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A B S T R A C T

Current shock-capturing techniques for high-order discontinuous finite element methods based on modal energy
shock sensors coupled to an artificial viscosity operator provide efficient and relatively simple solutions to
tackle high-speed flows with discontinuities. Yet, due to inherent inhomogeneities in modal detection of shocks
within elements, post-shock spurious oscillations can occur. These can be particularly severe in the case of
slow-moving shocks. In the present paper, the origin of such oscillations is identified in the way the artificial
viscosity is distributed across shocks by the modal shock detector. A novel approach is hence proposed to
mitigate post-shock oscillations by introducing, via exponential averaging, a time delay in the artificial viscosity
injection. Numerical one- and two-dimensional tests will show that a calibration of the time delay based on
the shock propagation velocity can suppress, almost completely, post-shock oscillations, even in the most
severe cases. Inspired by machine learning techniques, an efficient way to evaluate the propagation velocities
of different shocks is also proposed, leading to a method to suppress post-shock oscillations, induced by the
artificial viscosity, which is extremely simple, and relatively inexpensive.
1. Introduction

The present paper focuses on high-order discontinuous finite ele-
ment (DFE) methods applied to high-speed flows in the presence of
shocks. It is well known that discontinuous solutions can generate
spurious numerical oscillations (Gibbs phenomena) which need to be
mitigated to ensure numerical stability. Among the many available
techniques to achieve this, artificial viscosities [1–5] are relatively
popular for DFE thanks to their simplicity and ease of implementation,
especially in the case of three-dimensional unstructured meshes.

To identify regions in the flow where the solution needs to be
smoothed out by the introduction of artificial viscosity (AV), a suf-
ficiently localized shock detector is adopted. Thanks to the spectral
nature of DFE, shock detection can be easily achieved by evaluating
the modal energy decay of a selected flow quantity in each element of
the discretization. Relevant detection techniques include the evaluation
of the ratio between the energy of the highest mode and the energy
of the whole spectrum, or the computation of a least-square power
fit of the modal energy spectrum [2–4]. However, supposedly due to
inherent inhomogeneities in the way the modal sensor detects a discon-
tinuity within the element [4], post-shock oscillations can occur, which
can become particularly severe downstream of slow-moving shocks
(see [6] and references therein). Since these oscillations are triggered
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by spurious perturbations related to the way shocks are detected, an
increase in the amount of the injected artificial viscosity would make
them stronger. On the other hand, if a simple augmentation of artificial
dissipation is not a viable option, acting on the sensor itself can give
some improvements and the problem can be somewhat mitigated by a
suitable choice of the signals used to detect the discontinuities [7,8].
Yet, depending on the flow parameters, the improvements can remain
relatively limited.

Restricting the attention to the spectral difference (SD) scheme [9–
11], the main subject of the present study concerns an improvement
to the AV strategy such as to mitigate post-shock oscillations. The
proposed approach is readily applicable on a wide range of similar
schemes, such as the Discontinuous Galerkin (DG) [12–14], the spectral
volume (SV) [15,16] and the flux reconstruction (FR) [17,18] type
schemes.

The paper is organized as follows: the adopted physical model
and the relevant numerical solution method are briefly presented in
Section 2; Section 3 presents the post-shock oscillation phenomenon
with some discussion concerning the main causes; the proposed method
to mitigate or suppress post-shock oscillations is detailed in Section 4
and one of the relevant main ingredients, namely, the evaluation of
the propagation velocities of each shock, is formalized in Section 5;
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finally, the relevant results on one- and two-dimensional test cases
are discussed in Section 6 and some concluding remarks are made in
Section 7.

2. Governing equations and numerical setup

The SD solver utilized in the present study is based on the three-
dimensional Navier–Stokes equations for an ideal, Newtonian fluid.
Although all the relevant test cases are one- and two-dimensional, the
full three-dimensional formulation is presented below, the reduction in
dimensionality being obtained, in a straightforward way, as a particular
case of the presented equations.

Let 𝜌, 𝐮 and 𝐸 be the fluid’s density, the velocity vector and the
otal energy (internal + kinetic), respectively. The three-dimensional
avier–Stokes equations in conservative form are:
𝜕𝐔
𝜕𝑡

+ ∇ ⋅ 𝐅c + ∇ ⋅ 𝐅v = 𝟎, (1)

where 𝐔 =
(

𝜌 𝜌𝐮 𝜌𝐸
)T is the vector of conservative variables, 𝑡 is

he time, and the convective and viscous fluxes are, respectively,

c =
⎛

⎜

⎜

⎝

𝜌𝐮
𝜌𝐮⊗ 𝐮 + 𝑝𝗜
(𝜌𝐸 + 𝑝)𝐮

⎞

⎟

⎟

⎠

, and 𝐅v =
⎛

⎜

⎜

⎝

𝟎
−2𝜇𝗗 − 𝜆 tr(𝗗)𝗜

−2𝜇𝗗 ⋅ 𝐮 − 𝜆 tr(𝗗)𝐮 − 𝑘∇𝑇

⎞

⎟

⎟

⎠

, (2)

the symbol ⊗ representing the tensor product operator. In the above
quations, 𝑝 is the pressure, 𝗜 ∈ R3×3 is the identity matrix, 𝜇 is the

dynamic viscosity, 𝜆 is the second coefficient of viscosity which is set
according to the Stokes’ hypothesis, 𝑘 is the thermal conductivity, 𝑇 is
the temperature, and 𝗗 is the rate of deformation tensor, namely,

𝗗 = 1
2

(

∇𝐮 + ∇𝐮T
)

, with tr(𝗗) = ∇ ⋅ 𝐮. (3)

Assuming the validity of the ideal gas law, the total energy 𝐸 is
related to the pressure and temperature as
𝑝
𝜌
= (𝛾 − 1)𝑐𝑣𝑇 , 𝜌𝐸 =

𝑝
𝛾 − 1

+ 1
2
𝜌𝐮 ⋅ 𝐮, (4)

where 𝛾 = 𝑐𝑝∕𝑐𝑣 is the ratio between specific heat capacities at
onstant pressure and constant volume. In the case of Euler (or inviscid)
omputations, the viscous flux 𝐅v is set to zero everywhere in the flow,
ith the exception of the regions where shocks and discontinuities are
etected, in which case, only the artificial viscosity (AV) from the shock
apturing procedure remains active.

The above equations are solved using the high-order SD method for
nstructured spatial discretization [9–11,16,19,20]. Details about the
elevant implementation on unstructured hexahedral grids are summa-
ized in Ref. [7, Appendix A]. Unless stated otherwise, all the results
eported in the present study have been computed using the Roe flux
ith entropy fix [21,22] for the inviscid interface fluxes, whereas

he interior penalty (IP) flux is adopted for the viscous fluxes. Time
ntegration is performed with the RK45-SSP Runge–Kutta scheme [23]
ith an adaptive time step set at 40% of the admissible time step to

atisfy the Courant–Friedrichs–Lewy (CFL) and Fourier conditions for
he convective and diffusive fluxes, respectively.

In the case of high-speed flows with shocks and discontinuities, the
bove equations are augmented by the introduction of an AV term.
he selected method, originally developed for the DG scheme [2,3],
ombines a highly selective spectral sensor, based on the modal decom-
osition via orthogonal polynomials, with a consistently discretized AV.
he original method involved the use of either a Laplacian or a physical
iscous term [2]. When the former is adopted, Eq. (1) is augmented
ith a Laplacian diffusion term ∇ ⋅ (𝜀∇𝐔), where 𝜀 represents the
dded AV to be introduced in regions where the flow is under-resolved,
uch as across shocks and contact discontinuities. For the physical AV
erm, an entropy preserving formulation is adopted [5]. In this case, an
dditional viscous term ∇ ⋅ 𝐅𝜀 is introduced in Eq. (1) with

𝜀 =
⎛

⎜

⎜

𝟎
−𝜌𝜀 tr(𝗗)𝗜

⎞

⎟

⎟

, (5)
2

⎝ −𝑘𝜀∇𝑇 ⎠
where the artificial thermal conductivity is computed as 𝑘𝜀 = 𝜌𝜀𝑐𝑝∕Pr𝜀
and Pr𝜀 is set constant and equal to the gas Prandtl number.

Concerning the modal sensor, a characteristic-based shock detection
formulation is adopted [7,8]. Accordingly, the AV is injected based on
the worst resolved signal among the density and the acoustic ones. The
acoustic signals, in particular, are evaluated by projecting the solution
on the left eigenvectors of the conservative flux Jacobian computed
using the average solution 𝐔 within the element [7, Appendix D].
The element-wise AV is computed, one direction at a time, based on
the modes of the selected signals along the three orthogonal direc-
tions defining the standard cubic element in computational space. The
maximum value of the AV is then retained.

In the present implementation, as detailed in Ref. [7], the modal
sensor is computed, inside each element, as

𝑠𝑒(𝜓) = log10

[

𝜓̂2
𝑛

∑𝑛
𝑖=1 𝜓̂

2
𝑖

]

, (6)

where 𝜓 is the selected signal (density and/or acoustic), 𝜓̂ the relevant
modes of the Legendre polynomial basis and 𝑛 the discretization order.
The value of the artificial viscosity 𝜀𝑒 is then evaluated as

𝜀𝑒(𝑠𝑒) =

⎧

⎪

⎨

⎪

⎩

0 for 𝑠𝑒 < 𝑠0 − 𝜅,
𝜀0
2

[

1 + sin 𝜋(𝑠𝑒−𝑠0)
2𝜅

]

for 𝑠0 − 𝜅 ≤ 𝑠𝑒 ≤ 𝑠0 + 𝜅,

𝜀0 for 𝑠𝑒 > 𝑠0 + 𝜅,

(7)

where 𝜀0, 𝑠0 and 𝜅 are additional parameters to be chosen empirically.
In particular, the AV intensity scaling factor 𝜀0 is computed from a
scaling velocity and the element size ℎ as

𝜀0 = 𝐶𝜀𝜆maxℎ∕(𝑛 − 1), (8)

here 𝐶𝜀 is a user-defined coefficient, commonly set equal to one, and
max is the maximum wave speed (i.e., the spectral radius of the inviscid
lux Jacobian) in the whole domain [24]. Concerning the threshold
0 and sensor tolerance 𝜅, these are computed via a self-calibration
lgorithm through a manufactured solution [7,25].

Finally, to guarantee numerical stability in the case of strong shocks,
he shock-capturing method is coupled with a high-order, conservative,
ositivity-preserving scheme [26]. The generalization to the SD scheme
s rather straightforward and the relevant details regarding the actual
mplementation are reported in Ref. [7, Appendix C].

. The post-shock oscillations problem

To highlight the problem of post-shock oscillations (PSO) with the
resent numerical setup, a one-dimensional test involving a shock
raveling across the domain at a fixed velocity  is used. It shall
e noticed that relatively mild PSO are also present, for instance, in
he classical Sod tube Riemann problem [4,7,27]. The present test,
n the other hand, is designed to exacerbate the issue and hence the
omputation is performed in a moving relative reference frame, such
hat the propagation velocity of the shock in the reference frame of the
esh can be set at a given (small) percentage of the expected shock

peed in the fluid at rest.
For a stationary ( = 0) shock, Rankine–Hugoniot conditions relate

he left and right states (subscript 𝐿 and 𝑅, respectively) as

𝜌𝑅
𝜌𝐿

=
(𝛾 + 1)M2

(𝛾 − 1)M2 + 2
,

𝑢0𝑅
𝑢0𝐿

=
𝜌𝐿
𝜌𝑅
,

𝑝𝑅
𝑝𝐿

=
2𝛾M2 − 𝛾 + 1

𝛾 + 1
, (9)

with M the shock Mach number and 𝑢0𝐿 = M
√

𝛾𝑝𝐿∕𝜌𝐿. The 0 superscript
has been used to denote velocities for the steady shock case. On the
other hand, the propagation velocity of the shock in the fluid at rest,
denoted as ∗, is obtained in a reference frame moving with velocity
𝑈ref = 𝑢0𝐿 (left state at rest), namely, ∗ = −𝑢0𝐿. In order to obtain a
shock which propagates at a speed 𝜎∗, the reference frame shall move

∗ 0
with a translation velocity equal to 𝑈ref = −𝜎 = 𝜎𝑢𝐿. Considering,
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Fig. 1. Slowly moving Mach 2 shock: solid line, density (left axis); gray filled line, shock-capturing viscosity (right axis).
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Table 1
PSO amplitude (%𝛥𝜌) of moving shocks. Sensor: 𝜌|ac, density-acoustic sensor [7]; 𝜌,
density sensor.

Mach Sensor PSO amplitude (%𝛥𝜌)

5%∗ 30%∗ 50%∗ 70%∗ 90%∗

1.1 𝜌|ac 0.46 0.35 0.12 0.08 0.06

2.0 𝜌|ac 5.94 1.06 0.39 0.18 0.06
𝜌 5.70 1.50 0.67 0.30 0.15

3.5 𝜌|ac 5.55 1.07 0.17 0.06 0.01
5.0 𝜌|ac 6.47 1.29 0.18 0.10 0.00
9.0 𝜌|ac 6.14 1.12 0.09 0.01 0.00

for instance, a M = 2 shock, setting 𝜌𝐿 = 1, 𝑝𝐿 = 1, the initial states, in
the relative mesh reference frame, are readily obtained:

𝑢𝐿 = 𝑢0𝐿 − 𝑈ref = (1 − 𝜎)2.366,

𝑢𝑅 = 𝑢0𝑅 − 𝑈ref = 0.887 − 𝜎2.366, 𝜌𝑅 = 2.667, 𝑝𝑅 = 4.5.

Fig. 1 shows the density profile obtained on a unitary domain (𝐿 =
1), with 400 5th-order elements, after the shock has traveled a fixed
distance 0.2𝐿 in the case that 𝜎 = 5%, whereas Table 1 summarizes
the amplitudes of PSO in density,1 as a percentage of the density
jump, for different shock velocities and different Mach numbers. Notice
that, unless stated otherwise, for all the computations in this and the
next section, the Laplacian model with the density-acoustic sensor is
adopted, scaling the AV to the spectral radius of the inviscid flux
Jacobian with a unitary scaling factor 𝐶𝜀 (cf. Eq. (8)).

Focusing on the M = 2 shock with 𝜎 = 5%, the density profile
downstream the shock presents significant oscillations in density whose
amplitude is about 6% of the density jump. For this extremely high
level of PSO, the type of sensor used has marginal effects on the PSO
amplitude (cf. Table 1). Notice that the AV is quite localized around
the shock with a maximum value of about 0.8 × 10−3. Yet, as it can
be observed in the right plot, which show the time history at a fixed
location, the evolution of 𝜀 by the time the shock passes by is quite
intermittent.

As pointed out in Ref. [4], PSO are (supposedly) due to inherent
inhomogeneities in the modal detector or, in other words, due to dif-
ferences in the way the same discontinuity is detected depending upon
its position within the elements. The effect of such inhomogeneities
can be mitigated by a more suitable distribution of the AV across the
shock [7] and the shock-sensor plays a key role in the amount of PSO.
In order to verify this statement, a very simple test is to eliminate any
inhomogeneity in 𝜀. Indeed, by just setting 𝜀 = 0.8 × 10−3 everywhere
in the domain the density profile, shown in Fig. 2, is completely free
from PSO.

1 The PSO amplitude is evaluated as 4𝜎, where 𝜎 is the standard deviation
f the time history of the density at a fixed location, after the shock has passed.
3

c

Fig. 2. Slowly moving Mach 2 shock with uniform and constant 𝜀 over the
omputational domain.

Although a uniform distribution of the AV in the whole domain is,
f course, rather pointless, the present test suggests that the inhomo-
eneities and the local distribution of the AV, while the shock travels
hrough the elements, play a central role on the onset of PSO. In the
ext section, an approach to improve the behavior of the AV will be
resented.

. The exponential averaging approach

As pointed out in the previous section, two main factors appear to
e the culprit of PSO behind moving shocks: (a) the way the shock-
ensor is activated in the neighborhood of the shock, which determines
he AV distribution across the shock and (b) the inhomogeneities in
hock detection when the shock travels across the element, which may
ntroduce a spurious forcing in the flow.

The former aspect pertains the spatial distribution of the AV and
hatever solution might be envisaged as a mean of improvement is
ost likely to have a significant impact on the locality of the shock

apturing approach (e.g., some sort of smoothing across the neighbor
ells).

The latter aspect, on the other hand, can be addressed with a
ompletely local approach, inside each element, by constraining the
V to respond less promptly to changes in the shock sensor while the
hock travels across the element. In other words, a suitably calibrated
ime delay can be introduced such as to prevent the element-wise value
f AV from changing too rapidly within the time the shock propagates
hrough the element.

To this end, a time memory of the past values of the AV in every
lement is introduced by computing the AV value via an exponential
oving average procedure (or exponential smoothing). Let 𝜀𝑖𝑒 be the
omputed value of AV in the 𝑒th element at the 𝑖th iteration. Then,
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Fig. 3. Slowly moving Mach 2 shock with exponential smoothing at imposed shock speed (cf. Eq. (15)): solid line, density (left axis); gray filled line, shock-capturing viscosity
right axis).
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Table 2
PSO amplitude with exponential smoothing (Mach 2.0, 𝐶ea = 0.5).
∕∗ 0.05 0.30 0.50 0.70 0.90

PSO amplitude (%𝛥𝜌) 0.397 0.059 0.007 0.001 0.000
PSO reduction (%) 93.3 94.4 98.2 99.6 100.0

the exponential averaging algorithm to update the value of 𝜀𝑖𝑒 at every
iteration and in every element is:

⟨𝜀⟩𝑖𝑒 =

{

𝜀0𝑒 , for 𝑖 = 0,
𝛼𝜀𝑖𝑒 + (1 − 𝛼)⟨𝜀⟩𝑖−1𝑒 , for 𝑖 ≥ 1,

(10)

where the smoothing factor 𝛼 ∈ [0 ∶ 1] determines how much memory
he AV has of its previous values in the element and the angled brackets
ave been introduced to distinguish between the instantaneous value,
𝑖
𝑒, and the exponentially averaged one, ⟨𝜀⟩𝑖𝑒. Clearly, the higher the

value of 𝛼, the shorter the memory of the past: a higher 𝛼 discounts
older values faster.

The time constant 𝜏 of the exponential moving average (i.e., the time
delay of the averaged response of a unit step function to reach 63.2%
of the original signal) can be related to the smoothing factor via the
relation

𝛼 = 1 − exp(−𝛥𝜃∕𝜏), (11)

where 𝛥𝜃 is the sampling time interval between subsequent values of
⟨𝜀⟩𝑖𝑒, which is set equal to the time step divided by the number of
stages, 𝑛RK, of the Runge–Kutta scheme (⟨𝜀⟩𝑖𝑒 is re-evaluated at each
Runge–Kutta stage), namely,

𝛥𝜃 = 𝛥𝑡∕𝑛RK. (12)

If  is the propagation velocity of the shock and 𝛥𝑥 is a measure
of the cell size, then the time for the shock to traverse the element is
estimated as

𝜏 = 𝛥𝑥∕, (13)

which establishes a lower bound for the time constant 𝜏 of the exponen-
tial moving average. In other words, changes in ⟨𝜀⟩𝑖𝑒 shall happen on a
time scale which is of the order of (or longer than) the time needed for
the shock to cross the whole element:

𝜏 ≥ 𝜏, or 𝜏 = 𝜏∕𝐶ea, (14)

where 𝐶ea is a dimensionless coefficient of order unity. From Eqs. (11)–
(14), the smoothing factor becomes:

𝛼 = 1 − exp
(

−𝐶ea
𝛥𝑡
𝑛RK𝛥𝑥

)

, with 𝐶ea ≤ 1. (15)
4

A

The M = 2 test performed in the previous section, with exponential
smoothing and the smoothing factor computed from Eq. (15) using the
exact value  = 5%∗ = 0.118 and 𝐶ea = 0.5 (more on the optimal
value of 𝐶ea later), produces the results depicted in Fig. 3. As it can be
seen, the AF distribution is slightly wider around the shock and, most
importantly, its evolution in time is much smoother, leading to a PSO
amplitude of about 0.4% of the density jump. As a side effect of the
introduced delay in the AV, its maximum value is slightly lower overall
and—although difficult to see in the plots—the shock is a bit sharper
(yet completely free from Gibbs phenomena).

PSO amplitudes and reductions (with respect to similar computa-
tions without exponential smoothing) for different values of the shock
propagation velocity are reported in Table 2. The relevant reductions
range from a minimum of about 93%, for slow-moving shocks, to
almost 100%, for fast-moving shocks. In practice, for the present Mach
number and discretization, PSO are completely suppressed for shock
traveling beyond 70% of their propagation speed in fluid at rest ∗.
Notice, however, that, at such relatively high displacement speeds,
PSO are extremely mild (less than 0.2%𝛥𝜌) even without exponential
smoothing (cf. Table 1).

4.1. The 𝐶ea parameter sensitivity

The 𝐶ea parameter sets the time constant of the exponential smooth-
ing with respect to the shock displacement time within the element.
In particular, from Eq. (14), the lower the value of 𝐶ea, the slower the
time response of the exponentially averaged AV in each cell. Notice that
a slow response also means a smoother AV distribution and, indeed,
small values of 𝐶ea promote stronger reductions in PSO. At the same
time, a slow response also means that (a) the AV might not be able to
reach sufficiently high values and, at the same time, (b) the AV is less
localized in the neighborhood of the shock because of the longer delay
to drop back to zero after the shock has passed.

To better clarify the behavior of ⟨𝜀⟩𝑖𝑒, its time history recorded at
fixed point in space is plotted in Fig. 4 for different values of 𝐶ea,

anging from 0.1 to its upper unitary bound. Notice that, to have a
erception of the spatial distribution of the AV across elements, the
ransformed coordinate 𝑥 = 𝑡 is represented on the top axis, with 
he shock displacement speed and the tick marks spaced according to
he elements’ width.

As anticipated, the 𝐶ea parameter has an impact on both the peak
alue and the width of the AV signal. Concerning the former, occasional
ery high values of AV, which can be observed without exponen-
ial smoothing (cf. Fig. 4b), are completely avoided regardless of
he strength of exponential smoothing. The peak of AV is marginally
educed for 𝐶ea ∈ [0.5 ∶ 1.0] (about −6% at most). On the other
and, for values of 𝐶ea smaller than 0.5, significant reductions in the

V peak are observed (e.g., −35% for 𝐶ea = 0.1). With regards to
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Fig. 4. Time history of ⟨𝜀⟩𝑖𝑒, at a fixed location for the slowly moving Mach 2 shock with exponential smoothing at imposed shock speed (cf. Eq. (15)). Plot (a): thin solid line,
𝐶ea ∈ [0.1 ∶ 0.9] with 0.2 step increments; thick solid line, 𝐶ea = 0.5 and 1.0. Plot (b): solid line, 𝐶ea = 3.0; dashed line, 𝐶ea = 1.0; dotted line, no exponential smoothing (the top
xis shows the equivalent element width using the transformation 𝛥𝑥 = 𝛥𝑡).
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Table 3
PSO amplitude (PSO.a) and reduction (PSO.r) for the slow-moving shock with  =
5%∗: L, Laplacian AV; P, physical AV.
𝑛 ×𝑁𝑒 M AV PSO.a (%𝛥𝜌)/PSO.r (%)

𝐶ea = 0.1 𝐶ea = 0.5 𝐶ea = 1.0 𝐶ea = 3.0

5 × 200

1.1 L 0.178/61.5 0.233/49.7 0.219/52.8
2.0 L 0.608/89.8 1.965/67.0 2.034/65.8
2.0 P 1.331/74.0 1.222/76.1 1.438/71.9
5.0 L 0.467/90.7 0.178/96.5 1.018/79.9

5 × 400

1.1 L 0.050/89.2 0.115/75.1 0.170/63.1 0.207/55.0
2.0 L 0.046/99.2 0.393/93.3 0.907/84.6 3.293/44.2
2.0 P 0.200/96.0 0.187/96.3 0.443/91.2 1.397/72.2
5.0 L 0.402/92.3 0.178/96.6 1.072/79.4 4.212/19.1

7 × 400

1.1 L 0.050/90.9 0.093/82.8 0.120/77.9
2.0 L 0.070/98.4 0.556/87.2 0.922/78.8
2.0 P 0.204/94.8 0.116/97.0 0.244/93.8
5.0 L 0.047/98.7 0.089/97.5 0.233/93.5

5 × 600

1.1 L 0.049/89.4 0.116/75.0 0.172/62.8
2.0 L 0.030/99.5 0.396/93.3 1.042/82.4
2.0 P 0.048/99.0 0.174/96.5 0.437/91.3
5.0 L 0.373/92.8 0.179/96.6 1.081/79.1

the spatial distribution, considering as a baseline test the simulation
without exponential smoothing, where the AV signal extends across
about 5 elements, the exponential smoothing widens the AV signal,
downstream the shock only, of about 60%, for 𝐶ea = 1.0, and 160%,
for 𝐶ea = 0.5. Significantly wider AV distributions are obtained for
𝐶ea < 0.5.

In terms of PSO (shown in the next section), the lower the value of
𝐶ea, the higher their reduction. For this Mach number, PSO in density
are between 0.4% and 0.9% of the density jump for 𝐶ea ∈ [0.5 ∶ 1.0]
(i.e., a PSO reduction between 85% and 93%) and down to 0.05% of
the density jump for 𝐶ea = 0.1 (i.e., a PSO reduction of about 99%).

Finally, for the relatively large value of 𝐶ea = 3.0 (cf. solid line curve
in Fig. 4b), marginal smoothing is achieved on ⟨𝜀⟩𝑖𝑒, with practically
no change in AV localization. Concerning PSO, at this value of the
smoothing parameter, their amplitude remains as high as 3.3% of the
density jump, that is to say, a reduction of only about 44% compared
to the baseline test without exponential smoothing (cf. Table 3).

4.2. Sensitivity to mach, order and grid resolution

The slow moving shock test ( = 5%∗) has been performed for
different values of the shock Mach number (M = 1.1, 2.0 and 5.0),
ifferent discretization orders (𝑛 = 5 and 7) and different numbers of el-
ments (𝑁𝑒 = 200, 400, 600). For all the computations, the shock sensor
s the density-acoustic one and the exponential smoothing parameter

takes the values 0.1, 0.5 and 1.0. The higher value 𝐶 = 3.0 is also
5

ea ea t
tested for 𝑛 = 5 and 𝑁𝑒 = 400. As pointed out in the previous section,
this value produces mild smoothing without any appreciable penalty
in AV localization. For every test case, PSO reductions in density are
measured with respect to the baseline computation performed without
exponential smoothing. The relevant results are summarized in Table 3.

Fig. 5 shows the results in terms of PSO amplitude, as a percentage
of the density jump, and PSO percentage reduction with respect to
the baseline computations without exponential smoothing, when the
Laplacian AV model is adopted. As anticipated, overall, the lower is
the value of 𝐶ea, the higher is the reduction in PSO. There are some
exception though, as, for example, the fifth-order computations at Mach
5.0, for which the case with 𝐶ea = 0.5 performs better than the case with
𝐶ea = 0.1 (∼ 97% versus ∼ 92% reduction, respectively). For values of
𝐶ea ∈ [0.5 ∶ 1.0], thus without an excessive penalization in terms of
AV localization (cf. Section 4.1), PSO reductions are quite significant.
With the exclusion of the lowest Mach number tests on the coarse mesh
(𝑁𝑒 = 200), for which the PSO amplitudes are anyway extremely small
and of the order 0.2% of the density jump, PSO reductions are more
than 60%. With the sole exception of the test at M = 2 on the coarse
mesh (about 2% amplitude and 67% reduction), PSO amplitudes are
less than 0.6% of the density jump for 𝐶ea = 0.5, which appears to give
a good balance between PSO reduction and AV localization.

Switching to the entropy preserving physical AV model [5], a
comparison with the Laplacian model is shown in Fig. 6 for the Mach
2.0 case. As it can be noticed, for 𝐶ea ≥ 0.5, the physical viscosity
model has a clear advantage over the Laplacian one, both in terms of
PSO reduction and PSO amplitude. This is possibly due to the physical
formulation being less susceptible of developing additional unphysical
perturbations, such as overheating errors and AV-induced inconsisten-
cies between mass, momentum and energy transport equations. The
results degrade slightly when 𝐶ea < 0.5, for which the excessive delay
in the AV and the consequent reduction in the peak value, promotes
the onset of Gibbs phenomena in the shock profile (not shown).2

Finally, when 𝐶ea is set equal to 3.0 to favor AV localization, PSO
reductions are much less pronounced, especially at the higher Mach
numbers. At M = 5.0, for instance, PSO reductions go from about 97%,
for 𝐶ea = 0.5, down to about 19%, when 𝐶ea = 3.0.

2 It is worth noticing that the Laplacian and the physical models have been
ompared with the same AV intensity scaling factor. In other words, tests
ave been performed scaling the AV to the spectral radius of the inviscid flux
acobian with a unitary coefficient for both models (cf. Eq. (8)). Under these
ircumstances, the increased dissipation brought by the Laplacian formulation,
akes this last more robust to further reductions in the computed AV (but

lso produces shock profiles which are less sharp than those obtained with

he physical AV).
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Fig. 5. PSO of slow-moving shock: red symbols, M = 1.1; black symbols, M = 2.0; green symbols, M = 5.0; circles, 𝑛 = 5, 𝑁𝑒 = 400; squares, 𝑛 = 7, 𝑁𝑒 = 400; triangles, 𝑛 = 5,
𝑒 = 200; diamonds, 𝑛 = 5, 𝑁𝑒 = 600.
Fig. 6. PSO of M = 2.0 slow-moving shock: black symbols, Laplacian AV; red symbols, physical AV; circles, 𝑛 = 5, 𝑁𝑒 = 400; squares, 𝑛 = 7, 𝑁𝑒 = 400; triangles, 𝑛 = 5, 𝑁𝑒 = 200;
iamonds, 𝑛 = 5, 𝑁𝑒 = 600.
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Overall, when dealing with very slow-moving shocks, the value of
ea = 0.5 appears to be a fairly optimal choice for both the Laplacian
nd the physical formulations.

. Evaluation of the shock velocity 

One fundamental issue with the exponential averaging approach
nd the proposed calibration of the smoothing factor from Eq. (15) is
he necessary knowledge of the shock displacement velocity  with
espect to the mesh. In all the test presented in Section 4, the dis-
lacement speed of the shock was known in advance and hardcoded
n the solver to compute the smoothing factor. On the other hand, in
he vast majority of usual applications, this kind of information might
ot be available in advance. Moreover, the shock displacement speed
ight evolve during the computation. For instance, in simple problems

f shock reflection, the incident and reflected shock speeds are different
nd the smoothing factor shall adapt to that change.

In this section, a methodology is proposed to evaluate the shock
peed using either the density or the pressure profiles (or any other
uantity that might identify the presence of a discontinuity).

Let a shock be propagating through a fluid with an absolute velocity
𝑎. Notice that, if 𝐮 is the fluid flow velocity, then the relative velocity
f the shock with respect to the fluid can be computed as 𝐮𝑟 = 𝐮𝑎 − 𝐮.
lso note that the displacement speed  of the shock with respect to

he mesh is related to the norm of 𝐮𝑎. In other words, the computational
esh coincides with the absolute reference frame.

Let us identify, for instance, the shock front by the density profile.
ecause the profile propagates with the absolute velocity 𝐮𝑎, the density
ust satisfy the advection equation

𝜕𝜌
+ 𝐮 ⋅ ∇𝜌 = 0, ⇒ 𝐮 ⋅ ∇𝜌 = −

𝜕𝜌
. (16)
6

𝜕𝑡 𝑎 𝑎 𝜕𝑡 b
Moreover, from the conservation of mass, the right-hand-side of Eq.
(16) is:
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝐮) = 0, ⇒ −
𝜕𝜌
𝜕𝑡

= ∇ ⋅ (𝜌𝐮), (17)

and hence, from Eqs. (16) and (17), the following identity is obtained:

𝐮𝑎 ⋅ ∇𝜌 = ∇ ⋅ (𝜌𝐮). (18)

By multiplying and dividing the left-hand-side by the norm of ∇𝜌,
fter the introduction of the unitary vector 𝐧̂ = ∇𝜌∕ ‖∇𝜌‖ normal to
he shock front (in the direction of the compressed gases), the above
quation becomes

𝑎 ⋅
∇𝜌

‖∇𝜌‖
‖∇𝜌‖ = (𝐮𝑎 ⋅ 𝐧̂) ‖∇𝜌‖ = ∇ ⋅ (𝜌𝐮), ⇒ 𝐮𝑎 ⋅ 𝐧̂ =

∇ ⋅ (𝜌𝐮)
‖∇𝜌‖

, (19)

hich can be used to evaluate the norm of the absolute velocity (normal
o the shock front), which is here identified with :

= |

|

𝐮𝑎 ⋅ 𝐧̂|| =
|∇ ⋅ (𝜌𝐮)|
‖∇𝜌‖

. (20)

By similar steps, in the case of inviscid flows, the absolute velocity
of the shock can be obtained from the pressure using the pressure
equation,
𝜕𝑝
𝜕𝑡

+ 𝐮 ⋅ ∇𝑝 + 𝜌𝑎2(∇ ⋅ 𝐮) = 0, (21)

where 𝑎 is the speed of sound. In this case, the shock speed becomes:

 = |

|

𝐮𝑎 ⋅ 𝐧̂|| =
1

‖∇𝑝‖
|

|

|

𝐮 ⋅ ∇𝑝 + 𝜌𝑎2(∇ ⋅ 𝐮)||
|

, (22)

here 𝐧̂ = ∇𝑝∕ ‖∇𝑝‖. The advantage of the density is clearly in the
implicity of the relevant conservation law. Nonetheless, there might

e cases in which the pressure signal could be a preferred choice.
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Eq. (20) (resp. (22)) presents three major issues when used inside
a high-order numerical solver: (a) the gradient of a high-order poly-
nomial solution can be somewhat oscillatory, especially in the neigh-
borhood of discontinuities; (b) the mass conservation equation (17)
(resp. the pressure Eq. (21)) might not correspond exactly to what is
numerically solved for (for example, when using a Laplacian AV, an
additional diffusive term is present on the right-hand-side of Eq. (17));
(c) the division by the norm of the gradient of 𝜌 (resp. 𝑝) is a quite
bad-behaved operation, as this quantity can be zero or very close to
zero in large regions of the flow.

Focusing for example on the density formulation, to overcome the
first issue, the instantaneous value of the right-hand-side of Eq. (20)
is integrated inside each element, rather than being computed at each
solution point. More precisely, a gradient-weighted average of the
shock speed is computed in every element as:

𝑒 =
∫𝑉𝑒  ‖∇𝜌‖ d𝑉

∫𝑉𝑒 ‖∇𝜌‖ d𝑉
=

∫𝑉𝑒 |∇ ⋅ (𝜌𝐮)| d𝑉

‖∇𝜌‖𝑒
, (23)

where 𝑉𝑒 is the element volume and ‖∇𝜌‖𝑒 = ∫𝑉𝑒 ‖∇𝜌‖ d𝑉 has been
introduced to simplify the notation hereafter. Notice that the integra-
tion is performed straightforwardly by Gauss quadrature at the solution
points.

Concerning the second point, rather than using the theoretical trans-
port equation for the selected variable, the actual residuals are adopted.
In fact, the residuals automatically include all the viscous and/or AV
terms, if any. Hence, using the residual of the mass conservation
equation, 𝜌 = 𝜕𝜌∕𝜕𝑡, and following the same steps in Eqs. (16)–(20),
the displacement speed becomes  = |

|

|

𝜌
|

|

|

∕ ‖∇𝜌‖. Should the pressure
be used to detect the shock speed via Eq. (22), the displacement speed
would be  = |

|

|

𝑝
|

|

|

∕ ‖∇𝑝‖, where the residual of the pressure is
computed from the residuals 𝜌, 𝜌𝐮 and 𝜌𝐸 of the mass, momentum
and total energy equations, respectively:

𝑝 = (𝛾 − 1)
[

𝜌𝐸 − 𝐮 ⋅𝜌𝐮 +
1
2
(𝐮 ⋅ 𝐮)𝜌

]

. (24)

The above relation based on the residuals, has the practical advantage
of being valid also in the viscous case without modification.

Eventually, Eq. (23) transforms into

𝑒 =
∫𝑉𝑒

|

|

|

𝜙
|

|

|

d𝑉

‖∇𝜙‖𝑒
, (25)

where 𝜙 denotes, hereafter, either the density 𝜌 or the pressure 𝑝.
Finally, concerning the third point, Eq. (25) is computed condi-

ioned to a sufficiently large value of its denominator. Accordingly, if
𝑒 is the number of elements and

∇𝜙‖max = max
𝑁𝑒

{

‖∇𝜙‖𝑒
}

, (26)

then 𝑒 becomes:

𝑒 =

⎧

⎪

⎨

⎪

⎩

∫𝑉𝑒
|

|

|

𝜙
|

|

|

d𝑉

‖∇𝜙‖𝑒
, if ‖∇𝜙‖𝑒 > 𝛽∇ ‖∇𝜙‖max,

0, otherwise,
(27)

here the threshold coefficient 𝛽∇ can be safely set in a relatively wide
ange of values without significantly affecting the results. A value of
.01 will be adopted in all the tests presented hereafter.

.1. Implementation

When a single shock is present in the domain, the shock speed
rom Eq. (27) can be used to calibrate the method globally, with
he smoothing factor 𝛼 determined, according to Eq. (15), using the
aximum value of 𝜔𝑒 = 𝜏−1,𝑒 = 𝑒∕𝛥𝑥𝑒 within regions where the shock

s detected:

max = max
{

𝑒∕𝛥𝑥𝑒 ∣ 𝜀𝑒 > 𝛽𝜀𝜀0
}

, (28)
7

𝑁𝑒
m

here 𝜀𝑒 is the local element value of the AV, 𝜀0 is the relevant scaling
factor from Eq. (8) and 𝛥𝑥𝑒 is, for multi-dimensional problems, an
verage element size. The conditional coefficient 𝛽𝜀 is set equal to 0.01
ereafter.

When multiple shocks are present, a similar global approach can
e used. In this case, however, considering that the most troublesome
hock is the slowest, the smoothing factor might be better calibrated
sing the minimum non-zero value of 𝜔 within regions where the shock
s detected:

min = min
𝑁𝑒

{

𝑒∕𝛥𝑥𝑒 ∣ 𝜀𝑒 > 𝛽𝜀𝜀0 and 𝑒∕𝛥𝑥𝑒 > 𝜖
}

, (29)

where 𝜖 is a small threshold value of the order of the machine precision,
which is introduced to prevent a zero value of 𝜔min.

Another possibility is to calibrate the global smoothing factor using
a suitable average value. For instance, to restrict the averaging process
to the regions where shocks are present, the average, weighted by the
AV, can be used:

𝜔avg =
∑𝑁𝑒
𝑒=1 𝜀𝑒𝑒∕𝛥𝑥𝑒
∑𝑁𝑒
𝑒=1 𝜀𝑒

. (30)

The problem with such global approaches based on one unique
value of 𝜔 is that the resulting smoothing factor would be optimal for
one shock at most. In particular, using the maximum values would
result optimal for the fastest shock in the domain. As far as the
slower shocks are concerned, these will benefit some PSO reduction
but the reduction would be sub-optimal. On the other hand, the global
calibration based on the minimum shock speed would introduce an
excessive time delay on the faster shocks. From Fig. 4(a), it is clear that
an excessive time delay can result in an insufficient amount of AV being
injected in the neighborhood of the faster shocks and, as a result, these
might suffer from excessive Gibbs phenomena or even instability. At the
same time, the AV space localization would be penalized and excessive
dissipation would result in the neighborhood of the fast shocks. Finally,
a global approach based on the average would mitigate the above-
mentioned problems for the faster shocks but would be sub-optimal
overall for the slower shocks.

It is clear that the best approach would be to identify and follow the
different shocks in the domain and calibrate the exponential smoothing
factor in the neighborhood of every shock individually. To this end,
the approach proposed here utilizes a tool borrowed from machine
learning techniques to discriminate between regions of different shock
speed and determine suitable global means. The calibration of the
exponential smoothing is then performed in the neighborhood of every
shock depending on the global mean which is closest to its displacement
speed.

As a first step, the ensemble of all the meaningful values of 𝜔 within
the whole domain is collected. In practice, this ensemble contains the
values of 𝜔 measured where gradients are sufficiently high and the AV
is non-zero:

 =
{

𝑥𝑖 ≡ 𝜔𝑒 ∣ ‖∇𝜙‖𝑒 > 𝛽∇ ‖∇𝜙‖max and 𝜀𝑒 > 𝛽𝜀𝜀0
}

, (31)

where 𝛽∇ = 𝛽𝜀 = 0.01 and

𝜔𝑒 =
𝑒
𝛥𝑥𝑒

=
∫𝑉𝑒

|

|

|

𝜙
|

|

|

d𝑉

‖∇𝜙‖𝑒 𝛥𝑥𝑒
. (32)

Supposing that 𝐾 shocks are present in the flow, it is reasonable
o expect that the values within  will be clustered around a number
f typical values 𝜗𝑗 , one for each shock in the domain. To find these
ypical values—or optimal cluster centroids—the power 𝑘-means clus-
ering technique is adopted [28]. Among the many different 𝑘-means
lgorithms, this particular one has very low sensitivity on the cluster
nitiation while maintaining a relatively low algorithmic complexity.

Given a set of initial centroids 𝜗0,𝑗 , with 𝑗 = 1,… , 𝐾, the power 𝑘-
eans clustering procedure involves the steps described in Algorithm



Computers and Fluids 241 (2022) 105491G. Lodato et al.

A
T
[

v
w
a

Algorithm 1 power 𝑘-means clustering
1: Initialize 𝑠0 > 0 and centroids 𝜗0,𝑗 with 𝑗 = 1,… , 𝐾

2: Initialize 𝑓0 ←
∑

||

𝑖=1

[

1
𝐾
∑𝐾
𝑙=1(𝑥𝑖 − 𝜗0,𝑙)

−2𝑠0
]−1∕𝑠0

3: while %ch > 0.01 and 𝑚 ≤ 𝑚max do
4: for all points 𝑥𝑖 in  do

5: 𝑤𝑚,𝑖𝑗 ←
[

∑𝐾
𝑙=1(𝑥𝑖 − 𝜗𝑚,𝑙)

−2𝑠𝑚
]−(1+1∕𝑠𝑚)

(𝑥𝑖 − 𝜗𝑚,𝑗 )−2(𝑠𝑚+1)

6: end for
7: 𝜗𝑚+1,𝑗 ←

(

∑

||

𝑖=1𝑤𝑚,𝑖𝑗
)−1

∑

||

𝑖=1𝑤𝑚,𝑖𝑗𝑥𝑖

8: 𝑓𝑚+1 ←
∑

||

𝑖=1

[

1
𝐾
∑𝐾
𝑙=1(𝑥𝑖 − 𝜗𝑚+1,𝑙)

−2𝑠𝑚
]−1∕𝑠𝑚

9: %ch ← |

|

𝑓𝑚+1 − 𝑓𝑚|| ∕𝑓𝑚
10: 𝑠𝑚+1 ← 𝜂𝑠𝑚
11: end while

1, where 𝑚 denotes the iteration counter.3 Notice that the convergence
is checked on the performance function 𝑓𝑚 = 𝑓 (𝜗𝑚,𝑗 ) and, in particular,
the iteration is stopped when the percentage change of 𝑓𝑚 falls below
1% of the value at the previous iteration. Optionally, it might be
useful to check the standard deviation of the data in  beforehand and
skip the power 𝑘-means clustering approach if it is sufficiently small
compared to the average value 𝜔avg from Eq. (30) (say 1% 𝜔avg).

Once the typical values 𝜗𝑗 are obtained for 𝜔, to calibrate the
exponential smoothing locally for every shock, the method proposed
is based on the evaluation of an element based value of 𝜔𝑒 satisfying
the following properties:

(a) 𝜔𝑒 shall be equal to the closest typical value in the neighborhood
of every shock;

(b) 𝜔𝑒 shall have a non-zero, local, lower bound to avoid the AV to
become frozen4 in regions where steady shocks are present;

(c) 𝜔𝑒 shall automatically return to a sufficiently high maximum
value where no shocks are present, such that, in these regions,
the AV promptly recovers a zero value.

In order to satisfy these properties the element-wise value of 𝜔𝑖𝑒, at
the 𝑖th iteration is computed as:

𝜔𝑖𝑒 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫𝑉𝑒
|

|

|

𝜙
|

|

|

d𝑉

‖∇𝜙‖𝑒 𝛥𝑥𝑒
, if ‖∇𝜙‖𝑒 > 𝛽∇ ‖∇𝜙‖max,

𝜗𝑗,cl, if ‖∇𝜙‖𝑒 ≤ 𝛽∇ ‖∇𝜙‖max and 𝜀𝑒 > 𝛽𝜀𝜀0,
(𝑢 + 𝑎)max
𝛥𝑥𝑒

, otherwise,

(34)

where 𝜗𝑗,cl is the closest value to 𝜔𝑖−1𝑒 , from the previous iteration,
among the typical values 𝜗𝑗 . To initialize the simulation, an initial
value is set, everywhere, using the maximum speed of sound: 𝜔0

𝑒 =
𝑎max∕𝛥𝑥𝑒. According to Eq. (34), 𝜔𝑖𝑒 will assume the locally computed
value 𝑒∕𝛥𝑥𝑒 in regions where the density gradient is sufficiently high.
In the neighborhood of the shocks, where the AV is active, 𝜔𝑖𝑒 will
remain equal to the closest typical value—or centroid—of the cluster
the shocks belongs to. In all the other regions, where no shocks are

3 Some extra care shall be taken when dealing with steps 2, 5 and 8 of
lgorithm 1, as the relevant summations involve potential divisions by zero.
he problem can be easily overcome by using the identity [29]

∑

𝑖
𝑑−2𝑠𝑖

]−𝑝

=
(

𝑑2min
)𝑠𝑝

[

1 +
∑

𝑖≠min

(

𝑑2min

𝑑2𝑖

)𝑠
]−𝑝

, (33)

which does not pose any problem even when 𝑑2min = min{𝑑2𝑖 } = 0.
4 From Eq. (15), 𝛼𝑒 = 1 − exp(−𝐶ea𝜔𝑒𝛥𝑡∕𝑛RK) and 𝛼𝑒 = 0 for 𝜔𝑒 = 0. A zero

alue of the smoothing factor implies that the exponential averaging does not
eight present realizations (cf. Eq. (10)) and, therefore, the AV cannot change
nymore.
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Algorithm 2 Assign 𝜔𝑖𝑒 at 𝑖-th iteration and set 𝛼𝑖𝑒
1: Initialize 𝜔0

𝑒 = 𝑎max∕𝛥𝑥𝑒 and 𝛽∇ = 𝛽𝜀 = 0.01
2: for all element 𝑒 do
3: if ‖∇𝜙‖𝑒 > 𝛽∇ ‖∇𝜙‖max then
4: 𝜔𝑖𝑒 ← ∫𝑉𝑒

|

|

|

𝜙
|

|

|

d𝑉 ∕
(

‖∇𝜙‖𝑒 𝛥𝑥𝑒
)

5: else if 𝜀𝑒 > 𝛽𝜀𝜀0 then
6: 𝑑𝑗 ←

(

𝜔𝑖−1𝑒 − 𝜗𝑗
)2

7: 𝑑min ← min𝑗{𝑑𝑗}
8: 𝑘← index of 𝑑min
9: 𝜔𝑖𝑒 ← 𝜗𝑘

10: else
11: 𝜔𝑖𝑒 ← (𝑢 + 𝑎)max∕𝛥𝑥𝑒
12: end if
13: 𝛼𝑖𝑒 ← 1 − exp

(

−𝐶ea𝜔𝑖𝑒𝛥𝑡∕𝑛RK
)

14: end for

Table 4
Shock speed evaluation accuracy (𝐶ea = 0.5).

Exact  Eq. (27)

𝜙 ≡ 𝜌 𝜙 ≡ 𝑝

Test 1. 0.118 0.118 ± 0.0016 0.118 ± 0.0018

Test 2. 3.550 3.542 ± 0.0074 3.543 ± 0.0140
1.446 1.437 ± 0.0082 1.441 ± 0.0095

Test 3.

3.313 3.305 ± 0.0074 3.307 ± 0.0137
2.366 2.365 ± 0.0044 2.366 ± 0.0021
1.999 1.992 ± 0.0062 1.992 ± 0.0140
0.599 0.597 ± 0.0029 0.599 ± 0.0032

Table 5
PSO amplitude with power 𝑘-means adaptive exponential smoothing (𝐶ea = 0.5).

 𝐾 PSO amplitude (%𝛥𝜌) PSO reduction (%)

Lapl. AV Phys. AV Lapl. AV Phys. AV

Test 1. 0.118 1/2 0.381 – 93.5 –

Test 2. 1.446 1/2 0.043 0.046 93.7 98.3

Test 3. 1.999 2/3 ∼0.06 0.198 ∼93 95.3
0.599 2/3 0.137 0.256 92.6 95.3

detected, the exponential smoothing is set with the time-scale of the
fastest wave speed to ensure fast recovery of the AV.

Finally, the exponential smoothing factor for the AV is obtained, at
every iteration, from Eq. (15):

𝛼𝑖𝑒 = 1 − exp

(

−𝐶ea
𝜔𝑖𝑒𝛥𝑡
𝑛RK

)

. (35)

The actual implementation is summarized in Algorithm 2 and will
be referred to as adaptive exponential smoothing hereafter.

5.2. Numerical tests

The shock velocity evaluation method is tested on three
one-dimensional tests:

1. A Mach 2 moving shock at 5% its displacement speed in fluid at
rest. This is the same test described in Section 3 and the expected
shock speed is equal to 0.118 (computational units).

2. Two colliding Mach 3 shocks (equivalent to a shock reflection
problem). In this case, setting to 1 the pressure and density in
the fluid at rest between the shocks and the corresponding values
upstream of the shocks according to Rankine–Hugoniot condi-
tions for the selected Mach number, the incident and reflected
shocks will have  = 3.550 and 1.446 (Mach 2.1), respectively.

3. Two colliding shocks at Mach 2 and 2.8, respectively. Here two
different values of the shock speed are simultaneously present.
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Fig. 7. Shock speed evaluation by the power 𝑘-means clustering, using the density formula (cf. Eq. (27)): filled circles, computed shock speed (1st cluster centroid); crosses,
computed shock speed (2nd cluster centroid); open squares, computed shock speed (3rd cluster centroid); dash-dotted line, theoretical (incident) shock speed; dash–dot-dotted line
theoretical (reflected) shock speed.
For unitary pressure and density in the fluid at rest between
the shocks, the incident shocks have  = 2.366 and 3.313,
respectively. After collision, two reflected shocks and a contact
discontinuity between them are present. The reflected shocks
have  = 1.999 (Mach 2.26) and 0.599 (Mach 1.62), respec-
tively, whereas the contact discontinuity has a displacement
velocity of 0.853.

The first two tests are designed to check the accuracy of the pro-
posed shock speed detection method and its capacity to adapt to shock
speed changes, whereas the last test is designed to check the ability of
the power 𝑘-means clustering technique to find the correct clusters in
the data and the relevant centroids, i.e., the propagation velocities of
the shocks. In the first two tests, the number of clusters 𝐾 is set equal
to 1 or 2, whereas, for the third test, 𝐾 = 2 or 3.

The time history of the computed shock speed using power 𝑘-means
clustering via Eq. (27), with 𝜙 ≡ 𝜌, is depicted in Fig. 7 for the three test
cases. The accuracy of the results obtained using both the density or the
pressure in Eq. (27) (mean value and standard deviation) is reported in
Table 4. Overall, both formula produce sufficiently accurate estimations
of  and the power 𝑘-means algorithm is capable to identify shocks
and adapt to changes in their speed. Some oscillations in the computed
shock speed are visible, but these do not seem to negatively impact the
results in terms of PSO (see below). Concerning the parameter 𝐾 of the
power 𝑘-means clustering procedure, it is worthwhile noticing that se-
lecting 𝐾 greater than the actual number of different shocks in the flow
results in the 𝑘-means algorithm to find additional cluster centroids.
However, these are close to the centroids of the existing shocks. This
can be seen in Fig. 7(d), relevant to the third test executed with 𝐾 = 3.
As it can be seen, the third additional shock speed (or cluster centroid)
oscillates between the typical expected values characterizing the two
shocks in the flow. Therefore, given that Eq. (34) selects the closest
centroid, the exponential averaging calibration remains unaffected by
9

the selected value of 𝐾 (provided, of course, that 𝐾 is high enough to
account for all the different shocks in the flow).

A summary of the measured PSO amplitudes and reductions for the
different test cases is reported in Table 5. The data include results from
both the Laplacian and the physical AV models. As anticipated, the
impact of the selected value of 𝐾 is, at most, marginal and, for each
test, the measured PSO are unaffected by 𝐾. Concerning the first test
case, in particular, the adaptive power 𝑘-means calibration performs
the same as the calibration based on the a priori known shock speed,
with PSO amplitudes of about 0.4 %𝛥𝜌 and PSO reductions of about
93% for both approaches (cf. Tables 2 and 5).

The density and AV profiles for the three test cases are depicted
in Fig. 8, where the results without exponential smoothing are also
shown for comparison. Notice that, the shown results for the second
and third tests have been obtained using the physical AV. This choice,
in fact, is more suitable for shock collision problems, which can be
particularly prone to produce overheating errors. The results obtained
with the Laplacian AV model (not shown) are anyway comparable, ex-
cept for some localized disturbances due to the presence of an artificial
dissipative term in the density equation and the lack of strict physical
consistency between momentum and energy transport (see Ref. [5] for
a detailed discussion).

6. Results and discussion

In the present Section, the results obtained using the exponential
averaging technique are discussed on some selected one- and two-
dimensional test cases. Comparisons will be presented with similar
computations performed without exponential averaging. It shall be
noticed that, unless stated otherwise, the baseline numerical setup uses
the Roe flux with entropy fix [21,22] for the inviscid fluxes, whereas
the interior penalty (IP) flux (with 𝛼IP = 0.5) is adopted for the viscous
fluxes. In the case of inviscid computations, the molecular diffusion
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Fig. 8. Comparison of density profile with and without power 𝑘-means adaptive exponential smoothing: solid line, density (left axis); gray filled line, shock-capturing viscosity
(right axis); thin dashed line, density without exponential smoothing.
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is switched off and the IP flux is used for the artificial viscosity term
only. Time integration is performed with the RK45-SSP Runge–Kutta
scheme [23] with 0.4 CFL and Fourier coefficients. Shock-capturing is
enforced by means of a Laplacian or physical term, whose viscosity is
scaled, with the parameter 𝐶𝜀 = 1, on the maximum wave speed within
the computational domain. The positivity-preserving procedure [26]
for the density and pressure will also be activated whenever needed.

6.1. Sod’s shock tube

The Sod tube Riemann problem [27] is considered in this Section.
On this particular test, oscillations in the density of about 0.4–0.5%
of the density jump across the contact discontinuity where observed
in Ref. [4], regardless of the order of accuracy. Numerical tests are
performed by integration of the Euler equations on either 200 or 600
uniform elements, using, respectively 10th- and 8th-order SD discretiza-
tions. The flow is initialized at 𝑡 = 0 setting (𝜌, 𝑢, 𝑝) = (1, 0, 1) and
𝜌, 𝑢, 𝑝) = (0.125, 0, 0.1) in the left and right halves of the domain,
espectively. Then, the solution is checked at 𝑡 = 0.2, when a rarefaction
ave, a contact discontinuity and a shock are established.

The relevant results, obtained using both the Laplacian and the
hysical AV models, are reported in Fig. 9. As it can be seen, de-
ending on the grid resolution, the order and the AV model, the
omputations without exponential smoothing are characterized by PSO
ith amplitudes as high as about 1.2% of the density jump. Notice

hat the oscillations to the left of the contact discontinuity originate
ehind the shock. This can be readily verified by inspection of the
ressure profile (not shown). The PSO reductions obtained thanks to
he adaptive exponential smoothing technique are quite significant and
ange between 96.1 and 99.5%.
10

p

.2. Shu–Osher shock tube

The Shu Osher shock tube problem [30] involves a Mach 3 shock,
raveling at its maximum speed in fluid at rest (∗ = 3.549648),
nteracting with a sinusoidal wave in density. For such a propaga-
ion velocity, no PSO are observed5 and, in principle, the exponential

smoothing approach is not required. This notwithstanding, the test
is performed to assess whether or not the penalty in AV localization
promoted by the exponential smoothing translates into a significant
increase in artificial dissipation.

The test is performed by integration of the Euler equations on 400
uniform elements using a 5th-order SD discretization over a domain of
unitary length. The flow is initialized at 𝑡 = 0 setting:

𝜌 = 3.857143, 𝑢 = 2.629369, 𝑝 = 10.33333, for 𝑥 ≤ 0.1,
= 1 + 0.2 sin[50(𝑥 − 0.5)], 𝑢 = 0.0, 𝑝 = 1.0, for 𝑥 > 0.1.

The density profile at 𝑡 = 0.2 is shown in Fig. 10(a), where the solu-
ions obtained with and without exponential smoothing are compared.
ome differences between the two computations are visible only in the
ine structure in the density profile (cf. closeup view). In particular,
he expected reduction in AV localization brought by the exponential
moothing procedure promotes a slight increase in overall dissipation.
s a result, the fine density structures appear slightly damped with
espect to the computation without exponential smoothing.

Of course, such a marginal loss of detail shall be put in perspective
f applications where severe PSO are present and can, potentially,
ave a significant impact on the solution. To this end, the test can be
odified such as to have the same Mach 3 shock propagating with a

5 The measured amplitude of PSO for an identical moving shock, in the
bsence of interaction with the sinusoidal density wave, was down to machine
recision.
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Fig. 9. Sod tube Riemann problem: solid line, density (left axis); gray filled line, shock-capturing viscosity (right axis); thin dashed line, density without exponential smoothing.
Fig. 10. Shu–Osher shock tube problem: solid line, density (left axis); gray filled line, shock-capturing viscosity (right axis); thin dashed line, density without exponential smoothing.
much slower velocity with respect to the mesh. The equations are then
solved in a moving reference frame with some extra care in properly
setting boundary conditions. For instance, moving the reference frame
with a velocity 𝑈ref = 3.0, the shock appears propagating with a relative
speed of about 15.5% of its maximum speed in fluid at rest ∗. The
hock is, in this case, initialized at 𝑥 = 0.7 and the solution checked at
= 0.2. The results of such a slow-moving adaptation of the Shu Osher
hock tube problem are shown in Fig. 10(b). As it can be clearly seen in
he closeup view of the train of waves to the left of the fine structure in
he density, the shock now produce significant PSO, which perturb the
low downstream. Using the adaptive exponential smoothing (𝐾 = 1),
n the other hand, the PSO are almost completely suppressed. Indeed,
his kind of scenario represents a very good example in which the gain
n term of PSO suppression is well worth the marginal penalty in AV
ocalization and overall dissipation.
11
Table 6
Two-dimensional Riemann problems.

Case Quadrant 𝜌 𝑢 𝑣 𝑝 𝑡𝑓

4

1 1.1 0.0 0.0 1.1

0.252 0.5065 0.8939 0.0 0.35
3 1.1 0.8939 0.8939 1.1
4 0.5065 0.0 0.8939 0.35

12

1 0.5313 0.0 0.0 0.4

0.252 1.0 0.7276 0.0 1.0
3 0.8 0.0 0.0 1.0
4 1.0 0.0 0.7276 1.0

6.3. Two-dimensional Riemann problems

In this section, results on two selected two-dimensional Riemann
problems are analyzed, namely the case 4 and the case 12 reported
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Fig. 11. Contours of density (a, c) and norm of density gradient (b, d) for the case 4 test with (top-left half) and without (right-bottom half) adaptive exponential smoothing.
in [31,32]. The computational domain is a square of unitary side length
discretized with either 128 × 128 4th-order quadrilateral elements
or 256 × 256 5th-order quadrilateral elements. The total number of
degrees of freedom (DoF) is 262 144 and 1 638 400, respectively. Case
4 is computed on both meshes, whereas case 12 is computed on the
higher resolution only.6

The domain is subdivided in four identical quadrants and the Rie-
mann problem is defined by initial constant states in each quadrant
(numbered counterclockwise, from 1 to 4, starting from the upper-right
quadrant). The initial states and the final time 𝑡𝑓 for the presented tests
are reported in Table 6.

The computations have been performed with and without the adap-
tive exponential smoothing. Concerning the power 𝑘-means procedure,
the cluster number 𝐾 has been set equal to 2. Time integration has been
performed with the RK45-SSP, with 0.5 CFL and Fourier coefficients.

6 It shall be noted that, for case 4, given the particular initial state in the
2nd, 3rd and 4th quadrants, and in order to allow the development of the flow
in the 2nd and 4th quadrants without perturbations from the boundary, the
boundary condition at the left and bottom boundaries has been enforced using
self-periodic boundary elements as discussed in more detail in Section 6.5 for
the double Mach reflection problem.
12
With regards to case 4, Fig. 11 shows the contours of density and
the norm of its gradient. Fig. 12 shows density and AV profiles along
a horizontal line at 𝑦 = 0.97—which crosses the main shock located in
the 2nd quadrant at the final time—and along a 45◦ line, respectively.

On both mesh resolutions, from the density contours, an increase
in the level of dissipation produced by the exponential smoothing
is visible within the high-density region in the upper-right part of
the domain. This is particularly evident on the slip lines (oriented at
−45◦), issuing from the two pairs of triple points located in the 2nd
and 4th quadrants, and is readily confirmed by the AV profile along
the 45◦ line [cf. Fig. 12(b) and (d)], where a significant penalty
in AV localization is observed for the coarsest mesh. Not necessarily
a drawback of the proposed method, other structures which appear
smoother (weaker) when the exponential smoothing is activated are the
spurious waves—due to the shocks being initialized as sharp profiles—
which trail behind the leading shocks. Increasing the resolution, the
observed AV de-localization is reduced, though, and the difference in
artificial dissipation becomes less evident.

As it can be clearly seen in the contours of density gradient,
Fig. 11(b) and (d), the leading shocks located in the 2nd and 4th
quadrants are affected by relatively strong PSO when the exponential
smoothing is deactivated. These oscillations are strong enough to
penetrate and perturb the above mentioned high density region. This is



Computers and Fluids 241 (2022) 105491G. Lodato et al.
Fig. 12. Density and AV profiles for case 4: solid line, density with adaptive exponential smoothing, 𝐾 = 2 (left axis); thin dashed line, density without exponential smoothing (left
axis); gray filled line, shock-capturing viscosity with adaptive exponential smoothing (right axis); thin solid line, shock-capturing viscosity without exponential smoothing (right
axis).
readily confirmed by looking at the density profiles in Fig. 12. The use
of exponential smoothing promotes the complete suppression of these
oscillations and, despite the reduction in AV localization, no significant
reduction in the sharpness of the shocks is observed.

Switching to case 12, Fig. 13 shows the contours of density, the
norm of its gradient and AV, whereas Fig. 14 shows the density and AV
profiles along a horizontal line 𝑦 = 0.95—which crosses the main shock
located in the 1st quadrant at the final time—and along a 45◦ line,
respectively. The main shock, in particular, is characterized by PSO in
density of about 0.1% of the density jump. These are almost completely
suppressed by the adaptive exponential smoothing [cf. closeup inset in
Fig. 14(a)].

As it can be seen in Figs. 13 and 14, the AV localization, again,
is somewhat reduced and the penalty in terms of AV localization is
particularly accentuated along the 45◦ direction, at the location where
the different shocks join in triple points. Analogously to the previous
case, the 45◦ oriented slip lines, issuing from the pair of triple points
in the 1st quadrant, appear slightly smoother when the exponential
smoothing is active.

A notable effect of the exponential smoothing concerns the contact
discontinuities in the 3rd quadrant of case 12. In fact, the reference
simulation performed without exponential smoothing presents spurious
(and most probably unsteady) peaks of AV at the boundary, between
the 2nd and 3rd quadrants and between the 3rd and 4th quadrants.
One of these perturbations is visible as a red spot of AV at the bottom
boundary in Fig. 13(c). These peaks promote the destabilization of
the contact discontinuities which originate at those points, as it can
be clearly observed in Fig. 13(a) and (b). Such destabilization is of
course non-physical [31,32] and is completely avoided thanks to the
time delay introduced in the AV by the exponential smoothing.

As in the previous example, spurious waves due to the shocks
being initialized as sharp profiles are made weaker by the exponen-
tial smoothing. Other spurious waves, most probably caused by the
13
above-mentioned peaks of AV at the boundary, are not present in the
simulation featuring exponential smoothing [cf. 3rd and 4th quadrants
in Fig. 13(b)]. These, of course, can be considered as desirable side
effects of the exponential smoothing.

6.4. Shock/vortex interaction

The interaction between a two-dimensional inviscid vortex and a
M𝑠 = 3, slow-moving (the shock speed is set at 5% of its propagation
speed in fluid at rest ∗), normal shock is here analyzed. The square
computational domain of dimensions 𝐻 × 𝐻 consists of 128 × 128
quadrilateral elements. Setting the order 𝑛 equal to 5, the total number
of DoF is 409 600. Inflow (prescribed density and velocity) and outflow
(prescribed pressure) conditions are set at the left and the right bound-
aries, respectively, whereas periodic conditions are used at the top and
bottom boundaries.

The shock is first initialized according to the Rankine–Hugoniot
jump conditions such as to obtain a Mach 3 stationary shock. Hence the
left and right velocities are modified to account for a reference frame
moving with a translation velocity equal to  = 5%∗:

𝑢𝐿,rel. = 𝑢𝐿 −, 𝑢𝑅,rel. = 𝑢𝑅 −, with  = 5%∗ = 5%𝑢𝐿, (36)

where the 𝐿 and 𝑅 subscripts denote the regions upstream and down-
stream of the shock, respectively.

Upstream of the shock, in the middle of the region to its left, a
homentropic Taylor vortex [33] is initialized according to the following
relations:
[

𝜌(𝐱)
𝜌𝐿

]𝛾−1
=
[

𝑝(𝐱)
𝑝𝐿

]
𝛾−1
𝛾

= 1 −
𝛾 − 1
2

M2
𝑣 exp(1 − 𝜉

2
𝑣 − 𝜂

2
𝑣), (37)

𝑢𝐿,rel. − 𝑢(𝐱)
| |

=
𝑣(𝐱)

| |

=
M𝑣 exp

(

1 − 𝜉2𝑣 − 𝜂
2
𝑣

)

, (38)

|

𝑢𝐿| 𝜂𝑣 |

𝑢𝐿| 𝜉𝑣 M𝑠 2
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Fig. 13. Contours of density (a), norm of density gradient (b) and AV (c) for the case 12 test with (top-left half) and without (right-bottom half) adaptive exponential smoothing.

Fig. 14. Density and AV profiles for case 12: solid line, density with adaptive exponential smoothing, 𝐾 = 2 (left axis); thin dashed line, density without exponential smoothing
(left axis); gray filled line, shock-capturing viscosity with adaptive exponential smoothing (right axis); thin solid line, shock-capturing viscosity without exponential smoothing
(right axis).
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Fig. 15. Density contours of the (slow-moving) shock/vortex interaction problem.
Fig. 16. Density and AV profiles across the shock: solid line, density with adaptive exponential smoothing, 𝐾 = 2 (left axis); thin dashed line, density without exponential smoothing
(left axis); dotted line, exponential smoothing at imposed shock speed  = 5%∗ (left axis); gray filled line, shock-capturing viscosity with adaptive exponential smoothing (right
axis); thin solid line, shock-capturing viscosity without exponential smoothing (right axis).
Fig. 17. Elements’ pattern in the deformed mesh for the shock/vortex interaction
problem.

where 𝑀𝑣 represents the vortex Mach number whereas 𝜉𝑣 = (𝑥−𝑥𝑣0)∕𝑅𝑣
and 𝜂𝑣 = (𝑦−𝑦𝑣0)∕𝑅𝑣 are the spatial coordinates in the vortex reference
frame normalized with respect to the vortex radius 𝑅𝑣 = 0.1𝐻 (𝑥𝑣0
and 𝑦𝑣0 are the coordinates of the vortex center at the beginning of the
simulation). The vortex Mach number M𝑣 is set equal to 0.8.

The inviscid Euler equations are integrated in time with the RK45-
SSP scheme with a 0.8 CFL coefficient. Shock-capturing is enforced by
15
means of the Laplacian model, with the AV scaled on the maximum
wave speed, with the parameter 𝐶𝜀 = 1. The positivity-preserving
scheme is deactivated. In the case of the computation performed with
the exponential smoothing, the number of centroids 𝐾 of the adaptive
power 𝑘-means calibration procedure is set equal to 2.

The density contours after the vortex has traversed the shock, at
time 𝑡 = 0.08M𝑠𝑎𝐿∕𝐻 (𝑎𝐿 being the speed of sound upstream of the
shock), are depicted in Fig. 15, whereas Fig. 16 shows the density
profiles along two horizontal lines, one at 𝑦 = 0.9𝐻 , in the region of
most severe PSO and the other at 𝑦 = 0.44𝐻 , passing through the vortex
center. The results obtained with the adaptive exponential smoothing
are compared against those obtained without exponential smoothing
or with exponential smoothing, globally calibrated on the theoretical
shock speed (this last case is only shown in Fig. 16).

As expected, due to the extremely low value of the shock speed,
the computation performed without exponential smoothing is severely
impacted by very strong PSO. These are almost completely suppressed
when the exponential smoothing is active. Overall, the shock profile
does not seem to be affected by the exponential smoothing in terms of
its sharpness. Nonetheless, possibly due to the less localized distribution
of the AV, the dissipation at and around the vortex appears to be
slightly increased when the exponential smoothing is active.

Similar tests are performed using a distorted grid which features
an arbitrary displacement of the grid points, as shown in Fig. 17. The
resulting mesh is composed of highly-skewed, triangle-like elements,
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Fig. 18. Density contours of the (slow-moving) shock/vortex interaction problem on distorted meshes.
Fig. 19. Density and AV profiles across the shock for distorted meshes: solid line, density with adaptive exponential smoothing, 𝐾 = 2 (left axis); thin dashed line, density
without exponential smoothing (left axis); dotted line, exponential smoothing at imposed shock speed  = 5%∗ (left axis); gray filled line, shock-capturing viscosity with adaptive
exponential smoothing (right axis); thin solid line, shock-capturing viscosity without exponential smoothing (right axis).
which were found to degrade vortex transport phenomena when a low
order of accuracy was considered [34]. This type of grid is of interest
to assess the accuracy of the method on meshes more representative of
applications. The resolution in terms of number of elements and order
of accuracy is kept the same as the cartesian computations. Fig. 18
displays the density contours at the final time both with and without
exponential smoothing for the AV formulation. It is observed that the
computation without exponential smoothing displays strong wiggles
of numerical nature past the shock. The exponential smoothing is
effectively smearing most of the oscillating features, yielding a smooth
density field which confirms the performance of the new method on
distorted grids. In order to provide a more quantitative view of the
improvement, the density profiles are extracted at the locations 𝑥 =
0.9𝐻 and 𝑥 = 0.44𝐻 , see Fig. 19. As was observed on Cartesian meshes,
the exponential smoothing clearly removes the high amplitude PSO
that the computation without exponential smoothing displays. It is also
interesting to notice that the density contours, as well as the density and
AV profiles, are almost identical between the Cartesian and distorted
meshes computations with exponential smoothing, emphasizing the
relative insensitivity of the proposed methodology to grid distortion.

6.5. Double mach reflection problem

The double Mach reflection (DMR) of a strong shock problem, orig-
inally proposed by Woodward and Colella [35], is here used to assess
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the proposed methodology on a configuration in which, a priori, there
is no major problem of PSO. It involves a Mach 10 shock, propagating
in gas at rest, colliding with a ramp inclined at 30◦ with respect to the
shock propagation direction. Upon collision, a self-similar structure is
formed over the ramp, which consists of two triple points, each one
comprising three shocks and a slip line [36, Fig. 3.9, p. 149].

Notice that the shock propagation velocity is indeed quite high
and significant PSO are not expected to become an issue. Hence, for
this configuration, the exponential smoothing approach would not be
strictly required. Nonetheless, it is useful to check the impact of the
exponential smoothing on the development of the self-similar structure
that characterizes the flow setup.

The typical setup for the DMR problem consists of a rectangular
computational domain, which is aligned with the ramp and in which an
oblique Mach 10 shock is initialized at 60◦ with respect to the horizon-
tal axis. As a result of the numerical setup, several numerical artifacts
can impact the solution [35,37], namely: (a) numerical artifacts due to
the initialization of an oblique shock over a non-aligned Cartesian grid,
(b) the ‘‘starting error’’ due to the shock being initialized as a sharp
profile and (c) a numerical artifact originating on the top boundary due
to the objective difficulty in prescribing a clean boundary condition for
an oblique shock propagating along a horizontal boundary line.

To overcome the above difficulties and taking advantage of the
unstructured nature of the solver used in the present study, the compu-
tational mesh adopted here is a parallelogram as sketched in Fig. 20.
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Fig. 20. Sketch of DMR problem computational domain and solution (red lines in the closeup view indicate periodic interfaces): i, incident shock; T, first triple point; m, primary
Mach stem; r, primary reflected shock; s, primary slip line; T’, second triple point; m’, secondary Mach stem; r’, secondary reflected shock; s’, secondary slip line.
Fig. 21. Density contours of DMR problem: bottom left, no exponential smoothing; top and bottom middle, 𝐶ea = 3.0; bottom right, 𝐶ea = 1.0.
Fig. 22. Norm of density gradient contours of DMR problem: left, no exponential smoothing; middle, 𝐶ea = 3.0; right, 𝐶ea = 1.0.
The main shock (i), initially located at the left boundary, is hence
perfectly aligned with the mesh. To deal with the spurious waves,
which are formed as the scheme resolves the initial sharp profile and
which trail behind the smoothed shock, by the time the shock reaches
the leading edge of the ramp, these waves are isolated from the flow by
setting to zero the residuals within the ‘‘frozen flow’’ region as indicated
in Fig. 20. This way, the perturbations remain stuck upstream of the
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ramp and cannot interfere anymore with the DMR structure. Concern-
ing the numerical artifact from the top boundary, a similar approach
as the one proposed by Vevek, et al. [37] is adopted. Accordingly, the
top boundary is made periodic with respect to a line just below it. In
practice, taking advantage of the DFE structure of the solver and the
deformation imposed to the mesh, this artificial periodicity translates,
straightforwardly, in making the boundary interface of every boundary
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Fig. 23. Artificial viscosity contours of DMR problem: left, no exponential smoothing; middle, 𝐶ea = 3.0; right, 𝐶ea = 1.0.
Fig. 24. Vorticity contours of DMR problem: left, no exponential smoothing; middle, 𝐶ea = 3.0; right, 𝐶ea = 1.0.
element periodic with respect to the opposing interface within the fluid
(cf. Fig. 20). Notice that the same approach is initially used at the
bottom boundary of the frozen flow region before switching to an
imposed post-shock state when the shock reaches the ramp leading
edge. This switch of boundary type is needed to keep the foot of the
second Mach stem (m’) attached to the ramp leading edge. Finally,
the ramp boundary condition is set as a free-slip wall and the right
boundary is set as an outflow.

Fifth-order computations have been performed with and without
adaptive exponential smoothing (𝐾 = 2) on 810 × 210 elements (4.2 M
DoF) and a mesh resolution ℎ = 1∕300. The simulation was started
with the shock at the left boundary and stopped at a time 𝑡 = 0.2
after the moment the shock reaches the leading edge of the ramp. It
is worth stressing again that this test features an extremely fast shock.
Such a fast shock does not promote PSO and, therefore, the exponential
smoothing is not strictly required. To check nonetheless the impact
of the exponential smoothing on the solution, two different values of
the smoothing parameter 𝐶ea have been tested: a value of 1.0, which
promotes a relatively mild smoothing with a non-negligible penalty in
AV localization, and a higher value of 3.0, which produces marginal
smoothing and AV delocalization (cf. Section 4.1). The AV has been
injected via the Laplacian model. It is worth noting that, possibly due
to the topology of the mesh, mild carbuncle phenomena had been
observed close to the first triple point (T). To prevent the onset of these
perturbations, the AUFS numerical flux has been adopted [38].

The results are reported in Figs. 21–24, showing, respectively, the
contours of density, density gradient norm, artificial viscosity and
vorticity. As anticipated, no PSO are visible in the density contours,
even without exponential smoothing. All the expected features of the
self-similar DMR structure are well reproduced in all the computations.
In particular, the secondary slip line (s’), one of the main challenges for
numerical schemes in this setup, although very subtle, is clearly visible
in the density map.

A noticeable difference in the results is in the destabilization of
the primary slip line (s): when the exponential smoothing is active,
the instability is slightly delayed (𝐶ea = 3.0) or completely suppressed
(𝐶 = 1.0). The reason behind this behavior appears to be twofold.
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First of all, the reduction (𝐶ea = 3.0) or the complete suppression
(𝐶ea = 1.0) of the spurious numerical perturbations which are clearly
visible in Fig. 22 behind the leading shock, and possibly responsible for
promoting the destabilization of the slip line. By inspection of Fig. 23,
in particular, the origin of these perturbations can be clearly identified
in the isolated peaks of AV which are visible along the leading shock.
Such peaks of AV have been already observed in one-dimensional
problems (cf. Fig. 1b) and, as an evident source of (unphysical)
destabilization, in a two-dimensional Riemann problem (cf. Fig. 13).
These spots of AV are mitigated or completely suppressed depending on
the strength of the applied exponential smoothing, as it can be seen in
the middle and right pictures of Fig. 23.

Secondly, the increase in the width of the slip line and the conse-
quent reduction of the relevant vorticity (see Fig. 24) which, in turn,
make the slip line less sensitive to external perturbations. Such increase
in the width of the primary slip line is particularly evident in Fig. 22
for the case with 𝐶ea = 1.0. As a result, compared to the baseline
case without exponential smoothing, if the simulation with 𝐶ea = 3.0
produced a reduction of about 4%–12% in the vorticity on the primary
slip line, in the computation with 𝐶ea = 1.0, this reduction was more
significant and around 24%–48%.

The culprit of the thickening of the primary slip line, a phenomenon
that was already observed in the two-dimensional Riemann problems
in Section 6.3, can be identified in the contours of AV in Fig. 23.
In fact, while both simulations have negligible values of AV in the
neighborhood of the slip line and localize AV where the shocks are
present, a slight excess of viscosity can be seen, for the case with
𝐶ea = 1.0, right below the first triple point, where the primary slip
line originates. Such increased viscosity is most probably responsible
for the thickening of the slip line during the evolution of the self-similar
DMR structure, especially during the early stages of its development,
when, due to the small size of the DMR structure, the mesh resolution
is comparatively extremely low.

Ultimately, whether or not a slip line within an inviscid fluid is
supposed to destabilize, spontaneously, in the absence of an external
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Fig. 25. Numerical Schlieren and vorticity contours of shock/wavy-wall interaction problem with (top half of the plots) and without (bottom half of the plots) exponential

smoothing. The thin line indicate the location along which the profiles in Fig. 26 are extracted.
Table 7
Mesh parameters and flow setup. The velocities are indicated in the laboratory reference
frame, oriented from the left to the right.

Domain size 𝐿 ×𝐻 10.0 × 2.0 cm2

Number of elements 𝑁𝑥 ×𝑁𝑦 600 × 140 –
Discretization order 𝑛 5 –
Degrees of freedom DoF 2.1 × 106 –
Element resolution 𝛥∕𝑛 28.6–33.3 μm
Wavy wall amplitude 𝐴ww 1.0 mm
Wavy wall wavelength 𝜆ww 2.0 cm

Specific heat ratio 𝛾 1.15 –
Viscosity (at 291.15 K) 𝜇0 1.827 × 10−5 kg/(ms)

Initial left state
𝜌1 1.208 kg/m3

𝑝1 1.0 atm
𝑢1 0.0 m/s

Initial right state
𝜌2 11.29 kg/m3

𝑝2 26.68 atm
𝑢2 −1386.88 m/s

Incident shock Mach Mi 5.0 –
Incident shock speed i −1553.0 m/s
Reflected shock Mach Mr 3.16 –
Reflected shock speed r 271.5 m/s

perturbation remains however a legitimate question. Indeed, if the
destabilization of the primary slip line is commonly regarded as an
evidence of low dissipation and good resolving power of the numerical
scheme, it is also true that the vast majority of the results reported in
the literature for the DMR problem have been obtained in numerical
setups which are definitely not free from spurious numerical perturba-
tions (e.g., Cartesian grids not aligned with the shock, starting errors,
boundary perturbations).
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6.6. Shock/wavy-wall interaction in the Newtonian limit

The last test case concerns the reflection of a strong shock in the
Newtonian limit by a smoothly curved wall. This test is identical to the
one recently reported in [39]. The results obtained using the proposed
adaptive exponential smoothing are compared with those reported
in [7,8], where PSO reductions were also attained using characteristic
based sensors. It is worth noting that the same characteristic (den-
sity/acoustic) sensor used in the above mentioned works is also used in
the present tests. Hence, the comparison aims at assessing the impact
of the exponential smoothing on this particular flow configuration.

The physical parameters of the simulation are summarized in
Table 7 for convenience. The Navier–Stokes equations are integrated
using a 5th-order SD discretization. Time integration is performed
with the RK45-SSP, with 0.8 CFL and Fourier coefficients. To avoid
instabilities during the establishment of the initial shock front, the
positivity-preserving scheme [26] is active. The left no-slip wall has
a sinusoidal shape with 1 mm amplitude and 2 cm wavelength. The
right boundary is set as an inflow, whose parameters correspond to the
compressed (shocked gases) state of the incident shock. The top and
bottom boundaries are periodic. Shock-capturing is enforced by means
of a Laplacian term, whose viscosity is scaled on the maximum speed
of sound. The scaling parameter 𝐶𝜀 is set at 0.75, which was found to
be an optimal choice for this test [7].

Numerical Schlieren7 images and vorticity contours obtained 60 μs
and 120 μs after the leading shock impacts the wavy-wall are depicted

7 As per Ref. [40], numerical Schlieren images are obtained as the contours
of

𝑆 = 0.8 exp
(

14.0 ‖𝛁𝜌‖
3 × 105

)

.
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Fig. 26. Density and AV profiles along the line 𝑦 = −0.5 cm: solid line, adaptive exponential smoothing, 𝐾 = 2 (left axis); dashed line, no exponential smoothing (left axis); gray
filled line, shock-capturing viscosity with adaptive exponential smoothing (right axis); thin solid line, shock-capturing viscosity without exponential smoothing (right axis).
Fig. 27. Numerical Schlieren and vorticity contours of shock/wavy-wall interaction problem with (top half of the plots) and without (bottom half of the plots) exponential
smoothing (vorticity scale as per Fig. 25).
in Fig. 25. In each snapshot, the top half of the contour plot refers to the
simulation performed with the adaptive exponential smoothing with
the power 𝑘-means procedure at 𝐾 = 2. Notice that the results obtained
with 𝐾 = 3 (not shown) are indistinguishable from those reported here;
this further confirms the robustness of the power 𝑘-means approach in
respect of the selected value of 𝐾. The bottom half refers to the baseline
computation from [7]. For the same simulated times, density and AV
profiles along the line 𝑦 = −0.5 cm (indicated in the contour plots with
a thin white line in the bottom half of each snapshot) are also compared
in Fig. 26.

As it can be seen, the results with and without exponential smooth-
ing are marginally different in this case. Indeed, the characteristic
sensor promotes already PSO reductions and the exponential smoothing
cannot do much better. When the exponential smoothing is active, some
of the slip lines—or contact discontinuities—characterizing the shocked
gas region (see [25] for details) do not destabilize as observed in the
baseline computation. Although a slight reduction of AV localization
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at the shock is expected when using exponential smoothing, this phe-
nomenon does not appear to be due to excessive residual dissipation.
Indeed, comparing the AV contours of the two computations (not
shown), the exponential smoothing promotes, overall, a decrease of the
level of residual dissipation within the shocked gas and a significant
reduction of isolated peaks of AV. Analogous to what was observed
for the two-dimensional Riemann problem in Section 6.3, it seems
then plausible to correlate the observed behavior to the suppression
of localized and spurious destabilization mechanisms by the AV.

Finally, the numerical Schlieren and vorticity contours for 𝑡 = 200 μs
are depicted in Fig. 27 where previous conclusions for this particular
test are confirmed: (a) the exponential smoothing has a negligible
impact in the region just behind the leading shock, where transverse
shocks and slip lines are originated; ((b)) far from the shock, the overall
level of AV and the occurrence of localized and isolated AV peaks are
reduced thanks to the time delay intrinsic to the exponential smoothing
approach; (c) the different and, possibly, better behavior of the AV
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away from the leading shock, has an impact on the long term evolution
of the flow.

7. Conclusion

A novel approach to mitigate, or even suppress, post-shock os-
cillations has been proposed. The method is here formalized within
the framework of discontinuous finite element methods using shock-
capturing techniques with modal sensors. These methods—and possibly
other methods relying on shock-capturing methodologies—are affected
by post-shock oscillations, which can become extremely severe in the
case of slow-moving shocks. The main culprit of these oscillations has
been identified in the inherent inhomogeneities in the modal detector
(differences in the way the same discontinuity is detected depend-
ing upon its position within the elements) which, in turn, promote
unsteadiness of the injected artificial viscosity and its sub-optimal
distribution around the shocks.

In order to overcome and mitigate the problem, rather than trying
to improve the behavior of the detector and the spatial distribution of
the artificial viscosity in the neighborhood of discontinuities, as already
attempted with some success by the first author using characteristic
sensors [7,8], a completely different approach has been proposed.
This aims at improving the time behavior of the artificial viscosity
via a suitably calibrated delay, which is introduced to prevent the
artificial viscosity from undergoing excessive changes during the time
a discontinuity crosses an element. This form of time regularization is
achieved by means of the exponential averaging technique, where the
relevant smoothing factor is computed from the element’s geometry and
the propagation velocity of the discontinuity.

A methodology has also been proposed to estimate the propagation
velocity of one or even several shocks in the domain, which can
then be used to properly tune the exponential averaging approach
on every shock. To this end, to tackle the rather challenging task
of computing the propagation velocity of (quite well possibly) badly
behaved discontinuous and oscillatory signals (the shocks), the power
𝑘-means clustering technique—commonly used in machine learning—
is adopted. This method enables the identification of each shock in
the flow and provides the best estimate of the relevant propagation
velocities.

The proposed technique depends, essentially, on a single main
tuning parameter (𝐶ea), which sets the time delay of the shock sensor
esponse. For the majority of flows, with mild-to-medium post-shock
scillations, this tuning parameter can be safely set to a unitary value,
setting which is expected to already produce significant reductions

or even the suppression) of all spurious oscillations. For more chal-
enging configurations, with very slow shocks and severe post-shock
scillations, lower values of the tuning parameter (down to a mini-
um recommended value of 0.5) might be advisable. Flows involving

tationary or fast-moving shocks, for which post-shock oscillations do
ot represent an issue, can be safely computed with higher values of
he tuning parameter (i.e., 𝐶ea ∼ 3.0) or switching off the proposed

exponential averaging technique.
Several results on one- and two-dimensional tests have demon-

strated that the proposed strategy achieves, quite consistently, reduc-
tions in post-shock oscillations from about 70%, up to 100% (complete
suppression), without noticeable reductions in shock sharpness. On
this regard, in particular, due to the potential reduction in artificial
viscosity that the exponential averaging may cause, some tests have
even shown sharper (and post-oscillations free) shocks. On the other
hand, a penalty has been observed in general in terms of spatial
localization of the artificial viscosity which, in some cases, can promote
localized increased dissipation. This phenomenon, which is intimately
connected to the introduction of a time delay by the exponential
averaging approach, is particularly evident when using low orders and
low resolutions or, in some cases, in two-dimensional tests, where slip
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lines issuing from triple points result somewhat thickened, and can be
mitigated, if deemed necessary, by making the exponential averaging
less pronounced (the only caveat being, of course, to give in some
reduction in post-shock oscillations).

On this regard, although it might be tempting to conclude that post-
shock oscillations reductions are essentially related to an increase of
the injected artificial dissipation, it is important to remember that,
when the exponential smoothing is not used, a simple increase of
the level of artificial viscosity will rather lead to an amplification of
post-shock oscillations [7,8]. This is because the modal sensor itself is
causing post-shock oscillations and a higher setting for the artificial
viscosity will determine even stronger perturbations in the flow. As
a matter of fact, no post-shock oscillations reductions are possible
just by increasing how much artificial viscosity is injected without
taking very good care of how this is injected. In situations where
post-shock oscillations represent a major concern, despite the above-
mentioned penalty in spatial localization, the proposed technique is, to
the authors’ knowledge, the only effective way to significantly reduce
(or completely suppress) them.

Future developments and improvements of the proposed methodol-
ogy shall focus on reliable techniques to automatically deactivate the
exponential smoothing—or better adapt the relevant tuning
parameter—in flows involving fast-moving shocks accompanied by
negligible post-shock oscillations.

Finally, the proposed methodology can be applied to the whole class
of high-order discontinuous finite elements methods (possibly, in other
methods too, such as finite volumes) to significantly suppress post-
shock oscillations on an arbitrary number of different shocks in the
flow.
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