
HAL Id: hal-04121819
https://hal.science/hal-04121819

Submitted on 8 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Toward Optimal Fingerprint Indexing for Large Scale
Genomics

Clément Agret, Bastien Cazaux, Antoine Limasset

To cite this version:
Clément Agret, Bastien Cazaux, Antoine Limasset. Toward Optimal Fingerprint Indexing for Large
Scale Genomics. WABI 2022 - 22nd International Workshop on Algorithms in Bioinformatics, Sep
2022, Postdam, Germany. pp.25:1-25:15, �10.4230/LIPIcs.WABI.2022.25�. �hal-04121819�

https://hal.science/hal-04121819
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Toward Optimal Fingerprint Indexing for Large
Scale Genomics
Clément Agret1

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
LIRMM, Univ Montpellier, CNRS, Montpellier, France

Bastien Cazaux1

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Antoine Limasset1,2 !

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Abstract

Motivation. To keep up with the scale of genomic databases, several methods rely on local sensitive
hashing methods to efficiently find potential matches within large genome collections. Existing
solutions rely on Minhash or Hyperloglog fingerprints and require reading the whole index to perform
a query. Such solutions can not be considered scalable with the growing amount of documents to
index.

Results. We present NIQKI, a novel structure with well-designed fingerprints that lead to theoret-
ical and practical query time improvements, outperforming state-of-the-art by orders of magnitude.
Our contribution is threefold. First, we generalize the concept of Hyperminhash fingerprints in
(h,m)-HMH fingerprints that can be tuned to present the lowest false positive rate given the expected
sub-sampling applied. Second, we provide a structure able to index any kind of fingerprints based
on inverted indexes that provide optimal queries, namely linear with the size of the output. Third,
we implemented these approaches in a tool dubbed NIQKI that can index and calculate pairwise
distances for over one million bacterial genomes from GenBank in a few days on a small cluster. We
show that our approach can be orders of magnitude faster than state-of-the-art with comparable
precision. We believe this approach can lead to tremendous improvements, allowing fast queries and
scaling on extensive genomic databases.

2012 ACM Subject Classification Applied computing → Bioinformatics

Keywords and phrases Data Structure, Indexation, Local Sensitive Hashing, Genomes, Databases

Digital Object Identifier 10.4230/LIPIcs.WABI.2022.25

Related Version Full Version:
https://www.biorxiv.org/content/10.1101/2021.11.04.467355v1

Supplementary Material We wrote the NIQKI index as an open-source C++ library under the
AGPL3 license. It is designed as a user-friendly tool and comes along with usage samples.
Software (Source Code): https://github.com/Malfoy/NIQKI

archived at swh:1:dir:4b130954e11adff2be9108f45c4181f972604407

Acknowledgements We want to thank Camille Marchet, Pierre Doignies, organizers and participants
of the Bioinformatics: from Algorithms to Applications conference, for their support and discussions
on this project. The ANR SEQdigger supported this work.

1 All authors have contributed equally.
2 Corresponding author

© Clément Agret, Bastien Cazaux, and Antoine Limasset;
licensed under Creative Commons License CC-BY 4.0

22nd International Workshop on Algorithms in Bioinformatics (WABI 2022).
Editors: Christina Boucher and Sven Rahmann; Article No. 25; pp. 25:1–25:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antoine.limasset@univ-lille.fr
https://doi.org/10.4230/LIPIcs.WABI.2022.25
https://www.biorxiv.org/content/10.1101/2021.11.04.467355v1
https://www.biorxiv.org/content/10.1101/2021.11.04.467355v1
https://github.com/Malfoy/NIQKI
https://archive.softwareheritage.org/swh:1:dir:4b130954e11adff2be9108f45c4181f972604407;origin=https://github.com/Malfoy/NIQKI;visit=swh:1:snp:65940e352a73e160a22b0e80a69d0b3964de4048;anchor=swh:1:rev:ac03f90a644e79c1a76a7e8d2dd0410470959a33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Toward Optimal Fingerprint Indexing for Large Scale Genomics

Introduction

Historically, genomic databases such as GenBank are growing exponentially3. Lower se-
quencing costs and required investment, broader access to sequencing technologies, and
breakthrough in genome assembly practices will surely fuel the explosion of available genomes
in the near future. While those data are still widely unprocessed, the ability to explore
and delve into such rich archives presents countless applications [4, 1]. Allowing to query
such databases at a reasonable cost is a growing research subject [3, 13, 15, 16]. To avoid
relying on computation-intensive steps, an efficient way to approximate the similarity of two
sequences is to represent them as a set of k-mer (sub-word of length k) and compare their
k-mer contents. Namely, the fraction of shared k-mer that corresponds to the Jaccard index
is a good proxy for Average Nucleotide Identity [14] between genomes. Given the scale of
such collections, indexing complete genomes quickly become prohibitively expensive. When
searching for broad matches between large genomic sequences such as genomes, dimension
reduction techniques can be used to reduce the computational burden.

Minhash [5] is a very resource-efficient technique able to estimate the Jaccard index
between two sets. Minhash constructs a sketch of S fingerprints chosen from the hashed
elements of a given set of size N (e.g., selecting the smallest hash values). The attractive
property of such sketches is that the Jaccard index between them approximates the actual
Jaccard index of the two sets they represent. This way, the Jaccard index can be estimated
by comparing two sketches of size S that can be orders of magnitude smaller than the actual
cardinality of the indexed sets.

Three principal variants of Minhash have been proposed.

S hash functions. Each element is hashed using S distinct hash functions h1 . . . hS , the
sketch is composed of the smallest hash output by each hash function. The sketches can
be compared in Θ(S) and constructing sketches is Θ(N.S)

S minimal values. Each element is hashed using a single hash function h. The sketch
comprises the S smallest hashes output by h. The sketch construction is reduced to
Θ(N. log(S)) but the sketch comparison is Θ(S. log(S))

S partitions. Each element is hashed using a single hash function h. The hash values are
split into S partitions according to their first bits. The sketch is composed of the minimal
element of each partition. The sketch construction is reduced to Θ(N) and the sketch
comparison to Θ(S).

While S partition seems optimal, some partitions can be empty if no hashes start with
a given prefix. Some process dubbed densification [17] aims to cope with this problem by
using other partition data to fill empty partitions.

The other parameter of a Minhash sketch is the size of each stored hash. Usually, a “large”
hash size (e.g., 32 bits) is used to avoid the risk of collisions or saturation. Collisions occur
when two different keys have the same hash value, leading to false-positive hits. Since the
smallest hash values are kept, all fingerprints tend to zero. Once the zero value is reached,
it can no longer change. We call such fingerprints saturated. A comparison of saturated
sketches can report a large amount of false-positive hits.

3 https://www.ncbi.nlm.nih.gov/genbank/statistics/

https://www.ncbi.nlm.nih.gov/genbank/statistics/

C. Agret, B. Cazaux, and A. Limasset 25:3

However, since the minimal values are kept, the first bits of each fingerprint may contain
a large amount of low-informative zeroes. The b-bit Minhash [9] variation takes advantage of
this observation and only keeps the b lowest bits to reduce the sketches sizes by reducing the
fingerprints sizes. It can either improve the memory footprint of sketches or their accuracy
by increasing the number of fingerprints used for the same amount of memory.

Those techniques were successfully applied in bioinformatics to index and compare
genomes databases. Mash [14] implemented S minimal values and Bindash [19] implement S

partitions, b-bit Minhash with densification. Such works showed that genomes and whole
sequencing datasets could be precisely compared by using sketches orders of magnitude
smaller than their amount of distinct k-mers leading to tremendous performance improvement
when working at a large scale.

An alternative to Minhash fingerprints is Hyperloglog [6] fingerprints. Instead of storing
the whole hash, Hyperloglog fingerprints store its log value (e.g., the position of the leading 1).
The interest in such fingerprints is twofold. They are tiny: a 64bits hash needs a 6bits
Hyperloglog fingerprint (since 26 = 64) and is as hard to saturate as their associated hashes.
Six bits seem enough to cover most real-world cases in practice, as 64bit hashes seem unlikely
to be saturated. The downside is that their collision rate is very high. This fact can be
leveraged by using a large number of fingerprints. Dashing [2] showed that large S partitions
sketches of Hyperloglog fingerprints could lead to very precise estimations of Jaccard index
between genomes.

Interestingly, another approach tried to benefit from the trailing zeroes by combining
the b-bit Minhash and Hyperloglog ideas. Hyperminhash [18] builds a fingerprint from a
given hash using 6 bits to encode the first run of zero (which is equivalent to a Hyperloglog
fingerprint) and combines them with the lowest 10 bits (which is equivalent to a b-bit Minhash
fingerprint) to obtain 16 bits fingerprints. The interest of this sketch is to be very hard to
saturate due to the Hyperloglog fingerprint and to limit the number of collisions with the
additional Minhash bits. Such fingerprint can be seen as an efficient lossy compression of the
hash value that represents more than 16 bits from the hash (if the run length of zeroes is
longer than 6).

In bioinformatics, such fingerprint indexes have numerous applications such as very fast
clustering or phylogeny construction from large genome collections, finding potentially related
genomes from assembled contigs or sequences of interest, quantification of a given gene,
strain, or species in databases etc. . . Their main feature is to find possible matches for a
query sequence inside a database, acting as filters to focus only on relevant entries. They do
so by efficiently estimating similarities between query and index sequences.

The main bottleneck of existing methods is that a query requires the queried sketch to
be compared to all sketches in the database. The query is O(N.S) with N the number of
indexed entries. This cannot be considered scalable regarding the exponential growth of
available genomic resources. To cope with this algorithmic problem, we design a structure
to perform queries in Θ(#hits) where #hits is the number of fingerprint hits between the
queried sketch and the indexed sketches. Since the expected output of a query is a list of
genomes identifier associated with a number of hits (or an approximation of the Jaccard
index), we can consider our query time as close to optimal.

However, such a structure presents an overhead exponential with the fingerprint size.
For this reason, we are highly attentive to using powerful but small fingerprint sizes. We
generalize the Hyperminhash fingerprint and introduce (h, m)-Hyperminhash fingerprints
that cover both Minhash and Hyperloglog cases and provide an analysis to select the best
fingerprint for a given use case.

WABI 2022

25:4 Toward Optimal Fingerprint Indexing for Large Scale Genomics

Methods

Index structure

To generalize the concept of indexing a fixed amount of fingerprints (either Hyperminhash,
b-bit Minhash, or Hyperloglog), we call such a tuple of fingerprints a sketch. In the following,
we consider bit-vectors of size n and integers between 0 and 2n − 1 as equivalent. For the
sake of clarity, log() will be used for log2() in this document.

Let W , S, and N be three integers, where N will be the number of sketches, S the
size of the sketches, which is the number of fingerprints in each sketch, and w the size in
bits of each fingerprint. More specifically, a sketch si of size S is a tuple of S fingerprints
where a fingerprint is an element between 0 and 2W − 1, i.e. si = fi,1 . . . fi,S where
∀j ∈ {1, . . . , S}, fi,j ∈ {0, . . . , 2W − 1}. We present a new data structure to index a set
B = {s1, . . . , sN } of N sketches where we want to optimize the time complexity of the query
find_hits(B, s′, m) which corresponds to find all the sketches si = fi,1 . . . fi,S of B such that
|{j ∈ {1, . . . , S} | fi,j = f ′

j}| ≥ m with s′ = f ′
1 . . . f ′

S a sketch and m an integer.
Instead of indexing each sketch, we split the set of sketches B by column j between 1 and

S. We denote by Pj the sequence of fingerprints f1,j . . . fN,j . Unlike previous approaches,
our scheme handles each column Pj independently by grouping the indices with the same
fingerprint on this column. Indeed, for each column j between 1 and S, we index in a vector
the sets Xj,0 . . . Xj,2W −1 where for all l ∈ {0, . . . , 2W − 1}, Xj,l = {i ∈ {1, . . . , n} | fi,j = l}.
As Xj,0 . . . Xj,2W −1 is a partition of {1, . . . , N}, our vector have O(N + 2W) elements (see
Figure 1).

We argue that performing queries by partition presents several advantages. One advantage
of this processing partition by column is the possibility to stop queries that can not find
high-scoring matches. If we are looking for a minimum of m shared fingerprint among S

to report a match, if after P|S|−j no sketches share at least m − j fingerprints, that query
can be stopped as no matches can reach the minimal score. If not using the densification
technique, empty partitions could also be skipped.

As, for our case, a sketch represents a genome, and the fingerprints come from the set of
k-mers of this genome, one possible mechanism presented in [10] inspired by [7] is to insert
the k-mers of a given partition in a Bloom filter (or any set structure) to “protect” each
partition from alien k-mers. If the selected k-mer is not in the partition set, the partition is
skipped as we know that the k-mer was not inserted in the partition and that any fingerprint
hit would be a false positive.

We use dense addressing to index our partitions in a trade-off favoring code simplicity and
throughput over memory footprint. This way, our index has an overhead of Θ(S.2W) as we
allocate S.2W vectors to represent all possible values of each partition. Once the index created,
inserting the nth sketch sn = f1 . . . fS is inserting n in the vector fi + i.2w. The inserted
elements cost Θ(N. log(N)) space and each partition can be queried for find_hits(Pj, f′

j, 1)
in Θ(#hits) which corresponds to Θ(|{i ∈ {1, . . . , N} | fi,j = f ′

j}|). As find_hits(B, s′, m) =
{i ∈ {1, . . . , N} |

∑N
j=1 1find_hits(Pj,f′

j,1)(j) ≥ m}, by computing all the find_hits(Pj, f′
j, 1),

we can compute find_hits(B, s′, m).

If this approach presents a costly overhead, its interest is that query a sketch performs
at worst S “costly” random access. We argue that using relatively small, well-designed
fingerprints, our scheme can perform swift queries with a reasonable memory footprint.

C. Agret, B. Cazaux, and A. Limasset 25:5

s1 =
s2 =
s3 =
s4 =
s5 =
s6 =
s7 =
s8 =

0 1 3 0 3
2 0 1 0 3
3 2 1 1 2
3 0 2 2 1
0 2 2 1 2
0 3 2 1 2
2 0 3 2 1
2 2 0 3 1

f1,1 f1,2 f1,3 f1,4 f1,5

f2,1 f2,2 f2,3 f2,4 f2,5

f3,1 f3,2 f3,3 f3,4 f3,5

f4,1 f4,2 f4,3 f4,4 f4,5

f5,1 f5,2 f5,3 f5,4 f5,5

f6,1 f6,2 f6,3 f6,4 f6,5

f7,1 f7,2 f7,3 f7,4 f7,5

f8,1 f8,2 f8,3 f8,4 f8,5

B =

P1 P2 P3 P4 P5

X1,0 = {1, 5, 6}
X1,1 = ∅
X1,2 = {2, 7, 8}
X1,3 = {3, 4}

X2,0 = {2, 4, 7}
X2,1 = {1}
X2,2 = {3, 5, 8}
X2,3 = {6}

X3,0 = {8}
X3,1 = {2, 3}
X3,2 = {4, 5, 6}
X3,3 = {1, 7}

X4,0 = {1, 2}
X4,1 = {3, 5, 6}
X4,2 = {4, 7}
X4,3 = {8}

X5,0 = ∅
X5,1 = {4, 7, 8}
X5,2 = {3, 5, 6}
X5,3 = {1, 2}

Figure 1 Example of processing partitions of 8 (N) sketches where each sketch has 5 (S)
fingerprints of 2 (W) bits. B = {01303, 20103, 32112, 30221, 02212, 03212, 20321, 22031} is the set of
sketches used as instance where the sketch s1 = 01303 corresponds to the tuple of the 5 fingerprints
where the first fingerprint is 0, the second fingerprint is 1, the third fingerprint is 3 and so on. To
represent the decomposition by column, we add specific color. For the first column (in blue) P1

corresponds to all the fingerprints seen as the first position of a sketch of B (the first partition) and
X1,vf contain the set of sketch identifiers (positions of the sketches in B) whose first fingerprint
value is vf . We obtain S × 2W = 20 sets Xj,l (1 ≤ j ≤ S and 0 ≤ l ≤ 2W − 1) corresponding to the
stored sets.

Optimal Hyperminhash fingerprint
Since our proposed scheme presents an overhead exponential with W , we need to rely on
very space-efficient fingerprints and make the most of each bit. When building a fingerprint
database, the users tune the sketches’ size according to the expected genome sizes they index
and the needed precision according to their application. This parameter also changes the
fingerprint values as we expect each fingerprint to be the minimum across ≈ genome_size

sketch_size that
we call the sub-sampling value. In the section, we argue that different sub-sampling values
call for different fingerprints. This part presents a parametric fingerprint that generalizes
Hyperminhash, b-bit minhash, and Hyperloglog. We give a method to fix this parameter to
optimize the false positive rate for a given fingerprint size.

For a bitvector/hash B of size n and two integers h and m such that h + m = W , the
(h, m)-hyperminhash fingerprint of B, denoted by HMHh,m(B), is the bitvector of size h + m

where the h first bits correspond to the position to the first one on the prefix of B of size
2h − 1 and the m last bits are the last m bits of B, i.e.

HMHh,m(B) = max(2h + ⌊log(B)⌋ − n, 0) × 2m + (B mod 2m)

For a set X of bitvectors of size n, the (h, m)-hyperminhash fingerprint of X is the
minimum value of the (h, m)-hyperminhash fingerprint of B for all the bitvectors B of X,
i.e. HMHh,m(X) = minB∈X HMHh,m(B).

WABI 2022

25:6 Toward Optimal Fingerprint Indexing for Large Scale Genomics

Our goal is to find the pair h, m where h + m = W which gives us the most space-efficient
fingerprint, i.e. the fingerprint which covers the most larger interval of values. One way to
compute this space-efficiency is for a threshold ε of [0, 1], to compute ch,m = bh,m − ah,m + 1
which is the size of the interval {ah,m, . . . , bh,m} where

ah,m = maxk∈{0,...,2W −1}(P[HMHh,m(X) ≤ k] ≤ ε
2)

bh,m = mink∈{0,...,2W −1}(P[HMHh,m(X) ≤ k] ≥ 1 − ε
2)

and thus P[ah,m ≤ HMHh,m(X) ≤ bh,m] ≤ 1 − ε.
To begin, if n < 2h − 1 + m, some bits can be in both prefix and suffix of the fingerprint

due to the overlap, and thus it is not space-efficient. Indeed, we can prove that the number
of fingerprint values that are not reached is equal to 2m × (2h − 1 + m − n). For this reason,
we take in all the following n ≥ 2h − 1 + m.

For an integer k of {0, . . . , 2h+m}, we denote by H(h, m, k) the number of B ∈ {0, . . . , 2n−
1} such that HMHh,m(B) = k. As (h, m)-hyperminhash is an increasing function because if
B ≤ B′, we have HMHh,m(B) ≤ HMHh,m(B′), by counting, we can show that H(h, m, k) =
2n−2h+1−m+max(0,⌊ k

2m ⌋−1). Indeed, each B of {0, . . . , 2n − 1} such that HMHh,m(B) = k has
the suffix of length m and the prefix of length 2h − 1 − max(0, ⌊ k

2m ⌋ − 1) which are fixed.
As P[HMHh,m(X) ≤ k] =

∑k
i=0 P[HMHh,m(X) = i], it is enougth to know the value of

P[HMHh,m(X) = k]. As
∑k

i=0 H(h, m, i) = 2n−2h+1−m ×
∑k

i=0 2max(0,⌊ k
2m ⌋−1), if k < 2m,∑k

i=0 H(h, m, i) = k × 2n−2h+1−m. Otherwise,

k∑
i=0

H(h, m, i) = 2n−2h+1−m ×
k∑

i=0

2max(0,⌊ i
2m ⌋−1)

= 2n−2h+1−m ×
(2m−1∑

i=0

2max(0,⌊ i
2m ⌋−1)

+
⌊ k

2m ⌋×2m−1∑
i=2m

2max(0,⌊ i
2m ⌋−1) +

k∑
i=⌊ k

2m ⌋×2m

2max(0,⌊ i
2m ⌋−1))

= 2n−2h+1−m ×
(
2m × 20 + 2m ×

⌊ k
2m ⌋−2∑

i=0

2i +
k∑

i=⌊ k
2m ⌋×2m

2⌊ k
2m ⌋−1)

= 2n−2h+1−m ×
(
2m + 2⌊ k

2m ⌋−1+m − 2m) + ((k mod 2m) + 1) × 2⌊ k
2m ⌋−1)

= 2n−2h−m+⌊ k
2m ⌋ ×

(
2m + (k mod 2m) + 1

)
For the sake of completeness, we added all the calculations of

∑k
i=0 H(h, m, i), but the only

thing one needs to remember is that it can be calculated in constant time. Besides, we have

P[HMHh,m(X) = k] = P[HMHh,m(X) > k − 1] − P[HMHh,m(X) > k]

=
C

|X|

2n−
∑k−1

i=0
H(h,m,i)

C
|X|
2n

−
C

|X|

2n−
∑k

i=0
H(h,m,i)

C
|X|
2n

We can extend this formal definition to the probability of interval {a, . . . , b}, i.e.

P[a ≤ HMHh,m(X) ≤ b] =
C

|X|
2n−

∑a−1
i=0

H(h,m,i)

C
|X|
2n

−
C

|X|
2n−

∑b

i=0
H(h,m,i)

C
|X|
2n

C. Agret, B. Cazaux, and A. Limasset 25:7

By approximating the value of P[HMHh,m(X) ≤ k] by 1 − (2n−
∑k−1

i=0
H(h,m,i)

2n)|X|, we can
give an approximation of ah,m and bh,m for a threshold ε of [0, 1] in O(1):

ah,m ≈

⌊(1 − (1 − ε

2)
1

|V |) × 2m+2h−1⌋ if (1 − (1 − ε
2)

1
|V |) < 21−2h

⌊(log2(1 − (1 − ε
2)

1
|V |) + 2h − 1) × 2m

+(1 − (1 − ε
2)

1
|V |) × 2m−log2(1−(1− ε

2)
1

|V |) − 1⌋ Otherwise

and

bh,m ≈

⌊(1 − (ε

2)
1

|V |) × 2m+2h−1⌋ if (1 − (ε
2)

1
|V |) < 21−2h

⌊(log2(1 − (ε
2)

1
|V |) + 2h − 1) × 2m

+(1 − (ε
2)

1
|V |) × 2m−log2(1−(ε

2)
1

|V |) − 1⌋ Otherwise

As shown in Figure 2a, the choice of the good fingerprint depends on the size of the
sub-sampling. By dichotomic search, we can compute each exact value ch,m in O(|X| × W)
and thus we can find the pair h, m which maximizes ch,m in O(|X| × W 2). In practice, we
use the approximation value of ch,m to compute an approximate optimal pair h, m in O(W).

The correspondence between the theoretical optimal fingerprint and the fingerprint with
the minimum false positive values in practice justifies the relevance of our study (see Figure 2).

Implementation details
Our proof of concept is dubbed NIQKI (stand for Next Index to Query k-mer Intersection),
is open-source and available on Github https://github.com/Malfoy/NIQKI. In this section,
we detail some practical aspects of this implementation.

Our NIQKI index is technically able to index any kind of fingerprint. In practice, from a
given fingerprint size (12 by default), we use the best possible (h,m)HMH fingerprint when
the user specifies an expected genome size or a regular Hyperminhash fingerprint if the expert
user precise the size of the Hyperloglog fingerprint. We use a default Hyperloglog fingerprint
of four if no input is given. We implemented the state-of-the-art densification technique [11]
to take care of empty bins.

NIQKI is written in C++ and parallelized with straightforward OpenMP instructions.
Each thread inserts or queries a set of sequences independently. A mutex array protects our
vectors from double writing for insertion. We chose to use 64-bit hashes for performance
purposes as they provide a low collision chance at the hash level in practice while using
efficient 64 bits integers. For the same reason, we use a Xorshift [12] hash function are they
are found good enough in practice while being incredibly cheap to compute. The sketch sizes
are necessarily a power of two for code simplicity and performance aspects. Like Dashing,
we ask the user to enter log2(S) instead of the actual sketch size.

Our implementation can take any classical sequence format as input: fastq, fasta, or
multiline fasta files gzipped or not. The input is either a file of files where each file is an
entry to index (or query) or a file where each sequence is a separate entry. We also provide a
way to download genomes directly from NCBI from an accession list (that can be generated
following NCBI instruction4). The corresponding sequences are downloaded and directly
inserted into the index in a streaming fashion without any disk operation.

4 https://www.ncbi.nlm.nih.gov/genome/doc/ftpfaq/

WABI 2022

https://github.com/Malfoy/NIQKI
https://www.ncbi.nlm.nih.gov/genome/doc/ftpfaq/

25:8 Toward Optimal Fingerprint Indexing for Large Scale Genomics

0 50 100 150 200 250

0.0

0.5

1.0
x

=
10

7
/2

2
0
≈

1.
10

1

0 50 100 150 200 250

0.0

0.5

1.0

x
=

10
7
/2

1
5
≈

3.
10

2

0 50 100 150 200 250

0.0

0.5

1.0

x
=

10
7
/2

1
0
≈

1.
10

4

0 50 100 150 200 250

0.0

0.5

1.0

x
=

10
7
/2

5
≈

3.
10

5

Different values of h,m

0,8

1,7

2,6

3,5

4,4

5,3

(a) Theoretical probabilities and intervals of presence {ah,m, . . . , bh,m}.

h, m x ≈ 1.101 x ≈ 3.102 x ≈ 1.104 x ≈ 3.105

0,8 0.019 0.534 1 1
2,6 0.009 0.289 1 1
3,5 0.006 0.037 0.831 1
4,4 0.011 0.011 0.014 0.029
5,3 0.022 0.022 0.023 0.022
6,2 0.045 0.045 0.045 0.043

(b) False positive values find in practice.

Figure 2 Correspondence between fingerprint with the theoretical maximal interval
{ah,m, . . . , bh,m} and the fingerprint with the minimum number of false positive value in practice
where n = 256, W = 8 and the number of k-mers is 107 for different values of S ∈ {25, 210, 215, 220}.
2a shows the different values of P[HMHh,m(X) ≤ k] for all the k ∈ {0, . . . , 2W − 1 = 255} and for all
pairs h, m such that n ≥ 2h − 1 + m and all values of x = number of k-mers/S. Under each plot,
we add a rectangle for each interval {ah,m, . . . , bh,m} with the corresponding color. 2b gives the
different values of false positive depending of a pair h, m and a subsampling size x.

Indexes can be dumped and loaded from the disk for later use. This allows users to keep
a small index on a disk instead of a large file collection and avoid reading all files to reload a
given index.

Our implementation delivers a gzip-compressed sparse output to limit disk usage by
default. We provide a pretty printer to parse such a file and an option to directly output
(larger) human-readable output.

C. Agret, B. Cazaux, and A. Limasset 25:9

A common use of such a genome index is to compute all pairwise distances between them
by comparing the index with itself. An efficient way is to check every vector of our index
and increment the score of each genome pair present in the vector. While very fast in theory,
this technique requires storing the whole score matrix of size N2 in memory to be efficient.
Henceforth this behavior can be interesting when a large amount of memory is available or
when the number of genomes is not too large. Optimization relying on buffer keeping the
matrix on disk can dissipate this memory footprint problem at the expense of several passes
on the index. In the following benchmarks, the pairwise distances are computed without
using the fact that the input is the indexed data itself. Competitors use this information to
avoid reading the input file several times or computing the lower-left side of the symmetrical
matrix.

Results

Fingerprint impact

As we previously evaluated the impact of the size of the Hyperloglog fingerprint, we now
aim to evaluate the impact of the fingerprint size itself. The fingerprint size can be seen
as the main parameter of our index and the amount of fingerprint used because our index
has a θ(S.2W) memory overhead. More importantly, the fingerprint size will impact the
amount of false-positive hits where two distinct hashes in compared sketches get the same
fingerprint. Such false-positive hits over-estimate the similarity and may negatively impact
downstream results by reporting irrelevant matches. To access the false positives found in
practice, we created a synthetic dataset of one thousand randomly generated genomes of
10 million bases that share no k-mers. We computed the pairwise distances between those
“genomes” and counted the number of hits between unrelated genomes as false positives. We
computed sketches of size 4,096 from each ten megabases synthetic genome with fingerprint
sizes varying from 4 to 18 with a constant Hyperloglog fingerprint size equal to four. We
present the false-positive rates found in practice and the memory used by our index for
such an experiment using various fingerprint sizes in Figure 3. As expected, we observe an
exponential decrease in the false positive rate as we increase the fingerprint size. We observe
that a small fingerprint size can obtain a shallow false-positive rate. From W = 12 the rate
is below 10−3 and from W = 15 below 10−4.

Accuracy analysis

To further analyze our approach’s precision, we compared the result of NIQKI with state-
of-the-art on a real dataset composed of one thousand bacterial genomes from Refseq. In
this experiment, we computed the pairwise distances between all genomes with our approach
and compared those results with Dashing using many fingerprints (1 million) as the ground
truth. In a first experiment reported in Figure 4 we plot the correlation between NIQKI and
Dashing estimations using different amounts of fingerprint (namely S = 65536,S = 4096 and
S = 256) while using a constant fingerprint size (W = 12). As described in the theoretical
analysis of the related studies, a smaller amount of fingerprints results in larger error bounds.
We observe that NIQKI obtain a strong correlation with Dashing output even with a very
low amount of fingerprint. Even small sketches can lead to rough estimations that can
be improved using larger sketches where the error bound can be tiny, as in the standard
approaches.

WABI 2022

25:10 Toward Optimal Fingerprint Indexing for Large Scale Genomics

Figure 3 Impact of fingerprint size on false-positive rate and memory usage when indexing
and comparing one thousand synthetic genomes of 10 megabases against themselves. Here the
Hyperloglog fingerprint is kept constant (H = 4) and 4,096 fingerprint are used per genome.

(a) S = 256 (b) S = 4096 (c) S = 65536

Figure 4 Impact of increasing sketch sizes. We display the correlation between NIQKI with
varying sketch sizes and Dashing using one million fingerprints on one thousand bacterial genomes
from RefSeq. Here the fingerprint size is kept constant (W = 12).

In a second experiment reported in figure5 we used different fingerprint sizes (namely
W = 8,W = 6 and W = 4) with a constant fingerprint number(S = 65536).

Due to the large number of fingerprints, we observe very small error bounds, but due
to the false positive rate, we observe that all indices are overestimated. The expected
overestimation is ≈ (1 − J) ∗ FPRate where J is the Jaccard index between the two sequences,
and the observed pattern goes accordingly with this projection.

This experiment shows that using fingerprints as small as eight bits seems reasonable
in practice for such an index. The false positive rate could still impact the results when
dealing with a low Jaccard index, and a larger fingerprint should be used. We fixed the
default fingerprint size to 12 as it provides very low false positives and a reasonable memory
overhead.

C. Agret, B. Cazaux, and A. Limasset 25:11

(a) W = 4 (b) W = 6 (c) W = 8

Figure 5 Impact of increasing fingerprint sizes. Correlation between NIQKI with varying
fingerprint size and Dashing using one million fingerprints on one thousand bacterial genomes from
RefSeq. Here the sketch size is kept constant (S = 65536).

Performance analysis
This section displays how our index can scale on synthetic and real datasets compared to
the two most used tools of the state-of-the-art Mash and Dashing. All experiments were
performed on a single cluster node running with Intel(R) Xeon(R) CPU E5-2420 @1.90GHz
with 192GB of RAM and Ubuntu 16.04. with a timeout of 48hours. Bindash was not included
in our benchmark because it cannot compute a distance matrix from a file of files directly.

All state-of-the-art tools present a O(S.N) query time (or O(S. log(S)).N) if S minimum
Minhash is used) as a query sketch have to be compared to each indexed sketch. In contrast,
our index presents a query time linear with the number of hits. It can be O(S.N) in the
worst case where all genomes are identical and can be O(S) in the best-case scenario where
an alien entry is entirely dissimilar from the indexed genomes (ignoring false positives).

To show those two regimes, we perform a first “idealistic” benchmark with randomly
generated genomes sharing no k-mers that display the best case of our index. We compare
those results to a real database composed of GenBank genomes in a second experiment. We
downloaded all Genbank bacterial assemblies (1,042,611) and randomly selected genomes
from this pool to build such an index. We want to point out that such a database is highly
redundant. For instance, it contains 142,568 assemblies of the Escherichia coli organism. It
constitutes a stress case for our index as each query associated with Escherichia coli should
report a large part of the indexed genomes among its matches.

In Figure 6 we ran Dashing, Mash, and NIQKI to compute pairwise distance on randomly
generated genome collection of growing sizes and report the mean CPU time per entry and
RAM usage. Because of the quadratic aspect of computing all pairwise distances, we report
the mean time required per entry by dividing the total running time by the amount of entry
to improve results readability. To provide a fair comparison, we choose parameters such
as each tool to allocate the same memory per entry. Mash used 65,536 32 bits Minhash
fingerprints, Dashing used 262,144 8 bits Hyperloglog signatures, and NIQKI used 65,536 32
bits genome identifiers and the default fingerprint (W = 12). We observe that both Mash and
Dashing runtime grow following an expected quadratic evolution as computing all pairwise
distances needs Θ(S.N2). The growth runtime of NIQKI is roughly linear and can become
orders of magnitude faster than state-of-the-art.

In Figure 7 we perform the same experiment on a realistic database constituted from
bacterial GenBank genomes. We observe that Mash and Dashing deliver similar performances
on synthetic and real datasets. The differences are due to the fact that the mean size of real

WABI 2022

25:12 Toward Optimal Fingerprint Indexing for Large Scale Genomics

Figure 6 Benchmark on synthetic genomes. We report the CPU time divided by the number of
entry and the total memory footprint for various collection sizes. Mash is plot in red, Dashing in
green and NIQKI in blue.

Figure 7 Benchmark on GenBank bacterial genomes. We report the CPU time divided by the
number of entry and the total memory footprint for various collection sizes. Mash is plot in red,
Dashing in green and NIQKI in blue.

bacterial genomes is around five megabases, while the generated genomes are ten megabases
long. NIQKI results on small databases are similar to the synthetic cases, but a superlinear
growth can be observed on the largest collections. However, despite this observation NIQKI
can still be orders of magnitude faster than state-of-the-art tools while using a comparable
amount of memory. For example, the largest Mash experiment used 773 CPU hours on
50k genomes where NIQKI used only 15 CPU hours. The largest Dashing experiment used
645 CPU hours on 100k genomes where NIQKI used only 30 CPU hours. We extrapolate
that Dashing or Mash would need more than ten thousand CPU hours to handle 500k
genomes while NIQKI used 166 CPU hours. On the downside, because of its large overhead
NIQKI uses more memory than the other approaches on small collections and is slightly
more memory expensive than Dashing on larger databases.

Indexing Genbank bacterial genomes

To access our approach scaling ability scalability, we choose to index and compute pairwise
distance on all bacterial genomes from GenBank. This dataset represents more than one
million genomes, counting more than five tera-nucleotides or more than one terabytes of
gzipped fasta files. We choose to evaluate the cost of such an operation by varying the
number of indexed minimizers that linearly impact our approach’s memory cost and the
running time. We choose to keep the memory overhead constant (O(2W +log2(S))) to ensure
a fair memory comparison and raise the fingerprint size accordingly. We report the CPU
time and Wall clock time along with the memory usage required for those experiments in
Table 1. We observe that we can index and compute pairwise distance on such a database
with medium-sized sketches in a few days with a reasonable memory footprint. If the indexing

C. Agret, B. Cazaux, and A. Limasset 25:13

time is roughly constant and dominated by reading the input, we observe that the query
time grows linearly with the sketch size (plus a “reading” time constant cost). We want to
recall that most of the query computational time is due to the database’s redundancy, which
generates many matches for some queries. For comparison, on a simulated dataset of one
million random synthetics genomes indexed with 4096 fingerprints, the query time lasted 12
hours instead of 38 hours for the Genbank database.

Table 1 Benchmark on all Genbank bacterial genomes with various sketch sizes.

#Fingerprint CPU time (seconds) Wall clock time all / query (hours) Memory
32 416,245 12 / 6 4,675
128 469,072 12 / 6 5,363

1,024 969,884 17 / 11 11,306
2,048 1,525,982 28 / 22 17,602
4,096 3,383,009 44 / 38 30,021

Conclusions and future work

We showed that using inverted indexes on partitioned sketches leads to algorithmic im-
provement of fingerprint queries that can reduce running time by orders of magnitude with
comparable precision. Theoretically, our proposed structure query is O(#hits) compared
to O(S.N) for state-of-the-art. This structure came with a memory cost as our index uses
O(S(NlogN + 2W)) bits instead of O(S.N.W). We showed that even a straightforward
implementation could efficiently index small fingerprints while providing results comparable
to the state-of-the-art. Our approach could provide orders of magnitude faster queries on
idealistic synthetic databases and real-world redundant databases with comparable memory
footprints on large instances. We also demonstrated our index capacity to index and query all
bacterial genomes of Genbank (more than one million bacterial genomes) in a matter of days
on a small cluster. Our index can be used to index large collections to detect matches between
novel query sequences and elements of the collection or to compute pairwise comparisons of
all indexed sequences.

While our index can index any fingerprint (Minhash, Hyperloglog, Hyperminhash), we
aimed to provide the best possible fingerprints of a given size to limit the number of false
positives. To do so, we generalized the concept of Hyperminhash to account for different
sizes of Hyperloglog and Minhash fingerprints dubbed (h, m)-HMH fingerprints. Interestingly
Minhash, Hyperloglog, and Hyperminhash fingerprints can be seen as particular cases of
(h, m)-HMH fingerprints. Given an expected sub-sampling, we can select the (h, m)-HMH
fingerprint with the optimal parameter that provides the lowest false positive rate and
confirms this choice in practice. While improving false-positive rates, those well-designed
fingerprints come without computational or memory costs and could be used to improve
existing sketching methods. Sketching methods could either use smaller fingerprints for a
desired false positive rate, reducing memory footprint, or reducing their false positive rate
without memory or time overhead.

On the practical aspect, our implementation still misses user-friendly features such as
computing various metrics used in practice (Mash Index, containment index, or cardinality
estimation) using advanced estimation methods. The different partition-based optimization
described in the methods could also optimize query time in certain situations. Our running
time could be improved by implementing classical optimization techniques such as batched

WABI 2022

25:14 Toward Optimal Fingerprint Indexing for Large Scale Genomics

queries, SIMD parallelism or vectorization, or practical optimization as computing only
upper-half identifiers when comparing the index against itself. We mentioned that processing
partition by column grants the possibility to stop queries that can not find high-scoring
matches, but this feature is not yet implemented in practice. More generally more advanced
output filtering technique could benefit our implementation in practice. More importantly,
our current implementation uses plain integers as genomes identifiers leading to high memory
costs. As our vectors can be seen as lists of increasing integers, those could be compressed with
delta-encoding or other high throughput compression technique [8]. The index representation
could be highly reduced with a limited impact on the runtime. While our proof of concept
implementation is efficient, it tends to allocate a large amount of unused memory because of
the heavy use of vectors. Other implementations could be made with different time/memory
trade-offs. For example, comparing our approach with a Rank and the select-based index
could be interesting.

On the theoretical aspects, our analysis of (h, m)-HMH fingerprint leads us to identify the
need for an efficient fingerprint that presents smoother patterns to enable a larger range of
possible hashes with or without estimation of the sub-sampling. On the fingerprint indexing
problem, we showed that our partition query could be considered optimal as its running
time is linear with the size of the output. However, the classical usage is to ask for matches
with a number of hits above a certain threshold. It would be interesting to investigate which
indexes or algorithmic solutions would provide an optimal answer to this problem.

References
1 Alexandre Almeida, Stephen Nayfach, Miguel Boland, Francesco Strozzi, Martin Beracochea,

Zhou Jason Shi, Katherine S Pollard, Ekaterina Sakharova, Donovan H Parks, Philip Hugen-
holtz, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome.
Nature biotechnology, 39(1):105–114, 2021.

2 Daniel N Baker and Ben Langmead. Dashing: fast and accurate genomic distances with
hyperloglog. Genome biology, 20(1):1–12, 2019.

3 Timo Bingmann, Phelim Bradley, Florian Gauger, and Zamin Iqbal. Cobs: a compact bit-sliced
signature index. In International Symposium on String Processing and Information Retrieval,
pages 285–303. Springer, 2019.

4 Phelim Bradley, Henk C Den Bakker, Eduardo PC Rocha, Gil McVean, and Zamin Iqbal.
Ultrafast search of all deposited bacterial and viral genomic data. Nature biotechnology,
37(2):152–159, 2019.

5 Andrei Z Broder. On the resemblance and containment of documents. In Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21–29.
IEEE, 1997.

6 Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm. In Discrete Mathematics and
Theoretical Computer Science, pages 137–156. Discrete Mathematics and Theoretical Computer
Science, 2007.

7 David Koslicki and Hooman Zabeti. Improving minhash via the containment index with
applications to metagenomic analysis. Applied Mathematics and Computation, 354:206–215,
2019.

8 Daniel Lemire, Leonid Boytsov, and Nathan Kurz. Simd compression and the intersection of
sorted integers. Software: Practice and Experience, 46(6):723–749, 2016.

9 Ping Li and Christian König. b-bit minwise hashing. In Proceedings of the 19th international
conference on World wide web, pages 671–680, 2010.

10 Antoine Limasset. Million sequences indexing. In BMC BIOINFORMATICS, volume 20. BMC
CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND, 2019.

C. Agret, B. Cazaux, and A. Limasset 25:15

11 Tung Mai, Anup Rao, Matt Kapilevich, Ryan Rossi, Yasin Abbasi-Yadkori, and Ritwik Sinha.
On densification for minwise hashing. In Uncertainty in Artificial Intelligence, pages 831–840.
PMLR, 2020.

12 George Marsaglia et al. Xorshift rngs. Journal of Statistical Software, 8(14):1–6, 2003.
13 Martin D Muggli, Bahar Alipanahi, and Christina Boucher. Building large updatable colored

de bruijn graphs via merging. Bioinformatics, 35(14):i51–i60, 2019.
14 Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H Bergman,

Sergey Koren, and Adam M Phillippy. Mash: fast genome and metagenome distance estimation
using minhash. Genome biology, 17(1):1–14, 2016.

15 N Tessa Pierce, Luiz Irber, Taylor Reiter, Phillip Brooks, and C Titus Brown. Large-scale
sequence comparisons with sourmash. F1000Research, 8, 2019.

16 Will PM Rowe. When the levee breaks: a practical guide to sketching algorithms for processing
the flood of genomic data. Genome biology, 20(1):1–12, 2019.

17 Anshumali Shrivastava. Optimal densification for fast and accurate minwise hashing. In
International Conference on Machine Learning, pages 3154–3163. PMLR, 2017.

18 Yun William Yu and Griffin M Weber. Hyperminhash: Minhash in loglog space. arXiv preprint,
2017. arXiv:1710.08436.

19 XiaoFei Zhao. Bindash, software for fast genome distance estimation on a typical personal
laptop. Bioinformatics, 35(4):671–673, 2019.

WABI 2022

http://arxiv.org/abs/1710.08436

