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FruitBin: a large-scale fruit bin picking dataset tunable over occlusion, camera pose and scenes for 6D pose estimation
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Bin picking refers to the process of extracting objects from a bin or container. It is commonly used in various industries, such as manufacturing, logistics, and warehouse. Its automation through robotic systems involves using sensors, computer vision, and robotic arms to identify and retrieve objects from an unstructured and cluttered environment. State-of-the-art solutions are data-driven and imply robot perception to segment object instances and estimate their 6D pose (16; 10). As a result, they generally require large-scale datasets of diversified object instance-level annotations which are prohibitively expensive to acquire.

State-of-the-art benchmarks for 6D pose estimation are computer vision oriented. Therefore, they are not defined within robotic learning software or provide only a partial robotic environment, thereby hindering the latter stage of seamless robot learning for manipulation which further involves learning interactions between robots and objects [START_REF] Dasari | Robonet: Large-scale multi-robot learning[END_REF]. Furthermore, almost all of them only depict tabletop scenes with rigid objects and don't consider bin picking scenarios where objects typically occur in multiple instances and feature severe occlusions and clutter.

In this paper, we present FruitBin, a large-scale dataset of simulated data suitable for robot learning and specifically designed for the challenging task of fruit bin picking as example can be seen in the figures 1 or 3. And Table 1 compares FruitBin with the state of the art. It builds upon PickSim [START_REF] Duret | PickSim: A dynamically configurable Gazebo pipeline for robotic manipulation[END_REF],

a recently released open-source bin picking simulation pipeline that offers dynamic configuration capabilities within Gazebo [START_REF] Koenig | Design and use paradigms for Gazebo, an open-source multirobot simulator[END_REF], an open-source, 3D robotics simulation software widely used in the field of robotics research and development. FruitBin considers delicate objects, e.g., apricot, banana, whose manipulation requires learning the appropriate force through haptic feedback and paves the way to robotic manipulation of deformable objects. It comprises over 1 million images and 40 million instance-level 6D pose annotations, encompassing both symmetric and asymmetric fruits with and without texture. The dataset includes comprehensive annotations and metadata, such as 6D pose, segmentation masks, point clouds, 2D and 3D bounding boxes, and occlusion rates. This rich set of annotations allows fine-tuning the proposed dataset in order to benchmark the robustness of object instance segmentation and 6D pose estimation models against variations in lighting, texture, occlusion, camera pose, and scene complexity. Furthermore, we propose three scenarios that present significant challenges for 6D pose estimation models: new scene generalization; new camera viewpoint generalization; and occlusion robustness. We evaluated the performance of two 6D pose estimation baselines, using either RGB or RGBD images, on these three scenarios.

To the best of our knowledge, FruitBin is the first dataset specifically tailored for the demanding task of fruit bin picking and represents the largest-scale dataset for 6D pose estimation, offering comprehensive challenges that can be adjusted in terms of scenes, camera poses, and occlusions. In summary, our contributions are as follows:

• release of FruitBin: the bigest large-scale dataset for fruit bin picking with 40M 6D pose annotations over 1M images, depicting comprehensive challenges for 6D pose estimation;

• rich annotations for object instance-level segmentation and 6D pose estimation, including 2D and 3D bounding boxes, instance, segmentation masks, and occlusion rates;

• proposition of three benchmark scenarios to test robustness of 6D pose estimation models in terms of occlusion, camera pose, and scene variety.

• baseline results over these three scenarios for two 6D pose estimation baselines making use of RGB and RGB-D images, respectively.

In the following, Section 2 present previous work in 6D pose datasets. Section 3 presents the generation of FruitBin with the software PickSim. Section 4 describes FruitBin with the specific statistics of the large dataset and sub-datasets for the 3 scenarios. Section 5 gathers the result of baselines of 6D estimation models through the 3 scenarios. Section 6 presents some limitations, and Section 7 concludes this article with some perspectives.

Related work

Because data famine is the major roadblock for learning-based computer vision tasks and even the more for robot learning. State-of-the-art datasets for 6D pose estimation (6; 11) is quickly over-viewed in this section.

6D pose datasets. State of the art has featured a number of benchmarks for 6D pose estimation. Table 1 lists these datasets and compares them in terms of different characteristics, including data nature (real or synthetic), size (number of samples, number of scenes, number of 6D pose annotations), as well as challenges, e.g., occlusion, clutter, multiple instances, etc.

The proposed FruitBin dataset offers high-resolution images and Table 1 demonstrates that it distinguishes itself by incorporating all of the challenges into a single dataset. Notably, it stands out among the limited number of datasets that have significantly increased the sample size, ranging from 2 to 1000 times more samples than existing 6D pose estimation datasets. This expansion in dataset size is crucial as it addresses a critical challenge faced by deep learning models-generalizing to unknown scenes. By incorporating a larger number of diverse scenes, we believe FruitBin enables models to overcome this limitation. With over 40 million 6D pose annotations, FruitBin not only surpasses other datasets in terms of the number of scenes but also provides the largest number of annotations available. This section introduces the generation of Fruitbin through the use of PickSim [START_REF] Duret | PickSim: A dynamically configurable Gazebo pipeline for robotic manipulation[END_REF]. This recent pipeline offers extensive annotation generation capabilities as illustrated in the figure 2 and facilitates the utilization of the dataset for robotics learning. In order to create task-specific datasets for robotics, it is crucial to develop and train tasks such as vision and manipulation within the same environment.

Utilizing robotic software, such as Gazebo, for generating computer vision synthetic data offers numerous advantages. Firstly, it seamlessly integrates physical engines, resulting in more realistic outcomes. Secondly, it facilitates the effortless integration of robots and sensors with native robot control capabilities. Lastly, it unlocks the potential for creating datasets specifically tailored to robotic tasks with various open-source libraries like MoveIt (4). Additionally, PickSim offers easy-touse setup files for domain randomization, dataset recording, and generation. Each step within the pipeline can be executed effortlessly using a simple command, with parameters conveniently set in user-friendly JSON or YAML files. In this section, we present the generation of FruitBin using the PickSim (7) pipeline into four key steps.

Pre-processing. Raw meshes can be provided to enable mesh domain randomization, encompassing textures, object properties, and more. For FruitBin, PickSim receives eight raw meshes representing the fruits we aim to simulate, namely Apple, Apricot, Banana, Kiwi, Lemon, Orange, Peach, and Pear.

No randomization is applied to the mesh or textures in order to preserve the distinct characteristics of each fruit. Through this automated process, sdf files are generated, which are essential for robotic software simulation and contain key metadata such as category ID for the future dataset recording.

Scene randomization. PickSim (7) enables domain randomization (2; 20; 21). This functionality is used to generate diverse scenes for fruit bin picking. Through configuration files, users can easily customize the number of objects, cameras, and lighting conditions without writing additional code, simplifying the creation of randomized Gazebo world files. In the FruitBin dataset, scene randomization encompasses the bin, fruits, and lighting. The bin undergoes randomization with rotations and color variations, while the lighting setup includes randomized positions, intensities, and colors. This deliberate setup ensures significant lighting diversity. To maintain statistical consistency, the number of instances for each category is randomly set between 0 and 30, ensuring a consistently full bin. Examples of these scenes can be seen in Figure 3.

Camera randomization. The final aspect of randomization involves the camera settings, where we employ an orbiter sampler included in PickSim to introduce randomness in the distance (ranging from 0.55m to 1m) between the camera and the orbiter center, as well as different angles to ensure Record data. Simulations in Gazebo can be seamlessly launched using the generated world files.

These simulations produce datasets with recorded annotations, including instance and semantic segmentation, bounding boxes, occlusion rates, 6D pose estimations, depth maps, point clouds, and normals.

4 FruitBin: a large scale dataset

Data and Statistics

For FruitBin with eight fruits, the randomization process is performed 10,000 times with 15 cameras, resulting in 150,000 data frames. This process is repeated seven times. Assembling the 7 parts represent FruiBin with over 1 million frames across 70,000 scenes and 105 camera viewpoints. The dataset is organized systematically, preserving information in metafiles. By dividing the dataset into seven parts, sub-datasets can be created for scene generalization, camera generalization, and occlusion robustness. A comprehensive dataset comparison can be found in Section 2.

To streamline the organization of data for learning 6D pose estimation, we have restructured the data based on features and categories. FruitBin incorporates metadata to store essential information such as scene ID, camera ID, category ID, and instance IDs. These unique IDs enable direct access to instance or category-based annotations such as masks, 2D/3D bounding boxes, 6D poses, and occlusion rates. This occlusion rate offers a notable advantage by enabling visible instance counting in images and facilitating data filtering based on different occlusion rates, as described in Section 4. 

A tunable large-scale dataset for fruit bin picking

Developing large-scale, diverse, and accurately annotated datasets for 6D pose estimation is a demanding and time-consuming task. The availability of comprehensive and well-annotated datasets plays a crucial role in advancing the state-of-the-art in 6D pose estimation. However, each dataset, as outlined in Table 1, presents unique challenges that necessitate specific datasets. These challenges include bin picking, scene diversity, point of view diversity, occlusion, and multi-instances, among others. Given that 6D pose estimation finds applications in various contexts, it becomes necessary to fine-tune different 6D models to cater to specific requirements. The suitability of FruitBin as a tunable dataset stems from its abundant annotations and extensive scale. Specifically, the large-scale dataset allows generating sub-datasets tailored to specific purposes or ablation studies. The tunable Occlusion robustness scenarios. For the precise study of occlusion robustness, we considered studying as a parameter of the two previous. In practice for the two previous scenarios, 4 levels of difficulty are generated leveraging occlusion rate. During the previous sampling, an occlusion parameter is added; instead of taking all data, a filter will be applied based on the occlusion rate of the object. The first version focuses on objects with occlusion bellow 30%, followed by versions with occlusion going to 50%, 70%, and 90%, respectively, representing the most challenging scenarios.

Additional splitting based on occlusion is performed during testing to evaluate occlusion-related performances. For an even more precise study of the impact of the occlusion, the testing part could be split according to a partition for getting an occlusion-aware performance overview as presented in the tables 3.

The figure 5 present the splitting of the different scenario for the 4 occlusion difficulties.

Experiments

Baseline Methods In order to estimate the challenges posed by our FruitBin dataset, we conducted a comprehensive assessment using two distinct state-of-the-art 6D pose estimation models employing different data modalities.

The first method, PVNet [START_REF] Peng | Pvnet: Pixel-wise voting network for 6dof pose estimation[END_REF], utilizes a RGB image and information from 3D models of the objects as input to extract the 6D pose. This method processes the input image in two stages: firstly, it determines 2D keypoints locations of the objects using a series of convolution and deconvolution blocks, followed by a RANSAC-based voting scheme. The 6D pose is then obtained by solving an uncertainty-driven Perspective-n-Point (PnP) problem given the 2D key points and the 3D model. Metrics The baseline models are evaluated using the ADD metric (12) (average distance) for non-symmetrical objects and ADD-S (29) (average closest point distance) for symmetrical objects.

In the case of FruitBin, Apple, Apricot, Kiwi, Lemon, Orange and Peach objects are considered as symmetrical while Banana and Pear are non-symmetrical. In the following, ADD(-S) refer to both metrics.

ADD is the mean distance of the transformed 3d model points using the estimated pose [ R| t] and ground truth pose [R|t]. Based on the computed distance, the estimated pose is considered correct if the distance is less than 10% of the model's diameter. The diameter represents the longest distance between 2 points in the object.

Experiments Using the two baselines described in 5 and the metric presented in 5, we train each of them over the 8 scenarios presented in section 4.2. The result are shown in table 2 for Densefusion and PVNet. For instance, in these tables, "Scenes_occ[0.3,0.4]" refers to the "Scene" scenario with a level of occlusion ranging from 30% to 40%.

Densefusion, which relies on depth information, exhibits superior performance compared to PVNet, which solely utilizes RGB images. However, the effectiveness of Densefusion is heavily influenced by object occlusion. It achieves a success rate of 90% or higher when the object's occlusion is bellow 30%. Conversely, as the occlusion in the data increases, up to 90%, the performance of Densefusion declines, reaching a success rate of 67%. It fails to meet the refinement threshold for this level of occlusion for the camera scenario. Additionally, it is important to note that Densefusion employs ground truth segmentation as an input for specific studies on 6D pose estimation. This observation is further substantiated by the results presented in Table 3: Precise evaluation of Dense-fusion and PVnet trained on "Scenes_occ[0.0, 0.9]" over the testing partitions of level of occlusion achieving a success rate of 90% with occlusion levels below 10%. However, the success rate drops significantly to 30% when considering occlusion between 80% and 90%.

On the contrary, PVNet exhibits distinct characteristics. The method relies on keypoints, which reduces its dependence on occlusion. It demonstrates consistent performance across different scenarios, yielding an average result of 64% (tables 2 and 3). Notably, there are variations in performance based on the object, with notable peaks for pear, banana, and peach, which possess more intricate textures.

Conversely, other objects in the dataset can be considered texture-less, lacking any distinctive texture specifications. Another important aspect to consider is that PVNet relies on pixel values, while our dataset may exhibit varying distances between the camera and the objects. This can result in a limited number of pixels available for inferring key points and subsequently estimating the 6D pose.

These experiments showcase the significant advantages of our dataset, enabling us to present formidable challenges to state-of-the-art models that typically excel within the upper echelons of standard datasets.

Limitation and future work

This work aims to introduce a benchmark for 6D pose estimation by presenting a dataset specifically designed for this purpose. However, it is important to acknowledge that our dataset has limitations in terms of fruit meshes. Given the nature of fruits, where each instance is unique, there is a need to expand the dataset to include category 6D pose estimation. In order to address this, a logical step would be to incorporate new vision annotations into the open-source software PickSim NOCS [START_REF] Wang | Normalized object coordinate space for category-level 6d object pose and size estimation[END_REF], which is widely utilized for category 6D pose estimation. This addition would enhance the dataset and enable comprehensive evaluation and analysis of category 6D pose estimation methods.

Furthermore, addressing the sim2real gap between our simulator and real fruits is an important aspect to consider. We recognize the need for extensive studies on domain randomization techniques to bridge this gap effectively, particularly in the context of robotics applications. By investigating and refining domain randomization methods, we can enhance the simulation realism and improve the transfer-ability of models trained in the simulator to real-world scenarios. These efforts will contribute to advancing the field of robotics and promoting the seamless integration of simulated environments with real-world applications.

Conclusion and discussion

In this paper, we present the largest dataset for fruit bin picking, comprising over 40 million 6D 
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Figure 1 :

 1 Figure 1: Example of 6 different points of view of a single scene of the FruitBin dataset

Figure 2 :

 2 Figure 2: Examples of annotations

Figure 3 :

 3 Figure 3: 30 first scenes for a unique point of view

Figure 4

 4 Figure 4 depicts data statistics and provides insights into the distribution of 6D poses among different fruit categories. Notably, the complete randomization of scenes results in a Gaussian distribution of instance numbers in the images, and ensures a balanced representation of each fruit category.

Figure 4 :

 4 Figure 4: Statistics of the whole dataset with the number of instances for each category in the frames

Figure 5 :

 5 Figure 5: Statistics of the 4 occlusion ranges and two scenarios (scene (world) and camera) with the splitting: training, evaluating and testing.

4 .

 4 pose annotations and 1 million images. The dataset constitutes significant challenges for 6D pose estimation, as demonstrated in Section 5, including occlusion and texture-less objects. To address different aspects of 6D pose estimation, we have created eight distinct datasets to evaluate scene generalization, camera point of view generalization, and occlusion robustness. While the current baseline model exhibits its own strengths, none of the baselines achieve satisfactory performance across all benchmarks, offering the research community a challenging benchmark to tackle. This dataset is curated specifically for 6D pose estimation, offering extensive annotations for enhanced accessibility. Beyond its possible applications in 3D reconstruction, Nerf reconstruction, and multiview 6D pose estimation, it also holds significant value for robotics learning, highlighting one of its key advantages. With its versatility, the dataset bridges the gap between computer vision and robotics, fostering collaboration and innovation across various research areas. Our intention is for this dataset to facilitate the improvement of existing 6D pose estimation models and drive further advancements in the field of 6D pose for robotics. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets... (a) If your work uses existing assets, did you cite the creators? [Yes] We used the code of PickSim (b) Did you mention the license of the assets? [N/A] (c) Did you include any new assets either in the supplemental material or as a URL? [N/A] (d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A] (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A] 5. If you used crowdsourcing or conducted research with human subjects... (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A] (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A] (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A] A Example of Images from the dataset

Figure 6 :

 6 Figure 6: 15 point of view of a single scene of FruitBin

1 .
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Figure 7 :

 7 Figure 7: 31 first scenes for a unique point of view

Figure 8 :

 8 Figure 8: 31 first scenes for a unique point of view
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Table 3

 3 

		Apple Apricot Banana Kiwi	Lemon Orange Peach Pear	Avg
	Densefusion							
	Scenes_occ[0.0,0.3]	0.997	0.993	0.490	0.991 0.996	1.0	1.0	0.674 0.899
	Scenes_occ[0.0,0.5]	0.995	0.950	0.526	0.948 0.956	1.0	1.0	0.636 0.882
	Scenes_occ[0.0,0.7]	0.981	0.950	0.414	0.894 0.933	0.997	0.998 0.570 0.849
	Scenes_occ[0.0,0.9]	0.844	0.713	0.278	0.656 0.726	0.896	0.903 0.306 0.676
	Cameras_occ[0.0,0.3] 0.983	0.872	0.588	0.968 0.957	1.0	0.999 0.669 0.888
	Cameras_occ[0.0,0.5] 0.978	0.900	0.592	0.974 0.980	0.999	0.999 0.606 0.887
	Cameras_occ[0.0,0.7] 0.983	0.922	0.530	0.887 0.864	0.995	0.997 0.553 0.850
	Pvnet							
	Scenes_occ[0.0,0.3]	0.505	0.422	0.858	0.501 0.486	0.572	0.640 0.762 0.593
	Scenes_occ[0.0,0.5]	0.430	0.432	0.880	0.503 0.473	0.572	0.685 0.793 0.596
	Scenes_occ[0.0,0.7]	0.533	0.431	0.879	0.475 0.492	0.581	0.649 0.763 0.600
	Scenes_occ[0.0,0.9]	0.445	0.363	0.864	0.487 0.481	0.561	0.621 0.761 0.573
	Cameras_occ[0.0,0.3] 0.590	0.516	0.952	0.631 0.594	0.701	0.784 0.862 0.704
	Cameras_occ[0.0,0.5] 0.606	0.524	0.941	0.611 0.597	0.693	0.819 0.834 0.703
	Cameras_occ[0.0,0.7] 0.577	0.475	0.935	0.602 0.588	0.748	0.773 0.810 0.688
	Cameras_occ[0.0,0.9] 0.519	0.447	0.939	0.580 0.568	0.673	0.753 0.827 0.663

, which illustrate the performance across various occlusion ranges. The performance remains satisfactory when objects are slightly occluded,

Table 2 :

 2 Success rate result of Dnesefusion and Pvnet model trained on the scene and camera scenarios with the different levels of occlusion.

	Apple Apricot Banana Kiwi	Lemon Orange Peach Pear	Avg
	Densefusion						
	Scenes_occ[0.8, 0.9] 0.547	0.391	0.026	0.258 0.373	0.514	0.592 0.0	0.360
	Scenes_occ[0.7, 0.8] 0.679	0.534	0.018	0.378 0.453	0.747	0.733 0.019 0.465
	Scenes_occ[0.6, 0.7] 0.868	0.597	0.079	0.520 0.605	0.913	0.899 0.047 0.570
	Scenes_occ[0.5, 0.6] 0.912	0.729	0.108	0.593 0.724	0.967	0.950 0.112 0.646
	Scenes_occ[0.4, 0.5] 0.964	0.758	0.242	0.793 0.804	1.0	0.993 0.189 0.731
	Scenes_occ[0.3, 0.4] 1.0	0.895	0.305	0.803 0.861	1.0	1.0	0.209 0.771
	Scenes_occ[0.2, 0.3] 0.996	0.945	0.418	0.884 0.915	0.995	1.0	0.247 0.817
	Scenes_occ[0.1, 0.2] 1.0	0.953	0.455	0.959 0.928	1.0	1.0	0.384 0.841
	Scenes_occ[0.0, 0.1] 1.0	0.974	0.557	0.973 0.963	1.0	0.999 0.665 0.898
	Pvnet						
	Scenes_occ[0.8, 0.9] 0.258	0.220	0.896	0.478 0.557	0.558	0.489 0.723 0.522
	Scenes_occ[0.7, 0.8] 0.248	0.286	0.898	0.519 0.498* 0.562	0.502 0.791 0.538
	Scenes_occ[0.6, 0.7] 0.393	0.347	0.887	0.511 0.504	0.616	0.486 0.698 0.555
	Scenes_occ[0.5, 0.6] 0.397	0.305	0.901	0.450 0.448	0.565	0.521 0.687 0.534
	Scenes_occ[0.4, 0.5] 0.412	0.345	0.836	0.458 0.457	0.551	0.500 0.750 0.539
	Scenes_occ[0.3, 0.4] 0.500	0.359	0.870	0.508 0.485	0.609	0.601 0.790 0.590
	Scenes_occ[0.2, 0.3] 0.508	0.427	0.848	0.468 0.493	0.541	0.616 0.800 0.588
	Scenes_occ[0.1, 0.2] 0.570	0.385	0.872	0.482 0.477	0.614	0.745 0.803 0.619
	Scenes_occ[0.0, 0.1] 0.604	0.443	0.896	0.458 0.478	0.557	0.749 0.805 0.624
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