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Abstract

In machine learning, some models can make uncertain and imprecise pre-
dictions, they are called evidential models. These models may also be able
to handle imperfect labeling and take into account labels that are richer
than the commonly used hard labels, containing uncertainty and impreci-
sion. This paper proposes an Evidential Decision Tree, and an Evidential
Random Forest. These two models use a distance and a degree of inclusion
to allow the model to group observations whose response elements are in-
cluded in each other into a single node. Experimental results showed better
performance for the presented methods compared to other evidential models
and to recent Cautious Random Forests when the data is noisy. The models
also offer a better robustness to the overfitting effect when using datasets
that are effectively uncertainly and imprecisely labeled by the contributors.
The proposed models are also able to predict rich labels, an information that
can be used in other approaches, such as active learning.

Keywords: Decision Tree, Random Forest, Classification, Rich labels,
Dempster-Shafer Theory

1. Introduction

In supervised learning one of the best known approaches is the decision
trees: amongst the different classification methods, they have the advan-
tage of being easily understandable, and their interpretation is within the
reach of a larger number of people (Quinlan, 1987). They can be used in
both classification and regression for quantitative and qualitative variables.
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The two most popular decision tree models are C4.5 (Quinlan, 1993) and
CART (Breiman et al., 1984). The effectiveness of these models is recog-
nized, they are simple to define, have good interpretability and can be used
in exploratory analysis (Siciliano, 1998). However, decision trees are prone
to overfitting, this occurs when any learning process over-optimizes the error
on the learning set at the expense of generalization (Bramer, 2013).

The labeling process is often carried out by humans (Fredriksson et al.,
2020) and may therefore be subject to imperfection. Using hard labels might
be convenient for many machine learning and deep learning problems but is
never completely representative of reality. On the other hand, imperfection
can help us fill in this lack of information using richer labels1. It can be
represented by many criteria (Smets, 1997) but only uncertainty and impre-
cision will be discussed in this paper. Uncertainty can be considered as a
partial knowledge of the real value of the data (e.g. This might be a cat).
Imprecision measures a quantitative defect of knowledge (e.g. This is a cat
or a dog). Ignorance is thus derived from imprecision. This ignorance and
imprecision can be modeled with the theory of belief functions (Dempster,
1967; Shafer, 1976). This framework, commonly used for data fusion, allows
to represent several degrees of ignorance, and generalizes other approaches,
like probabilities or possibilities.

Evidential decision trees can handle this imperfection in labels. Several
authors (Denoeux et al., 2019; Elouedi et al., 2001; Trabelsi et al., 2019;
Sutton Charani et al., 2013) have offered to couple the theory of belief func-
tions with decision trees in order to handle these imperfectly labeled data.
However, these models tend to be overfitted due to the richness of these la-
bels, resulting in large trees with small leaves. In this paper we suggest an
Evidential Decision Tree for rich labels robust to overfitting and based on
a conflict measure introduced by Martin (2019). Other evidential decision
trees do not address the problem of overfitting (other than by pruning), the
use of conflict allows to group observations with similar response elements
and to reduce this effect. The goal is both to come up with a model able to
work with imperfectly labeled observations, but also to address the problem
of overfitting.

Moreover, we extend the proposed model to Evidential Random Forests to

1Rich labels are answer elements given by a source that may have several degrees of
imprecision (c.f. section 2.1).
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overcome the high variance of decision trees and gain performance. Random
Forests are first introduced by Leo Breiman (1996, 2001), they combine the
predictions of a large number of trees using bagging and random feature
selection.

Several models based on belief functions have been proposed to deal with
data imperfections. Cautious Random Forests (Zhang et al., 2023; Moral-
Garćıa et al., 2020) is a recent model that can produce uncertain and impre-
cise predictions, as well as cautious ones, but cannot take into account all the
uncertainties present in the rich labels, unlike Evidential Random Forests.

Recent evidential models, such as Evidential SVMs (Xu et al., 2016; Kadir
et al., 2019) or Evidential Deep Neural Networks (Yuan et al., 2020) can
handle some information about the uncertainty inherent in the quality of
the observation(s) - for example, an image may represent a cat uncertainly
because it strongly resembles a dog -, while Evidential Random Forests take
into account label uncertainty - the image undoubtedly represents a cat, but
the source that labelled it lacks knowledge and thus induces uncertainty in
its labelling.

The Evidential K-Nearest Neighbors (Denœux, 1995; Denoeux et al.,
2019) is able to take into account these rich labels in the same way as the
proposed competitive model, the Evidential Random Forests.

In the experiments conducted for this study, the proposed method is
compared with most of these models

The rest of the paper is organized as follows. Section 2 reviews richer
labels as well as the theory of belief functions, Decision Trees and Random
forests. Section 4 describes the proposed conflict-based Evidential Decision
Tree as well as the Evidential Random Forest. They both use a distance
and a degree of inclusion to allow the model to group observations whose
response elements are included in each other into a single node. By doing so,
the built tree is shallower and less over-trained. Experiments on imperfectly
labeled and noisy datasets are discussed in section 5. Finally, section 6 and 7
conclude the article.

2. Background

2.1. Richer labeling

Most of the datasets used for classification consider only hard labels (i.e.
“Dog” or “Cat”). In this paper, we refer as rich labels the elements of
response given by a source that may include several degrees of imprecision
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(i.e. “This might be a cat”, “I don’t know” or “I am hesitating between dog
and cat, with a slight preference for cat)”. In this document, these uncertain
and soft labels, will be called rich labels as opposed to hard labels and they
are modeled using the theory of belief functions.

2.2. Theory of belief functions

The theory of belief functions, also called Dempster-Shafer theory (Demp-
ster, 1967; Shafer, 1976), is used in this paper in order to model uncertainty
and imprecision, for both labeling and prediction.

Let Ω = {ω1, . . . , ωM} be the frame of discernment for M exclusive and
exhaustive hypotheses. The power set 2Ω is the set of all subsets of Ω. A Basic
Belief Assignment is the belief that a source may have about the elements
of the power set of Ω, this function assigns a mass to each element of this
power set such that the sum of all masses is equal to 1.

m : 2Ω → [0, 1],∑
A∈2Ω

m(A) = 1. (1)

Each subset A ∈ 2Ω such that m(A) > 0 is called a focal element of
m. The uncertainty is therefore represented by a mass m(A) < 1 on a focal
element A and the imprecision is represented by a non-null mass m(A) > 0
on a focal element A such that |A| > 1.

A mass function m is called categorical mass function when it has only
one focal element such that m(A) = 1. In the case where A is a set of several
elements, the knowledge is certain but imprecise. For |A| = 1, the knowledge
is certain and precise.

A mass function m is called simple support mass function when it has
two focal elements, one of which is Ω:

m(A) = 1− w , A ∈ 2Ω,

m(Ω) = w ,

m(B) = 0, B ∈ 2Ω\{A,Ω}.
(2)

with w ∈ [0, 1], the mass function m can then be noted Aw .
On decision level, the pignistic probability BetP helps decision making

on singletons:

BetP (ω) =
∑

A∈2Ω, ω∈A

m(A)

|A|
. (3)
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It is also possible to combine several mass functions into a single body of
evidence. The normalized conjunctive combination of the mass functions mj

derived from N sources is given as follows:
m(A) =

1

1− κ

∑
B1∩...∩BN=A

N∏
j=1

mj(Bj), if A ̸= ∅,

m(∅) = 0,

(4)

with ∅ the empty set and:

κ =
∑

B1∩...∩BN=∅

N∏
j=1

mj(Bj). (5)

This combination rule will not be used, because for several datasets, the
labels and therefore the mass functions are not independent. Also, a com-
bination of mass functions will be used on the prediction of the different
estimators (e.g. the aggregated decision trees for the prediction of Random
Forest). Equation (4) is unstable when used on a large number of estimators
and for the output of the trees used. A simple average of the mass functions
will be preferred and is defined as follows:

m(A) =
1

N

N∑
j=1

mj(A), A ∈ 2Ω. (6)

Example 1:

Let Ω = {Cat,Dog} be a frame of discernment. An observation labeled
“Cat” by a source can be modeled in the framework of belief functions by
the mass function m1 such that: m1({Cat}) = 1 and m1(A) = 0, ∀A ∈
2Ω\{Cat}.

Example 2:

An observation labeled “Cat or Dog” by a source can be modeled by
the mass function m2 such that: m2({Cat,Dog}) = 1 and m2(A) = 0,
∀A ∈ 2Ω\{Cat,Dog}.

Example 3:

The mean mass function m̄ of m1 and m2 is: m̄({Cat}) = 0.5,
m̄({Cat,Dog}) = 0.5 and m̄(A) = 0 for all other subsets A in 2Ω. Its pignis-
tic probability BetP , used for decision making is: BetP ({Cat}) = 0.75 and
BetP ({Dog}) = 0.25.
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2.3. Evidential Learning

Evidential learning is defined here as the set of models able to both use
these rich labels and represent their prediction with belief functions. Such in-
formation can be used to represent knowledge or to increase the performance
of the model (Hoarau et al., 2022). Evidential decision trees have been intro-
duced (Denoeux & Bjanger, 2000; Elouedi et al., 2001; Trabelsi et al., 2019),
but evidential learning is not limited to decision trees, other models like
K-Nearest Neighbors have been extended to the evidential world (Denœux,
1995; Denoeux et al., 2019) and even evidential neural networks are mod-
eled (Yuan et al., 2020). Some of these models are presented and used for
comparison during the experiments. Here, we are interested in proposing an
Evidential Random Forest based on a new Evidential Decision Tree.

2.4. Decision Trees

In classification, Decision Trees are used to predict the class of an in-
coming observation based on a structure of nodes and splits. The tree is
previously built on a training set and the different splits define the path to
follow for prediction.

A node contains observations, it can have one parent and two or more
child nodes (depending on the chosen architecture). A split divides a node
into child nodes using edges corresponding to the possible values of an at-
tribute. The choice of the best split attribute is made by maximizing a gain
function. At first, every observation used for training is part of a single node
called the root node.

The most popular decision trees are the versions C4.5 (Quinlan, 1993) and
CART (Breiman et al., 1984). They are referred to as top down induction
decision trees and defined by an attribute selection criterion used to find the
best attribute for a split, a partitioning strategy to divide the node using the
selected attribute and stopping criteria to stop splitting at a node and make
it a leaf.

Partitioning strategy

The selected attribute to split a node is the one that maximizes a gain
function. Let the node S be a set of observations (if all the training obser-
vations are in S, it is the root node). Let Ω = {ω1, . . . , ωM} be the set of all
possible classes for each element of S. Let A be an attribute from its finite
domain DA. The information gain Gain(S,A) of splitting on A is defined by
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Quinlan:
Gain(S,A) = Info(S)− InfoA(S), (7)

where Info(S) is the information of the node S, and InfoA(S) is the weighted
sum of the child nodes information considering a split on attribute A:

InfoA(S) =
∑
v∈A

|Sv|
|S|

Info(Sv), (8)

with Sv the subset of S for which the attribute A has the value v (i.e. the
child node resulting from the split on attribute A for the value v). A split
is performed on each node, starting from the root and recursively for each
child node until one of the stopping criteria is reached.

Attribute selection criterion

Maximizing the Gain means choosing the best attribute A to split S. To
do this, Quinlan proposes the Shannon (1948) entropy as a selection criterion:

Info(S) = −
∑
ω∈Ω

pω(S)log2pω(S), (9)

with pω(S) the proportion of observations in S belonging to the class ω. The
Gini criterion is also commonly used as a selection criterion:

Info(S) = 1−
∑
ω∈Ω

pω(S)
2. (10)

Stopping criteria

The construction of the tree is stopped when one of these criteria is
reached:

• Only one observation is part of the current node.

• Observations belong to the same class.

• The remaining attributes have a Gain less or equal to zero.

Pruning is a compression technique reducing the size of a tree. Pre-
pruning (pruning during the construction of the tree) will be lightly discussed
in this document but when not specified and with respect to Random Forest,
consider that the tree is fully grown.
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In the case of continuous variables, the method used is the following;
for an attribute A, the observations are sorted in ascending order on this
attribute and for each pair of consecutive values c1 and c2, a threshold v
will be used such that v = c1 + (c2 − c1)/2. The threshold maximizing the
information gain will be used to split a node into two child nodes, one with
values strictly lower than v and the other with values greater than v.

Prediction

Once the tree is built, the unlabeled observations will cross the tree from
the root based on their attributes. When a leaf is reached, observations will
be given a probability of belonging to each class based on the proportion
representing the class in the node. The class maximizing this probability
is the predicted class (e.g. if a new observation reaches a leaf I, composed
of 9 observations of class ω1 and 1 observation of class ω2, the predicted
probability associated with ω1 is 0.9 and that associated with ω2 is 0.1).

2.5. Random Forests

Introduced by Breiman (1996) the Bagging is the first step towards Ran-
dom Forest, later defined by Breiman (2001) by adding a random selection
of features. The principle is to overcome the weakness of decision trees, the
high variance, by combining the predictions of a large number of trees, the
forest. This section explains the operation of bagging and random feature
selection, both of which are used in the most commonly used version of Ran-
dom Forest (Breiman, 2001).

2.5.1. Bagging

This definition is largely based on Breiman’s publication (Breiman, 1996)
where bagging on decision trees is first introduced. Let Ω = {ω1, . . . , ωM} be
a collection of M different classes and let L = {xk|1, . . . , K} be a learning set
of K samples where each element is associated to a label yk ∈ Ω. Given an
estimator φ(x,L), the objective is to create a {Ln} sequence of new learning
sets to improve the performance of the predictor on the unique learning
set. A new sequence of predictors {φ(x,Ln)} is then introduced. Bagging
stands for Bootstrap Aggregating where the bootstrap allows to create the
{Ln} learning sets, the result is then given by aggregating the {φ(x,Ln)}
predictors.

Bootstrap: The {Ln} sets are composed of K elements (i.e. in Bagging,
the size of the {Ln} learning set is the same as L). Each element is drawn
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at random with replacement, in L. Which means that an observation xk can
appear several times or not at all in any Ln set.

Aggregating : When φ(x,L) predicts a class (c.f. (Breiman, 1996) for
continuous predictions) a method for aggregating the {φ(x,Ln)} predictions
is to use a majority vote or a weighted vote. The results of the N trees are
then aggregated, to form the prediction of the unique Random Forest model.

2.5.2. Random feature selection

Inspired by Amit & Geman (1997), Breiman introduces the random fea-
ture selection for Random Forest (Breiman, 2001). The first objective is to
be competitive with the Adaboost model. The author says that “using a ran-
dom selection of features to split each node yields error rates that compare
favorably to Adaboost, but are more robust with respect to noise”. It works
by using only a small number of variables, randomly selected at each split,
when training a Decision Tree. In this paper, for Random Forest, Cautious
Random Forest and the proposed Evidential Random Forest,

√
p variables

will be randomly selected at each split, with p the number of variables and
the dimension of the vector x (Hastie et al., 2009). During a split, a Deci-
sion Tree used in a Random Forest only has access to a reduced number of
variables in order to find the best possible split.

3. Motivation from other Evidential Decision Trees

For observations that are no longer perfectly labeled (i.e. labeled by a
mass function in this case), the Gain (7) cannot be calculated with Entropy
(9) or Gini criterion (10). The proportion pω of observations belonging to
the class ω no longer exists as an observation is no longer characterized by
a class but by a mass function. To make the gain calculation possible again,
a new information criterion Info must be used, such models are presented
here.

3.1. The uncertainty approach
Some authors introduced a new decision tree (Denoeux & Bjanger, 2000)

based on the theory of belief functions and Klir uncertainty (Klir &Wierman,
1998). Observations in child nodes are grouped while reducing as much as
possible the uncertainty present in each node. Two information are combined
to calculate the information gain, first the non-specificity:

N(m) =
∑
A⊆Ω

m(A)log2(|A|), (11)
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and an extension of the Shannon entropy, the degree of discord:

D(m) = −
∑
A⊆Ω

m(A)log2(BetP (A)). (12)

Using both non-specificity and discord, the authors propose the following
information criterion:

Info(S) = (1− λ)N(m̄S) + λD(m̄S), (13)

with λ ∈ [0, 1] a positive coefficient and m̄S the mass function representing
the subset S. In this paper we choose the average of the mass functions of
the observations belonging to node S. The value of m̄S is therefore the com-
bination of each rich label (i.e. every mass function) in the node according to
the average. Dempster’s combination is not used because for some datasets,
the labels and thus the masses are not independent. The λ parameter acts
as a cursor on the degree of non-specificity or discord that one wants as a
criterion.

This method will be called the Uncertainty-EDT, with λ = 0.5. For all
the experiments presented, more non-specificity in the criterion (lowering λ)
only lowered the performance of the model while more discord (increasing λ)
increased performance with a threshold reached at about 0.5.

3.2. The Euclidean distance approach

Another approach, based on the Euclidean distance between mass func-
tions is presented by Elouedi et al. (2001) (the authors originally suggested a
one-to-one correspondence vector instead of the mass). It is proposed to min-
imize the intra-class distance in the child nodes (i.e. the mass functions close
in the sense of the Euclidean distance will be grouped to form the splits).
The Euclidean distance d(mi,mj) between two mass functions mi and mj is
defined as follows:

d(mi,mj) =

√∑
A⊆Ω

(mi(A)−mj(A))2. (14)

The information Info(S) in the subset S is then given by the mean of
the distances between the mass functions of all observations of node S and
the model using a Euclidean distance as a criterion will be called Euclidean-
EDT. As a reminder, the mass functions are the labels of the observations,
given in the dataset.
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3.3. The Jousselme distance approach

Trabelsi et al. (2019) introduce a decision tree using the Jousselme dis-
tance (Jousselme et al., 2001). Close to the Euclidean approach, the distance
used differs by considering the mass functions as bodies of evidence and not
simple vectors. The Jousselme distance dJ(mi,mj) is defined by:

dJ(mi,mj) =

√
1

2
(mi −mj)TD(mi −mj), (15)

with D the 2M × 2M matrix of M classes computed as follows:

D(A,B) =
|A ∩B|
|A ∪B|

, A,B ∈ Ω. (16)

The information Info(S) can be obtained by computing the mean of
Jousselme distances between mass functions in node S. This model differs
from the Euclidean one by assigning a smaller distance between two response
items that contain some of the same information, it will be referenced as the
Jousselme-EDT.

All these methods have the advantage of working with imperfectly labeled
data, but are prone to overfitting, as will be shown in the section 5. This
leads to our proposal for a more robust criterion.

4. Evidential Decision Trees and Evidential Random Forest

Few models are able to take uncertainty and imprecision into account.
This imperfection in richer labels can be used to approximate what a source
thinks about an observation, and can even increase the performance of a
model (Hoarau et al., 2022). In this section we propose a new separation cri-
terion and a new Evidential Random Forest composed of Evidential Decision
Trees using this criterion.

4.1. Conflict-based Evidential Decision Trees

Amongst the models presented in section 3, two properties can be dis-
cussed. The first is that the degree of discord at equation (12) can be greater
than zero for a single response from a single user, and thus cannot best rep-
resent the contradiction between several responses. The second is that for
the use of distances, at equations (14) and (15), the impurity in a node is
non-null when answer elements are included in each other. To address these
two problems, the notion of conflict in the theory of belief functions can be
used.
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4.1.1. The Conflict approach

In this paper, we propose to use a conflict measure as a split criterion.
This conflict measure based on inclusion degree and distance is introduced
by Martin (2019), and two definitions of inclusion are given. The first is a
strict inclusion saying that a mass function mi is included in mj when all
focal elements of mi are included one by one in each focal element of mj. A
strict degree of inclusion δi⊆j

s (mi,mj) of mi in mj is then given by:

δi⊆j
s (mi,mj) =

1

|Fi||Fj|
∑
A∈Fi

∑
B∈Fj

Inc(A,B), (17)

with Inc(A,B) = 1 if A ⊆ B and 0 otherwise, Fi and Fj respectively are the
set of focal elements of mi and mj.

The second definition is a light inclusion saying that a mass function mi

is included in mj if all the focal elements of mi are included in at least one
element of mj. The light degree of inclusion δi⊆j

l (mi,mj) is given as follows:

δi⊆j
l (mi,mj) =

1

|Fi|
∑
A∈Fi

max
B∈Fj

(Inc(A,B)). (18)

We introduce and define in this paper δi⊆j(mi,mj), a slightly less strict
degree of inclusion than equation (17), without taking into account the in-
clusion on ignorance.

Definition 1. A fair inclusion between two mass functions is defined by: a
mass function mi is fair included in mj if all the focal elements of mi on
2Ω\Ω are included one by one in each focal element of mj on 2Ω\Ω.

Definition 2. The fair degree of inclusion δi⊆j(mi,mj) is given as follows:

δi⊆j(mi,mj) =
1

|Li||Lj|
∑
A∈Li

∑
B∈Lj

Inc(A,B), (19)

with Li and Lj respectively the set of focal elements on 2Ω\Ω of mi and mj.

This equation is used instead of the strict inclusion equation because the
ignorance is only included in itself.
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Example. Let y1, y2 and y3 be rich labels with Ω = {dog, cat, bird} according
to Section 2.1 such that:

y1: m1({dog}) = 1, “This is a dog”.

y2: m2({cat}) = 1, “This is a cat”.

y3: m3({cat, bird}) = 1, “This is a cat or a bird”.

Fair degrees of inclusion for some evidence body couples are δ1⊆1(y1, y1) = 1,
δ1⊆2(y1, y2) = 0, δ1⊆3(y1, y3) = 0, δ2⊆3(y2, y3) = 1 and δ3⊆2(y3, y2) = 0.

4.1.2. Computing the information criterion

Based on the fair degree of inclusion, a degree of inclusion δ(mi,mj) of
mi and mj is:

δ(mi,mj) = max(δi⊆j(mi,mj), δ
j⊆i(mj,mi)), (20)

and the conflict measure C(mi,mj), used as a criterion in our proposed Evi-
dential Decision Tree is defined by:

C(mi,mj) = (1− δ(mi,mj))dJ(mi,mj), (21)

with dJ(mj,mi) the Jousselme distance between mi and mj. The calculation
of C gives the conflict, the information Info(S) is then, the average two by
two conflict of node S:

Info(S) =

∑
xi∈S

∑
xj∈S

C(mi,mj)

|S|2 − |S|
. (22)

The gain is calculated identically to decision trees with equation (7).
This approach differs from the Jousselme-EDT by allowing two observations
to belong to the same node, without loss of gain, if one response is included
in the other. The proposed model based on conflict will be referenced in this
paper as the Conflict-EDT.
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4.1.3. Prediction

Once the tree is built, a new observation will cross the tree from the
root according to the value of its attributes. When a leaf is reached, the
observation will be assigned a mass function equal to the mean mass function
in the node (e.g. if a new observation reaches a leaf I, composed of 10
elements of masses {m1, . . . ,m10}; then the predicted mass of the observation
will be m̄ the average of the 10 mass functions). The class maximizing the
pignistic probability (3) of this mass function is the predicted class.

Example. Let Ω = {ω1, ω2} be the set of possible classes in a classification
problem. Let S be a leaf reached by observation x and composed of two mass
functions m1 and m2 such that:

m1: m1({ω1}) = 0.3, m1(Ω) = 0.7,

m2: m2({ω1}) = 0.2, m2(Ω) = 0.8.

The average mass function m̄ in S is the predicted rich label of x by the
Evidential Decision Tree: m̄({ω1}) = 0.25, m̄(Ω) = 0.75. On decision level
the class maximizing the pignistic probability is ω1 and is then chosen (i.e. the
hard label used to calculate the accuracy of the model).

4.1.4. Robustness to overfitting

When handling perfectly labeled data and classical decision trees, many
observations have the same class and the tree stops growing when all ob-
servations of a node are of the same class. There is no better split possible
reducing the impurity of the node and thus increasing the Gain.

Now, when dealing with imperfectly labeled data with the theory of belief
functions, almost no observation has an identical label. The decision tree
therefore has a harder time to stop growing, resulting in an over-trained tree
that will have difficulty generalizing. With Conflict-EDT, a node of several
masses can have a null conflict if the mass functions are included in each
other. This allows, as in the case of perfectly labeled data, to have a null
Gain and to stop the growth of the tree.

Example. Let Ω = {ω1, ω2} be a frame of discernment. Let three observations
x1, x2 and x3 respectively labeled m1, m2 and m3 be part of a root node such
that:

m1: m1(ω1) = 0.9, m1(Ω) = 0.1,

14



(a) (b)

Figure 1: A shallower decision tree (a) and a deeper decision tree (b) of three observations
x1, x2 and x3.

m2: m2(ω2) = 0.8, m2(Ω) = 0.2,

m3: m3(ω2) = 0.9, m3(Ω) = 0.1.

The mass function m1 can be seen as a strong belief that observation x1

belongs to ω1. The two mass functions m2 and m3 can be seen as strong
beliefs that x2 and x3 belong to ω2 with a lower share of ignorance for x3.

Using the Uncertainty-EDT model and if there are enough attributes to
separate the nodes, the discord calculated in equation (12) by combining
masses m2 and m3 will be non-null, resulting in the deepest possible tree,
visible in Figure 1b. The same property is present for Euclidean-EDT and
Jousselme-EDT models, both Euclidean and Jousselme distances between
m2 and m3 are non-null, resulting in the same tree. However, with Conflict-
EDT, m2 is included in m3 and the conflict, equation (21), between m2 and
m3 is zero. A shallower tree with larger leaves is then created (see Figure 1a).
To summarize, the other evidential models do not group x2 and x3 in the
same node because their labels are different, while the proposed model groups
them because the two responses are included in each other.

4.2. Aggregating evidential trees : The Evidential Random Forest

Evidential Decision Trees suffers from the same problems as classical de-
cision trees such as the high variance (Breiman, 1996). We also propose
here an Evidential Random Forest, based on the Evidential Decision Tree,
taking advantage of both high performance on imperfectly labeled data and
increased performance due to variance reduction.

15



Algorithm 1 Evidential Decision Tree

Require: A training set S and features X of attribute domain DA.
function EvidentialDecisionTree(S)

T ← ∅
if stopping criteria met then

leaf ← Create node with S
T ← Attach leaf

else
for A in DA do ▷ Browse attributes

InfoA(S)← Compute conflict info criterion
end for
BestA ← Best attribute according to InfoA(S)
for v in BestA do ▷ Browse values

Sv ← Split S according to value v
node ← EvidentialDecisionTree(Sv)
T ← Attach node

end for
end if
return T

end function
function PredictEDT(T,X)

SX ← Find the leaf of T with respect to the attributes of X
m← Combine with average all rich labels in SX

return m
end function
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4.2.1. Evidential Random Forest

In this section both bagging and random feature selection are used on
Evidential Decision Trees to model Evidential Random Forests.

The Bootstrap step in the proposed model involves richer labels: Let
Ω = {ω1, . . . , ωM} be a collection of M different classes and let L = {xk|1, . . .
, K} be a learning set of K samples where each element is associated to a
mass (i.e. the label) mk ∈ 2Ω. Let the estimator φ(x,L) be the Evidential
Random Forest, and {φ(x,Ln)} the sequence of Evidential Decision Tree
predictors. The {Ln} sets are the new bootstrapped learning sets composed
ofK elements drawn at random with replacement, in L. The number N (with
n ∈ N) of bags is discussed in section 5 and is set to 50 for experiments.

When Aggregating is performed, each estimator φ(x,Ln) predicts a mass
mn (i.e. the soft class predicted by Evidential Decision Trees) for an unla-
beled observation. We propose to combine all the masses with the average:

mERF (A) =
1

N

N∑
n=1

mn(A), A ∈ 2Ω, (23)

with mERF the prediction of the Evidential Random Forest.

4.2.2. Decision making

The motivation is the representation of evidence as an output of the
model, but a decision on the set of classes Ω can be made. The class ωERF

maximizing the pignistic probability (3) of mERF is the predicted class:

ωERF = argmax
ω∈Ω

(BetP (ω, mERF )), (24)

with BetP (ω, m) the pignistic probability of ω according to m.

Example. Let Ω = {ω1, ω2} be the set of possible classes in a classification
problem. Let φ(x,L) be an Evidential Random Forest of N = 3, Evidential
Decision Tree estimators φ(x,L1), φ(x,L2) and φ(x,L3) respectively predict-
ing m1, m2 and m3 for a new unlabeled incoming sample such that:

m1: m1(ω1) = 0.8, m1(Ω) = 0.2,

m2: m2(ω1) = 0.9, m2(Ω) = 0.1,

m3: m2(ω2) = 0.2, m2(Ω) = 0.8.
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The estimators φ(x,L1) and φ(x,L2) are strongly supporting class ω1 while
φ(x,L3) supports very slightly ω2. The prediction mERF for Evidential Ran-
dom Forest is then:

mERF : mERF (ω1) = 0.57, mERF (ω2) = 0.07, mERF (Ω) = 0.36.

On decision level, we compute the pignistic probabilities:

BetP (ω1) = 0.75,

BetP (ω2) = 0.25.

And ω1 is chosen as the hard predicted label because it maximizes the pig-
nistic probability on mERF .

Algorithm 2 Evidential Random Forest

Require: A training set L, features X and N estimators in forest φ(L).
function EvidentialRandomForest(L, X)

φ(L)← ∅
for n in 1, ..., N do ▷ Create the forest
Ln ← A bootstrapped sample of L
φ(Ln)← EvidentialDecisionTree(Ln, Xn)
φ(L)← φ(L) ∪ φ(Ln)

end for
return φ(L)

end function
function PredictERF(φ(L), X)

for φ(Ln) in φ(L) do ▷ Browse the trees
mn ← PredictEDT(φ(Ln), Xn)

end for
m← Combine mn∈N ▷ With average
return m

end function

5. Experiments

In this section, experiments are conducted with the proposed evidential
decision trees and evidential random forests.
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5.1. Design of the experiments

As the objective is to show the robustness of the models to imperfections,
the experiments have been carried out on several datasets containing between
2 and 10 classes and with a number of observations ranging from 40 to 700.
First, we used 10 well-known datasets available on the UCI Machine Learning
Repository (Dua & Graff, 2017), to which noise has been applied.

Imprecision noise: An observation is chosen at random and the
corresponding label loses one degree of precision, with another class cho-
sen at random in Ω (e.g. If a source labeled an observation Virginica, the
noisy label becomes either Virginica or Setosa or Virginica or Versicolor).
A 50% noisy dataset would mean that half of the labels have lost a degree of
precision. For non-evidential models, the hard label is the class maximizing
the pignistic probability (see equation (3)).

We also performed tests on uncertain and imprecise labelled datasets. In
a previous study, Thierry et al. (2021) used these data to validate Smets’
hypothesis according to which the more imprecise humans are, the more
certain they are (Smets, 1997). Such datasets, offering users the possibility of
expressing their imprecision and confidence in their answers, are not common.
We used Credal Bird-10, Credal Bird-2, Credal Dog-7, Credal Dog-4 and
Credal Dog-2, the only ones, to our knowledge, that have actually been
imperfectly labelled in crowdsourcing campaigns. They have a uniform class
distribution and are published by Hoarau et al. (2023)2. Details from all
datasets are presented in Table 1. Each experiment is performed 100 times
to obtain an estimation of the actual mean accuracy of the model for each
dataset. An iteration corresponds to a random draw of 20% of the dataset as
a test set, the rest is used for training. Due to some dataset imbalance, the
F1-score is also added as a comparison metric. The highest value of the F1-
score is 1 and indicates a perfect precision and recall. The AUC (Area Under
ROC Curve) is also used, it provides an overall measure of performance for
all possible classification thresholds.

The experiments are separated in two parts, the first one focuses on Evi-
dential Decision Tree and the second on Evidential Random Forest (composed
of evidential trees).

2Link to the datasets https://data.mendeley.com/datasets/4hz3wx6wm5.
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Table 1: Datasets description, with total number of observations, number of classes and
number of explanatory variables (Features).

Dataset Observations Classes Features
Breast cancer 569 2 30
Ionosphere 351 2 34
Post-operative 86 2 8
Sonar 208 2 60
Liver 345 2 6
Balance scale 625 3 4
Iris 150 3 4
Wine 178 3 13
Glass 214 6 9
Ecoli 336 8 7
Credal Dog-2 200 2 42
Credal Dog-4 400 4 47
Credal Dog-7 700 7 43
Credal Bird-2 40 2 17
Credal Bird-10 200 10 30

5.2. Experiments on Evidential Decision Trees

This section compares the proposed Evidential Decision Trees with De-
cision Trees using scikit-learn default parameters (Pedregosa et al., 2011)
and other Evidential Decision Trees. The Uncertainty-EDT (Denoeux &
Bjanger, 2000), the Euclidean-EDT (Elouedi et al., 2001) and the Jousselme-
EDT (Jousselme et al., 2001) are used for comparison. The proposed model
is noted Conflict-EDT. For experiments where this is not specified, the trees
are grown to the maximum depth and are not pruned (because Random
Forest uses fully grown trees).

5.2.1. Performance over several datasets

This part first focuses on the relevance of the model. Table 2 represents
the performance of Decision Trees as well as Euclidean-EDT, Uncertainty-
EDT, Jousselme-EDT and the proposed Conflict-EDT over several rich label
datasets. The ten first datasets are noisy by imprecision at 50% (i.e. half of
the labels have lost a degree of precision). Credal datasets did not need to
be noisy as they inherently implement rich labels. Tables 3 and 4 propose
two other comparison criteria, the F1 score and the Area Under the ROC
Curve for the two-class datasets. The results show similar performance to
the accuracy criterion, except for the post-operative dataset, where Conflict-
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Table 2: Mean accuracy on 50% noisy dataset (± a 95% confidence interval for mean
estimation). A Decision Tree (DT) and four Evidential Decision Trees (EDT) are used
for comparison, the proposed model is the Conflict-EDT (Welch’s t-test significance at
p-value < 0.05 indicated by *).

Dataset DT EDT
Euclidean Uncertainty Jousselme Conflict

Breast cancer 70.1 ± 0.9 72.4 ± 0.8 71.4 ± 0.7 72.8 ± 0.9 91.1* ± 0.5
Ionosphere 67.6 ± 1.2 71.0 ± 0.9 68.4 ± 1.1 71.9 ± 1.0 87.4* ± 0.8
Post-operative 55.7 ± 2.4 60.4 ± 2.4 56.7 ± 2.2 57.8 ± 2.4 59.9 ± 2.3
Sonar 61.1 ± 1.6 59.5 ± 1.5 60.2 ± 1.6 59.2 ± 1.4 66.8* ± 1.4
Liver 53.8 ± 1.2 55.4 ± 1.2 54.8 ± 1.1 56.0 ± 1.2 58.0* ± 1.1
Balance scale 59.4 ± 1.0 69.8 ± 0.8 57.5 ± 0.9 69.9 ± 0.7 75.1* ± 0.6
Iris 63.6 ± 2.0 74.0 ± 1.8 68.5 ± 1.7 73.9 ± 1.7 90.4* ± 1.2
Wine 70.4 ± 1.9 70.1 ± 1.4 68.3 ± 1.6 68.3 ± 1.7 88.1* ± 1.3
Glass 50.7 ± 1.5 51.4 ± 1.5 51.8 ± 1.5 53.1 ± 1.6 60.5* ± 1.5
Ecoli 56.8 ± 1.3 58.8 ± 1.1 57.1 ± 1.2 59.0 ± 1.2 69.9* ± 1.0
Credal Dog-2 82.9 ± 1.3 81.2 ± 1.4 82.4 ± 1.2 81.8 ± 1.3 83.0 ± 1.2
Credal Dog-4 57.7 ± 1.3 58.0 ± 1.2 57.7 ± 1.0 58.2 ± 1.2 59.2 ± 1.1
Credal Dog-7 50.1 ± 0.9 50.1 ± 0.9 48.8 ± 0.9 50.0 ± 0.8 53.1* ± 1.0
Credal Bird-2 50.8 ± 3.6 62.8 ± 3.7 57.3 ± 3.7 59.8 ± 3.3 52.4 ± 3.4
Credal Bird-10 42.0 ± 1.6 43.1 ± 1.5 45.0 ± 1.7 42.7 ± 1.6 45.4 ± 1.6

EDT scores poorly in terms of F1-score, due to the high class imbalance for
this dataset.

The proposed model exibits better performance on both noisy and imper-
fectly labeled datasets. Conflict-EDT obtains better results, with sometimes
important differences in performance, like on Breast cancer, Iris or Wine.
The reason for this gap is explained in the following experiments.

5.2.2. Robustness to noise

This section focuses particularly on the robustness to imprecision and to
the evolution of model performance with respect to noise increase. Figure 2
shows the results of the experiment on imprecision noise.

Iris (2a), Wine (2b), Glass Identification (2c), Balance Scale (2d), Iono-
sphere (2e) and Ecoli (2f) datasets are noised from 0% to 100% and mean
accuracies are presented.

On noisy Iris, Balance Scale and Ionosphere datasets, distance based mod-
els Euclidean-EDT, Jousselme-EDT and Conflict-EDT have better perfor-
mance than Decision Tree and Uncertainty-EDT. However, amongst these
models using distances, the proposed Conflict-EDT is the most robust to

21



Table 3: Mean F1-score (± a 95% confidence interval) on 2-class datasets. A Decision Tree
(DT) and four Evidential Decision Trees (EDT) are used for comparison, the proposed
model is the Conflict-EDT (Welch’s t-test significance indicated by *).

Dataset DT EDT
Euclidean Uncertainty Jousselme Conflict

Breast cancer 75.2 ± 0.9 77.3 ± 0.7 75.0 ± 0.8 77.6 ± 0.9 92.9* ± 0.4
Ionosphere 75.5 ± 1.1 76.7 ± 0.9 74.1 ± 1.0 77.5 ± 1.0 90.3* ± 0.6
Post-operative 27.8 ± 3.2 30.5 ± 3.7 29.1 ± 3.8 29.0 ± 3.4 21.7 ± 3.6
Sonar 57.9 ± 2.0 57.5 ± 1.7 57.3 ± 1.8 56.8 ± 1.8 63.5* ± 1.8
Liver 58.7 ± 1.2 59.7 ± 1.2 59.0 ± 1.1 60.7 ± 1.3 61.2 ± 1.3
Credal Dog-2 81.5 ± 1.4 80.4 ± 1.5 81.6 ± 1.3 80.8 ± 1.5 82.2 ± 1.5
Credal Bird-2 53.1 ± 4.6 61.3 ± 4.2 58.5 ± 4.5 57.8 ± 4.1 51.8 ± 4.4

Table 4: Mean AUC (Area Under the ROC Curve) on 2-class datasets. A Decision Tree
(DT) and four Evidential Decision Trees (EDT) are used for comparison, the proposed
model is the Conflict-EDT (Welch’s t-test significance indicated by *).

Dataset DT EDT
Euclidean Uncertainty Jousselme Conflict

Breast cancer 0.69 0.83 0.81 0.83 0.94*
Ionosphere 0.67 0.79 0.77 0.79 0.90*
Post-operative 0.48 0.53 0.50 0.53 0.48
Sonar 0.59 0.64 0.65 0.65 0.70*
Liver 0.55 0.58 0.57 0.59 0.60
Credal Dog-2 0.84 0.87 0.88 0.88 0.92*
Credal Bird-2 0.52 0.72 0.68 0.70 0.58
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noise with about 90% of good predictions on the half-noisy Iris dataset
against about 75% of good predictions for the second best model. On the
other three datasets Wine, Glass Identification and Ecoli, Euclidean-EDT
and Jousselme-EDT, do not show better performances than models that do
not use distances (DT and Uncertainty-EDT) but Conflict-EDT is still as
efficient compared to all other presented models.

For imprecision noise, the proposed Conflict-EDT obtained better results
on all presented datasets and at all noise levels. In fact, the model is not
really more robust to imprecision than other Evidential Decision Trees, but
to overfitting, due to equation (21). Another experiment showed that by
pre-pruning all the trees, the performance of the other models increased and
the performance gap with the proposed model disappeared. An example is
shown in Figure 3, this is the same experiment as the previous one (2d) for
the Balance Scale dataset but this time the models have been pruned.

The pruning used is a pre-pruning that prevents the tree from grow-
ing too deep during its learning phase. The number of observations is lim-
ited and the tree cannot create a leaf with less than 5 elements. Here, the
Uncertainty-EDT, Euclidean-EDT, Jousselme-EDT and Conflict-EDT mod-
els are all robust to imprecision noise. The Conflict-EDT model no longer
performs much better than the other models because its advantage is to
limit overfitting. The pruning of the trees prevents all models from being
overfitted, and therefore the difference in performance is no longer notice-
able. Only the classical decision tree has very low performance, because data
are labeled with imprecision, an information from which this non-evidential
model cannot benefit.

In the absence of pruning, Conflict-EDT shows high robustness to over-
fitting when the data is imprecisely labeled.

5.2.3. Tree growth

In the previous experiment, the robustness of the model to overfitting was
deduced from its performance. In this experiment, two additional criteria
are presented to demonstrate the benefits of the proposed method. With
uncertainly and imprecisely labeled data, Evidential Decision Trees tend to
overfit the training data and therefore to deliver worse performance on the
test set. This results in large over-trained trees with small leaves. The Depth
of the tree is the maximum number of divisions between the root of the tree
and a leaf. The greater the depth, the more the tree is trained on the data.
Leaf size is the average number of observations present in the leaves of the
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Figure 2: Mean accuracy by amount of noise on several datasets for Decision Tree (DT)
and Evidential Decision Trees (EDT).
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Figure 3: Mean accuracy by noise on pre-pruned models for Balance Scale dataset.

tree. The wider the leaves, the less the tree is overfit.
In Table 5, the average depths are presented for each Evidential De-

cision Tree presented in this paper. The ten first datasets are arbitrarily
noisy at 30%, as studied in the previous experiment, any noise value can
be used for Conflict-EDT to perform better. Imprecision noise is used, and
the values presented are averaged over 50 experiments, rounded to the unit.
Credal datasets have not been noised, because they have already been la-
beled in an uncertain and imprecise way by contributors. On the Iris and
Wine datasets, Euclidean-EDT, Uncertainty-EDT and Jousselme-EDT have
an average depth between 12 and 18 while Conflict-EDT has an average depth
of 8. This difference is present on all datasets, and particularly notable on
datasets with a large number of classes.

Table 6 represents the average size of tree leaves following the same spec-
ifications. On Wine and Iris, leaf size is larger for Conflict-EDT with an
average of 7 to 9 versus 2 to 4 for the other Evidential Decision Trees. The
trend is the same for other datasets, with an even larger gap in leaf size for
2-class datasets.

Overall, Conflict-EDT has grown less deeply and has larger leaves than
the other Evidential Decision Trees. This robustness to overfitting on uncer-
tain labels allows to obtain better generalization results.

5.3. Experiments on Evidential Random Forest

This section compares the proposed Evidential Random Forest to other
models and shows its contribution compared to the Evidential Decision Tree.
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Table 5: Trees mean depth rounded to the unit, on 30% noisy datasets (except for Credal
datasets) for each Evidential Decision Tree, the proposed version is the Conflict.

Dataset Euclidean Uncertainty Jousselme Conflict
Breast cancer 19 33 19 7
Ionosphere 17 24 18 10
Post-operative 11 13 11 9
Sonar 12 17 12 7
Liver 18 18 17 13
Balance scale 13 14 13 12
Iris 13 14 13 8
Wine 12 18 13 8
Glass 21 16 20 14
Ecoli 26 19 26 17
Credal Dog-2 15 36 15 9
Credal Dog-4 25 41 23 20
Credal Dog-7 48 42 36 24
Credal Bird-2 12 18 11 6
Credal Bird-10 26 24 20 14

Table 6: Trees mean number of observations in leaves, rounded to the unit on 30% noisy
datasets (except for Credal datasets) for each Evidential Decision Tree, the proposed
version is the Conflict.

Dataset Euclidean Uncertainty Jousselme Conflict
Breast cancer 5 3 5 36
Ionosphere 5 2 5 18
Post-operative 3 2 3 5
Sonar 5 3 5 12
Liver 3 2 3 6
Balance scale 3 1 3 5
Iris 3 2 3 7
Wine 4 2 4 9
Glass 2 2 2 3
Ecoli 2 2 2 3
Credal Dog-2 2 1 2 8
Credal Dog-4 1 1 1 2
Credal Dog-7 1 1 1 2
Credal Bird-2 1 1 1 5
Credal Bird-10 1 1 1 2
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Table 7: Performance gain of Evidential Random Forests compared to Evidential Decision
Trees on noisy and imperfectly labeled datasets. The difference in accuracy between the
two models is presented as well as the percentage gained.

Dataset Accuracy gain % Improvement
Breast cancer 3.5 3.8
Ionosphere 5.2 6.0
Post-operative 11.1 18.6
Sonar 10.0 15.0
Liver 8.5 14.7
Balance scale 9.5 12.7
Iris 5.3 5.8
Wine 9.5 10.8
Glass 14.5 23.9
Ecoli 15.6 22.3
Credal Dog-2 10.8 13.1
Credal Dog-4 18.0 30.4
Credal Dog-7 26.1 49.2
Credal Bird-2 0.2 0.5
Credal Bird-10 15.8 34.9

Also, Random Forests and Evidential Random Forests are trained with 50
estimators (i.e. 50 decision trees trained on bagged samples). Breiman (1996)
shows that the performance of the model peaks around 25 estimators, and
does not increase anymore at 50. We obtain similar results, with a stop of the
performance increase beyond 30 decision trees. A random feature selection
is made at each node and, when not specified, the parameters of the models
used are those by default present in scikit-learn (Pedregosa et al., 2011).

5.3.1. Gain in performance over Evidential Decision Tree

Random forests are low variance models, defined to reduce the error of
Decision Trees. This experiment proposes to restate the accuracy gain of
the proposed Evidential Random Forest model compared to an Evidential
Decision Tree, the model used in the forest creation process. This gain in
performance is represented in Table 7, the flat value of accuracy as well as
the percentage of performance gained are given. The means are estimated
over 100 iterations and the noise used is the noise over imprecision (except
for Credal datasets), with a noise rate of 50% of the dataset.

As expected, the model increases the performance of decision trees by
aggregating the predictions of multiple estimators. On datasets with few
classes (Iris, Wine, Balance, Breast cancer, Ionosphere) Evidential Random
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Forest increases less, but still significantly, the performance of Evidential
Decision Tree. When the number of classes increases (Glass, Ecoli, Credal
Dog-7, Credal Bird-10) the performance gain becomes very important, with
an augmentation of more than 20%. When the datasets are imperfectly
labeled, without using noise, and on a large number of classes (Credal Bird-
10 and Credal Dog-7) the performance gain is the most impressive (with
respectively a 35% and 49% increase).

5.3.2. Comparison with Random Forest

The proposed model reduces the high variance of decision trees as
theoretically expected. However, it remains to be shown whether the per-
formance of Evidential Random Forest outperforms Random Forest. The
average accuracy of the two models, as well as F1-scores and AUCs, are
compared in this experiment to demonstrate the benefits of the proposal.
Mean accuracies, as well as confidence intervals are presented in Table 8.
Mean F1-scores and AUCs are respectively presented in Tables 9 and 10 on
2-class datasets.

For each dataset, whether noisy or really labeled in an uncertain and
imprecise way, the performance of Random Forest is largely improved by
the proposed evidential version. The only exception is on the post-operative
dataset, where the F1-score is drastically lower, the cause being the imbalance
of classes for very few observations. The increase is up to 10 accuracy points
for Iris and Balance Scale datasets. When the imperfection linked to human
labeling can be represented in the data, a gain in accuracy is also noticed.

5.3.3. Other cautious and evidence-based models

In this section, a recent Cautious Random Forest (Zhang et al., 2023)
as well as two other evidential models, the Evidential K-Nearest Neigh-
bors (Denœux, 1995) and a state-of-the-art Eviential SVM (Kadir et al.,
2019) are used for comparison.

Cautious Random Forest uses the imprecise Dirichlet model at the esti-
mator prediction level and the theory of belief functions (Dempster, 1967;
Shafer, 1976) for aggregation. This means that this model has some simi-
larities with our proposed Evidential Random Forest. It is allowed to make
cautious predictions by combining probability intervals. However, the model
is only defined for datasets with two classes. Each decision tree in the for-
est produces an interval-valued probability estimate for the positive class,
thanks to the imprecise Dirichlet model. The Cautious Random Forest then
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Table 8: Mean accuracy for Random Forest (RF) and the proposed Evidential Random
Forest (ERF) on 50% noisy datasets (± a 95% confidence interval for mean estimation
and Welch’s t-test significance at p-value < 0.05 indicated by *).

Dataset RF ERF
Breast cancer 90.5 ± 0.5 94.5* ± 0.4
Ionosphere 84.4 ± 1.0 92.6* ± 0.6
Post-operative 60.5 ± 2.3 71.0* ± 2.0
Sonar 72.0 ± 1.3 76.8* ± 1.2
Liver 58.2 ± 1.2 66.5* ± 0.9
Balance scale 75.1 ± 0.6 84.5* ± 0.5
Iris 84.4 ± 1.3 95.3* ± 0.7
Wine 91.5 ± 1.0 97.5* ± 0.5
Glass 68.2 ± 1.5 75.1* ± 1.3
Ecoli 77.6 ± 0.9 85.5* ± 0.8
Credal Dog-2 91.4 ± 1.0 93.8* ± 0.9
Credal Dog-4 72.3 ± 1.0 77.1* ± 0.9
Credal Dog-7 77.4 ± 0.7 79.1* ± 0.8
Credal Bird-2 45.0 ± 3.2 52.6* ± 3.2
Credal Bird-10 52.8 ± 1.4 61.2* ± 1.5

Table 9: Mean F1-score for Random Forest (RF) and the proposed Evidential Random
Forest (ERF) on 2-class datasets (± a 95% confidence interval for mean estimation and
Welch’s t-test significance at p-value < 0.05 indicated by *).

Dataset RF ERF
Breast cancer 93.3 ± 0.4 95.6* ± 0.3
Ionosphere 88.0 ± 0.9 94.2* ± 0.4
Post-operative 27.2* ± 3.4 6.6 ± 2.6
Sonar 64.9 ± 1.6 74.4* ± 1.6
Liver 62.5 ± 1.3 70.4* ± 1.0
Credal Dog-2 91.3 ± 1.3 92.8 ± 1.0
Credal Bird-2 43.0 ± 4.5 51.5* ± 4.0

Table 10: Mean AUC (Area Under ROC Curve) for Random Forest (RF) and the proposed
Evidential Random Forest (ERF) on 2-class datasets (± a 95% confidence interval for mean
estimation and Welch’s t-test significance at p-value < 0.05 indicated by *).

Dataset RF ERF
Breast cancer 0.96 0.99*
Ionosphere 0.93 0.97*
Post-operative 0.51 0.49
Sonar 0.76 0.87*
Liver 0.65 0.71*
Credal Dog-2 0.97 0.98*
Credal Bird-2 0.48 0.58*
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predict the class of unlabeled observations either precisely (i.e. a prediction
on ω1 or ω2) or imprecisely (i.e. a prediction on ω1 ∪ ω2) on Ω = {ω1, ω2}.
We computed accuracy for Cautious Random Forests classically for precise
predictions (i.e. the proportion of correct predictions), and took the most
plausible answer according to their defined plausibility score when the model
gives a cautious prediction. To adapt to the model’s ability to give a cautious
answer the authors propose to use the u65 criterion (Zaffalon et al., 2012)
which rewards an imprecise prediction on ω1 ∪ ω2 by 0.65 (instead of 1 for a
precise prediction).

Evidential K-Nearest Neighbors is a version of the K-Nearest Neighbors
that is a standard in literature to both handle rich labels and produce soft
predictions with the theory of belief functions. The best K number of neigh-
bors is estimated according to a 5-fold cross-validation and the parameters
used are those defined for γ-EKNN by Hoarau et al. (2022).

Evidential SVM3 (Kadir et al., 2019) is a recent evidential classification
model that uses both classical SVMs, K-means clustering and belief func-
tion theory to handle model uncertainty and imprecision in the form of a
mass function. All parameters used for this model are those proposed by
the authors in their publication. This version is also restricted to binary
classification problems.

Table 11 presents the mean accuracies for Cautious Random Forest, Ev-
idential SVM, Evidential K-Nearest Neighbors and the proposed Evidential
Random Forest. The u65 score is also present for Cautious Random Forest
to reward cautious predictions. Note that the two first models can only han-
dle 2-class datasets, hence the absence of results in the table for datasets
with more than 2 classes. As for the other experiments, the first 10 datasets
are noisy and the Credal datasets have inherently rich labels. F1-scores and
AUCs are also respectively present in Tables 12 and 13.

The ability for Cautious Random Forest to provide cautious predictions
does not compensate for the drop in performance induced by label richness.
The Evidential SVM does not perform as well as the other two evidential
models, except for the post-operative and credal bird-2 datasets, in terms
of F1-score. This is due to its inability to take into account all the uncer-
tainty present in the labels. The Evidential K-Nearest Neighbors and the
proposed Evidential Random Forest can both benefit from the rich labels

3SVM stands for Support Vector Machine.
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Table 11: Mean accuracy for Cautious Random Forest (CRF), Evidential Support Vector
Machine (ESVM), Evidential K-Nearest Neighbors (EK-NN) and the proposed Evidential
Random Forest (ERF) on 50% noisy datasets (± a 95% confidence interval for the estimate
of the mean. The u65 score is also present for CRF to reward cautious predictions and
Welch’s t-test significance at p-value < 0.05 is indicated by *).

Dataset CRF ESVM EK-NN ERF
Acc u65 Acc Acc Acc

Breast cancer 91.2 ± 0.6 91.7 ± 0.5 91.9 ± 0.5 95.4* ± 0.4 94.5 ± 0.4
Ionosphere 85.6 ± 1.0 84.3 ± 0.8 90.2 ± 0.8 83.2 ± 0.9 92.4* ± 0.5
Post-operative 59.8 ± 2.3 59.2 ± 1.9 58.6 ± 2.3 65.7 ± 2.0 71.2* ± 1.9
Sonar 68.3 ± 1.5 74.4 ± 1.2 65.3 ± 1.4 77.3 ± 1.3 76.5 ± 1.3
Liver 60.3 ± 1.1 61.2 ± 1.0 55.4 ± 1.0 58.2 ± 1.0 66.1* ± 0.9
Balance scale 88.2* ± 0.5 84.5 ± 0.5
Iris 94.6 ± 0.8 95.3 ± 0.7
Wine 95.9 ± 0.7 97.5* ± 0.5
Glass 64.2 ± 1.5 75.1* ± 1.3
Ecoli 84.8 ± 0.8 85.5 ± 0.8
Credal Dog-2 90.9 ± 1.1 92.8 ± 0.8 63.4 ± 1.4 73.8 ± 1.5 93.3 ± 0.9
Credal Dog-4 69.3 ± 1.0 77.1* ± 0.9
Credal Dog-7 75.8 ± 0.7 79.1* ± 0.8
Credal Bird-2 48.3 ± 3.6 47.3 ± 3.1 53.8 ± 3.4 58.4* ± 3.4 53.1 ± 3.2
Credal Bird-10 60.6 ± 1.5 61.2 ± 1.5

Table 12: Mean F1-score for Cautious Random Forest (CRF), Evidential Support Vector
Machine (ESVM), Evidential K-Nearest Neighbors (EK-NN) and the proposed Evidential
Random Forest (ERF) on 2-class datasets (± a 95% confidence interval for the estimate
of the mean. Welch’s t-test significance at p-value < 0.05 is indicated by *).

Dataset CRF ESVM EK-NN ERF
Breast cancer 93.0 ± 0.5 93.6 ± 0.4 96.4* ± 0.3 95.6 ± 0.3
Ionosphere 88.2 ± 0.9 92.0 ± 0.7 88.1 ± 0.7 94.2* ± 0.4
Post-operative 27.5 ± 3.5 27.3 ± 3.5 15.1 ± 3.5 6.6 ± 2.6
Sonar 65.2 ± 1.8 50.0 ± 2.1 72.9 ± 1.6 74.4 ± 1.6
Liver 61.9 ± 1.4 57.1 ± 1.3 62.3 ± 1.1 70.4* ± 1.0
Credal Dog-2 90.0 ± 1.2 44.3 ± 2.5 66.0 ± 2.2 92.8 ± 1.0
Credal Bird-2 42.5 ± 4.9 54.2 ± 4.6 41.4 ± 5.1 51.5 ± 4.0

31



(a) Iris (b) Wine

(c) Glass Identification (d) Ecoli

(e) Liver (f) Ionosphere

Figure 4: Mean accuracy by amount of noise on several datasets for Random Forest
(RF), Cautious Random Forest (CRF), Evidential K-Nearest Neighbors (EKNN) and the
proposed Evidential Random Forest (ERF).
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Table 13: Mean AUC (Area Under ROC Curve) for Cautious Random Forest (CRF),
Evidential Support Vector Machine (ESVM), Evidential K-Nearest Neighbors (EK-NN)
and Evidential Random Forest (ERF) on 2-class datasets (± a 95% confidence interval for
the estimate of the mean. Welch’s t-test significance at p-value < 0.05 is indicated by *).

Dataset CRF ESVM EK-NN ERF
Breast cancer 0.90 0.94 0.98 0.99*
Ionosphere 0.86 0.89 0.95 0.97*
Post-operative 0.51 0.53 0.53 0.49
Sonar 0.68 0.70 0.86 0.87
Liver 0.61 0.58 0.60 0.71*
Credal Dog-2 0.91 0.75 0.88 0.98*
Credal Bird-2 0.50 0.55 0.74* 0.58

and are therefore more competitive. Overall on the 10 noisy datasets, Evi-
dential Random Forest performs slightly better with better performance on
6 datasets. On the credal datasets, the proposed model also performs better.

Figure 4 shows the robustness of the models to imprecision noise. Random
Forest always seems to start with a high accuracy score when there is no
noise and drops in performance very quickly as the noise increases. Cautious
Random Forest, when evaluated on accuracy (and not u65) gives results very
close to Random Forest. Evidential models (Evidential K-Nearest Neighbors
and Evidential Random Forest) evolve in the same way, they start from
different accuracies on perfect data depending on their ease in generalizing
the dataset, but both have performances that decrease very slowly with the
addition of noise. Overall, on the presented datasets, the proposed Evidential
Random Forests performs consistently better.

6. Discussion

If the proposed Evidential Random Forest shows good performance ac-
cording to accuracy, F1-score, AUC and robustness to imprecision, the under-
lying motivation is not only performance but also representation of evidence.
We proposed models4 that are both able to take into account rich labels and
to produce an evidential prediction modeled by the theory of belief functions.
Such a soft prediction is shown in Table 14. This information can for example
be used in uncertainty sampling (Hoarau et al., 2022), to represent both the

4The proposed models are Evdiential Decision Trees and Evidential Random Forests.
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Table 14: Two observations respectively from Credal Dog-2 and Credal Bird-2 with pos-
sible model prediction. The classes respectively are {ω1: Brittany, ω2: Beagle} and {ω1:
Western Jackdaw, ω2: Rook}, for both observations the true class is ω1.

Observation Prediction
RF CRF ESVM EK-NN ERF

ω1 = 0.4 ω1 = 0.2 ω1 = 0.6
ω2 {ω1, ω2} ω2 = 0.3 ω2 = 0.7 ω2 = 0.2

{ω1, ω2} = 0.3 {ω1, ω2} = 0.1 {ω1, ω2} = 0.2

ω1 = 0.5 ω1 = 0.3 ω1 = 0.7
ω2 {ω1, ω2} ω2 = 0.2 ω2 = 0.5 ω2 = 0.1

{ω1, ω2} = 0.3 {ω1, ω2} = 0.2 {ω1, ω2} = 0.2

uncertainty of the model predictions and the uncertainty in the labels. Our
current work focuses on the reduction of labeling costs (i.e. active learning)
thanks to these evidential models in uncertainty sampling. The ability of the
model to represent its uncertainty in a complete way makes it possible to
target better observations to label. In addition, we are working to separate
the uncertainty of the model to address the exploitation-exploration problem
in active learning with rich labels.

For Evidential Decision Trees, some criteria have been studied such as
the Euclidean distance, the Jousselme distance or the more robust conflict
criterion. However some authors (Zhang et al., 2022) have shown an incon-
sistency in the use of distances with the theory of belief functions. Perhaps
the notion of distance is therefore not the most appropriate criterion for the
problem at hand. The use of another criterion thus remains an open track
to propose new Evidential Random Forests.

The ability of the model to take into account uncertain and imprecise data
is at the cost of complexity. Even if the proposed model can run on a machine
without a GPU, we have not managed to reach a level of optimization close
to that of scikit-learn for example. Note that the python code of the two
proposed models is available to the scientific community.
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7. Conclusion

In this paper, we propose an overfitting robust Evidential Decision Tree
based on a conflict measure. By using a distance between masses and a
degree of inclusion, this criterion allows to group in the same node, obser-
vations with elements of response included in each other. By doing so, the
tree built is shallower and less over-trained. We also propose an Evidential
Random Forest which allows to overcome the high variance of decision trees.
The model has been compared with other recent models and in particular
with the reference in the evidential models literature. The results show high
performance both on noisy data and on datasets that are actually labeled in
an uncertain and imprecise manner.

The underlying motivation, other than robustness and performance, is
the representation of evidence. The goal is to couple evidential learning with
active learning, in order to work with imperfect data but also with as few
labeled observations as possible.

Python code for Evidential Decision Trees is available on Github at:
https://github.com/ArthurHoa/conflict-edt .

Python code for Evidential Random Forests is available on Github at:
https://github.com/ArthurHoa/evidential-random-forest.
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