contrary to the 1D case, one of the difficulties in develop-
ing a 3D post-collapse theory is the absence of an exact solu-
tion, even before shell crossing. This solution can be approached
using sufficiently high-order LPT, but as the system approaches
the first shell crossing, the perturbative treatment worsens and its
convergence speed decreases (e.g. Zheligovsky & Frisch 2014;
Rampf et al. 2015, 2022; Rampf & Hahn 2021, for work on the
convergence radius). Convergence speed strongly depends on the
nature of the initial conditions. It is facilitated when approach-
ing quasi-1D initial conditions (e.g. Rampf & Frisch 2017;
Saga et al. 2018) and is made more difficult when approach-
ing axisymmetric configurations or spherical symmetry (e.g.
Saga et al. 2018; Rampf 2019). In the simplified approach con-
sidered in the present work, we focus on pancakes seeded by a
locally symmetric displacement field, a restrictive but still rela-
tively generic setup that applies, for instance, to high peaks of a
Gaussian random field Bardeen et al. (1986). To test our analyti-
cal predictions, we considered systems evolving from the initial
crossed sine wave conditions, which we already studied at col-
lapse in Saga et al. (2018) and slightly beyond shell crossing in
Saga et al. (2022, hereafter, STC). For these systems, we find
that LPT is able, at a sufficiently high order, to provide an accu-
rate description of the density distribution around the shell cross-
ing; therefore, they can be used to test our analytical predictions
for the gravitational force field.

This paper is organised as follows. In Sect. 2 we introduce the
basic equations of motion in the Lagrangian description and the
LPT framework. We also discuss important aspects of the gravita-
tional force calculation. In Sect. 3 we provide a simple analytical
formula for the force inside a pancake in a case where the caus-
tic structure is seeded by a locally symmetric displacement. In
Sect. 4 our analytical predictions are tested in systems with ini-
tial sine wave conditions, using high-order LPT as a proxy for
the dynamics. The approximation of the force field is compared
to the exact solution of the Poisson equation, in which the den-
sity field is generated by the LPT motion. This is followed in
Sect. 5 by comparisons of the analytical predictions to the force
field directly measured in Vlasov-Poisson simulations performed
with the public code ColDICE (Sousbie & Colombi 2016).
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Finally, Sect. 6 is devoted to the summary of our main findings.
To supplement the main text, Appendices A–C, respectively test
the validity of the series expansion at the third order of the dis-
placement field used in Sect. 3, the accuracy of our Green func-
tion approach used to compute the force in the theoretical calcu-
lations, and finally the method we use to measure the force field
in the ColDICE simulations.

2. Basic equations and gravitational force

We now introduce the basic equations in the Lagrangian descrip-
tion (Sect. 2.1) and discuss important aspects of the gravitational
force calculation in the framework of LPT (Sect. 2.2).

2.1. Lagrangian dynamical framework

We considered the Lagrangian equation of motion of a fluid ele-
ment at the Eulerian comoving position, x, in the presence of
gravity (e.g. Peebles 1980):

d2x
dt2 + 2H

dx
dt

= −
1
a2∇xφ(x), (1)

where the quantities a, H(t) = a−1da/dt, and φ(x) are the scale
factor of the Universe, the Hubble parameter, and the Newton
gravitational potential, respectively, and the operator ∇x = ∂/∂x
is the spatial gradient in Eulerian space. The gravitational poten-
tial is related to the matter density contrast δ(x) = ρ(x)/ρ̄−1 with
ρ̄ the background mass density, through the Poisson equation

∇
2
xφ(x) = 4πGa2 ρ̄δ(x). (2)

The Lagrangian description relates the initial, Lagrangian posi-
tion, q, of each mass element to the Eulerian position at time
t, x(q, t), through the introduction of the displacement field,
Ψ(q, t). In this framework, the Eulerian position x and velocity u
are given by

x(q, t) = q +Ψ(q, t), (3)

u = a
dΨ
dt
. (4)

Assuming homogeneous initial density, ρ(q)/ρ̄ = 1, mass con-
servation reads d3q = (1 + δ(x)) d3x before the first shell-
crossing time, tsc. Hence,

1 + δ(x) =
1
J
, (5)

where the quantity J = det Ji j is the Jacobian of the matrix Ji j
defined by

Ji j(q, t) =
∂xi(q, t)
∂q j

= δi j + Ψi, j(q, t). (6)

The first occurrence of J = 0 determines the first shell-crossing
time, tsc.

Until the first shell crossing, we can employ a perturba-
tive treatment to predict the fluid motion, namely LPT (e.g.
Zel’dovich 1970; Shandarin & Zeldovich 1989; Bouchet et al.
1992, 1995; Buchert 1992; Buchert & Ehlers 1993; Bernardeau
1994). In LPT, the displacement field, Ψ, is considered a small
quantity, which is systematically expanded as

Ψ(q, t) =

∞∑
n=1

Ψ(n)(q, t). (7)

Assuming that the fastest growing modes dominate, the pertur-
bative solution is approximated quite well by the form (see e.g.
Bernardeau et al. 2002, and references therein)

Ψ(n)(q, t) = Dn
+(t)Ψ(n)(q), (8)

with the time-dependent function D+(t) being the linear growth
factor. Substituting Eq. (8) into Eq. (4), the velocity field is given
by

u(q, t) = a H f
∞∑

n=1

n Dn
+(t)Ψ(n)(q), (9)

where we define the linear growth rate by f (t) ≡ d ln D+/d ln a.
In Eqs. (8) and (9) the nth order displacement Ψ(n)

is computed recursively by exploiting Eqs. (1) and (2)
using well-known algebraic techniques (see e.g. Rampf 2012;
Zheligovsky & Frisch 2014; Rampf et al. 2015; Matsubara
2015). Specific expressions for the three-sine-wave case exam-
ined below are given in STC and we do not consider it neces-
sary to repeat them here. The Lagrangian framework we use in
this article relies in practice on PT as a proxy of the dynamics.
However, the analytic expressions computed in Sect. 3 are more
general in the sense that they apply (asymptotically, that is, just
beyond shell crossing) to any non-degenerate displacement field
locally symmetric and Taylor expandable up to the third order in
the Lagrangian position around the singularity of interest.

2.2. Gravitational force

To facilitate resolution of the Poisson Eq. (2), we decomposed it
into two independent equations:

∇
2
xφp = 4πGρ̄a2 (1 + δ(x)), (10)

∇
2
xφ̄ = −4πGρ̄a2. (11)

Thus,

φ(x) = φp(x) + φ̄(x). (12)

The first and second terms of the right-hand side of this equa-
tion are respectively the gravitational potential coming from the
total density ρ̄(1 + δ(x)) and the negative background density
−ρ̄ as counter-term. After solving Eqs. (10) and (11), the grav-
itational acceleration, also abusively referred to here as force
F(x) = −∇xφ(x), is given by

F(x) = 4πGa2ρ̄

(∫
dd x′

2d−1π

(1 + δ(x′))(x − x′)
|x − x′|d

+
1
d

x
)
, (13)

= 4πGa2ρ̄

(∫
dd q

2d−1π

x − x′(q)
|x − x′(q)|d

+
1
d

x
)
, (14)

where d represents the dimension of space (d = 2 or 3 considered
in this paper). In the second line, we used mass conservation in
d-dimensional space: (1 + δ(x′)) dd x′ = dd q. The second term
in parentheses represents the gravitational force arising from the
background density in Eq. (11).

Thanks to the change of variable x → q, the expression
of the force in Eq. (14) does not depend explicitly on the den-
sity contrast nor does it require a detailed knowledge of the
multi-stream structure, which is, regardless of its complexity,
implicitly contained in the function x(q). This considerably
facilitates the numerical calculation of the integrals without the
need to solve a multi-value problem. We note that this property
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was exploited before to compute the gravity field from caus-
tic rings (see e.g. Sikivie 1998, 1999; Charmousis et al. 2003;
Onemli 2006; Natarajan & Sikivie 2006, 2007; Duffy & Sikivie
2008; Onemli & Sikivie 2009; Chakrabarty & Sikivie 2018;
Tam 2012), and the calculations we perform here are analogous.

While integral (14) seems simpler to estimate than integral
(13), because it is performed in Lagrangian space, it remains
challenging to compute it analytically. The main goal of the
present work is to find explicit expressions that approximate it.

Another way to estimate the gravitational acceleration con-
sists in simply computing the second time derivative of the
Lagrangian displacement (provided that it is sourced by pure
gravity). Consider the presence of nS streams at Eulerian posi-
tion x. In this case, the acceleration can be formally written as
the local average of the time derivatives of velocities over all the
streams weighted by the density of each stream:

F(x) =

∑nS
i=1 ρi(x)Γi(x)∑nS

i=1 ρi(x)
, (15)

Γi(x) ≡
d(a ui(x))

dt
, (16)

where the quantities ρi and a ui stand for the density and pecu-
liar velocity of ith stream, respectively. If one has access to the
exact solution of the dynamics, this expression is somewhat triv-
ial since, in this case, Γi(x) = Γ j(x), i , j. On the other hand,
if the accelerations in Eq. (15) are given by second time deriva-
tives of the LPT displacement computed at some order, the force
in Eq. (15) does not generally agree with Eq. (14) applied to
the same displacement field, even in the single-stream regime.
Indeed, the LPT solutions are derived not by directly solving the
Poisson equation as in Eq. (14) but by perturbatively solving the
Lagrangian equations of motion.

Equation (14), which is strongly non-linear in essence as it
can account accurately of multi-streams, acts as a re-summation
of the LPT acceleration: it is expected to provide a more accu-
rate prediction of the gravitational force field than the second
time derivative of the LPT displacement. However, as long as
the LPT series converges, we expect the higher-order LPT accel-
eration to converge to the force given by Eq. (14) in the single-
stream regime, and this property will turn out to be useful even in
the multi-stream regime when estimating the gravitational force
orthogonal to the shell-crossing direction (coplanar with the pan-
cake) by using Eq. (15).

3. Analytical predictions for the gravitational force

In this section we aim to compute the gravitational force shortly
after the first shell crossing in 3D space. As detailed in Sect. 3.1,
we restricted our computations to the formation of a symmet-
ric pancake seeded by a locally axisymmetric motion. The cal-
culation of the component of the force along the shell-crossing
direction is the most challenging. However, after Taylor expand-
ing the Lagrangian displacement field around the singularity just
after shell crossing, it turns out to be very similar to the pure
1D case already treated in Gurevich & Zybin (1995), Colombi
(2015), Taruya & Colombi (2017), and Rampf et al. (2021). In
particular it involves the resolution of a three-value problem
related to the three flows inside the proto-pancake, as detailed in
Sect. 3.2. The expression for the force along the shell-crossing
direction is given in Sect. 3.3. In this subsection we also argue
that the force field in the transverse direction should not be sig-
nificantly affected by the multi-stream nature of the flow, which

will allow us to estimate it directly as the second time derivative
of the displacement estimated with high-order LPT.

3.1. Main assumptions

In what follows, the calculations were all performed in 3D space,
but the extension to 2D is made straightforward by ignoring or
setting to zero all the contributions that depend on z. We also
supposed that the first shell crossing takes place at the origin,
q = x = 0, along the x-axis direction, and also that the system
exhibits locally axisymmetric dynamics. This setup, illustrated
by Fig. 1, seemingly appears to be very particular, but locally
represents the expected motion around high peaks of a Gaussian
random field (see e.g. Bardeen et al. 1986).

Axisymmetric dynamics translates as follows on the dis-
placement, Ψ(q):

Ψx(qx, qy, qz) = Ψx(qx,−qy, qz) = Ψx(qx, qy,−qz)
= −Ψx(−qx, qy, qz), (17)

Ψy(qx, qy, qz) = Ψy(qx, qy,−qz) = Ψy(−qx, qy, qz)
= −Ψy(qx,−qy, qz), (18)

Ψz(qx, qy, qz) = Ψz(−qx, qy, qz) = Ψz(qx,−qy, qz)
= −Ψz(qx, qy,−qz). (19)

Here and hereafter, we omit the time dependence in the nota-
tions. Expanding these functions around the origin q = 0, we
have

Ψx(q) =
∑

i, j,k=0

ψ2i+1 2 j 2k

(2i + 1)!(2 j)!(2k)!
q2i+1

x q2 j
y q2k

z , (20)

Ψy(q) =
∑

i, j,k=0

ψ2i 2 j+1 2k

(2i)!(2 j + 1)!(2k)!
q2i

x q2 j+1
y q2k

z , (21)

Ψz(q) =
∑

i, j,k=0

ψ2i 2 j 2k+1

(2i)!(2 j)!(2k + 1)!
q2i

x q2 j
y q2k+1

z , (22)

with ψi j k being some functions of time. Substituting
Eqs. (20)–(22) into Eq. (3), and neglecting O(q4) and higher-
order terms, we obtain

x(q) ' (1 + ψ100) qx +
1
2

(
ψ120 q2

y + ψ102 q2
z

)
qx +

1
6
ψ300 q3

x, (23)

y(q) ' (1 + ψ010) qy +
1
2

(
ψ012 q2

z + ψ210 q2
x

)
qy +

1
6
ψ030 q3

y , (24)

z(q) ' (1 + ψ001) qz +
1
2

(
ψ201 q2

x + ψ021 q2
y

)
qz +

1
6
ψ003 q3

z . (25)

While this local representation of the motion is minimal,
it remains accurate shortly after collapse as illustrated by
Appendix A.

We now write the necessary conditions that the coefficients in
Eqs. (23)–(25) must satisfy for a pancake to exist near the origin.
It is important to note that these conditions do not necessarily
imply that a halo subsequently forms, this would require more
restrictive constraints.

Since we considered a system in which first shell crossing
just took place along the x direction at q = 0, we imposed
∂x(0)
∂qx

≡ −h = 1 + ψ100 < 0, 0 < h � 1, (26)

∂y(0)
∂qy

= 1 + ψ010 > 0, (27)

∂z(0)
∂qz

= 1 + ψ001 > 0. (28)
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x
y

z
y = y0

x

z

(y, z) = (y0, z0)

x
(y, z) = (y0, z0)

qx

x0

qx,1(x0,y0,z0)

qx,3(x0,y0,z0)

qx,2(x0,y0,z0)

(A) (B)

y = y0

Fig. 1. Schematic representation of caustic structure shortly after shell crossing. (A) Left: schematic representation of a 3D Eulerian caustic
shortly after shell crossing along the x-axis direction, together with a 2D slice with y = y0 (light red plane). Right: Intersection of the caustic
surface with the slice (red curve), also shown in the left panel. (B) Schematic representation of the x component of the Lagrangian coordinate, qx,
as a function of the Eulerian coordinate, x, for fixed (y0, z0) (solid blue line). Given x0, the solution of the three-value problem x(qx) = x0 is given
by qx,n(x0, y0, z0) for n = 1, 2, and 3, as in Eq. (41).

Additional constraints can be obtained from the expression of
the Jacobian determinant, J = det ∂x/∂q at the leading order in
q, which reads

J '
1
2

(1 + ψ010)(1 + ψ001)
(
−2h + ψ120q2

y + ψ102q2
z + ψ300q2

x

)
.

(29)

From catastrophe theory (see e.g. Hidding et al. 2014;
Feldbrugge et al. 2018, and references therein), the caustic
surface should be an ellipsoid outside of which the Jacobian
determinant must have a positive value J > 0, so we imposed

ψ120 > 0, ψ102 > 0, ψ300 > 0. (30)

Finally, the smallness of the h parameter induces an addi-
tional simplification of Eqs. (23)–(25) if one supposes that
Lagrangian coordinates are restricted to lie in the neighbourhood
of the pancake, namely qx ∼ qy ∼ qz ∼ O(h1/2) from Eq. (29). In
this case, one realises that, when examining Eqs. (23)–(25),

x(q) = O(h3/2), (31)

y(q) ' (1 + ψ010)qy + O(h3/2), (32)

z(q) ' (1 + ψ001)qz + O(h3/2), (33)

which implies |x| ∼ O(h3/2) � |y|, |z| ∼ O(h1/2), a signature
of the pancake nature of the system: the extension of the caus-
tic region along the x-axis is asymptotically infinitely smaller
than that along the other axes in the limit h → 0, as illustrated
by panel A of Fig. 1. Accordingly, inside and in the vicinity of
the caustic region, we can ignore the higher-order terms in the
expressions of y and z, and reduce Eqs. (23)–(25) to

x(q) ' (1 + ψ100)qx +
1
2

(
ψ120 q2

y + ψ102 q2
z

)
qx +

1
6
ψ300 q3

x, (34)

y(q) ' (1 + ψ010)qy, (35)
z(q) ' (1 + ψ001)qz. (36)

Equations (34)–(36) represent our starting point to derive the x
component of the gravitational force inside a pancake.

3.2. The three-value problem

Despite its apparent simplicity, Eq. (14) is not easily exploitable
when it comes to estimate the gravitational force analytically,
even with as simple expressions as Eqs. (34)–(36). Indeed,
although the multi-stream nature of the flow does not appear
explicitly in the integral (14), we see in Sect. 3.3 that the calcu-
lation of the x component of the gravitational force still requires
solving the three-value problem implicit in Eqs. (34)–(36), that
is, finding q given x.

From Eqs. (35) and (36), we trivially obtain

qy =
y

1 + ψ010
, qz =

z
1 + ψ001

. (37)

The calculation of qx(x) is more complex because it requires
solving the following cubic equation, as illustrated by panel B
of Fig. 1,

q3
x + 3A(y, z) qx + 2B(x) = 0, (38)

where we define

A(y, z) =
1
ψ300

−2h + ψ120

(
y

1 + ψ010

)2

+ ψ102

(
z

1 + ψ001

)2 ,
(39)

B(x) = −
3x
ψ300

. (40)

The roots of cubic Eq. (38) are given by (see e.g.
Abramowitz & Stegun 1972)

qx,n(x) = ωn−1 −A(y, z)(√
D(x) − B(x)

)1/3 + ω4−n
( √

D(x) − B(x)
)1/3

,

(41)

for n = 1, 2, and 3. Here, the factor ω is one of the com-
plex cubic roots of unity (i.e. ω = (−1 ± i

√
3)/2), which are

the solutions of ω2 + ω + 1 = 0. We define the discriminant
D(x), which determines the properties of the roots (41), by (e.g.
Abramowitz & Stegun 1972)

D(x) = (A(y, z))3 + (B(x))2. (42)
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We first note that the equation D(x) = 0 defines the caustics
surfaces in Eulerian space:

[
−2h + ψ120

(
y

1 + ψ010

)2

+ ψ102

(
z

1 + ψ001

)2]3

+ 9ψ300x2 = 0.

(43)

According to the sign of D(x), the solutions of the cubic equa-
tion, Eq. (38), can then be classified as follows. If D(x) < 0,
we are inside the multi-stream region delimited by the caus-
tic surfaces: the cubic equation has three real solutions, with
qx,2 < qx,3 < qx,1 and qx,2 < 0 < qx,1. If D(x) > 0, we are
outside the multi-stream region: only qx,1 or qx,2 is real, and the
other solutions are a complex conjugate to each other.

As a final note, from Eq. (43), the maximum values of the
Eulerian coordinates of caustics along the x-, y-, and z-axes are
given by

xmax =

√
8h3

9ψ300
, (44)

ymax = (1 + ψ010)

√
2h
ψ120

, (45)

zmax = (1 + ψ001)

√
2h
ψ102

, (46)

Once again, xmax � ymax, zmax in the limit h→ 0.

3.3. The force field inside a pancake

We now present the main results of this paper. Focusing on the
dynamics just after the first shell crossing along the x direction,
we first derive an analytical formula for the x component of the
gravitational force after collapse. Next, we discuss orthogonal
components and argue that they can be directly approximated by
the high-order LPT acceleration.

By zooming in very closely on the multi-stream region, we
notice that the structure of the density field becomes almost 1D
when h → 0. This follows from the fact the size of the pancake
along the x-axis is much smaller than along orthogonal direc-
tions (see Eqs. (31)–(33) and also panel A of Fig. 1). Conse-
quently, given the Eulerian position (x, y0, z0) for y0 and z0 fixed,
solving the Poisson Eq. (10), is asymptotically reduced to a 1D
problem along the x-axis, as schematically shown in panel B of
Fig. 1. In this case, we can neglect local variations of the density
along the y and z directions, and Eq. (10) reduces to the follow-
ing 1D Poisson equation for the x coordinate of the gravitational
acceleration,

d2φp(x, y0, z0)
dx2 = 4πGρ̄a2 (1 + δ(x, y0, z0)),

= 4πGρ̄a2 1
(1 + ψ010)(1 + ψ001)

∣∣∣∣∣ ∂x
∂qx

∣∣∣∣∣−1

, (47)

where, in the second equality, we have used Eq. (5) with
Eqs. (34)–(36).

To solve this equation, we followed in the footsteps of
Colombi (2015), Taruya & Colombi (2017), and Rampf et al.
(2021) and employed a Green function approach to derive the
x component of the force in the multi-stream region, Fx(x0) '

−dφp(x0)/dx with x0 = (x0, y0, z0) (inside the pancake, x ∼ h3/2,
and the background contribution φ̄ is negligible):

Fx(x0) '
∫

dx
4πGρ̄a2

(1 + ψ010)(1 + ψ001)

∑
n=0,1,2

∣∣∣∣∣∣ ∂x
∂qx,n

∣∣∣∣∣∣−1 1
2

[
ΘH(x − x0) − ΘH(x0 − x)

]
,

=

∫
dqx

4πGρ̄a2

(1 + ψ010)(1 + ψ001)
1
2

[
ΘH

(
x
(
qx,

y0

1 + ψ010
,

z0

1 + ψ001

)
− x0

)
−ΘH

(
x0 − x

(
qx,

y0

1 + ψ010
,

z0

1 + ψ001

))]
,

= −
4πGρ̄a2

(1 + ψ010)(1 + ψ001)

[
qx,1(x0) + qx,2(x0) − qx,3(x0)

]
(in the multi-stream region), (48)

where ΘH represents the Heaviside step function, and the quanti-
ties qx,n are the three-value problem solutions given in Eq. (41).
In the first line of Eq. (48), we have dropped the negligible con-
tributions in the 1D Green function that are not proportional to
the Heaviside step function.

Interestingly, one can also write, asymptotically,

Fx(x0) ' Γx[qx,1(x0)] + Γx[qx,2(x0)] − Γx[qx,3(x0)], (49)

where Γx, defined in Eq. (16), is the x coordinate of the LPT
acceleration (computed by ignoring shell crossing). This approx-
imation will be tested in Sect. 5.

Equation (48) applies only to the multi-stream region. How-
ever, as mentioned above, in the single-stream region, either qx,1
or qx,2 is real while the two other values are complex conjugate
to each other. Taking the real part of right hand side of Eq. (48),
the unphysical contribution arising from the complex conjugate
solutions vanishes, leaving only the physical contribution from
one real solution1:

Fx(x0) ' −
4πGρ̄a2

(1 + ψ010)(1 + ψ001)
Re

[
qx,1(x0) + qx,2(x0) − qx,3(x0)

]
. (51)

Here, ‘Re’ denotes the real part.
Equation (51) is the most important formula in our work.

Together with the solution of the cubic Eq. (41), it consists
of a simple algebraic form for the x component of the force
in the vicinity of the pancake, inside and outside it. This for-
mula is the natural extension to 3D of the 1D calculations of
Gurevich & Zybin (1995), Colombi (2015), Taruya & Colombi
(2017), and Rampf et al. (2021).

The components Fy and Fz of the force orthogonal to
the shell-crossing direction, hence coplanar with the pancake,
should, on the other hand, remain quite insensitive to the effects
of shell crossing, as we show with numerical tests in follow-
ing sections. This means that if the LPT displacement field is
entirely sourced by gravity, its second time derivative should
provide a very good approximation of the local gravitational
acceleration, even slightly beyond shell crossing. As a conse-
quence, the acceleration directly derived from the high-order
LPT solution (with no Taylor expansion at the third order in q
space) should provide a good approximation for Fy and Fz. Of
course this is true only if one remains within the convergence
radius of the LPT series, which is finite in the general case (e.g.
Zheligovsky & Frisch 2014; Rampf et al. 2015; Rampf & Hahn
2021). To overcome the three-value problem, the acceleration

1 Equivalently, we can rewrite Eq. (48) as follows:

Fx(x0) = −
4πGρ̄a2

(1 + ψ010)(1 + ψ001)

[
qx,1(x0) + qx,2(x0) −

(
qx,3(x0)

)∗] (50)

where the asterisk denotes the complex conjugate.
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can be obtained with the weighted average (15) over the differ-
ent flows inside the pancake, even though this is not absolutely
necessary, since it is expected, in the vicinity of the pancake, that
Fy[x(q1)] ' Fy[x(q2)] ' Fy[x(q3)] and similarly for the z com-
ponent of the force: this is due to the fact that the vectors q1, q2
and q3 are nearly equal.

4. Examination of the accuracy of the formulas

In this section we test the validity and the accuracy of our pre-
scription for calculating the post-collapse force. To this end, we
assume Einstein-de Sitter cosmology and consider simplified ini-
tial conditions composed of two or three crossed sine waves, fol-
lowing the early investigations of Moutarde et al. (1991, 1995)
and our previous works (Saga et al. 2018). We present these ini-
tial conditions in Sect. 4.1, where we also give practical details
on the way the analyses are performed. Section 4.2 focuses on
the force along the shell-crossing direction. We test, at different
orders of the perturbative development, the accuracy of Eq. (51)
against the exact solution obtained by direct resolution of Pois-
son equation. This is followed in Sect. 4.3 by a comparison, in
the transverse direction, of the LPT acceleration to the exact
force. All these analyses are performed very shortly after col-
lapse to make sure that assumptions of Sect. 3.1 are verified.
One indeed expects increasing discrepancies with time between
the exact solution and the approximations of the dynamics, as
examined in Sect. 4.4.

Throughout this section, we use the LPT solution as a proxy
for the ‘exact’ Eulerian position. To calculate the exact force
field, we simply injected the LPT solution into Eq. (14) and
numerically performed the 2D or 3D integrals2. The compar-
isons to simulations performed in Sect. 5 will show that this
proxy turns to provide a quite accurate description of the true
displacements at the times we consider.

4.1. Two- and three-sine-wave initial conditions: Practical
implementation

We considered initial conditions seeded by two or three crossed
sine waves in a periodic box [−L/2, L/2[ in which the initial
displacement field at initial time tini is expressed by (see STC)

Ψini
i (q, tini) =

L
2π

D+(tini) εi sin
(

2π
L

qi

)
, (52)

with εi < 0 and |εx| ≥ |εy| ≥ |εz|. The initial density field,
δini ' −∇q · Ψ

ini = D+(tini)
∑

i |εi| cos (2π/L qi), presents a small
peak at the origin. Subsequently, mass elements fall towards
the overdense central region, and shell crossing takes place at
the origin. The initial time, tini, is set to satisfy D+(tini)|εi| ≤

0.012 � 1, so that the fastest growing mode approximation is
accurate (Saga et al. 2018). We note that in the Einstein-de Sit-
ter universe, the growth factor is simply proportional to the scale
factor and we have f = 1. Hence, we hereafter use the scale
factor to describe the time rather than D+.

In this setup, the dynamics is determined by the ratios ε2D =
εy/εx and ε3D = (εy/εx, εz/εx), respectively for two- and three-
sine-wave initial conditions (STC). We considered three qualita-

2 In numerically integrating Eq. (14), we used the NIntegrate
function in Mathematica with the options {MaxRecursion -> 100
(10000), PrecisionGoal -> 5 (8), Method -> {Automatic,
"SymbolicProcessing" -> 0}} for Fx (Fy,z). In this instance, the
computation of the results depicted in Figs. 2 or 3, on an 8-core CPU
laptop, takes several hours.

tively different initial conditions, as detailed in Table 1: quasi-1D
with |εx| � |εy,z| (Q1D), anisotropic with |εx| > |εy| > |εz| (ANI),
and axial-symmetric with |εx| = |εy| = |εz| (SYM). The Q1D
and ANI initial conditions are the primary targets of our analy-
ses because first shell crossing occurs only along the x direction,
satisfying the assumptions of Sect. 3.1. On the other hand, for
the SYM case, since shell crossing takes place simultaneously
along two or three axial directions, the prescriptions proposed
in Sect. 3.3 to approximate the force field becomes improper.
However, the SYM case might provide insight into rare primor-
dial haloes and remains mathematically interesting. In this case,
we explore only numerically the force field by comparing pre-
dictions of higher-order LPT combined with the Green func-
tion approach (Eq. (14)) to measurements in the simulations (see
Sect. 5).

Sine wave initial conditions (52) correspond to a low-
order trigonometric polynomial, which makes LPT calculations
relatively cheap and allows us to reach the 40th and 15th
order for the 2D and 3D case, respectively (see Sect. 2 in
STC for the explicit procedure)3. Having obtained the higher-
order LPT solutions, we analytically predicted the force along
the shell-crossing direction using Eq. (51), by expanding the
LPT solutions around the origin up to the third order in
terms of Lagrangian coordinates to have the expressions for
the coefficients ψi jk in Eqs. (20)–(22) hence in formula (51).
Also, we analytically predicted the force orthogonal to the
shell-crossing direction by directly using the LPT acceleration
(without Taylor expanding it in q) and averaging it (numeri-
cally) over different flows at same Eulerian position x using
Eq. (15).

Because the collapse time, traced here by the value of
the expansion factor a(n)

sc , decreases when perturbative order n
augments (see e.g. STC), LPT predictions are in practice syn-
chronised to their own respective shell-crossing times. Then the
system is evolved beyond collapse by a very small amount of
time:

a(n) = a(n)
sc (1 + ∆) , (53)

where ∆ is a small parameter, such that the assumptions of
Sect. 3.1 are valid, in particular h ' ∆ |∂vx/∂qx/(aH)|q=0, t=tsc �

1. In practice, we take ∆ = 0.001 in Sects. 4.2 and 4.3, while
it is allowed to be larger in Sect. 4.4. As a final note, we trun-
cated the integral in Eq. (14) to a finite interval [−qmax, qmax]
in each dimension, setting qmax = L/2 for Fx and qmax = 10L
for Fy,z to insure convergence of the integral, as studied in
Appendix B.

In the rest of the paper, we use the following units: a box
size L = 1 and an inverse of the Hubble parameter at the present
time H0 = 1 for the dimensions of length and time, respectively.
We also present the normalised force F̃(x) given by

F̃(x) =
F(x)

4πGa2ρ̄
. (54)

4.2. Force along the shell-crossing direction, Fx

Figure 2 displays, just after shell crossing, the x component of
the force Fx as a function of x in the vicinity of the pancake for
various values of y. The perturbative order increases from left to
right, while initial conditions are given, from top to bottom, by
Q1D-2SIN, ANI-2SIN, Q1D-3SIN, and ANI-3SIN.

3 The high-order LPT solutions can be provided upon request as a
Mathematica notebook.
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Table 1. Parameters of the runs performed with ColDICE (Sousbie & Colombi 2016).

Designation ε2D or ε3D εx ng ns aLPT
sc asc asim ∆sim ≡ (asim − asc)/asc

Quasi 1D
Q1D-2SIN 1/6 −18 2048 2048 0.05279 0.05285 0.05402 0.02219
Q1D-3SIN (1/6, 1/8) −24 512 256 0.03814 0.03832 0.03907 0.01974
Anisotropic
ANI-2SIN 2/3 −18 2048 2048 0.04534 0.04545 0.04601 0.01230
ANI-3SIN (3/4, 1/2) −24 512 512 0.02912 0.02919 0.03003 0.02890
Axial-symmetric
SYM-2SIN 1 −18 2048 2048 0.04087 0.04090 0.04101 0.002717
SYM-3SIN (1, 1) −18 512 512 0.03236 0.03155 0.03201 0.01446

Notes. The first column indicates the designation of the run. The second column corresponds to the relative amplitudes of the initial sine waves,
namely, ε2D = εy/εx and ε3D = (εy/εx, εz/εx) for two and three sine waves, respectively. The third column gives the value of εx. The fourth and
fifth columns indicate the resolutions of the numerical simulations: the spatial resolution of the grid used to solve the Poisson equation, and the
spatial resolution of the mesh of vertices used to construct the initial tessellation, respectively. In the sixth column, aLPT

sc is the shell-crossing time
estimated by 40LPT for the two-sine-wave initial conditions and by 15LPT for the three-sine-wave initial conditions. The seventh, eighth, and
ninth columns indicate the scale factor asc at shell crossing measured in the simulations (see Appendix A1 in STC), the scale factor of the output
time used for the analyses performed shortly after collapse in the simulations, and the fractional difference between asc and asim, respectively.

We first notice the perfect agreement between the analytical
formula (51) (solid curves) and the exact solution (14) (dashed
curves), which fully justifies the mathematical relevance of the
formalism developed in Sect. 3. In particular, the sharp transition
between the single-stream and the multi-stream region is per-
fectly described by Eq. (51), with the variations with y (and z, not
shown here) accounted for correctly. The discontinuity observed
on the derivative of the x component of the force field is a typi-
cal signature of the presence of caustics, as found previously in
the 1D case (see e.g. Gurevich & Zybin 1995; Colombi 2015),
as well as in caustic rings (see e.g. Fig. 8 in Sikivie 1999).

Interestingly, the results do not strongly depend on the per-
turbation order in Fig. 2. This is because both the analytical for-
mula (51) and the numerical calculation (14) rely on LPT dis-
placement, which shows fast convergence behaviour with LPT
order after synchronisation of shell-crossing times (see Fig. 10
in STC).

Obviously, our approach works because parameter ∆ in
Eq. (53) is very small, which makes the pancake quasi-1D, inde-
pendently of the values of ε2D and ε3D as long as εy, εz < εx.
We see in Sect. 4.4 how the accuracy of the description deterio-
rates with increasing ∆, that is, with increasing time interval after
collapse.

4.3. Force orthogonal to the shell-crossing direction

We now turn to the component Fy of the force orthogonal to
the shell-crossing direction (hence coplanar with the pancake)
inside and in the vicinity of the pancake, as shown in Fig. 3
very shortly after collapse (note that the plot of the z compo-
nent, Fz, in the 3D case, would give results very similar to Fy,
so is not shown here). As already mentioned in Sect. 3.3, con-
trary to Fx, the exact gravitational force field given by Eq. (14),
displayed as dashed curves, is not significantly affected by the
presence of caustics, with a weak dependence on x, Fy ∝ y and
Fz ∝ z close to the origin, while Fy and Fz are locally even with
respect to z and y, respectively (not shown on the figures). In
particular we find, by comparing Fy,z just before and after col-
lapse (∆ = ±0.001), that it hardly changes during this period of
time. These results suggest that shell crossing along the x direc-
tion does not strongly affect the dynamics along other axes. This
property allows us to still use the high-order LPT solution, that

is, the acceleration computed as the second time derivative of
the LPT displacement, to describe the y and z components of the
force as long as the LPT series converges, as shown by the solid
curves in Fig. 3 after averaging other the streams according to
Eq. (15). The solid curves in Fig. 3 converge to the exact solu-
tion when the perturbative order, n, increases, except the 15th
order is still insufficient for ANI-3SIN. Convergence is eased
when approaching quasi-1D initial conditions (Q1D-2SIN and
Q1D-3SIN), thanks to the much faster convergence of the LPT
series in this case. We also checked in Eq. (15) that the LPT
accelerations computed inside each stream are nearly the same.

Another important finding is that the dashed curves are only
weakly dependent on LPT order, which is a consequence of syn-
chronisation of LPT predictions with their own collapse time.
We see in Sect. 5 that they actually agree very well with the mea-
surements in ColDICE simulations. As shown by STC, the den-
sity field, which stems from synchronised LPT displacements
and sources the force field, is very well described by LPT pre-
dictions even of relatively low order. On the other hand, the
solid curves in Fig. 3 show that the LPT acceleration converges
much more slowly than the LPT displacement, even after syn-
chronisation. This is a rather obvious consequence of the fact
that time derivatives give more weight than cumulative quanti-
ties to deviations from the exact solution, since these last ones
increase with time. Similarly, STC found that convergence of
LPT for velocities fields was slower than for density fields. We
thus note that Eq. (14) provides, at fixed LPT order, a much more
accurate way to compute the gravitational acceleration than the
second time derivative of the LPT displacement, as already men-
tioned in last paragraph of Sect. 2.2. In other words, it provides
a re-summation of the gravitational force that could be used to
improve on LPT predictions even prior to shell crossing (i.e.
even in the absence of synchronisation; see Fig. 6 in Sect. 5).

4.4. Time dependence

In the analyses performed in the two previous sections, we made
sure that the assumptions of Sect. 3.1 were valid by taking a
very small value of ∆ = 0.001 in Eq. (53). In Fig. 4 we investi-
gate how the results change when ∆ increases, up to the values
∆LPT

sim = ∆sim (asc/aLPT
sc ), with ∆sim listed in Table 1, that are used

for measurements of Sect. 5 in ColDICE simulations.
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Fig. 2. x component of force as a function of x inside and in the vicinity
of a pancake seeded by three sine waves in the context of LPT dynamics,
with −1.8 ≤ x/xmax ≤ 1.8, where xmax is the maximum extension of the
caustic region along the x-axis, as given by Eq. (44) in our approximate
formalism. The output time is set to ∆ = 0.001 with synchronisation
(see Eq. (53)). In each panel, the curves of various colours correspond
to different values of y (and z = 0 in the 3D case), namely y/ymax = 0
(orange), 0.75 (green), and 1.5 (red, outside the multi-stream region),
where ymax is the maximum extension of the caustic region along the
y-axis (Eq. (45)). From top to bottom, we consider Q1D-2SIN, ANI-
2SIN, Q1D-3SIN, and ANI-3SIN. From left to right, the predictions are
made with 5, 20 (10), and 40LPT (15LPT) for two-sine-wave (three-
sine-wave) initial conditions. The dashed and solid lines respectively
represent the ‘exact’ force given by Eq. (14) and the analytic predic-
tion (51).

We first focus on Fx by examining left panels of Fig. 4. As
expected, the analytical prediction (51) deviates more and more
from the exact solution as ∆ increases. For a given value of ∆, for
example ∆ = 0.01, deviations are slightly larger for ANI cases
than Q1D cases, in agreement with intuition. Yet, even for non
Q1D initial conditions, the local quasi-1D nature of the dynam-
ics dominates if ∆ is small enough. Obviously our approach has
its limits, as illustrated by bottom right panel of the left part of
Fig. 4. Importantly, deviations between dashes and solid lines in
the left part of Fig. 4 are not related to performances of high-
order LPT but instead, to our truncation to the third order of the
Taylor expansion in Eqs. (20)–(22), as illustrated by Fig. A.1.
This also explains why deviations also increase with the value of
y, when passing from the green to the red curve in the left panels
of Fig. 4. We note that it would be possible to correct the solu-
tions (41) of the three-value problem by including perturbatively
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Fig. 3. Same as Fig. 2 but for the y component of the force, Fy, in the
range −1.8 ≤ y/ymax ≤ 1.8 for x/xmax = 0 (orange), 0.75 (green), and
1.5 (red). The dashed and solid lines represent, respectively, the force
given in Eq. (14) and the LPT acceleration given in Eq. (15). Due to
the weak dependence of Fy on the presence of the caustic and the very
small range of values of x considered, the curves for x/xmax = 0, 0.75,
and 1.5 nearly perfectly overlap.

higher-order terms in the Taylor expansion in q, which would
most certainly improve the agreement between the solid and the
dashed curve in the ANI-3SIN case, even for ∆ = 0.0289. Of
course, such a procedure cannot apply to arbitrarily large ∆. It
would moreover become pointless since LPT becomes a worse
prescription of the dynamics as ∆ increases. Indeed LPT has a
finite convergence radius in time and does not take into account
the feedback of the gravitational force inside the caustics, which
is the objective we have in mind when computing the force field.

Next, we focused on Fy and examined the right panels of
Fig. 44, which confirm what we find in the previous section for
∆ = 0.001: except for the ANI-3SIN case, the LPT accelera-
tion given by Eq. (15) agrees well with the exact solution (14) at
all times considered. It stays pretty insensitive to the existence
of the multi-stream region, as long as the pancake remains very
thin and preserves the 1D nature of the local dynamics, which
facilitates convergence of the LPT series. This is obviously not
the case of ANI-3SIN, where Fy presents significant variations
with x that increase with time, especially for the exact solu-
tion. We note that the good agreement between theory and exact

4 The z coordinate of the force, not shown here, would give very simi-
lar results.
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Fig. 4. Time dependence of the x and y components of the force for the various initial sine wave conditions considered in this article, as indicated
in the panels. In each row, the output time, traced by the parameter ∆ in Eq. (53), increases from left to right, as indicated in each panel, with
∆ = ∆sim (asc/aLPT

sc ) in the right panels, where ∆sim corresponds to the output time in the simulations discussed in Sect. 5 (see also Table 1). Note
that in this last case, the value indicated in the figure is not ∆ but ∆sim, but the differences are small. The exact solution given by Eq. (14) applied
to the LPT displacement (dashes) is compared to the analytical formula (51) for Fx and with the LPT acceleration (15) for Fy (solid lines). The
two top and two bottom rows use 40LPT and 15LPT, respectively, to compute the displacement field and its acceleration. In the two bottom rows,
we assume z = 0.

solution is obviously greatly facilitated by 40LPT in 2D, while
only 15LPT is used in the 3D cases. Still, although the Q1D-
3SIN case uses only the 15LPT solution for the acceleration,
theory and exact solutions still agree very well with each other.
On the other hand, in the ANI-3SIN case, the LPT acceleration
deviates significantly from the exact force given by Eq. (14) and
this even before shell crossing, while the 15LPT displacement
itself remains a very good approximation of the true displace-
ment measured in simulations, even for ∆ = ∆LPT

sim , as shown
below in Sect. 5.

5. Comparison to simulations

In the previous sections, we tested the accuracy of force field
calculations by using LPT as a proxy of the dynamics. We now
rely on actual measurements in Vlasov-Poisson simulations to
test LPT itself, since it is used for computing the coefficients
in Eqs. (34)–(36) that lead to the asymptotic expression (51) as

well as the gravitational acceleration as a second time derivative
of the LPT displacement in Eqs. (49) and (15).

The simulations we used to conduct the analyses were per-
formed by Colombi (2021) and STC with the public Vlasov code
ColDICE (Sousbie & Colombi 2016). This solver directly fol-
lows the evolution of a self-gravitating 3D (2D) phase-space
sheet in 6D (4D) phase-space with an adaptive tessellation of
tetrahedra (triangles). The initial configuration uses a regular
pattern of ns vertices with null velocities to construct the tes-
sellation. At the beginning of the simulations, this pattern is per-
turbed with Zel’dovich motion following Eq. (52). During run-
time, Poisson equation is solved in ColDICE on a mesh of fixed
resolution ng. Table 1 indicates the values of ns and ng adopted
for our runs, as well as the expansion factor asim of the snapshot
used for the analyses slightly beyond first shell crossing. Other
technical details on the simulations we used are already provided
in Colombi (2021) and STC, so we do not repeat them here. In
Appendix C, we explain how we measured the force field from
the tessellation.
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Fig. 5. Comparison between simulations and analytical predictions for Fx (left panels) and Fy (right panels) slightly beyond first shell-crossing
time. From top to bottom, we consider Q1D-2SIN, ANI-2SIN, Q1D-3SIN, and ANI-3SIN initial conditions, respectively. For each initial condition,
we present the force for three different values of y and/or z, as indicated in each panel. The largest values of y and z are outside the multi-stream
region. The dots stand for the measurements in the ColDICE simulations. The solid green curves in the left panels give the theoretical prediction for
Fx from the analytical formula (51). The solid blue lines correspond to the theoretical predictions for Fx and Fy obtained from the LPT acceleration
using Eq. (49) (only in the multi-stream region) and Eq. (15), respectively. The dashed orange lines represent the force field resulting from solving
the Poisson Eq. (14), when using the LPT displacement instead of the supposedly exact positions of particles in the ColDICE runs.

To compare LPT predictions to measurements in simula-
tions, we proceeded as in Sect. 4 and synchronised high-order
LPT solutions (here, 40LPT for the 2D case and 15LPT for
the 3D case) as follows. First, LPT solutions were evolved to
their own shell-crossing time, designated in Table 1 by aLPT

sc

(namely a(40)
sc and a(15)

sc for 2D and 3D, respectively, in the nota-
tions of Sect. 4). Next, time was advanced up to expansion factor
a = aLPT

sc + (asim − asc), where asc and asim are respectively the
shell-crossing time measured by STC in the simulations and the
expansion factor of the snapshot we considered for the analyses,
as listed in Table 1. We note that the output times of the simula-
tions, which are different for each initial condition, are, in terms
of relative expansion factor values, closer to the shell-crossing
time in the following order: ANI-2SIN, Q1D-3SIN, Q1D-2SIN,
and ANI-3SIN (see the last column in Table 1).

Figure 5 compares analytical predictions to measurements in
the simulations of the force field for the various sine wave initial
conditions introduced in Sect. 4.1, except the axisymmetric ones,

which are discussed further below. The first thing to notice when
examining this figure is the excellent agreement between the
measurements (black dots) and the numerical solution of Pois-
son equation based on the Green function approach, Eq. (14),
when applied to the density field sourced by the LPT displace-
ment after synchronisation (orange dashes). This confirms the
earlier investigations of STC on the density field, which com-
pared post-collapse predictions based on the ballistic approxi-
mation, where the velocity field is frozen at collapse time, to the
same simulations data. At the times considered here, the ballis-
tic approximation should not differ much from LPT predictions
pushed beyond shell crossing as performed in the present work.
Such a good agreement between LPT and simulations fully val-
idates the conclusions of the analyses of Sect. 4. Thus, in Fig. 5
we observe the same matches and discrepancies between the
solid green (left panels) or blue (right panels) curves and the
black dots or orange dashes, respectively, that we can discern in
Fig. 4 between the solid curves and the dashes. This confirms
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Fig. 6. Same as the right panels of Fig. 5, but without synchronisation
to collapse time at each LPT order, i.e. for a given initial condition, all
the curves are calculated at the same expansion factor, asim. In addition,
several LPT orders are considered, as indicated in the right panels, to
illustrate the convergence speed.

again the validity of our theoretical predictions when two con-
ditions are met: (i) sufficiently short period of time after col-
lapse, so that our local Taylor expansion of the displacement field
remains accurate enough to estimate the component of the force
along the shell-crossing direction (orthogonal to the pancake)
with Eq. (51), and (ii) sufficiently high LPT order for the LPT
displacement to be accurate around shell-crossing time, as well
as its second time derivative used in Eq. (15) as an approxima-
tion for the component of the force orthogonal to the direction of
collapse (coplanar with the pancake). Obviously, these two con-
ditions are not met for ANI-3SIN as already discussed in detail
in Sect. 4, but are facilitated in the Q1D cases.

Interestingly, Eq. (49) (solid blue curves in the left panels of
Fig. 5) approximates very well the x component of the force,
except again for ANI-3SIN. Summing up correctly the LPT
accelerations in the multi-stream regions using either Eq. (49) or
Eq. (15) also provides, shortly after shell crossing, a very good
self-consistent approximation of all the components of the force
field provided that the LPT series is converged.

The synchronisation process plays an important role in the
analytical prediction of the force along the direction of shell
crossing, Fx, because collapse time changes with LPT order and
the effect of shell crossing is dramatic on Fx. However, this
is not really the case for the orthogonal component – coplanar

with the pancake – that pretty much preserves the single-stream
behaviour of the motion, as already discussed in Sect. 4.3. We
double-checked this property by reproducing the right panels
of Fig. 5 on Fig. 6 but without synchronisation of LPT predic-
tions. For the 40th LPT order and the 15th LPT order respec-
tively in 2D and 3D, we indeed distinguish no difference between
the two figures. Additionally, various LPT orders are consid-
ered on Fig. 6. Interestingly, the LPT accelerations (solid lines)
show slow convergence, while the forces computed with the
Green function method from the LPT displacements (Eq. (14),
dashed lines) show very fast convergence, even for ANI-3SIN.
In other words, as mentioned in Sect. 4.3, Eq. (14) represents
a re-summation of LPT that provides a much more accurate
description of the gravitational acceleration than the second time
derivative of the LPT displacement. This property might turn
very useful for future applications.

Before closing this section, we examine in Fig. 7 axial-
symmetric initial conditions, SYM-2SIN and SYM-3SIN. In this
case, shell crossing occurs simultaneously along all the axes
of the dynamics, so we expect qualitatively different behaviour
from the Q1D and ANI cases. Strictly speaking, axial-symmetric
configurations have zero weight from the statistical point of view
but can in practice still be present at the coarse level, for example
a very high peak in random Gaussian fields that are expected to
be rounder (see e.g. Bardeen et al. 1986).

The axisymmetric case does not correspond to the super-
position of 2 and 3 pancakes in the 2D and 3D cases, respec-
tively (see Gurevich & Zybin 1995, for analytical predictions
of the gravitational potential under these assumptions). Indeed,
the caustic structure stemming from simultaneous shell cross-
ings along several directions is convoluted, as shown by STC,
which translates into multiple discontinuities of the derivative
of the force field along each axis. For instance, in the top-left
panel of Fig. 7 there are four sharp transition points on the force
field instead of the two in the top-left panel of Fig. 5. Even
if the analytical predictions discussed in Sect. 3 are irrelevant
for SYM cases, it is still possible to use the Green function
approach in Eq. (14) with the high-order LPT displacement field
used as a proxy for the dynamics, as indicated by the dashed
curves on Fig. 7. While 40LPT successfully reproduces the post-
collapse gravitational field in the 2D case, 15LPT is not accu-
rate enough. Turning to the 3D case, 15LPT is not even good
from the qualitative point of view, as already noticed for STC
for the density field itself. However, SYM-3SIN is further away
from shell crossing than SYM-2SIN in terms of the parameter
∆ as shown in last column of Table 1, which explains partly the
worse performance of LPT predictions for SYM-3SIN compared
to SYM-2SIN. Another and more obvious reason for this lies in
the much higher contrasts expected in SYM-3SIN compared to
SYM-2SIN, which can introduce non negligible feedback effects
from the multi-stream region, even very shortly after shell cross-
ing, as already extensively discussed in STC.

6. Summary

In this article we have studied the gravitational force field gen-
erated by pancakes shortly after collapse. Restricting ourselves
to the case where the displacement field sourcing the pancake is
locally symmetric, we derived approximations for the force field
by combining fundamentals of catastrophe theory and high-order
LPT that we carefully validated on systems seeded by two- or
three-sine-wave initial conditions. Our analyses include compar-
isons of theoretical predictions to measurements in Vlasov simu-
lations performed with the public code ColDICE. The important
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Fig. 7. Same as Fig. 5 but for the SYM-2SIN (top panels) and SYM-
3SIN (bottom panels) initial conditions and the fact that there are no
blue or green curves, because our analytical recipes apply only to shell
crossing occurring along one direction. Only the x component of the
force is shown in Fig. 7 due to the symmetric nature of the system. In
addition, the 15LPT prediction from Eq. (14) is shown as a dashed light
orange curve in the 2D case.

assumption we made is that the time lapse after collapse, quan-
tified here by the parameter ∆ given in Eq. (53), is very short,
allowing one to assume that the multi-stream region is locally
infinitely thin. The main results of our work can be summarised
as follows:

(i) The calculation of the component Fx, the gravitational force
aligned with the direction of the shell crossing (that is,
orthogonal to the pancake), comes down to solving a three-
value problem that reduces to the resolution of a third-
order polynomial in the limit ∆ � 1. This process is
very analogous, not surprisingly, to the 1D case and leads
to explicit expressions in terms of Eulerian coordinates,
Eqs. (37), (39)–(41), and (51). Calculation of the various
time-dependent coefficients intervening in the expression
of Fx relies on a Taylor expansion of the LPT displace-
ment at the third order in the Lagrangian position, while
staying within the convergence radius of the displacement
expanded as a high-order series in time.

(ii) The component Fy (and Fz), the gravitational force orthog-
onal to the direction of shell crossing (that is, in the same
plane as the pancake), is rather insensitive to the presence of
caustics. It can thus be predicted with the usual LPT accel-
eration, that is, the second time derivative of the LPT dis-
placement, as long as the LPT acceleration converges as
a series expansion in time. While Eq. (15) can be used to
perform averaging over several streams, it is not absolutely
needed. However, the three-value problem still needs to be
solved, either numerically as we did in this work or approx-
imately using Eqs. (37), (39)–(41).

(iii) Equation (51) is asymptotically equivalent to Eq. (49), with
the x component of the acceleration given by the second
time derivative of the LPT displacement, which in turn
makes the approach fully consistent with point (ii).

(iv) A much higher LPT order is needed for the accelera-
tion to converge than for the displacement. This is a nat-
ural consequence of the properties of the LPT series, of
which the convergence speed decreases with successive
time derivatives (see e.g. Rampf et al. 2023). However, one
can numerically solve the Poisson equation using the Green
function approach embodied by integral Eq. (14) based on

the knowledge of the LPT displacement to reach – as is
obvious – a convergence level that is as good as for the
displacement. Hence, Eq. (14) acts as a re-summation pro-
cedure of LPT for accurately computing the gravitational
field.

(v) While quasi-1D initial conditions facilitate convergence of
PT predictions, our calculations also apply to pancakes
seeded by peaks with a general ellipsoid shape and remain
accurate as long as the pancake remains very flat, but
become inaccurate in the extreme case where collapse takes
place simultaneously along all the axes of the dynamics.

In this work we have used LPT as an approximation of the
dynamics shortly beyond collapse, but there are limitations to
such an approach due to the finite radius of convergence with
respect to time of the perturbative series. A safer point of view,
adopted and tested successfully by STC on our sine wave cases,
consists in using a ballistic approximation, where velocities (and
in the present case, LPT accelerations) are frozen from collapse.
While for the sake simplicity we did not adopt it here, it would
be easy to implement this ballistic approximation to compute the
gravitational force field of pancakes instead of using the proce-
dure described in points (i) and (ii). The advantage of the bal-
listic approach is it allows us to overcome the problem of LPT
convergence, which is known to be guaranteed in practice up to
collapse (see e.g. Rampf & Hahn 2021, STC).

The calculations presented in this work can in principle be
generalised to an arbitrary (smooth and non-degenerate) dis-
placement field. Clearly, the case of a displacement field deriv-
ing from a potential in Lagrangian space (i.e. vorticity-free in
Lagrangian space) can be treated easily. While not fully rep-
resentative of the exact dynamics, since zero vorticity prior to
shell crossing is only expected in Eulerian space, a vorticity-free
displacement in Lagrangian space remains a very good approx-
imation up to the second order in the LPT framework, which
includes the Zel’dovich approximation. In the case of a dis-
placement field deriving from a potential, it is easy to see that,
with the proper combination of affine transformations in both
Lagrangian and Eulerian space, one can obtain equations simi-
lar to Eqs. (34)–(36), but with additional q2

xqy, q2
xqz, q3

y , and q3
z

terms in the right-hand side of Eq. (34), which makes solving the
three-value problem and the force field calculation slightly more
involved. We postpone more general analyses that do not impose
the local symmetries (18)–(19) to future work.

The calculation of the force field generated in the vicinity
of a proto-pancake represents the first step towards an accu-
rate treatment of the dynamics in the multi-stream regime. It
involves computing corrections to the motion inside the pan-
cakes due to the force backreaction from the multi-stream
regions, thereby extending the 1D calculations of Colombi
(2015), Taruya & Colombi (2017), and Rampf et al. (2021) to
the 3D case. Of course, this approach remains limited, as it
is expected to work only shortly after shell crossing, though
it might be possible to combine it with an adaptive smoothing
procedure to accurately predict large-scale structure statistics,
such as the power spectrum, even in the non-linear regime (see
e.g. Taruya & Colombi 2017; Halle et al. 2020, for the 1D case).
Shell crossing can also locally take place along other axes of the
dynamics, leading to the formation of proto-filaments and proto-
haloes. This is also followed by violent relaxation, which is a
quick folding of the phase-space sheet in multiple directions.
Understanding in detail the early evolution of proto-pancakes
remains crucial to understanding how multi-flow dynamics is
initiated and how this affects the early evolution of the statistics
of the large-scale matter distribution.
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Appendix A: Series expansion of the displacement
field

0.05 0.00 0.05
qx

1

0

1

x

×10 3

Q1D-3SIN

(qy, max = 0.074)
= 0.005

0.05 0.00 0.05
qx

4

2

0

2

4 ×10 3

(qy, max = 0.11)
= 0.01

0.1 0.0 0.1
qx

1.0

0.5

0.0

0.5

1.0
×10 2

(qy, max = 0.15)
= 0.01974

qy = 0
qy = qy, max

0.05 0.00 0.05
qx

2

0

2

x

×10 3

ANI-3SIN

(qy, max = 0.041)
= 0.005

0.05 0.00 0.05
qx

5

0

5

×10 3

(qy, max = 0.059)
= 0.01

0.1 0.0 0.1
qx

2

0

2

×10 2

(qy, max = 0.10)
= 0.02890

O(q5)
O(q3)
15LPT

Fig. A.1. x coordinate as a function of qx for Q1D-3SIN (top panels) and
ANI-3SIN (bottom panels) initial conditions at various output times,
with ∆ = 0.005 (left), 0.01 (centre), and ∆sim = asim/asc − 1, as given in
the right column of Table 1 (right). The solid and dashed curves corre-
spond to qy = 0 and qy ' qmax

y , where qmax
y is the maximum extension

of the caustic in Lagrangian space along the qy-axis, while qz = 0. We
present the results predicted by the pure 15LPT solution (black) and its
Taylor expansion expression in the Lagrangian coordinate up to up to
O(q3) (orange) and up to O(q5) (blue).

In Sect. 3.1 we derive an analytical expression for comput-
ing the x component of gravitational force, starting from the
Taylor expansion of the displacement field with respect to the
Lagrangian coordinate up to the third order in q, given in
Eqs. (23)–(25). Figure A.1 tests the accuracy of Eqs. (23)–(25)
in qx-x space for our non-axisymmetric three-sine-wave setups.
Clearly, at the dynamical times considered in this paper, a third-
order approximation for the displacement field is sufficient in the
Q1D case, but significant deviations can be seen in the bottom-
right panel of the figure. As expected, these deviations increase
when moving away from the origin of coordinates, hence with
increasing, |x|, |y| (and |z| in 3D). They explain, at least partly,
the discrepancies between theory and exact solution in Fig. 4.
Another significant source of error is the approximation of y and
z coordinates at the linear order in q (Eqs. 35 and 36), which

we do not examine here. W note that, as long as higher-order
corrections remain small, it would be possible to correct per-
turbatively the three-value solution derived from the third-order
Taylor expansion to include higher-order contributions. Here,
we notice that the fifth order already brings very significant
improvements, though we should also check what happens in
other planes.

Appendix B: Calculation of the force: Truncation of
integral (14)

Throughout this article, we compare our analytical predictions
for the force to direct calculations of the integral (14) over a finite
interval, [−qmax, qmax]. Our systems seeded by initial sine wave
conditions are periodic, and hence the problem comes down to
computing the gravitational contribution of each matter element
inside the simulation volume of size L, plus all the periodic
replica. Many techniques exist in the literature to perform such
a calculation quickly, for instance Ewald summation (see e.g.
Hernquist et al. 1991). Our brute force technique allows us to
have rather accurate estimates of pairwise interactions between
nearby elements of mass, which is necessary given the very thin
nature of the caustic structures, but fails to account for the contri-
bution of all remote elements, including replica, which can make
the force field calculation inaccurate.

To validate the choice of our somewhat simplistic technique,
Fig. B.1 presents the x (top panels) and y components (bot-
tom panels) of the force for our (non-axisymmetric) sine wave
initial conditions, restricting to the local neighbourhood of the
pancake. All the output times are the same as in Fig. 5, which
compares analytical predictions to simulations. We see that the x
component of the force at the scales of interest is dominated by
the influence of the caustics and is thus quite insensitive to the
replica given these small values of x, so a truncation of the inte-
gral (14) at qmax = L/2 is enough for all the initial conditions
(including SYM-2SIN and SYM-3SIN, not shown in Fig. 5).
On the other hand, the y component of the force can be sig-
nificantly affected by the replicas for Q1D initial conditions,
but from lower panels of Fig. 5, qmax = 5L/2 seems sufficient
for adequate convergence of the integral (14). In practice, we
adopted the values listed in Table C.1 for the measurements in
the ColDICE simulations, and qmax = L/2 for Fx, qmax = 20L/2
for Fy,z, for other calculations using the LPT displacement in
Eq. (14).
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Fig. B.1. Tests of the choice of the bounds of integral (14). The x and y coordinates of the force are plotted, respectively, in the top and bottom
panels, for various choices of the integration range [−qmax, qmax] with qmax ranging from L/2 to 20L/2, as indicated in the upper-left panel. From
left to right, we consider Q1D-2SIN, ANI-2SIN, Q1D-3SIN, and ANI-3SIN initial conditions. In the top panels, various values of y are considered,
as indicated in the second panel of the top row, while the bottom panels only assume x = 0 since other values of x would not lead to significantly
different results. We also set z = 0 in the 3D cases considered in the two top-right and two bottom-right panels. Note that the output time chosen
in this figure is the same as in Fig. 5. We see that all the curves corresponding to different values of qmax are superimposed on each other, except
for qmax = L/2 for the Q1D cases.

Appendix C: Force measurement in simulations

In ColDICE, the dark matter distribution is represented with
an adaptive tessellation of simplices, that is, an ensemble of
connected triangles and tetrahedra, respectively in 2D and 3D.
To compute the force field F̃(x) at a given point of space, we
employed a direct approach consisting in replacing each simplex
with a set of particles. To do so, if needed, each simplex was
refined isotropically `max times. At the end, each sub-simplex
was replaced with a single particle lying at the barycentre of
the its vertices. To obtain the highest accuracy, the refinement
process exploits the quadratic nature of each simplex thanks to
additional tracers used in ColDICE. To avoid divergences due to
the singular nature of the force field induced by a point particle
distribution, we introduced additional softening as follows:

F̃(x) =
m

2d−2 × 2π
x − x0

(|x − x0|
2 + ε2)d/2 , (C.1)

where, d = 2 or 3 is the dimension of space, m and x0 are respec-
tively the (normalised) mass and the position of the particle. This
equation does not account for the background correction propor-
tional to x in Eq. (14), which has to be added at the end of the
calculation. Depending on the coordinate of the force field con-
sidered, a set of periodic replica of each particle with positions

x0 + (i, j, k) L (C.2)

can contribute, with integers i, j, k ∈ [−nrep, nrep], which is equiv-
alent to restricting the integral (14) to the interval [−qmax, qmax],
with qmax = (nrep + 1/2)L. The values of qmax we adopted are
listed in Table C.1. They are large enough according to the con-
vergence tests discussed in Appendix B.

Because we examined the system just after shell crossing, it
is important to have an accurate description of the phase-space
sheet inside a region containing the caustics. This region was

chosen to be a thin rectangular parallelepiped covering the inter-
vals x ∈ [−xmax, xmax], y ∈ [−ymax, ymax], and z ∈ [−zmax, zmax]
in each dimension (except for the last one, which is in 3D only).
Outside this region, each simplex was replaced with a single par-
ticle and inside it, each simplex was adaptively refined `max ≥ 1
times, with a value of `max depending on initial conditions.

The various parameters introduced in this appendix are listed
in Table C.1, which completes Table 1 of the main text. W note, for
instance, that ε = xmax/64. Because of the high mass resolution of
the 2D simulations (ns = 2048), is was enough to take `max = 2 for
Q1D-2SIN, ANI-2SIN and SYM-2SIN. Furthermore, due to the
lower cost of the force calculation in 2D, many periodic replica
could be used, nrep = 30. On the other hand, the 3D case is
much more involved computationally, which imposes us to adopt
a much smaller value of nrep, yet still large enough according to
the tests performed in Appendix B. The most delicate case was
Q1D-3SIN, where `max = 4 was necessary to have (barely) suf-
ficiently accurate measurements of the force field. There are two
reasons for this. First, in this simulation, the initial tessellation has
a lower number of simplices, 6 × n3

s , with ns = 256, compared to
ns = 512 for ANI-3SIN and SYM-3SIN, which already imposes
at least one additional refinement level in Q1D-3SIN compared to
the two other cases. Second, the discrete nature of the sampling of
the phase-space sheet we adopted can introduce systematic biases
to the force field that are stronger in Q1D settings due to the fact
that particles, which initially form a regular mesh, tend to cluster
together much more along the x direction inside and in the vicinity
of the caustics than in orthogonal direction(s). This induces arti-
ficial fluctuations to the force field, especially on axes orthogonal
to x (see e.g. middle panel of the right group in third row of Fig. 5),
that would not appear with a proper, smooth representation of the
phase-space sheet. While it would be possible (but not trivial) to
implement a more optimal calculation of the force field, we did
not find it necessary for our analyses.
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Table C.1. Parameters involved in the measurement of the force field in the Vlasov simulations, as described in Appendix C.

Designation qmax xmax ymax zmax `max ε

Quasi 1D
Q1D-2SIN L/2 for Fx, 30.5L otherwise 0.00075 0.15 2 1.1718750 × 10−5

Q1D-3SIN L/2 for Fx, 5L/2 otherwise 0.0006 0.15 0.20 4 9.375 × 10−6

Anisotropic
ANI-2SIN L/2 for Fx, 30.5L otherwise 0.0004 0.025 2 6.25 × 10−6

ANI-3SIN L/2 for Fx, 7L/2 otherwise 0.002 0.0275 0.07 2 for qmax = L/2 3.125 × 10−5

1 for qmax = 7L/2
Axial-symmetric

SYM-2SIN L/2 0.00008 0.00008 2 1.25 × 10−6

SYM-3SIN L/2 0.0015 0.0015 0.0015 0 2.34375 × 10−5

Notes. From left to right: designation of the run, truncation parameter qmax, coordinates xmax, ymax and zmax of the upper right corner of the
rectangular region where higher sampling of simplices is perform using `max successive refinements as indicated in the next column; finally, ε is
the softening parameter of the force field (Eq. C.1).
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