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Abstract
Bin picking is a widely spread application in industries and its automation through1

robots generally requires object instance-level segmentation and 6D pose estimation.2

State-of-the-art computer vision algorithms for these tasks are deep learning-based3

and require large datasets of diversified annotated images at the instance level,4

which are prohibitively expensive to acquire. In this paper, we make use of5

PickSim, a newly developed Gazebo-based dynamically configurable open-source6

pipeline, and introduce a dataset of simulated data, namely FruitBin, for the7

challenging task of fruit bin picking. FruitBin contains more than 1M images8

and 40M instance-level 6D pose annotations over both symmetric and asymmetric9

fruits with or without texture. Rich annotations and metadata (including 6D pose,10

segmentation mask, point cloud, 2D and 3D bounding boxes, occlusion rate) allow11

the tuning of the proposed dataset for benchmarking the robustness of object12

instance segmentation and 6D pose estimation models (with respect to variations in13

terms of lighting, texture, occlusion, camera pose and scenes). We further propose14

three scenarios presenting significant challenges of 6D pose estimation models:15

new scene generalization; new camera viewpoint generalization; and occlusion16

robustness. We show the results of these three scenarios for two 6D pose estimation17

baselines making use of RGB or RGBD images. To the best of our knowledge,18

FruitBin is the first dataset for the challenging task of fruit bin picking and the19

biggest large-scale dataset for 6D pose estimation with the most comprehensive20

challenges, tunable over scenes, camera poses and occlusions.21
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and Benchmarks. Do not distribute.



Figure 1: Example of 6 different points of view of a single scene of the FruitBin dataset

1 Introduction22

Bin picking refers to the process of extracting objects from a bin or container. It is commonly23

used in various industries, such as manufacturing, logistics, and warehouse. Its automation through24

robotic systems involves using sensors, computer vision, and robotic arms to identify and retrieve25

objects from an unstructured and cluttered environment. State-of-the-art solutions are data-driven and26

imply robot perception to segment object instances and estimate their 6D pose (16; 10). As a result,27

they generally require large-scale datasets of diversified object instance-level annotations which are28

prohibitively expensive to acquire.29

State-of-the-art benchmarks for 6D pose estimation are computer vision oriented. Therefore, they are30

not defined within robotic learning software or provide only a partial robotic environment, thereby31

hindering the latter stage of seamless robot learning for manipulation which further involves learning32

interactions between robots and objects (5). Furthermore, almost all of them only depict tabletop33

scenes with rigid objects and don’t consider bin picking scenarios where objects typically occur in34

multiple instances and feature severe occlusions and clutter.35

In this paper, we present FruitBin, a large-scale dataset of simulated data suitable for robot learning36

and specifically designed for the challenging task of fruit bin picking as example can be seen in the37

figures 1 or 3. And Table 1 compares FruitBin with the state of the art. It builds upon PickSim (7),38

a recently released open-source bin picking simulation pipeline that offers dynamic configuration39

capabilities within Gazebo (18), an open-source, 3D robotics simulation software widely used in40

the field of robotics research and development. FruitBin considers delicate objects, e.g., apricot,41

banana, whose manipulation requires learning the appropriate force through haptic feedback and42

paves the way to robotic manipulation of deformable objects. It comprises over 1 million images43

and 40 million instance-level 6D pose annotations, encompassing both symmetric and asymmetric44

fruits with and without texture. The dataset includes comprehensive annotations and metadata,45

such as 6D pose, segmentation masks, point clouds, 2D and 3D bounding boxes, and occlusion46

rates. This rich set of annotations allows fine-tuning the proposed dataset in order to benchmark47

the robustness of object instance segmentation and 6D pose estimation models against variations48

in lighting, texture, occlusion, camera pose, and scene complexity. Furthermore, we propose three49

scenarios that present significant challenges for 6D pose estimation models: new scene generalization;50

new camera viewpoint generalization; and occlusion robustness. We evaluated the performance of51

two 6D pose estimation baselines, using either RGB or RGBD images, on these three scenarios.52

To the best of our knowledge, FruitBin is the first dataset specifically tailored for the demanding53

task of fruit bin picking and represents the largest-scale dataset for 6D pose estimation, offering54

comprehensive challenges that can be adjusted in terms of scenes, camera poses, and occlusions.55

In summary, our contributions are as follows:56
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• release of FruitBin: the bigest large-scale dataset for fruit bin picking with 40M 6D pose57

annotations over 1M images, depicting comprehensive challenges for 6D pose estimation;58

• rich annotations for object instance-level segmentation and 6D pose estimation, including59

2D and 3D bounding boxes, instance, segmentation masks, and occlusion rates;60

• proposition of three benchmark scenarios to test robustness of 6D pose estimation models in61

terms of occlusion, camera pose, and scene variety.62

• baseline results over these three scenarios for two 6D pose estimation baselines making use63

of RGB and RGB-D images, respectively.64

In the following, Section 2 present previous work in 6D pose datasets. Section 3 presents the65

generation of FruitBin with the software PickSim. Section 4 describes FruitBin with the specific66

statistics of the large dataset and sub-datasets for the 3 scenarios. Section 5 gathers the result of67

baselines of 6D estimation models through the 3 scenarios. Section 6 presents some limitations, and68

Section 7 concludes this article with some perspectives.69

2 Related work70

Because data famine is the major roadblock for learning-based computer vision tasks and even71

the more for robot learning. State-of-the-art datasets for 6D pose estimation (6; 11) is quickly72

over-viewed in this section.73

6D pose datasets. State of the art has featured a number of benchmarks for 6D pose estimation.74

Table 1 lists these datasets and compares them in terms of different characteristics, including data75

nature (real or synthetic), size (number of samples, number of scenes, number of 6D pose annotations),76

as well as challenges, e.g., occlusion, clutter, multiple instances, etc.77

The proposed FruitBin dataset offers high-resolution images and Table 1 demonstrates that it distin-78

guishes itself by incorporating all of the challenges into a single dataset. Notably, it stands out among79

the limited number of datasets that have significantly increased the sample size, ranging from 2 to80

1000 times more samples than existing 6D pose estimation datasets. This expansion in dataset size is81

crucial as it addresses a critical challenge faced by deep learning models—generalizing to unknown82

scenes. By incorporating a larger number of diverse scenes, we believe FruitBin enables models to83

overcome this limitation. With over 40 million 6D pose annotations, FruitBin not only surpasses84

other datasets in terms of the number of scenes but also provides the largest number of annotations85

available.86

(a) Visualisation in Rviz (b) RBG image (c) Depth image (d) Point cloud

(e) Depth map (f) Instance map (g) Semantic map (h) 2D Bounding boxes

Figure 2: Examples of annotations

3 Raw data generation process of FruitBin using PickSim87

This section introduces the generation of Fruitbin through the use of PickSim (7). This recent pipeline88

offers extensive annotation generation capabilities as illustrated in the figure 2 and facilitates the89
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Dataset Data Labels #Samples #Scenes #6D pose Challenges

LINEMOD (12) Real Manual 18k 15 15k C+TL
O-LINEMOD (1) Real Semi-auto 1214 15 120k C+TL+O
APC (26) Real Semi-auto 10k 12 ~240k C+L
T-LESS (13) Real Semi-auto 49k 20 47k C+TL+O+MI
YCB-V (29) Real-S. Semi-auto 133k 92 613k O+C
FAT (24) Synth. Auto 60k 3 205k C
BIN-P (17) Real-S. Semi-auto 206k 12 20M SC+SO+MI+BP
CAMERA (28) Real-S. Semi-auto 308k 31 4M O+C
ObjectSynth (14) Synth. Auto 600k 6 21M O+C
HomebrewedDB (15) Synth. Auto 17.4k 13 56k O+C+L
GraspNet-1B (3) Real Semi-Auto 97k 190 970k O+C
RobotP (30) Synth. Semi-Auto 4k - - O+TL+L
HOPE (25) Real Manual 2k 50 ~30k O+C+MI+L
MetaGraspNet (8) Real-S. Auto 217k 6.4k 3M O+C+MI
SynPick (23) Synth. Auto 503k 300 10M O
StereOBJ-1M (19) Real Semi-Auto 396k 183 1.5M O+L
DoPose (9) Real Semi-Auto 3k 301 11k O+C+BP
FruitBin Synth. Auto 1M 70k 40M SO+SC+MI+BP+TL+L

Table 1: Comparison of 6D pose datasets with their different challenges (O: Occlusion, C: Clutter,
SO: Severe Occlusion, SC: Severe Clutter, MI:Multiple Instance, BP: Bin Pickings, TL: Texture Less,
L: Light).

utilization of the dataset for robotics learning. In order to create task-specific datasets for robotics, it90

is crucial to develop and train tasks such as vision and manipulation within the same environment.91

Utilizing robotic software, such as Gazebo, for generating computer vision synthetic data offers92

numerous advantages. Firstly, it seamlessly integrates physical engines, resulting in more realistic93

outcomes. Secondly, it facilitates the effortless integration of robots and sensors with native robot94

control capabilities. Lastly, it unlocks the potential for creating datasets specifically tailored to95

robotic tasks with various open-source libraries like MoveIt (4). Additionally, PickSim offers easy-to-96

use setup files for domain randomization, dataset recording, and generation. Each step within the97

pipeline can be executed effortlessly using a simple command, with parameters conveniently set in98

user-friendly JSON or YAML files. In this section, we present the generation of FruitBin using the99

PickSim (7) pipeline into four key steps.100

Pre-processing. Raw meshes can be provided to enable mesh domain randomization, encompassing101

textures, object properties, and more. For FruitBin, PickSim receives eight raw meshes representing102

the fruits we aim to simulate, namely Apple, Apricot, Banana, Kiwi, Lemon, Orange, Peach, and Pear.103

No randomization is applied to the mesh or textures in order to preserve the distinct characteristics of104

each fruit. Through this automated process, sdf files are generated, which are essential for robotic105

software simulation and contain key metadata such as category ID for the future dataset recording.106

Scene randomization. PickSim (7) enables domain randomization (2; 20; 21). This functionality107

is used to generate diverse scenes for fruit bin picking. Through configuration files, users can108

easily customize the number of objects, cameras, and lighting conditions without writing additional109

code, simplifying the creation of randomized Gazebo world files. In the FruitBin dataset, scene110

randomization encompasses the bin, fruits, and lighting. The bin undergoes randomization with111

rotations and color variations, while the lighting setup includes randomized positions, intensities, and112

colors. This deliberate setup ensures significant lighting diversity. To maintain statistical consistency,113

the number of instances for each category is randomly set between 0 and 30, ensuring a consistently114

full bin. Examples of these scenes can be seen in Figure 3.115

Camera randomization. The final aspect of randomization involves the camera settings, where116

we employ an orbiter sampler included in PickSim to introduce randomness in the distance (ranging117

from 0.55m to 1m) between the camera and the orbiter center, as well as different angles to ensure118
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Figure 3: 30 first scenes for a unique point of view

optimal viewpoints of the scene. This streamlined setup enables the generation of fully randomized119

scenes that are both physically realistic and ideal for fruit bin-picking scenarios. The impact of these120

camera parameters can be observed in Figure 1, showcasing five different viewpoints of a scene.121

Record data. Simulations in Gazebo can be seamlessly launched using the generated world files.122

These simulations produce datasets with recorded annotations, including instance and semantic123

segmentation, bounding boxes, occlusion rates, 6D pose estimations, depth maps, point clouds, and124

normals.125

4 FruitBin: a large scale dataset126

4.1 Data and Statistics127

For FruitBin with eight fruits, the randomization process is performed 10,000 times with 15 cameras,128

resulting in 150,000 data frames. This process is repeated seven times. Assembling the 7 parts129

represent FruiBin with over 1 million frames across 70,000 scenes and 105 camera viewpoints. The130

dataset is organized systematically, preserving information in metafiles. By dividing the dataset131

into seven parts, sub-datasets can be created for scene generalization, camera generalization, and132

occlusion robustness. A comprehensive dataset comparison can be found in Section 2.133

To streamline the organization of data for learning 6D pose estimation, we have restructured the134

data based on features and categories. FruitBin incorporates metadata to store essential information135

such as scene ID, camera ID, category ID, and instance IDs. These unique IDs enable direct access136

to instance or category-based annotations such as masks, 2D/3D bounding boxes, 6D poses, and137

occlusion rates. This occlusion rate offers a notable advantage by enabling visible instance counting138

in images and facilitating data filtering based on different occlusion rates, as described in Section 4.139

Figure 4 depicts data statistics and provides insights into the distribution of 6D poses among different140

fruit categories. Notably, the complete randomization of scenes results in a Gaussian distribution of141

instance numbers in the images, and ensures a balanced representation of each fruit category.142

4.2 A tunable large-scale dataset for fruit bin picking143

Developing large-scale, diverse, and accurately annotated datasets for 6D pose estimation is a144

demanding and time-consuming task. The availability of comprehensive and well-annotated datasets145

plays a crucial role in advancing the state-of-the-art in 6D pose estimation. However, each dataset, as146

outlined in Table 1, presents unique challenges that necessitate specific datasets. These challenges147

include bin picking, scene diversity, point of view diversity, occlusion, and multi-instances, among148

others. Given that 6D pose estimation finds applications in various contexts, it becomes necessary149

to fine-tune different 6D models to cater to specific requirements. The suitability of FruitBin as a150

tunable dataset stems from its abundant annotations and extensive scale. Specifically, the large-scale151

dataset allows generating sub-datasets tailored to specific purposes or ablation studies. The tunable152

5



Figure 4: Statistics of the whole dataset with the number of instances for each category in the frames

capability of FruitBin is exemplified through its application in addressing three primary challenges153

in 6D pose estimation: scene generalization, camera point-of-view generalization, and occlusion154

robustness.155

Camera and scene generalization scenarios. To explore scene generalization and point-of-view156

camera generalization, 2 scenarios of single-instance 6D pose estimation are created. The idea is157

to sample the FruitBin dataset to generate scenario oriented dataset. The sampling is from the first158

part of the dataset consisting of 10,000 distinct scenes and 15 identical camera points of view. In the159

scene scenario, data is sampled from the large dataset, resulting in 60% representing 6000 scenes160

with all 15 cameras for training, 20% for evaluation, and 20% for testing, with each part containing a161

different scene. A similar approach is applied to study the camera scenario, with nine initial points of162

view allocated for training, three for evaluation, and the last three for testing. During the filtering163

of the dataset, all the dataset samples are category based to already process the data for the purpose164

of future 6D pose estimation. During this sample, new metadata is recorded such as all the scenes,165

camera IDs, and all the category-based instance ID corresponding to including their occlusion rate.166

Occlusion robustness scenarios. For the precise study of occlusion robustness, we considered167

studying as a parameter of the two previous. In practice for the two previous scenarios, 4 levels168

of difficulty are generated leveraging occlusion rate. During the previous sampling, an occlusion169

parameter is added; instead of taking all data, a filter will be applied based on the occlusion rate of170

the object. The first version focuses on objects with occlusion bellow 30%, followed by versions with171

occlusion going to 50%, 70%, and 90%, respectively, representing the most challenging scenarios.172

Additional splitting based on occlusion is performed during testing to evaluate occlusion-related173

performances. For an even more precise study of the impact of the occlusion, the testing part could174

be split according to a partition for getting an occlusion-aware performance overview as presented in175

the tables 3.176

The figure 5 present the splitting of the different scenario for the 4 occlusion difficulties.177

5 Experiments178

Baseline Methods In order to estimate the challenges posed by our FruitBin dataset, we conducted179

a comprehensive assessment using two distinct state-of-the-art 6D pose estimation models employing180

different data modalities.181

The first method, PVNet (22), utilizes a RGB image and information from 3D models of the objects182

as input to extract the 6D pose. This method processes the input image in two stages: firstly, it183

determines 2D keypoints locations of the objects using a series of convolution and deconvolution184

blocks, followed by a RANSAC-based voting scheme. The 6D pose is then obtained by solving an185

uncertainty-driven Perspective-n-Point (PnP) problem given the 2D key points and the 3D model.186
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(a) statistic for occ in [0, 0.3] (b) statistic for occ in [0, 0.5]

(c) statistic for occ in [0, 0.7] (d) statistic for occ in [0, 0.9]

Figure 5: Statistics of the 4 occlusion ranges and two scenarios (scene (world) and camera) with the
splitting: training, evaluating and testing.

The second method, Densefusion (27), takes as input RGB image and depth information (RGB-D187

input) along with a semantic mask of the scene. Generally, depth information methods tend to be188

more robust but require more computational resources. DenseFusion initially extracts a binary mask189

for each object, which is then used to crop the image and the point cloud within the region of interest190

(ROI). Each ROI is then used as input to a 2D feature extractor and a point cloud extractor to obtain191

color and geometry embeddings. These embeddings are then concatenated for each point and fused192

to extract ’local’ and ’global’ information, resulting in the final (dense) fused features. The 6D pose193

is estimated using a pose predictor model that iteratively refines the pose at each step.194

Both models have been trained and evaluated on existing 6D pose estimation datasets: LINEMOD195

and YCB-Video, presented in section 2, and have shown state-of-the-art results.196

Metrics The baseline models are evaluated using the ADD metric (12) (average distance) for197

non-symmetrical objects and ADD-S (29) (average closest point distance) for symmetrical objects.198

In the case of FruitBin, Apple, Apricot, Kiwi, Lemon, Orange and Peach objects are considered as199

symmetrical while Banana and Pear are non-symmetrical. In the following, ADD(-S) refer to both200

metrics.201

ADD is the mean distance of the transformed 3d model points using the estimated pose [R̂|t̂] and202

ground truth pose [R|t]. Based on the computed distance, the estimated pose is considered correct if203

the distance is less than 10% of the model’s diameter. The diameter represents the longest distance204

between 2 points in the object.205

Experiments Using the two baselines described in 5 and the metric presented in 5, we train each of206

them over the 8 scenarios presented in section 4.2. The result are shown in table 2 for Densefusion207

and PVNet. For instance, in these tables, "Scenes_occ[0.3,0.4]" refers to the "Scene" scenario with a208

level of occlusion ranging from 30% to 40%.209

Densefusion, which relies on depth information, exhibits superior performance compared to PVNet,210

which solely utilizes RGB images. However, the effectiveness of Densefusion is heavily influenced211

by object occlusion. It achieves a success rate of 90% or higher when the object’s occlusion is bellow212

30%. Conversely, as the occlusion in the data increases, up to 90%, the performance of Densefusion213

declines, reaching a success rate of 67%. It fails to meet the refinement threshold for this level of214

occlusion for the camera scenario. Additionally, it is important to note that Densefusion employs215

ground truth segmentation as an input for specific studies on 6D pose estimation. This observation216

is further substantiated by the results presented in Table 3, which illustrate the performance across217

various occlusion ranges. The performance remains satisfactory when objects are slightly occluded,218
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Apple Apricot Banana Kiwi Lemon Orange Peach Pear Avg
Densefusion
Scenes_occ[0.0,0.3] 0.997 0.993 0.490 0.991 0.996 1.0 1.0 0.674 0.899
Scenes_occ[0.0,0.5] 0.995 0.950 0.526 0.948 0.956 1.0 1.0 0.636 0.882
Scenes_occ[0.0,0.7] 0.981 0.950 0.414 0.894 0.933 0.997 0.998 0.570 0.849
Scenes_occ[0.0,0.9] 0.844 0.713 0.278 0.656 0.726 0.896 0.903 0.306 0.676
Cameras_occ[0.0,0.3] 0.983 0.872 0.588 0.968 0.957 1.0 0.999 0.669 0.888
Cameras_occ[0.0,0.5] 0.978 0.900 0.592 0.974 0.980 0.999 0.999 0.606 0.887
Cameras_occ[0.0,0.7] 0.983 0.922 0.530 0.887 0.864 0.995 0.997 0.553 0.850
Pvnet
Scenes_occ[0.0,0.3] 0.505 0.422 0.858 0.501 0.486 0.572 0.640 0.762 0.593
Scenes_occ[0.0,0.5] 0.430 0.432 0.880 0.503 0.473 0.572 0.685 0.793 0.596
Scenes_occ[0.0,0.7] 0.533 0.431 0.879 0.475 0.492 0.581 0.649 0.763 0.600
Scenes_occ[0.0,0.9] 0.445 0.363 0.864 0.487 0.481 0.561 0.621 0.761 0.573
Cameras_occ[0.0,0.3] 0.590 0.516 0.952 0.631 0.594 0.701 0.784 0.862 0.704
Cameras_occ[0.0,0.5] 0.606 0.524 0.941 0.611 0.597 0.693 0.819 0.834 0.703
Cameras_occ[0.0,0.7] 0.577 0.475 0.935 0.602 0.588 0.748 0.773 0.810 0.688
Cameras_occ[0.0,0.9] 0.519 0.447 0.939 0.580 0.568 0.673 0.753 0.827 0.663

Table 2: Success rate result of Dnesefusion and Pvnet model trained on the scene and camera
scenarios with the different levels of occlusion.

Apple Apricot Banana Kiwi Lemon Orange Peach Pear Avg
Densefusion
Scenes_occ[0.8, 0.9] 0.547 0.391 0.026 0.258 0.373 0.514 0.592 0.0 0.360
Scenes_occ[0.7, 0.8] 0.679 0.534 0.018 0.378 0.453 0.747 0.733 0.019 0.465
Scenes_occ[0.6, 0.7] 0.868 0.597 0.079 0.520 0.605 0.913 0.899 0.047 0.570
Scenes_occ[0.5, 0.6] 0.912 0.729 0.108 0.593 0.724 0.967 0.950 0.112 0.646
Scenes_occ[0.4, 0.5] 0.964 0.758 0.242 0.793 0.804 1.0 0.993 0.189 0.731
Scenes_occ[0.3, 0.4] 1.0 0.895 0.305 0.803 0.861 1.0 1.0 0.209 0.771
Scenes_occ[0.2, 0.3] 0.996 0.945 0.418 0.884 0.915 0.995 1.0 0.247 0.817
Scenes_occ[0.1, 0.2] 1.0 0.953 0.455 0.959 0.928 1.0 1.0 0.384 0.841
Scenes_occ[0.0, 0.1] 1.0 0.974 0.557 0.973 0.963 1.0 0.999 0.665 0.898
Pvnet
Scenes_occ[0.8, 0.9] 0.258 0.220 0.896 0.478 0.557 0.558 0.489 0.723 0.522
Scenes_occ[0.7, 0.8] 0.248 0.286 0.898 0.519 0.498* 0.562 0.502 0.791 0.538
Scenes_occ[0.6, 0.7] 0.393 0.347 0.887 0.511 0.504 0.616 0.486 0.698 0.555
Scenes_occ[0.5, 0.6] 0.397 0.305 0.901 0.450 0.448 0.565 0.521 0.687 0.534
Scenes_occ[0.4, 0.5] 0.412 0.345 0.836 0.458 0.457 0.551 0.500 0.750 0.539
Scenes_occ[0.3, 0.4] 0.500 0.359 0.870 0.508 0.485 0.609 0.601 0.790 0.590
Scenes_occ[0.2, 0.3] 0.508 0.427 0.848 0.468 0.493 0.541 0.616 0.800 0.588
Scenes_occ[0.1, 0.2] 0.570 0.385 0.872 0.482 0.477 0.614 0.745 0.803 0.619
Scenes_occ[0.0, 0.1] 0.604 0.443 0.896 0.458 0.478 0.557 0.749 0.805 0.624

Table 3: Precise evaluation of Dense-fusion and PVnet trained on ”Scenes_occ[0.0, 0.9]” over the
testing partitions of level of occlusion

achieving a success rate of 90% with occlusion levels below 10%. However, the success rate drops219

significantly to 30% when considering occlusion between 80% and 90%.220

On the contrary, PVNet exhibits distinct characteristics. The method relies on keypoints, which re-221

duces its dependence on occlusion. It demonstrates consistent performance across different scenarios,222

yielding an average result of 64% (tables 2 and 3). Notably, there are variations in performance based223

on the object, with notable peaks for pear, banana, and peach, which possess more intricate textures.224

Conversely, other objects in the dataset can be considered texture-less, lacking any distinctive texture225

specifications. Another important aspect to consider is that PVNet relies on pixel values, while our226

dataset may exhibit varying distances between the camera and the objects. This can result in a limited227

number of pixels available for inferring key points and subsequently estimating the 6D pose.228

These experiments showcase the significant advantages of our dataset, enabling us to present229

formidable challenges to state-of-the-art models that typically excel within the upper echelons230

of standard datasets.231
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6 Limitation and future work232

This work aims to introduce a benchmark for 6D pose estimation by presenting a dataset specifically233

designed for this purpose. However, it is important to acknowledge that our dataset has limitations in234

terms of fruit meshes. Given the nature of fruits, where each instance is unique, there is a need to235

expand the dataset to include category 6D pose estimation. In order to address this, a logical step236

would be to incorporate new vision annotations into the open-source software PickSim NOCS (28),237

which is widely utilized for category 6D pose estimation. This addition would enhance the dataset238

and enable comprehensive evaluation and analysis of category 6D pose estimation methods.239

Furthermore, addressing the sim2real gap between our simulator and real fruits is an important aspect240

to consider. We recognize the need for extensive studies on domain randomization techniques to241

bridge this gap effectively, particularly in the context of robotics applications. By investigating242

and refining domain randomization methods, we can enhance the simulation realism and improve243

the transfer-ability of models trained in the simulator to real-world scenarios. These efforts will244

contribute to advancing the field of robotics and promoting the seamless integration of simulated245

environments with real-world applications.246

7 Conclusion and discussion247

In this paper, we present the largest dataset for fruit bin picking, comprising over 40 million 6D248

pose annotations and 1 million images. The dataset constitutes significant challenges for 6D pose249

estimation, as demonstrated in Section 5, including occlusion and texture-less objects. To address250

different aspects of 6D pose estimation, we have created eight distinct datasets to evaluate scene251

generalization, camera point of view generalization, and occlusion robustness. While the current252

baseline model exhibits its own strengths, none of the baselines achieve satisfactory performance253

across all benchmarks, offering the research community a challenging benchmark to tackle.254

This dataset is curated specifically for 6D pose estimation, offering extensive annotations for enhanced255

accessibility. Beyond its possible applications in 3D reconstruction, Nerf reconstruction, and multi-256

view 6D pose estimation, it also holds significant value for robotics learning, highlighting one of its257

key advantages. With its versatility, the dataset bridges the gap between computer vision and robotics,258

fostering collaboration and innovation across various research areas. Our intention is for this dataset259

to facilitate the improvement of existing 6D pose estimation models and drive further advancements260

in the field of 6D pose for robotics.261
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The checklist follows the references. Please read the checklist guidelines carefully for information on362

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or363

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing364

the appropriate section of your paper or providing a brief inline description. For example:365

• Did you include the license to the code and datasets? [Yes] See Section366

• Did you include the license to the code and datasets? [No] The code and the data are367

proprietary.368

• Did you include the license to the code and datasets? [N/A]369

Please do not modify the questions and only use the provided macros for your answers. Note that the370

Checklist section does not count towards the page limit. In your paper, please delete this instructions371

block and only keep the Checklist section heading above along with the questions/answers below.372

1. For all authors...373

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s374

contributions and scope? [Yes]375

(b) Did you describe the limitations of your work? [Yes] See Section 6.376

(c) Did you discuss any potential negative societal impacts of your work? [N/A]377

(d) Have you read the ethics review guidelines and ensured that your paper conforms to378

them? [Yes]379

2. If you are including theoretical results...380

(a) Did you state the full set of assumptions of all theoretical results? [N/A]381

(b) Did you include complete proofs of all theoretical results? [N/A]382

3. If you ran experiments (e.g. for benchmarks)...383

(a) Did you include the code, data, and instructions needed to reproduce the main experi-384

mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-385

tal material386

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they387

were chosen)? [Yes] See section 6388

(c) Did you report error bars (e.g., with respect to the random seed after running experi-389

ments multiple times)? [No]390

(d) Did you include the total amount of compute and the type of resources used (e.g.,391

type of GPUs, internal cluster, or cloud provider)? [Yes] See Acknowledgement and392

supplemental material.393
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...394

(a) If your work uses existing assets, did you cite the creators? [Yes] We used the code of395

PickSim396

(b) Did you mention the license of the assets? [N/A]397

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]398

399

(d) Did you discuss whether and how consent was obtained from people whose data you’re400

using/curating? [N/A]401

(e) Did you discuss whether the data you are using/curating contains personally identifiable402

information or offensive content? [N/A]403

5. If you used crowdsourcing or conducted research with human subjects...404

(a) Did you include the full text of instructions given to participants and screenshots, if405

applicable? [N/A]406

(b) Did you describe any potential participant risks, with links to Institutional Review407

Board (IRB) approvals, if applicable? [N/A]408

(c) Did you include the estimated hourly wage paid to participants and the total amount409

spent on participant compensation? [N/A]410

A Example of Images from the dataset411

Figure 6: 15 point of view of a single scene of FruitBin

B Appendix412

Include extra information in the appendix. This section will often be part of the supplemental material.413

Please see the call on the NeurIPS website for links to additional guides on dataset publication.414

1. Submission introducing new datasets must include the following in the supplementary415

materials:416

(a) Dataset documentation and intended uses. Recommended documentation frameworks417

include datasheets for datasets, dataset nutrition labels, data statements for NLP, and418

accountability frameworks.419

(b) URL to website/platform where the dataset/benchmark can be viewed and downloaded420

by the reviewers.421

(c) Author statement that they bear all responsibility in case of violation of rights, etc., and422

confirmation of the data license.423

(d) Hosting, licensing, and maintenance plan. The choice of hosting platform is yours, as424

long as you ensure access to the data (possibly through a curated interface) and will425

provide the necessary maintenance.426
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Figure 7: 31 first scenes for a unique point of view

2. To ensure accessibility, the supplementary materials for datasets must include the following:427

(a) Links to access the dataset and its metadata. This can be hidden upon submission if the428

dataset is not yet publicly available but must be added in the camera-ready version. In429

select cases, e.g when the data can only be released at a later date, this can be added430

afterward. Simulation environments should link to (open source) code repositories.431

(b) The dataset itself should ideally use an open and widely used data format. Provide a432

detailed explanation on how the dataset can be read. For simulation environments, use433

existing frameworks or explain how they can be used.434

(c) Long-term preservation: It must be clear that the dataset will be available for a long time,435

either by uploading to a data repository or by explaining how the authors themselves436

will ensure this.437

(d) Explicit license: Authors must choose a license, ideally a CC license for datasets, or an438

open source license for code (e.g. RL environments).439

(e) Add structured metadata to a dataset’s meta-data page using Web standards (like440

schema.org and DCAT): This allows it to be discovered and organized by anyone. If441

you use an existing data repository, this is often done automatically.442

(f) Highly recommended: a persistent dereferenceable identifier (e.g. a DOI minted by443

a data repository or a prefix on identifiers.org) for datasets, or a code repository (e.g.444

GitHub, GitLab,...) for code. If this is not possible or useful, please explain why.445

3. For benchmarks, the supplementary materials must ensure that all results are easily repro-446

ducible. Where possible, use a reproducibility framework such as the ML reproducibility447

checklist, or otherwise guarantee that all results can be easily reproduced, i.e. all necessary448

datasets, code, and evaluation procedures must be accessible and documented.449
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Figure 8: 31 first scenes for a unique point of view

4. For papers introducing best practices in creating or curating datasets and benchmarks, the450

above supplementary materials are not required.451
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