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Introduction

In supervised learning one of the best known approaches is the decision trees: amongst the different classification methods, they have the advantage of being easily understandable, and their interpretation is within the reach of a larger number of people [START_REF] Quinlan | Simplifying decision trees[END_REF]. They can be used in both classification and regression for quantitative and qualitative variables.

The two most popular decision tree models are C4.5 [START_REF] Quinlan | C4.5: Programs for machine learning[END_REF] and CART [START_REF] Breiman | Classification and Regression Trees[END_REF]. The effectiveness of these models is recognized, they are simple to define, have good interpretability and can be used in exploratory analysis [START_REF] Siciliano | Exploratory versus decision trees[END_REF]. However, decision trees are prone to overfitting, this occurs when any learning process over-optimizes the error on the learning set at the expense of generalization [START_REF] Bramer | Avoiding overfitting of decision trees[END_REF].

The labeling process is often carried out by humans [START_REF] Fredriksson | Data labeling: An empirical investigation into industrial challenges and mitigation strategies[END_REF] and may therefore be subject to imperfection. Using hard labels might be convenient for many machine learning and deep learning problems but is never completely representative of reality. On the other hand, imperfection can help us fill in this lack of information using richer labels1 . It can be represented by many criteria [START_REF] Smets | Imperfect information: Imprecision and uncertainty[END_REF] but only uncertainty and imprecision will be discussed in this paper. Uncertainty can be considered as a partial knowledge of the real value of the data (e.g. This might be a cat). Imprecision measures a quantitative defect of knowledge (e.g. This is a cat or a dog). Ignorance is thus derived from imprecision. This ignorance and imprecision can be modeled with the theory of belief functions [START_REF] Dempster | Upper and Lower Probabilities Induced by a Multivalued Mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]. This framework, commonly used for data fusion, allows to represent several degrees of ignorance, and generalizes other approaches, like probabilities or possibilities.

Evidential decision trees can handle this imperfection in labels. Several authors [START_REF] Denoeux | A New Evidential K-Nearest Neighbor Rule based on Contextual Discounting with Partially Supervised learning[END_REF][START_REF] Elouedi | Belief decision trees: theoretical foundations[END_REF][START_REF] Trabelsi | Decision tree classifiers for evidential attribute values and class labels[END_REF][START_REF] Sutton Charani | Learning decision trees from uncertain data with an evidential EM approach[END_REF] have offered to couple the theory of belief functions with decision trees in order to handle these imperfectly labeled data. However, these models tend to be overfitted due to the richness of these labels, resulting in large trees with small leaves. In this paper we suggest an Evidential Decision Tree for rich labels robust to overfitting and based on a conflict measure introduced by [START_REF] Martin | Conflict management in information fusion with belief functions[END_REF]. Other evidential decision trees do not address the problem of overfitting (other than by pruning), the use of conflict allows to group observations with similar response elements and to reduce this effect. The goal is both to come up with a model able to work with imperfectly labeled observations, but also to address the problem of overfitting.

Moreover, we extend the proposed model to Evidential Random Forests to overcome the high variance of decision trees and gain performance. Random Forests are first introduced by Leo Breiman (1996,2001), they combine the predictions of a large number of trees using bagging and random feature selection.

Several models based on belief functions have been proposed to deal with data imperfections. Cautious Random Forests [START_REF] Zhang | Cautious weighted random forests[END_REF][START_REF] Moral-García | Bagging of credal decision trees for imprecise classification[END_REF]) is a recent model that can produce uncertain and imprecise predictions, as well as cautious ones, but cannot take into account all the uncertainties present in the rich labels, unlike Evidential Random Forests.

Recent evidential models, such as Evidential SVMs [START_REF] Xu | Evidential calibration of binary svm classifiers[END_REF][START_REF] Kadir | Evidential svm for binary classification[END_REF] or Evidential Deep Neural Networks [START_REF] Yuan | Evidential Deep Neural Networks for Uncertain Data Classification[END_REF] can handle some information about the uncertainty inherent in the quality of the observation(s) -for example, an image may represent a cat uncertainly because it strongly resembles a dog -, while Evidential Random Forests take into account label uncertainty -the image undoubtedly represents a cat, but the source that labelled it lacks knowledge and thus induces uncertainty in its labelling.

The Evidential K-Nearest Neighbors [START_REF] Denoeux | A k-nearest neighbor classification rule based on dempster-shafer theory[END_REF][START_REF] Denoeux | A New Evidential K-Nearest Neighbor Rule based on Contextual Discounting with Partially Supervised learning[END_REF] is able to take into account these rich labels in the same way as the proposed competitive model, the Evidential Random Forests.

In the experiments conducted for this study, the proposed method is compared with most of these models

The rest of the paper is organized as follows. Section 2 reviews richer labels as well as the theory of belief functions, Decision Trees and Random forests. Section 4 describes the proposed conflict-based Evidential Decision Tree as well as the Evidential Random Forest. They both use a distance and a degree of inclusion to allow the model to group observations whose response elements are included in each other into a single node. By doing so, the built tree is shallower and less over-trained. Experiments on imperfectly labeled and noisy datasets are discussed in section 5. Finally, section 6 and 7 conclude the article.

Background

Richer labeling

Most of the datasets used for classification consider only hard labels (i.e. "Dog" or "Cat"). In this paper, we refer as rich labels the elements of response given by a source that may include several degrees of imprecision (i.e. "This might be a cat", "I don't know " or "I am hesitating between dog and cat, with a slight preference for cat)". In this document, these uncertain and soft labels, will be called rich labels as opposed to hard labels and they are modeled using the theory of belief functions.

Theory of belief functions

The theory of belief functions, also called Dempster-Shafer theory (Dempster, 1967;[START_REF] Shafer | A Mathematical Theory of Evidence[END_REF], is used in this paper in order to model uncertainty and imprecision, for both labeling and prediction.

Let Ω = {ω 1 , . . . , ω M } be the frame of discernment for M exclusive and exhaustive hypotheses. The power set 2 Ω is the set of all subsets of Ω. A Basic Belief Assignment is the belief that a source may have about the elements of the power set of Ω, this function assigns a mass to each element of this power set such that the sum of all masses is equal to 1.

m : 2 Ω → [0, 1], A∈2 Ω m(A) = 1.
(1)

Each subset A ∈ 2 Ω such that m(A) > 0 is called a focal element of m.
The uncertainty is therefore represented by a mass m(A) < 1 on a focal element A and the imprecision is represented by a non-null mass m(A) > 0 on a focal element A such that |A| > 1.

A mass function m is called categorical mass function when it has only one focal element such that m(A) = 1. In the case where A is a set of several elements, the knowledge is certain but imprecise. For |A| = 1, the knowledge is certain and precise.

A mass function m is called simple support mass function when it has two focal elements, one of which is Ω:

m(A) = 1 -w , A ∈ 2 Ω , m(Ω) = w , m(B) = 0, B ∈ 2 Ω \{A, Ω}.
(2) with w ∈ [0, 1], the mass function m can then be noted A w .

On decision level, the pignistic probability BetP helps decision making on singletons:

BetP (ω) = A∈2 Ω , ω∈A m(A) |A| . (3) 
It is also possible to combine several mass functions into a single body of evidence. The normalized conjunctive combination of the mass functions m j derived from N sources is given as follows:

       m(A) = 1 1 -κ B 1 ∩...∩B N =A N j=1 m j (B j ), if A ̸ = ∅, m(∅) = 0, (4)
with ∅ the empty set and:

κ = B 1 ∩...∩B N =∅ N j=1 m j (B j ).
(5)

This combination rule will not be used, because for several datasets, the labels and therefore the mass functions are not independent. Also, a combination of mass functions will be used on the prediction of the different estimators (e.g. the aggregated decision trees for the prediction of Random Forest). Equation ( 4) is unstable when used on a large number of estimators and for the output of the trees used. A simple average of the mass functions will be preferred and is defined as follows:

m(A) = 1 N N j=1 m j (A), A ∈ 2 Ω . ( 6 
)
Example 1:

Let Ω = {Cat, Dog} be a frame of discernment. An observation labeled "Cat" by a source can be modeled in the framework of belief functions by the mass function m 1 such that: m 1 ({Cat}) = 1 and m 1 (A) = 0, ∀A ∈ 2 Ω \{Cat}.

Example 2:

An observation labeled "Cat or Dog" by a source can be modeled by the mass function m 2 such that: m 2 ({Cat, Dog}) = 1 and m 2 (A) = 0, ∀A ∈ 2 Ω \{Cat, Dog}.

Example 3:

The mean mass function m of m 1 and m 2 is: m({Cat}) = 0.5, m({Cat, Dog}) = 0.5 and m(A) = 0 for all other subsets A in 2 Ω . Its pignistic probability BetP , used for decision making is: BetP ({Cat}) = 0.75 and BetP ({Dog}) = 0.25.

Evidential Learning

Evidential learning is defined here as the set of models able to both use these rich labels and represent their prediction with belief functions. Such information can be used to represent knowledge or to increase the performance of the model [START_REF] Hoarau | Imperfect labels with belief functions for active learning[END_REF]. Evidential decision trees have been introduced [START_REF] Denoeux | Induction of decision trees from partially classified data using belief functions[END_REF][START_REF] Elouedi | Belief decision trees: theoretical foundations[END_REF][START_REF] Trabelsi | Decision tree classifiers for evidential attribute values and class labels[END_REF], but evidential learning is not limited to decision trees, other models like K-Nearest Neighbors have been extended to the evidential world [START_REF] Denoeux | A k-nearest neighbor classification rule based on dempster-shafer theory[END_REF][START_REF] Denoeux | A New Evidential K-Nearest Neighbor Rule based on Contextual Discounting with Partially Supervised learning[END_REF] and even evidential neural networks are modeled [START_REF] Yuan | Evidential Deep Neural Networks for Uncertain Data Classification[END_REF]. Some of these models are presented and used for comparison during the experiments. Here, we are interested in proposing an Evidential Random Forest based on a new Evidential Decision Tree.

Decision Trees

In classification, Decision Trees are used to predict the class of an incoming observation based on a structure of nodes and splits. The tree is previously built on a training set and the different splits define the path to follow for prediction.

A node contains observations, it can have one parent and two or more child nodes (depending on the chosen architecture). A split divides a node into child nodes using edges corresponding to the possible values of an attribute. The choice of the best split attribute is made by maximizing a gain function. At first, every observation used for training is part of a single node called the root node.

The most popular decision trees are the versions C4.5 [START_REF] Quinlan | C4.5: Programs for machine learning[END_REF] and CART [START_REF] Breiman | Classification and Regression Trees[END_REF]. They are referred to as top down induction decision trees and defined by an attribute selection criterion used to find the best attribute for a split, a partitioning strategy to divide the node using the selected attribute and stopping criteria to stop splitting at a node and make it a leaf.

Partitioning strategy

The selected attribute to split a node is the one that maximizes a gain function. Let the node S be a set of observations (if all the training observations are in S, it is the root node). Let Ω = {ω 1 , . . . , ω M } be the set of all possible classes for each element of S. Let A be an attribute from its finite domain D A . The information gain Gain(S, A) of splitting on A is defined by Quinlan:

Gain(S, A) = Inf o(S) -Inf o A (S), (7) 
where Inf o(S) is the information of the node S, and Inf o A (S) is the weighted sum of the child nodes information considering a split on attribute A:

Inf o A (S) = v∈A |S v | |S| Inf o(S v ), (8) 
with S v the subset of S for which the attribute A has the value v (i.e. the child node resulting from the split on attribute A for the value v). A split is performed on each node, starting from the root and recursively for each child node until one of the stopping criteria is reached.

Attribute selection criterion

Maximizing the Gain means choosing the best attribute A to split S. To do this, Quinlan proposes the [START_REF] Shannon | A mathematical theory of communication[END_REF] entropy as a selection criterion:

Inf o(S) = - ω∈Ω p ω (S)log 2 p ω (S), (9) 
with p ω (S) the proportion of observations in S belonging to the class ω. The Gini criterion is also commonly used as a selection criterion:

Inf o(S) = 1 - ω∈Ω p ω (S) 2 . ( 10 
)

Stopping criteria

The construction of the tree is stopped when one of these criteria is reached:

• Only one observation is part of the current node.

• Observations belong to the same class.

• The remaining attributes have a Gain less or equal to zero.

Pruning is a compression technique reducing the size of a tree. Prepruning (pruning during the construction of the tree) will be lightly discussed in this document but when not specified and with respect to Random Forest, consider that the tree is fully grown.

In the case of continuous variables, the method used is the following; for an attribute A, the observations are sorted in ascending order on this attribute and for each pair of consecutive values c 1 and c 2 , a threshold v will be used such that v = c 1 + (c 2 -c 1 )/2. The threshold maximizing the information gain will be used to split a node into two child nodes, one with values strictly lower than v and the other with values greater than v.

Prediction

Once the tree is built, the unlabeled observations will cross the tree from the root based on their attributes. When a leaf is reached, observations will be given a probability of belonging to each class based on the proportion representing the class in the node. The class maximizing this probability is the predicted class (e.g. if a new observation reaches a leaf I, composed of 9 observations of class ω 1 and 1 observation of class ω 2 , the predicted probability associated with ω 1 is 0.9 and that associated with ω 2 is 0.1).

Random Forests

Introduced by [START_REF] Breiman | Bagging predictors[END_REF] the Bagging is the first step towards Random Forest, later defined by [START_REF] Breiman | Random forests[END_REF] by adding a random selection of features. The principle is to overcome the weakness of decision trees, the high variance, by combining the predictions of a large number of trees, the forest. This section explains the operation of bagging and random feature selection, both of which are used in the most commonly used version of Random Forest [START_REF] Breiman | Random forests[END_REF].

Bagging

This definition is largely based on Breiman's publication [START_REF] Breiman | Bagging predictors[END_REF] where bagging on decision trees is first introduced. Let Ω = {ω 1 , . . . , ω M } be a collection of M different classes and let L = {x k |1, . . . , K} be a learning set of K samples where each element is associated to a label y k ∈ Ω. Given an estimator φ(x, L), the objective is to create a {L n } sequence of new learning sets to improve the performance of the predictor on the unique learning set. A new sequence of predictors {φ(x, L n )} is then introduced. Bagging stands for Bootstrap Aggregating where the bootstrap allows to create the {L n } learning sets, the result is then given by aggregating the {φ(x, L n )} predictors.

Bootstrap: The {L n } sets are composed of K elements (i.e. in Bagging, the size of the {L n } learning set is the same as L). Each element is drawn at random with replacement, in L. Which means that an observation x k can appear several times or not at all in any L n set.

Aggregating: When φ(x, L) predicts a class (c.f. [START_REF] Breiman | Bagging predictors[END_REF] for continuous predictions) a method for aggregating the {φ(x, L n )} predictions is to use a majority vote or a weighted vote. The results of the N trees are then aggregated, to form the prediction of the unique Random Forest model.

Random feature selection

Inspired by [START_REF] Amit | Shape quantization and recognition with randomized trees[END_REF], Breiman introduces the random feature selection for Random Forest [START_REF] Breiman | Random forests[END_REF]. The first objective is to be competitive with the Adaboost model. The author says that "using a random selection of features to split each node yields error rates that compare favorably to Adaboost, but are more robust with respect to noise". It works by using only a small number of variables, randomly selected at each split, when training a Decision Tree. In this paper, for Random Forest, Cautious Random Forest and the proposed Evidential Random Forest, √ p variables will be randomly selected at each split, with p the number of variables and the dimension of the vector x [START_REF] Hastie | The Elements of Statistical Learning: Data Mining, Inference, and Prediction[END_REF]. During a split, a Decision Tree used in a Random Forest only has access to a reduced number of variables in order to find the best possible split.

Motivation from other Evidential Decision Trees

For observations that are no longer perfectly labeled (i.e. labeled by a mass function in this case), the Gain (7) cannot be calculated with Entropy (9) or Gini criterion (10). The proportion p ω of observations belonging to the class ω no longer exists as an observation is no longer characterized by a class but by a mass function. To make the gain calculation possible again, a new information criterion Inf o must be used, such models are presented here.

The uncertainty approach

Some authors introduced a new decision tree [START_REF] Denoeux | Induction of decision trees from partially classified data using belief functions[END_REF] based on the theory of belief functions and Klir uncertainty [START_REF] Klir | Uncertainty-based information: Elements of generalized information theory[END_REF]. Observations in child nodes are grouped while reducing as much as possible the uncertainty present in each node. Two information are combined to calculate the information gain, first the non-specificity:

N (m) = A⊆Ω m(A)log 2 (|A|), (11) 
and an extension of the Shannon entropy, the degree of discord:

D(m) = - A⊆Ω m(A)log 2 (BetP (A)). ( 12 
)
Using both non-specificity and discord, the authors propose the following information criterion:

Inf o(S) = (1 -λ)N ( mS ) + λD( mS ), (13) 
with λ ∈ [0, 1] a positive coefficient and mS the mass function representing the subset S. In this paper we choose the average of the mass functions of the observations belonging to node S. The value of mS is therefore the combination of each rich label (i.e. every mass function) in the node according to the average. Dempster's combination is not used because for some datasets, the labels and thus the masses are not independent. The λ parameter acts as a cursor on the degree of non-specificity or discord that one wants as a criterion. This method will be called the Uncertainty-EDT, with λ = 0.5. For all the experiments presented, more non-specificity in the criterion (lowering λ) only lowered the performance of the model while more discord (increasing λ) increased performance with a threshold reached at about 0.5.

The Euclidean distance approach

Another approach, based on the Euclidean distance between mass functions is presented by [START_REF] Elouedi | Belief decision trees: theoretical foundations[END_REF] (the authors originally suggested a one-to-one correspondence vector instead of the mass). It is proposed to minimize the intra-class distance in the child nodes (i.e. the mass functions close in the sense of the Euclidean distance will be grouped to form the splits). The Euclidean distance d(m i , m j ) between two mass functions m i and m j is defined as follows:

d(m i , m j ) = A⊆Ω (m i (A) -m j (A)) 2 . ( 14 
)
The information Inf o(S) in the subset S is then given by the mean of the distances between the mass functions of all observations of node S and the model using a Euclidean distance as a criterion will be called Euclidean-EDT. As a reminder, the mass functions are the labels of the observations, given in the dataset.

The Jousselme distance approach

Trabelsi et al. ( 2019) introduce a decision tree using the Jousselme distance [START_REF] Jousselme | A new distance between two bodies of evidence[END_REF]. Close to the Euclidean approach, the distance used differs by considering the mass functions as bodies of evidence and not simple vectors. The Jousselme distance d J (m i , m j ) is defined by:

d J (m i , m j ) = 1 2 (m i -m j ) T D(m i -m j ), ( 15 
)
with D the 2 M × 2 M matrix of M classes computed as follows:

D(A, B) = |A ∩ B| |A ∪ B| , A, B ∈ Ω. ( 16 
)
The information Inf o(S) can be obtained by computing the mean of Jousselme distances between mass functions in node S. This model differs from the Euclidean one by assigning a smaller distance between two response items that contain some of the same information, it will be referenced as the Jousselme-EDT.

All these methods have the advantage of working with imperfectly labeled data, but are prone to overfitting, as will be shown in the section 5. This leads to our proposal for a more robust criterion.

Evidential Decision Trees and Evidential Random Forest

Few models are able to take uncertainty and imprecision into account. This imperfection in richer labels can be used to approximate what a source thinks about an observation, and can even increase the performance of a model [START_REF] Hoarau | Imperfect labels with belief functions for active learning[END_REF]. In this section we propose a new separation criterion and a new Evidential Random Forest composed of Evidential Decision Trees using this criterion.

Conflict-based Evidential Decision Trees

Amongst the models presented in section 3, two properties can be discussed. The first is that the degree of discord at equation ( 12) can be greater than zero for a single response from a single user, and thus cannot best represent the contradiction between several responses. The second is that for the use of distances, at equations ( 14) and ( 15), the impurity in a node is non-null when answer elements are included in each other. To address these two problems, the notion of conflict in the theory of belief functions can be used.

The Conflict approach

In this paper, we propose to use a conflict measure as a split criterion. This conflict measure based on inclusion degree and distance is introduced by Martin (2019), and two definitions of inclusion are given. The first is a strict inclusion saying that a mass function m i is included in m j when all focal elements of m i are included one by one in each focal element of m j . A strict degree of inclusion δ i⊆j s (m i , m j ) of m i in m j is then given by:

δ i⊆j s (m i , m j ) = 1 |F i ||F j | A∈F i B∈F j Inc(A, B), (17) 
with Inc(A, B) = 1 if A ⊆ B and 0 otherwise, F i and F j respectively are the set of focal elements of m i and m j .

The second definition is a light inclusion saying that a mass function m i is included in m j if all the focal elements of m i are included in at least one element of m j . The light degree of inclusion δ i⊆j l (m i , m j ) is given as follows:

δ i⊆j l (m i , m j ) = 1 |F i | A∈F i max B∈F j (Inc(A, B)). (18) 
We introduce and define in this paper δ i⊆j (m i , m j ), a slightly less strict degree of inclusion than equation ( 17), without taking into account the inclusion on ignorance.

Definition 1. A fair inclusion between two mass functions is defined by: a mass function m i is fair included in m j if all the focal elements of m i on 2 Ω \Ω are included one by one in each focal element of m j on 2 Ω \Ω.

Definition 2. The fair degree of inclusion δ i⊆j (m i , m j ) is given as follows:

δ i⊆j (m i , m j ) = 1 |L i ||L j | A∈L i B∈L j Inc(A, B), (19) 
with L i and L j respectively the set of focal elements on 2 Ω \Ω of m i and m j .

This equation is used instead of the strict inclusion equation because the ignorance is only included in itself.

Example. Let y 1 , y 2 and y 3 be rich labels with Ω = {dog, cat, bird} according to Section 2.1 such that:

y 1 : m 1 ({dog}) = 1, "This is a dog".
y 2 : m 2 ({cat}) = 1, "This is a cat".

y 3 : m 3 ({cat, bird}) = 1, "This is a cat or a bird".
Fair degrees of inclusion for some evidence body couples are δ 1⊆1 (y 1 , y 1 ) = 1, δ 1⊆2 (y 1 , y 2 ) = 0, δ 1⊆3 (y 1 , y 3 ) = 0, δ 2⊆3 (y 2 , y 3 ) = 1 and δ 3⊆2 (y 3 , y 2 ) = 0.

Computing the information criterion

Based on the fair degree of inclusion, a degree of inclusion δ(m i , m j ) of m i and m j is:

δ(m i , m j ) = max(δ i⊆j (m i , m j ), δ j⊆i (m j , m i )), (20) 
and the conflict measure C(m i , m j ), used as a criterion in our proposed Evidential Decision Tree is defined by:

C(m i , m j ) = (1 -δ(m i , m j ))d J (m i , m j ), (21) 
with d J (m j , m i ) the Jousselme distance between m i and m j . The calculation of C gives the conflict, the information Inf o(S) is then, the average two by two conflict of node S:

Inf o(S) =

x i ∈S x j ∈S C(m i , m j ) |S| 2 -|S| . ( 22 
)
The gain is calculated identically to decision trees with equation ( 7). This approach differs from the Jousselme-EDT by allowing two observations to belong to the same node, without loss of gain, if one response is included in the other. The proposed model based on conflict will be referenced in this paper as the Conflict-EDT.

Prediction

Once the tree is built, a new observation will cross the tree from the root according to the value of its attributes. When a leaf is reached, the observation will be assigned a mass function equal to the mean mass function in the node (e.g. if a new observation reaches a leaf I, composed of 10 elements of masses {m 1 , . . . , m 10 }; then the predicted mass of the observation will be m the average of the 10 mass functions). The class maximizing the pignistic probability (3) of this mass function is the predicted class.

Example. Let Ω = {ω 1 , ω 2 } be the set of possible classes in a classification problem. Let S be a leaf reached by observation x and composed of two mass functions m 1 and m 2 such that:

m 1 : m 1 ({ω 1 }) = 0.3, m 1 (Ω) = 0.7, m 2 : m 2 ({ω 1 }) = 0.2, m 2 (Ω) = 0.8.
The average mass function m in S is the predicted rich label of x by the Evidential Decision Tree: m({ω 1 }) = 0.25, m(Ω) = 0.75. On decision level the class maximizing the pignistic probability is ω 1 and is then chosen (i.e. the hard label used to calculate the accuracy of the model).

Robustness to overfitting

When handling perfectly labeled data and classical decision trees, many observations have the same class and the tree stops growing when all observations of a node are of the same class. There is no better split possible reducing the impurity of the node and thus increasing the Gain. Now, when dealing with imperfectly labeled data with the theory of belief functions, almost no observation has an identical label. The decision tree therefore has a harder time to stop growing, resulting in an over-trained tree that will have difficulty generalizing. With Conflict-EDT, a node of several masses can have a null conflict if the mass functions are included in each other. This allows, as in the case of perfectly labeled data, to have a null Gain and to stop the growth of the tree.

Example. Let Ω = {ω 1 , ω 2 } be a frame of discernment. Let three observations x 1 , x 2 and x 3 respectively labeled m 1 , m 2 and m 3 be part of a root node such that: 

m 1 : m 1 (ω 1 ) = 0.9, m 1 (Ω) = 0.1,
m 2 : m 2 (ω 2 ) = 0.8, m 2 (Ω) = 0.2, m 3 : m 3 (ω 2 ) = 0.9, m 3 (Ω) = 0.1.
The mass function m 1 can be seen as a strong belief that observation x 1 belongs to ω 1 . The two mass functions m 2 and m 3 can be seen as strong beliefs that x 2 and x 3 belong to ω 2 with a lower share of ignorance for x 3 .

Using the Uncertainty-EDT model and if there are enough attributes to separate the nodes, the discord calculated in equation ( 12) by combining masses m 2 and m 3 will be non-null, resulting in the deepest possible tree, visible in Figure 1b. The same property is present for Euclidean-EDT and Jousselme-EDT models, both Euclidean and Jousselme distances between m 2 and m 3 are non-null, resulting in the same tree. However, with Conflict-EDT, m 2 is included in m 3 and the conflict, equation ( 21), between m 2 and m 3 is zero. A shallower tree with larger leaves is then created (see Figure 1a). To summarize, the other evidential models do not group x 2 and x 3 in the same node because their labels are different, while the proposed model groups them because the two responses are included in each other.

Aggregating evidential trees : The Evidential Random Forest

Evidential Decision Trees suffers from the same problems as classical decision trees such as the high variance [START_REF] Breiman | Bagging predictors[END_REF]. We also propose here an Evidential Random Forest, based on the Evidential Decision Tree, taking advantage of both high performance on imperfectly labeled data and increased performance due to variance reduction. The Bootstrap step in the proposed model involves richer labels: Let Ω = {ω 1 , . . . , ω M } be a collection of M different classes and let L = {x k |1, . . . , K} be a learning set of K samples where each element is associated to a mass (i.e. the label) m k ∈ 2 Ω . Let the estimator φ(x, L) be the Evidential Random Forest, and {φ(x, L n )} the sequence of Evidential Decision Tree predictors. The {L n } sets are the new bootstrapped learning sets composed of K elements drawn at random with replacement, in L. The number N (with n ∈ N ) of bags is discussed in section 5 and is set to 50 for experiments.

Algorithm 1 Evidential Decision Tree

When Aggregating is performed, each estimator φ(x, L n ) predicts a mass m n (i.e. the soft class predicted by Evidential Decision Trees) for an unlabeled observation. We propose to combine all the masses with the average:

m ERF (A) = 1 N N n=1 m n (A), A ∈ 2 Ω , (23) 
with m ERF the prediction of the Evidential Random Forest.

Decision making

The motivation is the representation of evidence as an output of the model, but a decision on the set of classes Ω can be made. The class ω ERF maximizing the pignistic probability (3) of m ERF is the predicted class:

ω ERF = argmax ω∈Ω (BetP (ω, m ERF )), (24) 
with BetP (ω, m) the pignistic probability of ω according to m.

Example. Let Ω = {ω 1 , ω 2 } be the set of possible classes in a classification problem. Let φ(x, L) be an Evidential Random Forest of N = 3, Evidential Decision Tree estimators φ(x, L 1 ), φ(x, L 2 ) and φ(x, L 3 ) respectively predicting m 1 , m 2 and m 3 for a new unlabeled incoming sample such that:

m 1 : m 1 (ω 1 ) = 0.8, m 1 (Ω) = 0.2, m 2 : m 2 (ω 1 ) = 0.9, m 2 (Ω) = 0.1, m 3 : m 2 (ω 2 ) = 0.2, m 2 (Ω) = 0.8.
The estimators φ(x, L 1 ) and φ(x, L 2 ) are strongly supporting class ω 1 while φ(x, L 3 ) supports very slightly ω 2 . The prediction m ERF for Evidential Random Forest is then:

m ERF : m ERF (ω 1 ) = 0.57, m ERF (ω 2 ) = 0.07, m ERF (Ω) = 0.36.
On decision level, we compute the pignistic probabilities:

BetP (ω 1 ) = 0.75, BetP (ω 2 ) = 0.25.
And ω 1 is chosen as the hard predicted label because it maximizes the pignistic probability on m ERF .

Algorithm 2 Evidential Random Forest

Require: A training set L, features X and N estimators in forest φ(L). function EvidentialRandomForest(L, X) φ(L) ← ∅ for n in 1, ..., N do ▷ Create the forest L n ← A bootstrapped sample of L φ(L n ) ← EvidentialDecisionTree(L n , X n ) φ(L) ← φ(L) ∪ φ(L n ) end for return φ(L) end function function PredictERF(φ(L), X) for φ(L n ) in φ(L) do ▷ Browse the trees m n ← PredictEDT(φ(L n ), X n ) end for m ← Combine m n∈N
▷ With average return m end function

Experiments

In this section, experiments are conducted with the proposed evidential decision trees and evidential random forests.

Design of the experiments

As the objective is to show the robustness of the models to imperfections, the experiments have been carried out on several datasets containing between 2 and 10 classes and with a number of observations ranging from 40 to 700. First, we used 10 well-known datasets available on the UCI Machine Learning Repository [START_REF] Dua | UCI machine learning repository[END_REF], to which noise has been applied.

Imprecision noise: An observation is chosen at random and the corresponding label loses one degree of precision, with another class chosen at random in Ω (e.g. If a source labeled an observation Virginica, the noisy label becomes either Virginica or Setosa or Virginica or Versicolor ). A 50% noisy dataset would mean that half of the labels have lost a degree of precision. For non-evidential models, the hard label is the class maximizing the pignistic probability (see equation ( 3)).

We also performed tests on uncertain and imprecise labelled datasets. In a previous study, [START_REF] Thierry | Validation of Smets' hypothesis in the crowdsourcing environment[END_REF] used these data to validate Smets' hypothesis according to which the more imprecise humans are, the more certain they are [START_REF] Smets | Imperfect information: Imprecision and uncertainty[END_REF]. Such datasets, offering users the possibility of expressing their imprecision and confidence in their answers, are not common. We used Credal Bird-10, Credal Bird-2, Credal Dog-7, Credal Dog-4 and Credal Dog-2, the only ones, to our knowledge, that have actually been imperfectly labelled in crowdsourcing campaigns. They have a uniform class distribution and are published by [START_REF] Hoarau | Datasets with rich labels for machine learning[END_REF] 2 . Details from all datasets are presented in Table 1. Each experiment is performed 100 times to obtain an estimation of the actual mean accuracy of the model for each dataset. An iteration corresponds to a random draw of 20% of the dataset as a test set, the rest is used for training. Due to some dataset imbalance, the F1-score is also added as a comparison metric. The highest value of the F1score is 1 and indicates a perfect precision and recall. The AUC (Area Under ROC Curve) is also used, it provides an overall measure of performance for all possible classification thresholds.

The experiments are separated in two parts, the first one focuses on Evidential Decision Tree and the second on Evidential Random Forest (composed of evidential trees). 

Experiments on Evidential Decision Trees

This section compares the proposed Evidential Decision Trees with Decision Trees using scikit-learn default parameters [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] and other Evidential Decision Trees. The Uncertainty-EDT [START_REF] Denoeux | Induction of decision trees from partially classified data using belief functions[END_REF], the Euclidean-EDT [START_REF] Elouedi | Belief decision trees: theoretical foundations[END_REF] and the Jousselme-EDT [START_REF] Jousselme | A new distance between two bodies of evidence[END_REF] are used for comparison. The proposed model is noted Conflict-EDT. For experiments where this is not specified, the trees are grown to the maximum depth and are not pruned (because Random Forest uses fully grown trees).

Performance over several datasets

This part first focuses on the relevance of the model. Table 2 represents the performance of Decision Trees as well as Euclidean-EDT, Uncertainty-EDT, Jousselme-EDT and the proposed Conflict-EDT over several rich label datasets. The ten first datasets are noisy by imprecision at 50% (i.e. half of the labels have lost a degree of precision). Credal datasets did not need to be noisy as they inherently implement rich labels. Tables 3 and4 propose two other comparison criteria, the F1 score and the Area Under the ROC Curve for the two-class datasets. The results show similar performance to the accuracy criterion, except for the post-operative dataset, where Conflict- EDT scores poorly in terms of F1-score, due to the high class imbalance for this dataset.

The proposed model exibits better performance on both noisy and imperfectly labeled datasets. Conflict-EDT obtains better results, with sometimes important differences in performance, like on Breast cancer, Iris or Wine. The reason for this gap is explained in the following experiments.

Robustness to noise

This section focuses particularly on the robustness to imprecision and to the evolution of model performance with respect to noise increase. Figure 2 shows the results of the experiment on imprecision noise.

Iris (2a), Wine (2b), Glass Identification (2c), Balance Scale (2d), Ionosphere (2e) and Ecoli (2f) datasets are noised from 0% to 100% and mean accuracies are presented.

On noisy Iris, Balance Scale and Ionosphere datasets, distance based models Euclidean-EDT, Jousselme-EDT and Conflict-EDT have better performance than Decision Tree and Uncertainty-EDT. However, amongst these models using distances, the proposed Conflict-EDT is the most robust to noise with about 90% of good predictions on the half-noisy Iris dataset against about 75% of good predictions for the second best model. On the other three datasets Wine, Glass Identification and Ecoli, Euclidean-EDT and Jousselme-EDT, do not show better performances than models that do not use distances (DT and Uncertainty-EDT) but Conflict-EDT is still as efficient compared to all other presented models.

For imprecision noise, the proposed Conflict-EDT obtained better results on all presented datasets and at all noise levels. In fact, the model is not really more robust to imprecision than other Evidential Decision Trees, but to overfitting, due to equation ( 21). Another experiment showed that by pre-pruning all the trees, the performance of the other models increased and the performance gap with the proposed model disappeared. An example is shown in Figure 3, this is the same experiment as the previous one (2d) for the Balance Scale dataset but this time the models have been pruned.

The pruning used is a pre-pruning that prevents the tree from growing too deep during its learning phase. The number of observations is limited and the tree cannot create a leaf with less than 5 elements. Here, the Uncertainty-EDT, Euclidean-EDT, Jousselme-EDT and Conflict-EDT models are all robust to imprecision noise. The Conflict-EDT model no longer performs much better than the other models because its advantage is to limit overfitting. The pruning of the trees prevents all models from being overfitted, and therefore the difference in performance is no longer noticeable. Only the classical decision tree has very low performance, because data are labeled with imprecision, an information from which this non-evidential model cannot benefit.

In the absence of pruning, Conflict-EDT shows high robustness to overfitting when the data is imprecisely labeled.

Tree growth

In the previous experiment, the robustness of the model to overfitting was deduced from its performance. In this experiment, two additional criteria are presented to demonstrate the benefits of the proposed method. With uncertainly and imprecisely labeled data, Evidential Decision Trees tend to overfit the training data and therefore to deliver worse performance on the test set. This results in large over-trained trees with small leaves. The Depth of the tree is the maximum number of divisions between the root of the tree and a leaf. The greater the depth, the more the tree is trained on the data. Leaf size is the average number of observations present in the leaves of the tree. The wider the leaves, the less the tree is overfit. In Table 5, the average depths are presented for each Evidential Decision Tree presented in this paper. The ten first datasets are arbitrarily noisy at 30%, as studied in the previous experiment, any noise value can be used for Conflict-EDT to perform better. Imprecision noise is used, and the values presented are averaged over 50 experiments, rounded to the unit. Credal datasets have not been noised, because they have already been labeled in an uncertain and imprecise way by contributors. On the Iris and Wine datasets, Euclidean-EDT, Uncertainty-EDT and Jousselme-EDT have an average depth between 12 and 18 while Conflict-EDT has an average depth of 8. This difference is present on all datasets, and particularly notable on datasets with a large number of classes.

Table 6 represents the average size of tree leaves following the same specifications. On Wine and Iris, leaf size is larger for Conflict-EDT with an average of 7 to 9 versus 2 to 4 for the other Evidential Decision Trees. The trend is the same for other datasets, with an even larger gap in leaf size for 2-class datasets.

Overall, Conflict-EDT has grown less deeply and has larger leaves than the other Evidential Decision Trees. This robustness to overfitting on uncertain labels allows to obtain better generalization results.

Experiments on Evidential Random Forest

This section compares the proposed Evidential Random Forest to other models and shows its contribution compared to the Evidential Decision Tree. Also, Random Forests and Evidential Random Forests are trained with 50 estimators (i.e. 50 decision trees trained on bagged samples). [START_REF] Breiman | Bagging predictors[END_REF] shows that the performance of the model peaks around 25 estimators, and does not increase anymore at 50. We obtain similar results, with a stop of the performance increase beyond 30 decision trees. A random feature selection is made at each node and, when not specified, the parameters of the models used are those by default present in scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF].

Gain in performance over Evidential Decision Tree

Random forests are low variance models, defined to reduce the error of Decision Trees. This experiment proposes to restate the accuracy gain of the proposed Evidential Random Forest model compared to an Evidential Decision Tree, the model used in the forest creation process. This gain in performance is represented in Table 7, the flat value of accuracy as well as the percentage of performance gained are given. The means are estimated over 100 iterations and the noise used is the noise over imprecision (except for Credal datasets), with a noise rate of 50% of the dataset.

As expected, the model increases the performance of decision trees by aggregating the predictions of multiple estimators. On datasets with few classes (Iris, Wine, Balance, Breast cancer, Ionosphere) Evidential Random Forest increases less, but still significantly, the performance of Evidential Decision Tree. When the number of classes increases (Glass, Ecoli, Credal Dog-7, Credal Bird-10) the performance gain becomes very important, with an augmentation of more than 20%. When the datasets are imperfectly labeled, without using noise, and on a large number of classes (Credal Bird-10 and Credal Dog-7) the performance gain is the most impressive (with respectively a 35% and 49% increase).

Comparison with Random Forest

The proposed model reduces the high variance of decision trees as theoretically expected. However, it remains to be shown whether the performance of Evidential Random Forest outperforms Random Forest. The average accuracy of the two models, as well as F1-scores and AUCs, are compared in this experiment to demonstrate the benefits of the proposal. Mean accuracies, as well as confidence intervals are presented in Table 8. Mean F1-scores and AUCs are respectively presented in Tables 9 and 10 on 2-class datasets.

For each dataset, whether noisy or really labeled in an uncertain and imprecise way, the performance of Random Forest is largely improved by the proposed evidential version. The only exception is on the post-operative dataset, where the F1-score is drastically lower, the cause being the imbalance of classes for very few observations. The increase is up to 10 accuracy points for Iris and Balance Scale datasets. When the imperfection linked to human labeling can be represented in the data, a gain in accuracy is also noticed.

Other cautious and evidence-based models

In this section, a recent Cautious Random Forest [START_REF] Zhang | Cautious weighted random forests[END_REF]) as well as two other evidential models, the Evidential K-Nearest Neighbors [START_REF] Denoeux | A k-nearest neighbor classification rule based on dempster-shafer theory[END_REF] and a state-of-the-art Eviential SVM [START_REF] Kadir | Evidential svm for binary classification[END_REF] are used for comparison.

Cautious Random Forest uses the imprecise Dirichlet model at the estimator prediction level and the theory of belief functions [START_REF] Dempster | Upper and Lower Probabilities Induced by a Multivalued Mapping[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] for aggregation. This means that this model has some similarities with our proposed Evidential Random Forest. It is allowed to make cautious predictions by combining probability intervals. However, the model is only defined for datasets with two classes. Each decision tree in the forest produces an interval-valued probability estimate for the positive class, thanks to the imprecise Dirichlet model. The Cautious Random Forest then and are therefore more competitive. Overall on the 10 noisy datasets, Evidential Random Forest performs slightly better with better performance on 6 datasets. On the credal datasets, the proposed model also performs better.

Figure 4 shows the robustness of the models to imprecision noise. Random Forest always seems to start with a high accuracy score when there is no noise and drops in performance very quickly as the noise increases. Cautious Random Forest, when evaluated on accuracy (and not u 65 ) gives results very close to Random Forest. Evidential models (Evidential K-Nearest Neighbors and Evidential Random Forest) evolve in the same way, they start from different accuracies on perfect data depending on their ease in generalizing the dataset, but both have performances that decrease very slowly with the addition of noise. Overall, on the presented datasets, the proposed Evidential Random Forests performs consistently better.

Discussion

If the proposed Evidential Random Forest shows good performance according to accuracy, F1-score, AUC and robustness to imprecision, the underlying motivation is not only performance but also representation of evidence. We proposed models4 that are both able to take into account rich labels and to produce an evidential prediction modeled by the theory of belief functions. Such a soft prediction is shown in Table 14. This information can for example be used in uncertainty sampling [START_REF] Hoarau | Imperfect labels with belief functions for active learning[END_REF], to represent both the uncertainty of the model predictions and the uncertainty in the labels. Our current work focuses on the reduction of labeling costs (i.e. active learning) thanks to these evidential models in uncertainty sampling. The ability of the model to represent its uncertainty in a complete way makes it possible to target better observations to label. In addition, we are working to separate the uncertainty of the model to address the exploitation-exploration problem in active learning with rich labels.

For Evidential Decision Trees, some criteria have been studied such as the Euclidean distance, the Jousselme distance or the more robust conflict criterion. However some authors [START_REF] Zhang | On computing evidential centroid through conjunctive combination: An impossibility theorem[END_REF] have shown an inconsistency in the use of distances with the theory of belief functions. Perhaps the notion of distance is therefore not the most appropriate criterion for the problem at hand. The use of another criterion thus remains an open track to propose new Evidential Random Forests.

The ability of the model to take into account uncertain and imprecise data is at the cost of complexity. Even if the proposed model can run on a machine without a GPU, we have not managed to reach a level of optimization close to that of scikit-learn for example. Note that the python code of the two proposed models is available to the scientific community.

Conclusion

In this paper, we propose an overfitting robust Evidential Decision Tree based on a conflict measure. By using a distance between masses and a degree of inclusion, this criterion allows to group in the same node, observations with elements of response included in each other. By doing so, the tree built is shallower and less over-trained. We also propose an Evidential Random Forest which allows to overcome the high variance of decision trees. The model has been compared with other recent models and in particular with the reference in the evidential models literature. The results show high performance both on noisy data and on datasets that are actually labeled in an uncertain and imprecise manner.

The underlying motivation, other than robustness and performance, is the representation of evidence. The goal is to couple evidential learning with active learning, in order to work with imperfect data but also with as few labeled observations as possible.

Python code for Evidential Decision Trees is available on Github at: https://github.com/ArthurHoa/conflict-edt.

Python code for Evidential Random Forests is available on Github at: https://github.com/ArthurHoa/evidential-random-forest.
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 1 Figure 1: A shallower decision tree (a) and a deeper decision tree (b) of three observations x 1 , x 2 and x 3 .
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 23 Figure 2: Mean accuracy by amount of noise on several datasets for Decision Tree (DT) and Evidential Decision Trees (EDT).

Figure 4 :

 4 Figure 4: Mean accuracy by amount of noise on several datasets for Random Forest (RF), Cautious Random Forest (CRF), Evidential K-Nearest Neighbors (EKNN) and the proposed Evidential Random Forest (ERF).

Table 14 :

 14 Two observations respectively from Credal Dog-2 and Credal Bird-2 with possible model prediction. The classes respectively are {ω 1 : Brittany, ω 2 : Beagle} and {ω 1 : Western Jackdaw, ω 2 : Rook}, for both observations the true class is ω1 . {ω 1 , ω 2 } = 0.3 {ω 1 , ω 2 } = 0.1 {ω 1 , ω 2 } = 0.2 ω 1 = 0.5 ω 1 = 0.3 ω 1 = 0.7 ω 2 {ω 1 , ω 2 } ω 2 = 0.2 ω 2 = 0.5 ω 2 = 0.1 {ω 1 , ω 2 } = 0.3 {ω 1 , ω 2 } = 0.2 {ω 1 , ω 2 } = 0.2

  Require: A training set S and features X of attribute domain D A . function EvidentialDecisionTree(S) T ← ∅ if stopping criteria met then leaf ← Create node with S T ← Attach leaf else for A in D A do ▷ Browse attributes Inf o A (S) ← Compute conflict info criterion end for Best A ← Best attribute according to Inf o A (S) for v in Best A do ▷ Browse values S v ← Split S according to value v Find the leaf of T with respect to the attributes of X m ← Combine with average all rich labels in S X return m end function 4.2.1. Evidential Random Forest In this section both bagging and random feature selection are used on Evidential Decision Trees to model Evidential Random Forests.

	node ← EvidentialDecisionTree(S v )
	T ← Attach node
	end for
	end if
	return T
	end function
	function PredictEDT(T, X)
	S X ←

Table 1 :

 1 Datasets description, with total number of observations, number of classes and number of explanatory variables (Features).

	Dataset	Observations Classes Features
	Breast cancer	569	2	30
	Ionosphere	351	2	34
	Post-operative	86	2	8
	Sonar	208	2	60
	Liver	345	2	6
	Balance scale	625	3	4
	Iris	150	3	4
	Wine	178	3	13
	Glass	214	6	9
	Ecoli	336	8	7
	Credal Dog-2	200	2	42
	Credal Dog-4	400	4	47
	Credal Dog-7	700	7	43
	Credal Bird-2	40	2	17
	Credal Bird-10	200	10	30

Table 2 :

 2 Mean accuracy on 50% noisy dataset (± a 95% confidence interval for mean estimation). A Decision Tree (DT) and four Evidential Decision Trees (EDT) are used for comparison, the proposed model is the Conflict-EDT (Welch's t-test significance at p-value < 0.05 indicated by *).

	Dataset	DT	EDT
		Euclidean Uncertainty Jousselme	Conflict
	Breast cancer	70.1 ± 0.9 72.4 ± 0.8	71.4 ± 0.7	72.8 ± 0.9 91.1* ± 0.5
	Ionosphere	67.6 ± 1.2 71.0 ± 0.9	68.4 ± 1.1	71.9 ± 1.0 87.4* ± 0.8
	Post-operative 55.7 ± 2.4 60.4 ± 2.4	56.7 ± 2.2	57.8 ± 2.4 59.9 ± 2.3
	Sonar	61.1 ± 1.6 59.5 ± 1.5	60.2 ± 1.6	59.2 ± 1.4 66.8* ± 1.4
	Liver	53.8 ± 1.2 55.4 ± 1.2	54.8 ± 1.1	56.0 ± 1.2 58.0* ± 1.1
	Balance scale	59.4 ± 1.0 69.8 ± 0.8	57.5 ± 0.9	69.9 ± 0.7 75.1* ± 0.6
	Iris	63.6 ± 2.0 74.0 ± 1.8	68.5 ± 1.7	73.9 ± 1.7 90.4* ± 1.2
	Wine	70.4 ± 1.9 70.1 ± 1.4	68.3 ± 1.6	68.3 ± 1.7 88.1* ± 1.3
	Glass	50.7 ± 1.5 51.4 ± 1.5	51.8 ± 1.5	53.1 ± 1.6 60.5* ± 1.5
	Ecoli	56.8 ± 1.3 58.8 ± 1.1	57.1 ± 1.2	59.0 ± 1.2 69.9* ± 1.0
	Credal Dog-2	82.9 ± 1.3 81.2 ± 1.4	82.4 ± 1.2	81.8 ± 1.3 83.0 ± 1.2
	Credal Dog-4	57.7 ± 1.3 58.0 ± 1.2	57.7 ± 1.0	58.2 ± 1.2 59.2 ± 1.1
	Credal Dog-7	50.1 ± 0.9 50.1 ± 0.9	48.8 ± 0.9	50.0 ± 0.8 53.1* ± 1.0
	Credal Bird-2	50.8 ± 3.6 62.8 ± 3.7	57.3 ± 3.7	59.8 ± 3.3 52.4 ± 3.4
	Credal Bird-10 42.0 ± 1.6 43.1 ± 1.5	45.0 ± 1.7	42.7 ± 1.6 45.4 ± 1.6

Table 3 :

 3 Mean F1-score (± a 95% confidence interval) on 2-class datasets. A Decision Tree (DT) and four Evidential Decision Trees (EDT) are used for comparison, the proposed model is the Conflict-EDT (Welch's t-test significance indicated by *).

	Dataset	DT	EDT
		Euclidean Uncertainty Jousselme	Conflict
	Breast cancer	75.2 ± 0.9 77.3 ± 0.7	75.0 ± 0.8	77.6 ± 0.9 92.9* ± 0.4
	Ionosphere	75.5 ± 1.1 76.7 ± 0.9	74.1 ± 1.0	77.5 ± 1.0 90.3* ± 0.6
	Post-operative 27.8 ± 3.2 30.5 ± 3.7	29.1 ± 3.8	29.0 ± 3.4 21.7 ± 3.6
	Sonar	57.9 ± 2.0 57.5 ± 1.7	57.3 ± 1.8	56.8 ± 1.8 63.5* ± 1.8
	Liver	58.7 ± 1.2 59.7 ± 1.2	59.0 ± 1.1	60.7 ± 1.3 61.2 ± 1.3
	Credal Dog-2	81.5 ± 1.4 80.4 ± 1.5	81.6 ± 1.3	80.8 ± 1.5 82.2 ± 1.5
	Credal Bird-2	53.1 ± 4.6 61.3 ± 4.2	58.5 ± 4.5	57.8 ± 4.1 51.8 ± 4.4

Table 4 :

 4 Mean AUC (Area Under the ROC Curve) on 2-class datasets. A Decision Tree (DT) and four Evidential Decision Trees (EDT) are used for comparison, the proposed model is the Conflict-EDT (Welch's t-test significance indicated by *).

	Dataset	DT		EDT		
			Euclidean Uncertainty Jousselme Conflict
	Breast cancer	0.69	0.83	0.81	0.83	0.94*
	Ionosphere	0.67	0.79	0.77	0.79	0.90*
	Post-operative 0.48	0.53	0.50	0.53	0.48
	Sonar	0.59	0.64	0.65	0.65	0.70*
	Liver	0.55	0.58	0.57	0.59	0.60
	Credal Dog-2	0.84	0.87	0.88	0.88	0.92*
	Credal Bird-2	0.52	0.72	0.68	0.70	0.58

Table 5 :

 5 Trees mean depth rounded to the unit, on 30% noisy datasets (except for Credal datasets) for each Evidential Decision Tree, the proposed version is the Conflict.

	Dataset	Euclidean Uncertainty Jousselme Conflict
	Breast cancer	19	33	19	7
	Ionosphere	17	24	18	10
	Post-operative	11	13	11	9
	Sonar	12	17	12	7
	Liver	18	18	17	13
	Balance scale	13	14	13	12
	Iris	13	14	13	8
	Wine	12	18	13	8
	Glass	21	16	20	14
	Ecoli	26	19	26	17
	Credal Dog-2	15	36	15	9
	Credal Dog-4	25	41	23	20
	Credal Dog-7	48	42	36	24
	Credal Bird-2	12	18	11	6
	Credal Bird-10	26	24	20	14

Table 6 :

 6 Trees mean number of observations in leaves, rounded to the unit on 30% noisy datasets (except for Credal datasets) for each Evidential Decision Tree, the proposed version is the Conflict.

	Dataset	Euclidean Uncertainty Jousselme Conflict
	Breast cancer	5	3	5	36
	Ionosphere	5	2	5	18
	Post-operative	3	2	3	5
	Sonar	5	3	5	12
	Liver	3	2	3	6
	Balance scale	3	1	3	5
	Iris	3	2	3	7
	Wine	4	2	4	9
	Glass	2	2	2	3
	Ecoli	2	2	2	3
	Credal Dog-2	2	1	2	8
	Credal Dog-4	1	1	1	2
	Credal Dog-7	1	1	1	2
	Credal Bird-2	1	1	1	5
	Credal Bird-10	1	1	1	2

Table 7 :

 7 Performance gain of Evidential Random Forests compared to Evidential Decision Trees on noisy and imperfectly labeled datasets. The difference in accuracy between the two models is presented as well as the percentage gained.

	Dataset	Accuracy gain % Improvement
	Breast cancer	3.5	3.8
	Ionosphere	5.2	6.0
	Post-operative	11.1	18.6
	Sonar	10.0	15.0
	Liver	8.5	14.7
	Balance scale	9.5	12.7
	Iris	5.3	5.8
	Wine	9.5	10.8
	Glass	14.5	23.9
	Ecoli	15.6	22.3
	Credal Dog-2	10.8	13.1
	Credal Dog-4	18.0	30.4
	Credal Dog-7	26.1	49.2
	Credal Bird-2	0.2	0.5
	Credal Bird-10	15.8	34.9

Table 11 :

 11 Mean accuracy for Cautious Random Forest (CRF), Evidential Support Vector Machine (ESVM), Evidential K-Nearest Neighbors (EK-NN) and the proposed Evidential Random Forest (ERF) on 50% noisy datasets (± a 95% confidence interval for the estimate of the mean. The u 65 score is also present for CRF to reward cautious predictions and Welch's t-test significance at p-value < 0.05 is indicated by *).

	Dataset	CRF		ESVM	EK-NN	ERF
		Acc	u 65	Acc	Acc	Acc
	Breast cancer	91.2 ± 0.6 91.7 ± 0.5 91.9 ± 0.5 95.4* ± 0.4 94.5 ± 0.4
	Ionosphere	85.6 ± 1.0 84.3 ± 0.8 90.2 ± 0.8 83.2 ± 0.9 92.4* ± 0.5
	Post-operative 59.8 ± 2.3 59.2 ± 1.9 58.6 ± 2.3 65.7 ± 2.0 71.2* ± 1.9
	Sonar	68.3 ± 1.5 74.4 ± 1.2 65.3 ± 1.4 77.3 ± 1.3 76.5 ± 1.3
	Liver	60.3 ± 1.1 61.2 ± 1.0 55.4 ± 1.0 58.2 ± 1.0 66.1* ± 0.9
	Balance scale				88.2* ± 0.5 84.5 ± 0.5
	Iris				94.6 ± 0.8 95.3 ± 0.7
	Wine				95.9 ± 0.7 97.5* ± 0.5
	Glass				64.2 ± 1.5 75.1* ± 1.3
	Ecoli				84.8 ± 0.8 85.5 ± 0.8
	Credal Dog-2	90.9 ± 1.1 92.8 ± 0.8 63.4 ± 1.4 73.8 ± 1.5 93.3 ± 0.9
	Credal Dog-4				69.3 ± 1.0 77.1* ± 0.9
	Credal Dog-7				75.8 ± 0.7 79.1* ± 0.8
	Credal Bird-2	48.3 ± 3.6 47.3 ± 3.1 53.8 ± 3.4 58.4* ± 3.4 53.1 ± 3.2
	Credal Bird-10				60.6 ± 1.5 61.2 ± 1.5

Table 12 :

 12 Mean F1-score for Cautious Random Forest (CRF), Evidential Support Vector Machine (ESVM), Evidential K-Nearest Neighbors (EK-NN) and the proposed Evidential Random Forest (ERF) on 2-class datasets (± a 95% confidence interval for the estimate of the mean. Welch's t-test significance at p-value < 0.05 is indicated by *).

	Dataset	CRF	ESVM	EK-NN	ERF
	Breast cancer	93.0 ± 0.5 93.6 ± 0.4 96.4* ± 0.3 95.6 ± 0.3
	Ionosphere	88.2 ± 0.9 92.0 ± 0.7 88.1 ± 0.7 94.2* ± 0.4
	Post-operative 27.5 ± 3.5 27.3 ± 3.5 15.1 ± 3.5 6.6	± 2.6
	Sonar	65.2 ± 1.8 50.0 ± 2.1 72.9 ± 1.6 74.4 ± 1.6
	Liver	61.9 ± 1.4 57.1 ± 1.3 62.3 ± 1.1 70.4* ± 1.0
	Credal Dog-2	90.0 ± 1.2 44.3 ± 2.5 66.0 ± 2.2 92.8 ± 1.0
	Credal Bird-2	42.5 ± 4.9 54.2 ± 4.6 41.4 ± 5.1 51.5 ± 4.0

Table 13 :

 13 Mean AUC (Area Under ROC Curve) for Cautious Random Forest (CRF), Evidential Support Vector Machine (ESVM), Evidential K-Nearest Neighbors (EK-NN) and Evidential Random Forest (ERF) on 2-class datasets (± a 95% confidence interval for the estimate of the mean. Welch's t-test significance at p-value < 0.05 is indicated by *).

	Dataset	CRF ESVM EK-NN ERF
	Breast cancer	0.90	0.94	0.98	0.99*
	Ionosphere	0.86	0.89	0.95	0.97*
	Post-operative 0.51	0.53	0.53	0.49
	Sonar	0.68	0.70	0.86	0.87
	Liver	0.61	0.58	0.60	0.71*
	Credal Dog-2	0.91	0.75	0.88	0.98*
	Credal Bird-2	0.50	0.55	0.74*	0.58

Rich labels are answer elements given by a source that may have several degrees of imprecision (c.f. section

2.1).

Link to the datasets https://data.mendeley.com/datasets/4hz3wx6wm5.

The proposed models are Evdiential Decision Trees and Evidential Random Forests.

We computed accuracy for Cautious Random Forests classically for precise predictions (i.e. the proportion of correct predictions), and took the most plausible answer according to their defined plausibility score when the model gives a cautious prediction. To adapt to the model's ability to give a cautious answer the authors propose to use the u 65 criterion [START_REF] Zaffalon | Evaluating credal classifiers by utility-discounted predictive accuracy[END_REF] which rewards an imprecise prediction on ω 1 ∪ ω 2 by 0.65 (instead of 1 for a precise prediction). Evidential K-Nearest Neighbors is a version of the K-Nearest Neighbors that is a standard in literature to both handle rich labels and produce soft predictions with the theory of belief functions. The best K number of neighbors is estimated according to a 5-fold cross-validation and the parameters used are those defined for γ-EKNN by [START_REF] Hoarau | Imperfect labels with belief functions for active learning[END_REF].

Evidential SVM 3 [START_REF] Kadir | Evidential svm for binary classification[END_REF] is a recent evidential classification model that uses both classical SVMs, K-means clustering and belief function theory to handle model uncertainty and imprecision in the form of a mass function. All parameters used for this model are those proposed by the authors in their publication. This version is also restricted to binary classification problems.

Table 11 presents the mean accuracies for Cautious Random Forest, Evidential SVM, Evidential K-Nearest Neighbors and the proposed Evidential Random Forest. The u 65 score is also present for Cautious Random Forest to reward cautious predictions. Note that the two first models can only handle 2-class datasets, hence the absence of results in the table for datasets with more than 2 classes. As for the other experiments, the first 10 datasets are noisy and the Credal datasets have inherently rich labels. F1-scores and AUCs are also respectively present in Tables 12 and13.

The ability for Cautious Random Forest to provide cautious predictions does not compensate for the drop in performance induced by label richness. The Evidential SVM does not perform as well as the other two evidential models, except for the post-operative and credal bird-2 datasets, in terms of F1-score. This is due to its inability to take into account all the uncertainty present in the labels. The Evidential K-Nearest Neighbors and the proposed Evidential Random Forest can both benefit from the rich labels 3 SVM stands for Support Vector Machine.