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ABSTRACT

Modern computing is a path of violations and transformations coming from an intrin-

sically concurrent application domain into a sequence of instructions and then back to

concurrency with OpenMP, MPI and CUDA/OpenCL. Why we create so many diffi-
culties? Sleptsov Net Computing (SNC) maps a task into an appropriate computing

structure implemented as a re-configurable multidimensional sparse matrix of comput-

ing memory. It has entirely graphical mass parallel language for concurrent programming
and a framework of techniques for concurrent program verification to develop reliable
software. Estimated efficiency of SNC is higher than 50% compared to actual less that

1% efficiency of the most powerful supercomputers. It yields hyper-performance capable
of efficient control of hyper-sonic objects, colliders, thermonuclear reaction. This paper

presents an open source prototype VM and IDE for SNC with a view on upcoming
hardware implementation of the corresponding computer.

Keywords: Sleptsov net computing; concurrent programming; efficient computing; com-

puting memory; virtual machine; integrated developer environment.

1. Introduction

ACM Tech News [1] digest of editorial paper [2], following recent update [3] on

Sleptsov net computing (SNC) [4], presents SNC as an approach that resolves mod-

ern supercomputing problems [5].
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and Programme PAUSE, Collège de France in 2022-2023.
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Jack Dongarra, in his ACM A.M. Turing Award lecture [5] revealed rather shock-

ing information. For a few decades LINPACK [6, 7] – one of the first of his wide-

known packages, – has been applied for benchmarks of supercomputers, reflected on

Top500 [8] web-site, that influenced world trends of computer hardware design and

strategic plans of leading international companies which produce supercomputers.

LINPACK benchmark represent solving a dense system of linear equations.

During the final part of his lecture, Jack Dongarra reveals results of recent tests

on real-life applications, concisely expressed in a novel High Performance Conjugate

Gradients (HPCG) Benchmark [9], which uses a mixture of tasks over sparse data.

Corrected with HPGC column, table of the top ten most powerful supercomputers in

the world (Fig. 1) looks rather drastically. Actual performance of the most powerful

in the world USA computer Frontier is 0.8% of its performance measured with

LINPACK that positions it on the second place after Japanese computer Fugaku

[10] that is the leader with 3.0%.

Fig. 1. Jack Dongarra top10 table supplied with HPCG results

Fugaku leadership is explained by using Tofu D Interconnect representing 6D

torus with big quantity of alternative paths, having short length, between nodes.

Indeed, real-life mixture of tasks has rather irregular pattern of intensive commu-

nications that amplifies negative influence of well-known processor-memory bottle-

neck. It is traditionally mended by multilevel cash which is getting well filled in

with repeatedly used data on dense matrix operations for LINPACK test.

Discussing advantages of certain computers architecture on HPCG test, we devi-

ate from the primary conclusion induced by the fact that even for the best computer

Fugaku, it is about thirty times less than its peak performance specified, that means

novel paradigms of concurrent computing are in utmost demand.

Petri nets with multichannel transitions, introduced [11, 12] for practical man-
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ufacture control and management [13] at Topaz and Motorsich plants of Ukraine,

represent a concept, later on, successfully applied in theory of computations to

speed-up spiking neuron systems [14] and DNA computing [15], and called an ex-

haustive use of rule. Multiply firing of a transition at a step (in a certain number of

copies) resulted in exponential speed-up when composing small universal Petri nets

[16] that was basic motivation to call the corresponding class of place-transition

nets a Sleptsov net (SN) [4, 17, 18] after an outstanding scientist Anatoly Sleptsov

from Ukraine who hinted the idea.

Indeed, for many years place-transition nets were applied for concurrent pro-

gramming loaded with constructs of an algorithmic language. Besides, place-

transition notation was adopted in UML [19] for activity diagrams. Though Petri

nets are slow, especially when computing arithmetic functions because of their in-

cremental character of computations similar to counter automata.

Sleptsov net computing resolves modern supercomputing problems [1, 2]. A

Sleptsov net yields fast computations that opens prospects of its application as

a uniform graphical language of concurrent programming. It means computations

are completely specified by Sleptsov net graphical program, textual constructs are

applied as comments only. Implementation of Sleptsov net machine in the form of

computing memory removes processor-memory bottleneck of traditional architec-

ture resulting in hyper-performance. It allows us to start with fine granulation of

concurrent processes at the level of separate operations. It implies a novel style of

concurrent programming, when drawing a program, we do not introduce sequen-

tial dependencies which are not intrinsic to the application domain. Moreover, for

reliable software design, a framework of early developed formal techniques for con-

current programs verification is available.

The present paper describes an experimental implementation of Sleptsov net

computing (SNC) in the form of virtual machine (VM) and integrated developer

environment (IDE) based on graphical editor of place-transition nets of system Tina

[20] and dedicated ad-hoc tool-set developed in University Cote d’Azur (France)

and XIDIAN University (China) as an open-source software available on GitHub

[21, 22, 23, 24]; the paper is accomplished with analysis of benchmarks based on

tasks of LINPACK and HPCG tests. Hardware implementation of SNP promises

break-though in efficiency of modern HPC.

2. An overview of Sleptsov net computing paradigm

Sleptsov net computing paradigm [3, 4, 17, 25] is based on completely graphical

language of concurrent programming, with fine granulation of concurrent processes,

and computing memory implementation in the form of a big, adjustable to the

task structure, sparse matrix. For solving tasks with a certain spatial structure,

multidimensional matrices of computing elements are applied.

The foremost peculiarity of a Sleptsov net is firing a transition at a step in a

certain number of instances (multiple firing), while a Petri net fires a single transi-
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tion in a single instance, and Salwicki net fires the maximal set of firable transitions

in a single instance each [3]. That is why an SN runs exponentially faster than a

Petri net [4] opening prospects of using it as a uniform language for concurrent pro-

gramming. Inherently, an SN transition implements division-subtraction on each its

incoming arc and multiplication-addition on each its outgoing arc that makes SN

rather powerful computer as well. An example of SN adding two numbers in three

time cycles is shown in Fig. 2, its state space represented in Fig. 3.
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S F
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Fig. 2. An LSN for computing z=x+y
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Fig. 3. Behavior of LSN shown in Fig.2

SNC allows us using data flow or control flow approaches or both in mixed con-

trol programs. The basic motivation, when drawing a program, is to not restrict

intrinsic parallelism of an application domain starting from the level of separate

arithmetic and logic operations implementation. Usual textual program enforces

application of sequential constructs while, when drawing a program, it is easier to

preserve concurrency, especially with a Sleptsov net where each transition is con-

trolled locally. All the actions are primordially concurrent and the net just ensures

certain limitations on this mass parallelism.

For convenience of drawing programs, we supply an SN with inhibitor and prior-

ity arcs though, according to the recent results [3], a strong Sleptsov net is Turing-

complete and we can use conventional arcs only. As distinct from traditional tech-

nique of programming in place-transition nets, where a control flow is represented

by passage of a control token through the control flow subnet [26, 27], in SN pro-

grams, we use a reversed control flow represented by passage of an empty marking

(a ”hole”) through the control flow subnet. Because of it, we use inhibitor arcs,

which possess a symbolic infinite firing multiplicity at zero marking, to control

firing of data processing transitions. Thus, firing multiplicity of control does not re-

strict multiplicity ensured by data. For each traditional control flow pattern such as

branching, loop, parallel execution, we offer corresponding SN control-flow patterns

to make programming in SNs easier at the beginning.

To avoid using textual programming languages, we start from a set of SNs which

implement basic arithmetic, logic, and comparison operations. For hierarchical de-
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sign of graphical programs, we use substitution of a transition by a subnet. SNs with

transition substitution are called high-level SNs. They are compiled and linked into

a single plain low-lewel SNs without substitution of transition which are considered

as an analog og machine language for SNC paradigm.

Though a place of SN stores a nonnegative integer number, we can represent

integer, rational, and floating numbers by a cortege of places, subnets for corre-

sponding operations have been presented in [28]. As for the arrays and matrices,

multidimensional as well, the most efficient implementation uses explicitly generated

matrix computing structures, similar to shown in an example for solving Laplace

equation in a single step for each iteration. Based on this technique, deep learn-

ing implementation on SNs has been presented [29]. For variable-length structures

encoding, we can apply technique of encoding arrays and matrices described in [18].

As for SN machine, we offer its implementation in the form of computing mem-

ory. Its main function consists in fast firing transitions. Combining Sleptsov strategy

of maximal firing multiplicity with Salwicki strategy of maximal parallelism, we fire

a maximal multiset [3] of transitions at a step. It results in mass parallel computa-

tions with fine granulation (addition, subtraction, multiplication, division within a

transition) in case a Sleptsov net is perfectly mapped into the corresponding hard-

ware structure of computing memory. Computing memory implementation results

in a nanosecond time cycle that, combined with mass parallelism, opens prospects

for control of very fast processes, such as holding plasma in controlled thermonuclear

reaction and control of hypersonic flying objects.

An additional benefit of the SN language is direct applicability of a wide range

of formal techniques [30, 31, 32] for verification of concurrent programs that is an

utmost significant aspect of reliable software design.

3. Overall organization of SNC VM and IDE

In appreciation of a project for full-scale thorough implementation of SNC paradigm,

including dedicated hardware design, we present an experimental implementation,

that further develops [33, 34], based on graphical editor of modeling system Tina

[20] and a set of additional tools that includes: a converter of net files (NDRtoSN )

[21]; compiler-linker (CL) of SN programs (HSNtoLSN ) [24]; SN virtual machines

implemented on multicore CPU [22] and GPU [23] (SN-VM and SN-VM-GPU,

respectively). The general scheme of SNC IDE organization is represented in Fig. 4.

We draw SN programs in graphical editor nd of system Tina [20], low-level

programs – directly, high-level programs (which use substitution of a transition

by a subnet) – supplied with specification of transition substitution that is stored

in label attribute of a transition with special syntax. Thus, initially we store SN

programs as Tina files having graphical format (NDR). For fast data processing,

two dedicated file formats for high-level (HSN) and low-level (LSN) Sleptsov nets

have been developed, the corresponding converter NDRtoSN [21] from NDR format

provided.
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Fig. 4. SN IDE diagram.

High-level SN programs are converted by the compiler-linker of SN programs

HSNtoLSN [24] into low-level SN programs which can be directly executed by an

SN virtual machine implemented either on multicore CPU – SN-VM [22] or on

GPU – SN-VM-GPU [23]. SN-VM serves, at first, for debugging SN programs of-

fering step-by-step mode of execution with printing auxiliary information, though

performance of SV-VM in automatic mode is rather impressive because of employ-

ing multicore facilities of CPU. SN-VM-GPU can approach theoretical performance

of a hypothetical dedicated SN hardware machine using mass parallel matrices of

threads provided by GPU. The corresponding benchmarks are described in Sec-

tion 7.

The software is written in C language and compiled on Windows platform with

Dev-C compiler and on Linux platform – with gcc compiler; GPU accelerator is

implemented using NVIDIA CUDA [35].

Substitution of a transition for HSN implies mapping of contact places. In a

simple case it can be implemented as merging (union) of the corresponding places

of high-level and low-level nets. Though the basic operations have been implemented

in a data-flow style consuming source data. Thus, in the general case, we need to

copy data into input places of subnet and, after its completion, move result from

output places of subnet. To briefly specify this kind of connection, dashed arcs

were introduced in notation of SN programs [4, 17]. When transforming an HSN

into LSN, they are expanded with insertion of the corresponding subnets COPY,

CLEAN, and MOVE.

Let us consider examples of LSN and HSN which we will use later on for ex-
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Fig. 5. HSN to compute d := a+ b+ c, a := 3, b := 2, c := 4, using LSN Add (Fig. 2).
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Fig. 6. Graph of final net (LSN).

plaining basic concepts of SN IDE work. LSN in Fig. 2 implements addition in three

steps. HSN in Fig. 5 computes an arithmetic expression z = a + b + c using two

addition subnets. The HSN is transformed [4] into the corresponding LSN shown in

Fig. 6 via insertion of two subnets ADD and expansion of dashed arcs via insertion

of subnets COPY, CLEAN, and MOVE (studied in detail in Section 6). Note that

here we use an explicit control flow and inline substitution of subnets [17]. As an

alternative approach, data float concept can be implemented.

4. Formats of files and data converters

Since we use graphical editor nd of system Tina as a tool to integrate components

of SNC VM and IDE, we deal, at first, with graphical specification of a place-

transition net of system Tina, the corresponding file format is called NDR [20]. For

simple and fast processing of SN programs, two file formats have been developed,

the corresponding converters implemented: Low-level SN (LSN) that represents a

kind of machine language; High-level SN (HSN) that represents an SN program

with transition substitution for hierarchical modular program design. Besides, a

raw matrix format MSN is provided for compatibility reasons.

4.1. Low-level SN – LSN and MSN

When transitions in a Sleptsov net are not substituted by some subnets, that is,

there is no transition substitution, we call such a net the low-level Sleptsov net

(LSN), LSN file [22] specifies the corresponding net structure and its initial marking.
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Fig. 2 is a Low-level SN for computing z = x + y, where x = 2, y = 3. The input

place Start (S) and the output place Finish (F ) are a pair of dedicated control

flow (CF) places. The place Start (S) indicates the beginning of a net’s work and

place Finish (F ) indicates the completion of a net’s work. The reachability graph

of the SN, shown in Fig. 2, is represented in Fig. 3.

A low-level SN runs on the SN Virtual Machine (VM), and a universal SN [18]

is a prototype of the SN Virtual Machine. We take the initial marking, the number

of places, the number of transitions, and the arcs of an LSN as input data for SN

VM. When the net halts, we obtain output data, which represent the result of an

LSN run, in the form of the final marking. Sometimes a trace, represented by the

number and multiplicity of transitions firing at each step (firing sequence), is of

some interest, especially for debugging purposes. For convenience of programming

in SNs, we use also priority arcs which allow us to represent some peculiarities of

computing process in compact form, for instance in [36], issues of adding priority arcs

to guess the path leading to the correct answer for nondeterministic computations

are discussed. In Fig. 7 we present a priority LSN for computing z = x + y, its

behavior shown in Fig. 8. Here, the priority arc only restricts the order of firing

alternative transitions t1 and t2 (for illustrative purposes).

p2
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t2

p4

S

p5

F

p3

Z

p1

2

X

t1

t3

Fig. 7. A priority LSN for computing z =
x+ y
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2t1

3t2
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Fig. 8. Behavior of priority LSN shown in Fig. 7

An SN, having m places and n transitions, is specified by the following three

matrices and one vector: B – an m × n matrix of transitions’ incoming arcs; D

– an m × n matrix of transitions’ outgoing arcs; R – an n × n matrix of priority

relation defined on a set of transitions; µ – an m vector of initial marking. We use

nets with multiple arcs, arc multiplicity represented by a natural number, and value

−1 represents an inhibitor arc. For reasons of compatibility with some verification

tools, we also use raw matrix format represented by the sequence: m, n, B, D, R,

µ; usually we insert blank lines to separate matrices. A variant, using transitive

closure RC of the priority relation matrix R, is called an MSN (matrix SN) and

applied as input for SN-VM-GPU [23].

Matrix representation of LSN shown in Fig. 7 follows:
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m = 5, n = 3, B =


1 0 −1

0 1 −1

0 0 0

−1 −1 −1

0 0 1

 , D =


0 0 0

0 0 0

1 1 0

0 0 1

0 0 0

 , R =

0 1 0

0 0 0

0 0 0

 ,

µ = (2, 3, 0, 0, 1). (1)

In LSN file, we use sparse way of matrices and vectors specification, moreover, we

consider an overlapped specification of B, D, R just listing the net arcs, classifying

them into the following types: regular arc from place to transition, inhibitor arc

from place to transition, arc from transition to place, priority arc from transition to

transition. Formal specification of LSN file format and its example for the priority

SN of addition (Fig. 7) are represented in Table 1.

Table 1. Table of LSN format and an example for SN shown in Fig. 7.

LSN format LSN example

m n k l nst 6 3 12 3 0
v1 v2 w 5 3 1

4 2 -1

4 1 -1
1 1 1
4 3 -1

1 3 -1
-4 3 1
2 2 1

2 3 -1
-3 1 1
-3 2 1

-1 -2 0
p mup 1 2

2 3

5 1

LSN file is divided into three sections: the header, specification of arcs, specifi-

cation of initial marking; rows starting with ”;” character are considered comments.

In the LSN header line, m and n specify, as it was defined above, the number of

places and transitions, respectively, k – the total number of arcs, l – the number of

nonzero initial markings, and nst – the number of substitution transition (zero for

LSN). An arc is specified by a triple v1 v2 w, which can be divided into the four

following types:

(1) If v1 < 0, v2 < 0, a priority arc from transition v1 to transition v2, multiplicity

is not applicable, w = 0.
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(2) If v1 > 0, v2 > 0, w > 0, a regular arc from place v1 to transition v2 of

multiplicity w.

(3) If v1 > 0, v2 > 0, w < 0, an inhibitor arc from place v1 to transition v2,

multiplicity w = −1.

(4) If v1 < 0, v2 > 0, an arc from transition v2 to place v1 of multiplicity w.

Marking is represented in sparse form by a sequence of pairs p µ(p) for nonzero

markings. An LSN file represents a kind of SN machine language file to run on SN

(virtual) machine.

4.2. High-level SN - HSN

Conventional software design is based on hierarchical structure of a program, rep-

resented by calls of functions. For the SN program design, we use substitution of a

transition by a subnet and dashed arcs to denote copying and moving data [4, 17].

The concept was preliminary considered in Section 3 and is described in detail in

Section 6. An SN, that contains substitution of transitions, is called a high-level

Sleptsov net (HSN); HSN file [24] can be also recognized by its header, containing

nonzero value of nst – the number of substitution transitions. Compared to LSN,

an HSN file contains the fourth section that specifies the transition substitution.

The transition substitution by a subnet requires to specify the subnet name

and mapping of its contact (input and output) places into places of the high-level

net. Since we implement here the explicit control flow approach, we classify the set

of contact places into four classes: start and finish for the control flow; input and

output for data.

Substitution of a transition is specified by the header row followed by a list

of place mapping rows. The header row contains substituted transition number

tnum, the number of place mappings pmnum, the subnet file name fname. A place

mapping row (totally pnnum rows) contains HSN place number hp and subnet place

number lp. Each line represents a pair of place mappings separated by space. At

first, the mappings of the data input places are listed, then – the mappings of the

data output places, and finally – the mappings of the control flow places.

The different types of place mapping are specified using four combinations of

the mapping components sign as follows:

(1) If hp > 0, lp > 0, input data place mapping.

(2) If hp > 0, lp < 0, output data place mapping.

(3) If hp < 0, lp > 0, start control-flow place mapping.

(4) If hp < 0, lp < 0, finish control-flow place mapping.

Let us consider an example of addition of three numbers shown in Fig. 5. We

use Table 2 to illustrate the composition of the corresponding HSN. In the file

header, 8 places, 2 transitions, 12 arcs, 5 non markings, all 2 transitions need to be

substituted in the HSN section. And then specification of 12 arcs are listed, followed
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by 5 nonzero place markings. In the HSN section, there are 2 transitions which are

substituted by a subnet (add.lsn), and each transition has 5 pairs of places mapping.

Table 2. HSN file format and example for addition of three numbers shown in Fig. 5.

HSN format HSN example

m n k l nst 8 2 12 5 2

; arcs and marking

... ...
; transition substitution section

tnum1 pmnum1 fname1 1 5 add.lsn

; place mappings
hp lp 1 1

2 2

3 -3
-6 4

-7 -5
tnum2 pmnum2 fname2 2 5 add.lsn

hp lp 3 1
4 2
5 -3

-7 4
-8 -5

4.3. Tina graphical editor nd and NDR file format

LSN and HSN files can be inputted and edited manually in a text editor. Though

graphical programming, especially for an intrinsically graphical language as SN, is

considered more user-friendly technology. We use graphical editor nd of system Tina

[20] to draw HSNs and LSNs which is rather simple and convenient in its laconic

concept. Besides, system Tina allows us to apply a set of tools for verification of

concurrent SN programs [37]. From graphical environment of nd, we can stars di-

rectly tools for state space and structural analysis of nets as well a stepper-simulator

convenient for debugging SN programs. Professional command line tools of Tina for

state-space exploring and model-checking are well known, especially because their

ability to handle big nets.

Graphical editor nd provides menu items and hot keys to draw a place-transition

net with multiple and inhibitor arcs, connecting places and transitions, and also with

priority arcs between transitions. It provides the following attributes of a place:

name, label, and marking. Attributes of a transition are: name, label, and interval

specifying timed characteristics; we do not use timed characteristics for program-

ming in SNs. Tina provides 5 types of arcs directed from a place to a transition of

which we use a regular and an inhibitor arc. The arc weight attribute represents the

arc multiplicity; for inhibitor arcs we use unary multiplicity only. Arcs are draws

as straight initially and then their curvature can be adjusted moving two handlers



May 4, 2023 15:25 snp-ide-ppl

12 D. Zaitsev & T. Shmeleva & Q. Zhang & H. Zhao

which appear when pointing out the corresponding arc.

Present version of nd does not provide Sleptsov firing rule of transitions that is

why application of a built-in stepper simulated is rather limited. Though we use it

for debugging purposes because when programming in SN, we deal with nets which

invariant with regard to the actual sequence of transitions firing, computing the

same result.

Formally, using nd, we can not specify the transition substitution and dashed

arcs stipulated by the SN programming technology [4]. To specify substitution of a

transition, we use its label attribute which content is not formalized within Tina and

devised for descriptive purposes. As for the dashed arcs, they are implicitly defined

by the set of subnet contact places which are not the two control flow places Start

and Finish. Though we have no possibility to emphasize the transition substitution

details with dashed lines of the corresponding arcs. Specifications of the transition

substitution label format are represented with Table 3.

Table 3. Format of transition substitution label and an example

for t1 substitution in SN shown in Fig. 5.

Label format Label example

*HSN( *HSN(
subname add.lsn

atype hpname lpnum i p1 1
i p2 2
o p3 3

s p6 4
f p7 5

) )

Prefix ”*HSN(” serves to recognize the transition substitution label; subname

specified the file name of subnet; a triple atype hpname lpnum specifies mapping

of a contact place with the arc type, high-level net place name, and low-level net

place number, respectively; the above mentioned four types of contact places are

classified: ’i’ – input, ’o’ – output, ’s’ – start, ’f’ – finish; suffix ”)” completes the

label specification. The transition name within high-level net is recognized from

the NDR file row of transition specification containing the label. Let us write two

transition substitution labels (t1 and t2, respectively) for SN shown in Fig. 5:

*HSN(add.lsn i p1 1 i p2 2 o p3 3 s p6 4 f p7 5)

*HSN(add.lsn i p3 1 i p4 2 o p5 3 s p7 4 f p8 5)

Tina uses two file formats to store a net – graphical NDR and textual NET, –

of which we use NDR only having dedicated LSN and HSN formats for specifying

SNs in textual form. Formal specification of the file formats id a part of Tina [20]

documentation. Here we provide a brief overview for NDR format. There are 4 types
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of line recognized by the first character: ’p’ – place, ’t’ – transition, ’e’ – arc, ’h’

– header. Place specification line contains place name and label, coordinates, and

marking. Transition specification line contains transition name and label, coordi-

nates, and possible timed characteristics. Arc specification contains names of start

and end node, arc type and weight, and also curvature parameters. The header

specifies the net name and default scale for graphical representation.

4.4. Converting NDR into LSN and HSN

To develop a dedicated converter of an NDR file into an LSN or an HSN file [21],

we use a library of components early developed for Tina plug-ins Deborah and

Adriana [38] and also for recently issued software ParAd [39]. We read and parse

lines of NDR file processing them according to the line type considered in the

previous subsection. We create tables of transitions, places, and arcs, containing

their names and the transition substitution labels. Then we generate either LSN or

HSN file based on the presence of transition substitution labels. Generator inserts

also comment lines explaining formatting accomplished with tables of place and

transition names. These information helps to grasp correspondence of NDR node

names to LSN/HSN node numbers. The command line format uses two file names

for input and output file, respectively:

NDRtoSN file1.ndr file2.lsn

NDRtoSN file1.ndr file2.hsn

Note that, since the program uses NDR file format, it can be implemented as

nd plug-in similar to Deborah and Adriana [38].

5. SN Virtual Machine

The universal Sleptsov net [18] is considered as a prototype of the Sleptsov net Vir-

tual Machine (VM). SN VM is implemented as a software emulator of SN behavior

(”token game”), which allows firing a transition in multiple instances at a single

step. An SN specification, in the form of LSN file, represents VM input, and then,

as a result of the net run, we obtain VM output in the form of SN final marking.

A marking, more precisely its subset with respect to places specifying variables [4],

represents data while the SN graph represents a program from conventional point

of view. SN Virtual Machine has been developed in two variants, a single-thread

and a multi-thread based on OpenMP [40] facilities.

5.1. Algorithm SN VM work

Starting from an initial marking, SN VM fires transitions of a given SN while there

are firable transitions. When the net halts, its final marking represents a result

of computations. Thus, generally, VM is organized as a repetition of an SN step
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represented by the following three stages according to the SN transition firing rule

[4]:

(1) Find fireable transitions and their firing multiplicities (vector f) by Algorithm

1.

(2) Choose the transition to be fired (firing n) at a step (with firing multiplicity

fm) according to the flowchart shown in Fig. 9; for priority LSN, the fireable

transition with the highest priority is chosen by Algorithm 3.

(3) Fire transition firing n and calculate the next marking mu by Algorithm 2.

To implement the SN transition firing rule, we start with computing the tran-

sition firing multiplicity and the firing transition choice, defined as Algorithm 1

and flowchart in Fig. 9, respectively; Algorithm 1 is specified in a pseudo-language

notation. Calculations of transition firing multiplicity start on each incoming arc of

a transition.

Variablesm and n, matrices B,D, and R, and the current markingmu (a variant

of notation for µ) specify an SN as it was considered in Section 4. Variable fireable

denotes the transition firing multiplicity. Variable fireable m denotes the current

minimal transition firing multiplicity; it is assigned an initial value equal to infinity

(the maximal integer value in the current implementation). mu denotes the current

marking at a step, t and p represent the current transition and place, respectively.

To calculate fireable, we use a conditional statement. When B[p − 1][t − 1] >

0, it is a regular arc, and fireable is equal to mu[p − 1]/B[p − 1][t − 1]. When

B[p− 1][t− 1] = −1, it is an inhibitor arc and there are two situations as follows: if

mu[p − 1] > 0, then fireable = 0, otherwise, fireable = ∞. Finally, fireable m is

obtained by comparison and stored in f – a vector of transition firing multiplicity,

where the vector elements are considered also as indicators of fireable transitions

(when greater than zero). The purpose of taking the minimum value is to ensure

that the negative marking will not appear after firing fi instances of transition ti
at a step.

The flowchart in Fig. 9 specifies a random choice of a fireable transition to be

fired. It uses such input data as the number of fireable transitions nf . Within the

flowchart, ct is the number of firable transitions, rn denotes a random number,

l denotes the remainder of ct divided by rn and firing n denotes the number

of transition to fire. To choose a fireable transition t randomly, each transition is

traversed. When the firing multiplicity of the transition t is greater than 0 and

l == ct, t is chosen as the transition to fire and the transition number is stored as

firing n.
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Algorithm 1 Computing transition firing multiplicity

Input: mu: current marking; B: matrix of incoming arcs of transitions

Output: f [n]: a vector of transition firing multiplicity

1: for t = 1 → n do {
2: fireable m ⇐ ∞;

3: for p = 1 → m do {
4: if B[p− 1][t− 1] > 0 then

5: fireable ⇐ mu[p− 1]/B[p− 1][t− 1];

6: else

7: if B[p− 1][t− 1]) < 0 then

8: if mu[p− 1] > 0 then

9: fireable ⇐ 0;

10: else

11: fireable ⇐ ∞;

12: else

13: fireable ⇐ ∞;

14:

15: if fireable < fireable m then

16: fireable m = fireable;
}

f [t− 1] ⇐ firable m; }

Fig. 9. A flowchart for the firing transition choice.
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Transition firing causes the current marking change. In order to obtain the new

current marking, the SN next marking expression [4] is specified as Algorithm 2. tb

and td denote the current element in matrix B andD, respectively; firing n denotes

the firing transition number; fm denotes the multiplicity of transition firing. When

tb < 0, it is inhibitor arc, and we only add td · fm tokens to the places marking.

Otherwise, for a regular arc, we extract tb · fm tokens and add td · fm tokens to

the places marking. Note that when both values tb and td are nonzero, there is a

kind of self-loop with the current place.

Algorithm 2 Computing the next marking

Input: mu: current marking; B and D: matrices of transition incoming and outgo-

ing arcs, respectively; firing n: the number of firing transition; fm: the multiplicity

of transition to be fired

Output: mu: the new current marking (after firing a transition)

1: for p = 1 → m do

{
2: tb ⇐ B[p− 1][firing n− 1];

3: td ⇐ D[p− 1][firing n− 1]);

4: if tb < 0 then

5: mu[p− 1] ⇐ mu[p− 1] + td ∗ fm;

6: else

7: mu[p− 1] ⇐ mu[p− 1]− tb ∗ fm+ td ∗ fm;
}

For priority nets, the transitions choice is also based on their priorities and

only one fireable transition with the highest priority fires at a step. For firing the

transition with the highest priority, we remove low priority firable transitions as

shown in Algorithm 3. A matrix RC represents a transitive closure of the priority

relation matrix R. RC[t1 − 1][t2 − 1] > 0&&f [t1 − 1] > 0 indicates that firable

transition t1 has higher priority than t2 that, because of it, can not fire f [t2−1] = 0.

Algorithm 3 Remove Low Priority Transitions

Input: n: the number of transitions; f : a vector of minimum multiplicities of

fireable transitions; R: priority relation matrix

Output: f : updated vector of transition firing multiplicity

1: for t1 = 1 → n do

2: for t2 = 1 → n do

3: if RC[t1 − 1][t2 − 1] > 0&&f [t1 − 1]! = 0 then

4: f [t2 − 1] = 0;

Note that, based on an initial matrix of transition priority relation R, we com-
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pose a matrix of its transitive closure RC using an ad-hoc algorithm.

The time complexity of SN VM depends on doubly nested loops and an inde-

terminate constant k, where k is the number of steps. The nested loop contains two

data sizes, namely m (the number of places) and n (the number of transitions), so

the time complexity of the program is O(k(m ·n)). When the values of m and n are

very close, the time complexity can be approximated as O(k · n2).

5.2. An example of SN VM run

We use priority LSN for computing z = x + y, shown in Fig. 7, as an example to

explain how SN VM runs, detailed representation of (1) follows: Fig. 10 and Fig. 11

specify a pair of matrices B and D, which are matrices of transition incoming and

outgoing arcs; in Fig. 12, the priority relation matrix is shown, which indicates that

transition t1 has higher priority than t2; the matrix coincides with its transitive

closure RC; the initial marking is (2, 3, 0, 0, 1).

Fig. 10. Matrix B of transi-

tion incoming arcs

Fig. 11. Matrix D of transi-

tion outgoing arcs

Fig. 12. Priority relation ma-

trix R = RC.

Let us trace VM work on the SN:

(1) Find fireable transitions and their firing multiplicities: for t1, fireable m = 2;

for t2, fireable m = 3. Vector f (2 fireable transitions): (2, 3, 0)

(2) The fireable transition with the highest priority is t1. In this case, vector f

is updated (1 fireable transition): (2, 0, 0). Choose the only transition to fire:

firing n = t1, fm = 2.

(3) Fire transition t1:

mu = (2, 3, 0, 0, 1)− (1, 0, 0, 0, 0) ∗ fm+ (0, 0, 1, 0, 0) ∗ fm
= (2, 3, 0, 0, 1)− (2, 0, 0, 0, 0) + (0, 0, 2, 0, 0)

= (0, 3, 2, 0, 1).

(4) Find fireable transitions and their firing multiplicities: t2, fireable m = 3. Vec-

tor f (1 fireable transition): (0, 3, 0).

(5) Choose the transition to fire: firing n = t2, fm = 3.
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(6) Fire transition t2:

mu = (0, 3, 2, 0, 1)− (0, 1, 0, 0, 0) ∗ fm+ (0, 0, 1, 0, 0) ∗ fm
= (0, 3, 2, 0, 1)− (0, 3, 0, 0, 0) + (0, 0, 3, 0, 0)

= (0, 0, 5, 0, 1).

(7) Find fireable transitions and their firing multiplicities: t3, fireable m = 1. Vec-

tor f (1 fireable transition): (0, 0, 1).

(8) Choose the transition to fire: firing n = t3, fm = 1.

(9) Fire transition t3:

mu = (0, 0, 5, 0, 1)− (0, 0, 0, 0, 1) ∗ fm+ (0, 0, 0, 1, 0) ∗ fm
= (0, 0, 5, 0, 1)− (0, 0, 0, 0, 1) + (0, 0, 0, 1, 0)

= (0, 0, 5, 1, 0).

Since there is no firable transitions, the SN program halts. The final marking is

(0, 0, 5, 1, 0) that means that the addition result is 5 as represented by marking of

p3.

5.3. Parallel implementation of SN VM using OpenMP

OpenMP [40] provides a directive-based programming approach for writing multi-

threaded applications and composing parallel versions of programs. We use OpenMP

for the parallel implementation of Algorithm 1 and Algorithm 2 to improve their

performance. We use the following facilities of OpenMP: parallel implementation

of loop for ; SIMD (Single Instruction Multiple Data) facilities; unrolling loops.

Moreover, to speed-up parallel implementation for loops which have dependence

between the loop passages, expressed in the form of a single operation, we use

reduction on such operations as sum and minimum.

Let us illustrate application of OpenMP directives to speed-up some basic stages

of the SN step implementation:

// Find firable transitions

#pragma omp parallel for private(p,t,firable) num_threads(nth)

for(t=1; t<=n; t++) {

int firable_m = INT_MAX;

#pragma omp simd reduction(min:firable_m)

#pragma unroll

for(p=1; p<=m; p++) {

...

}

...

}

...

// Count the number of firable transitions
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#pragma omp parallel for reduction(+: nf) num_threads(nth)

for(t = 1; t <= n; t++) {

nf +=(f[t-1]>0) ? 1 : 0;

}

Benchmarks, considered in Section 7, show that for parallel implementation of

nested loops, a combination of ”omp parallel for” with ”omp simd” and ”unroll”

provides considerably better speed-up than ”collapse” option devised for parallel

execution of nested loops.

5.4. GPU SN VM accelerator

Foreseen SNC hyper-performance is achieved in case of dedicated hardware imple-

mentation of the SN machine in the form of re-configurable computing memory

that implements, on memory words, basic operations of division-subtraction and

multiplication-addition considered while prototyping SN machine in the form of a

universal SN [18]. Though at the present time rather reasonable compromise can be

achieved using available mass parallel computing devices such as GPU. For the im-

plementation, we choose NVIDIA GPU architecture 35 (for compatibility reasons)

and CUDA toolkit.

Programming in CUDA [35], is clear in its concept of a two-level structure of

the computing grid which consists of blocks of threads: the grid is 1 or 2 or 3

dimensional array of blocks, and a block is 1 or 2 or 3 dimensional array of threads.

We take into consideration rather pressing restriction of CUDA architecture 35,

that we can synchronize only threads of a single block that yields two approaches

embodied into two GPU-SN-VM alternative modules: using a single block with

entire VM implemented as CUDA kernel (suffix ”1b”); using many blocks with VM

implemented on host calling a few kernels to implements a single SN step (suffix

”fk”).

An SN represents a two dimensional structure, though during a single step of SN

firing, the number of required threads is changing and, after each of the following

basic stages, synchronization is required:

(1) Compute firing conditions on arcs (incoming arcs of transpositions) – m × n

matrix structure.

(2) Compute firing multiplicity of transitions – n array structure (m × n matrix

structure in case of using reduction on minimum).

(3) Remove low priority firable transitions – n× n matrix structure.

(4) Count the number of firable transitions – a single thread (n array structure in

case of using reduction on sum).

(5) Find firing transition based on a random number – a single thread.

(6) Compute the next marking – m array structure.

Because of absence of synchronization between blocks in CUDA architecture 35,

within a few kernel implementation (suffix ”fk”), we use specific structures of grids
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for the above mentioned stages, each stage is represented as a separate kernel, stages

(4) and (5) overlapped. For each kernel, we specify a dedicated grid structure. It

yield the maximal possible parallelism, say for stage (1) with:

__global__ void fire_arc(int *b, int *mu, int m, int n, int *y)

{

int i = threadIdx.x;

int j = blockIdx.x;

MELT(y,i,j,m,n) = (MELT(b,i,j,m,n)>0)? mu[i] / MELT(b,i,j,m,n) :

(MELT(b,i,j,m,n)<0)? ((mu[i]>0)? 0: INT_MAX): INT_MAX;

}

We use macros MELT for the matrix element access. An auxiliary matrix Y

serves for storing the current SN step actual data: firing multiplicity of arcs, firing

multiplicity of transitions (stored in the first row, overwriting the arc multiplicity),

the number of firing transition and its firing multiplicity (in the first two elements

of the first row, overwriting the firing multiplicity of transitions). After each kernel

call, we synchronize the device:

dim3 block (m);

dim3 grid (n);

...

fire_arc<<<grid, block>>>(d_b, d_mu, m, n, d_y);

cudaDeviceSynchronize();

...

dim3 block3 (m);

dim3 grid3 (1);

...

next_mu<<<grid3, block3>>>(d_b, d_d, d_mu, m, n, d_y, f[0], f[1]);

cudaDeviceSynchronize();

Remind that we allocate the device memory with cudaMalloc() and copy matri-

ces B, D, RC, and initial marking vector mu from host to device, and the resulting

marking d m from device to host with cudaMemcpy(); data structure copies within

a device have prefix ”d ”.

For the simplified version (suffix ”1b”), based on a single block, we use the linear

block structure because of rather essential limitation on the total number of threads

within a block (about 1024). Within a thread, we organize loops to process two-

dimensional matrices and select thread numbers according to the current vector size

(m, n or 1).

6. Compiler-linker of SNs

Conventional programming technology [42] uses a compiler to convert a program,

written in an algorithmic language (source code), into machine code with unresolved
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external references (object code), then a linker, processing object files and libraries,

allocates object files and resolves external references to produce an executable pro-

gram in machine language. Recent update is represented by graphical design with

UML [19] that further develops principles of R-technology of programming [41] with

respect to the object-oriented design.

Since we use the same graphical language of SNs on different levels of program hi-

erarchy, implemented via the operation of transition substitution, functions of com-

piler are rather limited and consist in expansion of dashed arcs for HSN. Functions

of a linker consist in allocation and connection of subnets (via global enumeration of

nodes), and implementation of place mapping (passing parameters). Actually, the

tool is called HSNtoLSN and it accepts HSN and LSN file names as parameters,

also it uses LSN files of subnets mentioned within HSN file and, implicitly, subnets

COPY and CLEAN MOVE for expansion of dashed arcs.

Note that in the present implementation, we use inline style of transition sub-

stitution and explicit control flow [4].

6.1. Expansion of dashed arcs

Since basic SM modules, which implement basic arithmetic and logic operations, are

designed as consuming tokens from their input places and moving resulting tokens

into their output places, we support an abbreviation, expressed via dashed arcs

connecting a module, for copying its input and output parameters [4].

The dashed arc represents the mapping relationship of places between HSN and

LSN, as shown in Fig. 13. We call it a dashed input arc, when the dashed arc points

from the place to the transition and we call it a dashed output arc, when the dashed

arc points from the transition to the place.

p1

Input place

t1

substituted transition

p2

Output place

Figure 1: TPN buffer

1

Fig. 13. Dashed Arcs

Shown in Fig. 14, the COPY module copies the data from the HSN place to the

corresponding LSN input place according to the place mapping. That is a dashed

input arc corresponds to a copy module.

Shown in Fig. 15, the CLEAN MOVE module transfers the data of LSN’s output

place to the corresponding HSN’s place according to the mapping relationship be-

tween LSN’s output place and HSN’s place. That is a dashed output arc corresponds

to a CLEAN MOVE module.
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p5

t3

p4

t4

p6

p3

t2

t1

p2 Y=Xp1 X

Fig. 14. COPY Module: copy the data from X to Y.

t1

p4

t4

p5

t3

p3

p1

t2

X

p2

Y

Fig. 15. CLEAN MOVE Module: 1) clean data in Y; 2) move the data from X to Y.

6.2. Basic Data Structures

In the process of HSN conversion into LSN, we use data structures to save the

information obtained from the files. The final LSN is generated using the information

within the data structures. The following Fig. 16, 17, 18 show the relationship

between the basic structures in the form of multi-linked lists.

As shown in Fig. 16, the structure HSN stores the composition information of

an HSN, including the struct pointer to the current LSN part struct lsn ∗ l, the

total number of transition substitutions nst, the struct pointer to the transitions

substitution and places mapping part struct tspm ∗ t.
The structure LSN stores the composition information of an LSN, including the

total number of places m, the total number of transitions n, the total number of

arcs k, the total number of non zero marking places l, the pointer to the initial

marking mu, and a struct pointer to the arc’s array struct arc ∗ a.
The structure arc stores the information of an arc, including the connected place

p, transition t, and the weight of the arc w. The above three attributes represent

the direction and type of an arc as specified in Section 4.1.

The structure of transitions substitution and places mapping tspm stores the

information of each transition substitution, including the number of the substituted
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struct hsn

struct lsn *l

int nst

struct tspm *t

struct lsn

int m

int n

int k

int l

int *mu

struct arc *a

struct arc

int p

int t

int w

struct tspm

int tnum

int pmnum

char name[50]

struct pm *pm1

struct pm

int hp

int lp

Fig. 16. Structure HSN.

transitions tnum, the total number of places mapping in each transition substitution

pmnum, the file name of the subnet name[ ], and the struct pointer to the array of

place mapping struct pm ∗ pm1.

The structure of places mapping pm stores a pair of the place number within

HSN hp and the place number within subnet lp that specifies the place mapping.

struct net_table

int file_n

char filename[][] 

struct lsn *l_nt

struct lsn

int m

int n

int k

int l

int *mu

struct arc *a

Fig. 17. Structure net table.

As shown in Fig. 17, the structure net table stores all the LSN information

required in the process of converting an HSN to an LSN, including the number

corresponding to each LSN file n, the net name filename[ ][ ], and it links the

structure LSN via struct lsn ∗ l nt.
As shown in Fig. 18, the structure resulting net stores general net information

during the HSN conversion to LSN, including the struct pointer to the place num-

ber array struct p num ∗ pn, the struct pointer to the transition number array

struct t num ∗ tn, the pointer to the initial marking ∗mark, the struct pointer to

the array of converted arcs struct arc ∗ new a, and the struct pointer to the array

of converted LSN struct lsn ∗ l result.
The structure of the place number p num stores the number of a definite place in

the process of the HSN conversion to LSN, including the place number before con-
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struct lsn

int m

int n

int k

int l

int *mu

struct arc *a

struct result

int *mark

struct p_num *pn

struct t_num *tn

struct arc *new_a

struct lsn *l_result

struct t_num

int pre_t

int new_t

struct p_num

int pre_p

int new_p

struct arc

int p

int t

int w

Fig. 18. Structure resulting net.

version pre p, and the sequential place number rearranged after conversion new p.

The structure of the transition number p num stores the number of a definite

transition in the process of the HSN conversion to LSN, including the transition

number before the conversion pre t and the sequential transition number rearranged

after the conversion new t.

6.3. Basic Algorithms of SN CL

To implement the conversion from HSN to LSN, we read the HSN file and check

input data, store the data within linked data structures (described in the previous

section), compile and link modules of subnets. The final LSN is formed according to

the specified substitution of a transition and the place mapping, including expansion

of dashed arcs, and is written into a new LSN file to run on an SN (virtual) machine.

The algorithms of the conversion process and their call-return relationships are

shown in Fig. 19, some basic algorithms are described in detail later on in this

section.

According to the HSN file, we read its LSN part. Then, for each transition sub-

stitution, we read the subnet modules that substitute the corresponding transition.

In case hp > 0&&lp > 0, we insert the COPY module; and in case hp > 0&&lp < 0,

we insert the CLEAN MOVE module. Subnet modules are not inserted if the place

map represents control flow. In addition, we enumerate each subnet module, and

store each subnet module within the corresponding structure variable. At the same

time, we create a table to record the subnet modules.

After reading the subnets, the next step is to compile and link them, which is

defined as Algorithm 1 (specified separately), it means using the storage information

of the net table to rearrange the subnet modules. During this process, we merge

places preserving their marking, re-numerate places and transitions, connect them

by arcs (with respect to new numbers of nodes), add new transitions for splitting

and merging control flow, and finally obtain an LSN, write it into a file to run it on
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Compiler and Linker

Read HSN file
Check input

Algorithm 1
Compile and Link

Write LSN file
Get results

Read LSN file Read transition 
substitution and place 

mapping

Algorithm 2
Expand the 

dashed input 
arc

Algorithm 3
Compile and link 

subnets for 
substituted 
transitions

Algorithm 4
Expand the 

dashed 
output arc

Fig. 19. Hierarchy scheme of compiler-linker algorithms.

an SN machine.

Algorithm 1 Compile and Link

1: Input: struct result *mt, struct net table *nt, struct hsn *h

2: Output: struct result mt

3: Calculate the number of places, transitions and arcs based on the table;

4: Allocate memory for final LSN;

5: for (each of nst) do

6: Compile subnets for substitute transitions;

7: for (each of pmnum) do

8: if (hp > 0&&lp > 0) then

9: Expand the dashed input arc;

10: if (hp > 0&&lp < 0) then

11: if (The number of input data is more than 0) then

12: Add split transition, connect it to the start-control-flow places of

COPY module based on Array4;

13: Add joint transition, connect it to the finish-control-flow places of

COPY module based on Array5, and connect it to the start-control-flow place

of substituion net based on Array2;

14: Expand the dashed output arc

15: if (hp < 0&&lp > 0) then

16: Preserve the start-control-flow place of the HSN;

17: Connect it to split transition;

18:

19: Preserve the finish-control-flow place of the HSN;

20: Connect it to joint transition;

Algorithm 2 defines an expansion of the dashed input arc using the COPY
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module. Its role is to transmit the input data from the HSN to the subnet input

place. It also implements the re-numeration of places, the assignment of tokens,

and the updating the place number of each arc, the original weight of each arc

is retained. After that, it re-numerates the transitions and updates the transition

number of each arc.

The subnets, which substitute HSN transitions, are compiled and linked as de-

fined in Algorithm 3. At first, we record the original place number in the structure

variable. Then, depending on the place type of the subnet, according to the place

mapping information, we process arcs, connecting the substitution transition: if it

is an input or output data place, we merge it with the data place of COPY or

CLEAN MOVE; if it is the start-control-flow place, we connect it with the joint

transition; if it is a finish-control-flow place, we provide its merging with the start-

control-flow place of CLEAN MOVE. Further, we re-numerate places, assign the

corresponding markings, update the place number for each arc, and retain the orig-

inal weight of each arc. Finally, we re-numerate transitions and update the transition

number of each arc.

Algorithm 4 defines an expansion of the dashed output arc using the

CLEAN MOVE module, which role is to transmit the output data of the subnet

to the output place of the HSN. At first, we determine the type of place connected

via CLEAN MOVE: if it is an input place, we merge it with the output place of

the subnet; if it is an output place, we use the place number and the marking value

corresponding to the HSN; if it is a start-control-flow place, we merge it with the

finish-control-flow place of the subnet; the other places are re-numbered. At the

same time, the token assignment is completed in the above process, the place num-

ber of each arc is updated, and the original weight of each arc is retained. After

that, we re-numerate the transitions and update the transition number of each arc.

If there are elementary transitions in HSN, we keep the information of arcs

connected to them, including the place number, the transition number, and the arc

weight.

For the transition substitution example, shown in Fig. 5, the final LSN is written

into a new textual file as shown in Table 4. The final LSN contains 36 places, 34

transitions, and 126 arcs. We draw the net graph, corresponding to the file, in Fig. 6.

Table 4. Final LSN file for HSN shown in Fig. 5.

6.4. Evaluation of algorithm complexity

As if follows from the hierarchical scheme of algorithms shown in Fig. 19, Algo-

rithm 1 calls Algorithm 2, Algorithm 3, and Algorithm 4. Thus, Algorithm 1 has

the highest complexity. This section first analyzes the complexity of Algorithms 2-4

to estimate the complexity of Algorithm 1.

Suppose that, the HSN has M places, N transitions, K arcs, nst transitions

are substituted, and the maximal subnet has m places, n transitions, k arcs, and
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Content annotation File content

m n k l nst 36 34 126 23 0
;comments ;arcs
parc1 tarc1 warc1 9 1 1

parc2 tarc2 warc2 9 4 -1
parc3 tarc3 warc3 10 3 1
parc4 tarc4 warc4 10 4 -1

... ...
parc123 tarc123 warc123 -36 34 1
parc124 tarc124 warc124 8 34 1

parc125 tarc125 warc125 -7 29 1
parc126 tarc126 warc126 7 29 -1
;comments ;non zero marking

place number marking 1 3
place number marking 2 2
place number marking 4 4
... ...
place number marking 35 1

place number marking 36 1

pmnum places mappings within HSN, and, moreover, there is no certain relationship

between these parameters.

In Algorithm 2, the COPY module contains 6 places, 4 transitions, and 15 arcs.

Therefore, to compile a COPYmodule, the number of loops, required to re-numerate

the places and copy the corresponding tokens, and update the place number of each

arc, is m × k = 90. The number of loops, required to re-numerate the transitions

and update the transition number of each arc, is n× k = 60.

Then in Algorithm 3, the number of loops, required to re-numerate the places,

copy the corresponding tokens, and update the place number of each arc, is m ×
(pmnum + k). The number of loops, required to re-numerate the transitions and

update the transition number in each arc, is n×k. We obtain the time complexity of

the transition substitution as O(m×(pmnum+k)+n×k), and the space complexity

as linear.

In Algorithm 4, the CLEAN MOVE module contains 5 places, 4 transitions,

and 13 arcs. Therefore, to compile a CLEAN MOVE module, the number of loops,

required to re-numerate the places and copy the corresponding tokens, and update

the place number of each arc, is m× k = 65. The number of loops, required to re-

numerate the transitions and update the transition number in each arc, is n×k = 52.

So the time complexity and space complexity of compiling a COPY module

or CLEAN MOVE module are both O(C1) = O(1), we obtain the constant C1

summing up the mentioned above constants.

Therefore, in Algorithm 1, because there are nst transitions to substitute in an

HSN, the number of required loops to substitute all transitions is about nst× (m×
(pmnum + k) + n × k + C1 × pmnum). With regard to elementary transitions, in

the worst case, there is no elementary transition, that is, N = nst, so nst×K times

passages of loops are required to execute, to accomplish the computations.
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We conclude that the time complexity of Algorithm 1 is O(nst×(m×(pmnum+

k) + n× k+C1 × pmnum+K)). If the number of input places of subnets is small,

it means that pmnum is small, then the complexity is approximated as O(nst ×
((m+ n)× k +K)). Further we suppose that the size of the maximal subnet does

not change, it means m, n, and k are constant, and only the size of the HSN is

increasing, and the time complexity is evaluated as O(nst × K). Furthermore, we

found that, when the same subnets are repeatedly used, such as calculating the sum

or product of a series of random numbers, or multiplying matrices, values of K and

nst maintain a linear relationship, that is, K = C2 × nst, where C2 is a constant.

Thus the time complexity is finally approximated as O(nst2). Since we do not use

intermediate structures which exceed the size of the resulting LSN, we estimate the

space complexity as O(nst).

7. Tests and benchmarks

We use benchmarks as the basic indicator for efficient algorithms and corresponding

data structures design. The SN VM implementation has been accelerated using CPU

multicore and GPU mass parallel facilities. We were using selected examples of SN

programs as tests and also we developed dedicated software generators to obtain big

nets for benchmarks. The following HSN program generators have been developed:

sum of an array, product of an array, computing a polynomial, matrix multiplication.

We were using also the generator of net for computing double exponent described in

[36]. Having NDR and HSN source files allowed us to test the entire toolset including

NDRtoSN and HSNtoLSN as well.

7.1. SN programs for benchmarks

To obtain a series of SNs for benchmarks, we use ad-hoc software generators of nets.

For prolonged run of a net on SN VM, we use double exponent exact computer that

implements Lipton’s [44] net amended with four priority arcs described in [36]; the

net can be considered as a busy beaver [43] for place-transition nets. It is generated

in NDR format and then transformed by NDRtoSN into LSN format to run on SN

VM. The generator depnz inputs parameter n to produce a net computing 22
n

.

Similar technique is applied to compose dedicated generators of HSN files to test

both programs HSNtoLSN and SN-VM. The following generators of SN programs

have been developed:

• gen vadd for summing up a vector (a sequence of additions generalizing Fig. 5);

• gen pol for computing value of a polynomial;

• gen mmul for matrix multiplication (with two variants for parallel and sequen-

tial implementation).

To specify the corresponding nets we use prefixes ”de”, ”vadd”, ”mmul”, and

”pol” followed by the parameter value.
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An example of SN that implements multiplication of 2×2 matrices is represented

in Fig. 20. The picture was obtained manually using nd editor. The nerator produces

HSN files of similar structure (though without graphical layout).

t4

*HSN(mul.lsn i p10 1 i p11 2 o p12 4 s p4 3 f p5 5)p5

t5

*HSN(add.lsn i p9 1 i p12 2 o p13 3 s p5 4 f p6 5)

p14

t6

*HSN(mul.lsn i p18 1 i p19 2 o p20 4 s p14 3 f p15 5)

p15

t7

*HSN(mul.lsn i p21 1 i p22 2 o p23 4 s p15 3 f p16 5)p16

t8

*HSN(add.lsn i p20 1 i p23 2 o p24 3 s p16 4 f p17 5)

p25

t9

*HSN(mul.lsn i p29 1 i p30 2 o p31 4 s p25 3 f p26 5)

p26

t10

*HSN(mul.lsn i p32 1 i p33 2 o p34 4 s p26 3 f p27 5)p27

t11

*HSN(add.lsn i p31 1 i p34 2 o p35 3 s p27 4 f p28 5)

p36

t12

*HSN(mul.lsn i p40 1 i p41 2 o p42 4 s p36 3 f p37 5)

p37

t13

*HSN(mul.lsn i p43 1 i p44 2 o p45 4 s p37 3 f p38 5)p38

t14

*HSN(add.lsn i p42 1 i p45 2 o p46 3 s p38 4 f p39 5)

p10

5

p9 p12p11

5

p18

2

p19 p20 p21

5

p22

9

p23

p29

10

p30

8

p31 p32

9

p33

5

p34

p40

10

p41 p42 p43

9

p44

9

p45

p4

t3

*HSN(mul.lsn i p7 1 i p8 2 o p9 4 s p3 3 f p4 5)

p3

p8

8

p7

2

p13

p24

p35

p46

p17

p28

p39

p6

t2

p2

t1

p1

Fig. 20. HSN for multiplying 2x2 matrices that uses ADD and MUL as components.

Preliminary generated SNs, which we use for benchmarks, are collected in Table 5
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together with detailed specification of their size.

Table 5. Specification of selected models for benchmarks.

Notation
HSN LSN

places transitions arcs substitutions places transitions arcs

de3 - - - - 68 53 281
de4 - - - - 90 72 382
pol10 197 65 390 65 1657 1820 7065
pol15 407 135 810 135 3497 3855 14985
pol20 692 230 1380 230 6012 6640 25830
mmul3 155 47 300 45 1055 1118 4323
mmul4 370 114 723 112 2578 2738 10563
mmul5 727 227 1428 225 5127 5452 21003

7.2. Benchmarks of SN VM

To obtain benchmarks, we were using models specified in Table [?], and also the

addition chain and the multiplication chain with priority arc. The addition and

multiplication chains, same as pol and mmul, produced by the corresponding gen-

erator, represent HSN files. After converting the HSN files into LSN files, the LSN

files are run on the SN VM. To run programs, we use a laptop computer, Intel(R)

Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz (4 cores). SN VM is started from a

command line that specifies input and output file names, and options. The input file

specifies an SN that contains m, n, k places, transitions, and arcs, respectively, and

the output file stores the output data representing the result of an LSN run. The

”-d” option specifies the debug level: level 0 outputs final marking only; level also

prints matrices of incoming and outgoing arcs, and the matrix of the priority arc;

level 2 shows detailed information about the net run. The ”-nth” option specifies

the number of threads.

Table 6 contains the benchmarks of the mentioned SN programs’ run on 1, 2,

4, and 8 threads, the corresponding diagram for selected models, shown in Fig. 21,

reveals rather good speed-up, exceeding 3 times on 8 cores.

Table 6. Benchmarks on SN programs (1-8 threads) in seconds.

SN:Threads 1 2 4 8

de3 0.637s 1.722s 2.091s 3.040s

de4 262.335s 573.406s 644.255s 1107.798s
pol10 38.220s 23.122s 19.409s 18.703s

pol15 553.777s 363.434s 255.844s 192.493s

pol20 3540.0801s 2327.307s 1486.017s 1155.436s
mmul3 17.277s 11.943s 11.000s 7.614s

mmul4 222.941s 152.328s 102.127s 92.814s

mmul5 2246.331s 1374.648s 1164.548s 736.581s

We should mention also an anomaly with busy beaver nets, when SN-VM per-
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formance slows down with the increasing number of threads that requires futher

investigation.

Fig. 21. Diagram of SN-VM benchmarks in the number of speed-ups on multi-core compared

with a single thread.

For GPU SN VM accelerator, that uses a sequence of kernel calls at a step

because of compatibility with CUDA architecture 35, there was no considerable

speed-up of computations achieved. The best obtained speed-up does not exceed

two times when using NVIDIA GeForce 920M GPU with 2GB of video memory.

7.3. Benchmarks of SN CL

To test the efficiency of SN compiler-linker, besides nets, shown in Table 5, we

composed dedicated generators to produce HSN files of various size and run these

nets on SN CL to obtain the corresponding LSNs. We were using the number of

transition substitutions as an independent variable and the running time as a de-

pendent variable to perform quadratic polynomial fitting (according to the CL time

complexity evaluations obtained in Section 6) because all tests conform the case

where m, n and k are constants.

We list the three following series of tests, which results and fitting curves are

represented in Fig. 22:

(1) the two-parameter adder as the transition substitute subnet, in which case HSNs

of various sizes actually represent the sum of random numbers (add);

(2) the two-parameter multiplier as the transition substitute subnet, in which case

HSNs of various sizes actually represent the product of random numbers (mul);
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(3) the two-parameter adder and the two-parameter multiplier as the transition

substitute subnet that represents the product of randon square matrices of

various dimensions (matrix).
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0

50

100

150

200

250

300

350

400

y:
 C

on
ve

rs
io

n 
tim

e 
(s

)

data
add fitted curve
data
mul fitted curve
data
matrix fitted curve

Fig. 22. Quadratic polynomial fitting of CL time complexity on tests: sum of random numbers
(add fitted curve); product of random numbers (mul fitted curve); multiplication of random square

matrices (matrix fitted curve).

The corresponding sum of squares approximation parameters, shown in Table 7,

confirms rather good fitting into the obtained in Section 6, quadratic timed com-

plexity evaluation of SN compiler-linker work.

Table 7. Sum of square approximation parameters for SN CL tests.

Curve Error R-square

add fitted curve 0.00245 0.9958
mul fitted curve 0.002012 0.9978

matrix fitted curve 0.001696 0.9946

We consider prospects of using ParSEC framework [45] to further speed-up SN

CL work on multi-core architecture.

8. Conclusions

In this paper, the first open source implementation of Sleptsov net computing in-

tegrated developer environment and virtual machine, including GPU accelerator,

has been presented. To integrate the toolset, represented by SN Virtual Machines,
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Compiler-Linker, and converter of file formats, graphical editor nd of modeling sys-

tem Tina has been chosen because of its simplicity, convenience, and friendly GUI.

A series of software generators of SN programs, computing the sum of vector,

value of a polynomial, results of matrix multiplication, have been developed and

applied for tests and benchmarks. For prolonged test runs, a busy beaver like nets,

computing a double exponent after Lipton’s design, have been generated and exe-

cuted.

The presented prototype implementation proves the robustness of SNC and

opens prospects for its enterprise-level implementation, especially including dedi-

cated hardware design.
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