Dmitry A Zaitsev

Tatiana R Shmeleva

Qing Zhang

Hongfei Zhao

Jack Dongarra

Virtual Machine and Integrated Developer Environment for Sleptsov Net Computing *

Keywords: Sleptsov net computing, concurrent programming, efficient computing, computing memory, virtual machine, integrated developer environment

Modern computing is a path of violations and transformations coming from an intrinsically concurrent application domain into a sequence of instructions and then back to concurrency with OpenMP, MPI and CUDA/OpenCL. Why we create so many difficulties? Sleptsov Net Computing (SNC) maps a task into an appropriate computing structure implemented as a re-configurable multidimensional sparse matrix of computing memory. It has entirely graphical mass parallel language for concurrent programming and a framework of techniques for concurrent program verification to develop reliable software. Estimated efficiency of SNC is higher than 50% compared to actual less that 1% efficiency of the most powerful supercomputers. It yields hyper-performance capable of efficient control of hyper-sonic objects, colliders, thermonuclear reaction. This paper presents an open source prototype VM and IDE for SNC with a view on upcoming hardware implementation of the corresponding computer.

Introduction

ACM Tech News [START_REF]Sleptsov Net Computing Resolves Modern Supercomputing Problems[END_REF] digest of editorial paper [START_REF] Zaitsev | Sleptsov Net Computing resolves problems of modern supercomputing revealed by Jack Dongarra in his Turing Award talk in November 2022[END_REF], following recent update [START_REF] Dmitry | Strong Sleptsov nets are Turing complete[END_REF] on Sleptsov net computing (SNC) [START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF], presents SNC as an approach that resolves modern supercomputing problems [START_REF] Dongarra | A Not So Simple Matter of Software[END_REF].

Fig. 1. Jack Dongarra top10 table supplied with HPCG results

Fugaku leadership is explained by using Tofu D Interconnect representing 6D torus with big quantity of alternative paths, having short length, between nodes. Indeed, real-life mixture of tasks has rather irregular pattern of intensive communications that amplifies negative influence of well-known processor-memory bottleneck. It is traditionally mended by multilevel cash which is getting well filled in with repeatedly used data on dense matrix operations for LINPACK test.

Discussing advantages of certain computers architecture on HPCG test, we deviate from the primary conclusion induced by the fact that even for the best computer Fugaku, it is about thirty times less than its peak performance specified, that means novel paradigms of concurrent computing are in utmost demand.

Petri nets with multichannel transitions, introduced [START_REF] Zaitsev | Solving operative management tasks of a discrete manufacture via Petri net models[END_REF][START_REF] Zaitsev | State equations and equivalent transformations for timed Petri nets[END_REF] for practical man-ufacture control and management [START_REF] Zaitsev | Enterprise Petri net based CAM software Opera-Topaz[END_REF] at Topaz and Motorsich plants of Ukraine, represent a concept, later on, successfully applied in theory of computations to speed-up spiking neuron systems [START_REF] Paun | Spiking Neural P Systems with an Exhaustive Use of Rules[END_REF] and DNA computing [START_REF] Qian | Scaling up digital circuit computation with DNA strand dis-placement cascades[END_REF], and called an exhaustive use of rule. Multiply firing of a transition at a step (in a certain number of copies) resulted in exponential speed-up when composing small universal Petri nets [START_REF] Zaitsev | Toward the Minimal Universal Petri Net[END_REF] that was basic motivation to call the corresponding class of place-transition nets a Sleptsov net (SN) [START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF][START_REF] Zaitsev | Programming in the Sleptsov net language for systems control[END_REF][START_REF] Zaitsev | Universal Sleptsov Net[END_REF] after an outstanding scientist Anatoly Sleptsov from Ukraine who hinted the idea. Indeed, for many years place-transition nets were applied for concurrent programming loaded with constructs of an algorithmic language. Besides, placetransition notation was adopted in UML [START_REF] Booch | The Unified Modeling Language User Guide[END_REF] for activity diagrams. Though Petri nets are slow, especially when computing arithmetic functions because of their incremental character of computations similar to counter automata.

Sleptsov net computing resolves modern supercomputing problems [START_REF]Sleptsov Net Computing Resolves Modern Supercomputing Problems[END_REF][START_REF] Zaitsev | Sleptsov Net Computing resolves problems of modern supercomputing revealed by Jack Dongarra in his Turing Award talk in November 2022[END_REF]. A Sleptsov net yields fast computations that opens prospects of its application as a uniform graphical language of concurrent programming. It means computations are completely specified by Sleptsov net graphical program, textual constructs are applied as comments only. Implementation of Sleptsov net machine in the form of computing memory removes processor-memory bottleneck of traditional architecture resulting in hyper-performance. It allows us to start with fine granulation of concurrent processes at the level of separate operations. It implies a novel style of concurrent programming, when drawing a program, we do not introduce sequential dependencies which are not intrinsic to the application domain. Moreover, for reliable software design, a framework of early developed formal techniques for concurrent programs verification is available.

The present paper describes an experimental implementation of Sleptsov net computing (SNC) in the form of virtual machine (VM) and integrated developer environment (IDE) based on graphical editor of place-transition nets of system Tina [START_REF] Berthomieu | TIme petri Net Analyzer[END_REF] and dedicated ad-hoc tool-set developed in University Cote d'Azur (France) and XIDIAN University (China) as an open-source software available on GitHub [START_REF] Dmitry | NDRtoSN: Converter of Tina NDR Petri net file to Sleptsov Net file[END_REF][START_REF] Zhang | Sleptsov net Virtual Machine[END_REF][START_REF] Shmeleva | SN-VM-GPU: Sleptsov Net Virtual Machine on Graphics Processing Unit[END_REF][START_REF] Zhao | HSNtoLSN: Compiler-linker of hierarchical Sleptsov net program[END_REF]; the paper is accomplished with analysis of benchmarks based on tasks of LINPACK and HPCG tests. Hardware implementation of SNP promises break-though in efficiency of modern HPC.

An overview of Sleptsov net computing paradigm

Sleptsov net computing paradigm [START_REF] Dmitry | Strong Sleptsov nets are Turing complete[END_REF][START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF][START_REF] Zaitsev | Programming in the Sleptsov net language for systems control[END_REF][START_REF] Dmitry | Preface for special issue Petri/Sleptsov net based technology of programming for parallel, emergent and distributed systems[END_REF] is based on completely graphical language of concurrent programming, with fine granulation of concurrent processes, and computing memory implementation in the form of a big, adjustable to the task structure, sparse matrix. For solving tasks with a certain spatial structure, multidimensional matrices of computing elements are applied.

The foremost peculiarity of a Sleptsov net is firing a transition at a step in a certain number of instances (multiple firing), while a Petri net fires a single transi-tion in a single instance, and Salwicki net fires the maximal set of firable transitions in a single instance each [START_REF] Dmitry | Strong Sleptsov nets are Turing complete[END_REF]. That is why an SN runs exponentially faster than a Petri net [START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF] opening prospects of using it as a uniform language for concurrent programming. Inherently, an SN transition implements division-subtraction on each its incoming arc and multiplication-addition on each its outgoing arc that makes SN rather powerful computer as well. An example of SN adding two numbers in three time cycles is shown in Fig. 2, its state space represented in Fig. 3.

t3 2t1 3t2 3t2 2t1 Fig. 3. Behavior of LSN shown in Fig. 2 SNC allows us using data flow or control flow approaches or both in mixed control programs. The basic motivation, when drawing a program, is to not restrict intrinsic parallelism of an application domain starting from the level of separate arithmetic and logic operations implementation. Usual textual program enforces application of sequential constructs while, when drawing a program, it is easier to preserve concurrency, especially with a Sleptsov net where each transition is controlled locally. All the actions are primordially concurrent and the net just ensures certain limitations on this mass parallelism.

For convenience of drawing programs, we supply an SN with inhibitor and priority arcs though, according to the recent results [START_REF] Dmitry | Strong Sleptsov nets are Turing complete[END_REF], a strong Sleptsov net is Turingcomplete and we can use conventional arcs only. As distinct from traditional technique of programming in place-transition nets, where a control flow is represented by passage of a control token through the control flow subnet [START_REF] Zaitsev | Paradigm of Computations on the Petri Nets[END_REF][START_REF] Tiplea | Petri net computers and workflow nets[END_REF], in SN programs, we use a reversed control flow represented by passage of an empty marking (a "hole") through the control flow subnet. Because of it, we use inhibitor arcs, which possess a symbolic infinite firing multiplicity at zero marking, to control firing of data processing transitions. Thus, firing multiplicity of control does not restrict multiplicity ensured by data. For each traditional control flow pattern such as branching, loop, parallel execution, we offer corresponding SN control-flow patterns to make programming in SNs easier at the beginning.

To avoid using textual programming languages, we start from a set of SNs which implement basic arithmetic, logic, and comparison operations. For hierarchical de-sign of graphical programs, we use substitution of a transition by a subnet. SNs with transition substitution are called high-level SNs. They are compiled and linked into a single plain low-lewel SNs without substitution of transition which are considered as an analog og machine language for SNC paradigm.

Though a place of SN stores a nonnegative integer number, we can represent integer, rational, and floating numbers by a cortege of places, subnets for corresponding operations have been presented in [START_REF] Kostikov | Realisation of the double sweep method by using a Sleptsov net[END_REF]. As for the arrays and matrices, multidimensional as well, the most efficient implementation uses explicitly generated matrix computing structures, similar to shown in an example for solving Laplace equation in a single step for each iteration. Based on this technique, deep learning implementation on SNs has been presented [START_REF] Shmeleva | Deep learning on Sleptsov nets[END_REF]. For variable-length structures encoding, we can apply technique of encoding arrays and matrices described in [START_REF] Zaitsev | Universal Sleptsov Net[END_REF].

As for SN machine, we offer its implementation in the form of computing memory. Its main function consists in fast firing transitions. Combining Sleptsov strategy of maximal firing multiplicity with Salwicki strategy of maximal parallelism, we fire a maximal multiset [START_REF] Dmitry | Strong Sleptsov nets are Turing complete[END_REF] of transitions at a step. It results in mass parallel computations with fine granulation (addition, subtraction, multiplication, division within a transition) in case a Sleptsov net is perfectly mapped into the corresponding hardware structure of computing memory. Computing memory implementation results in a nanosecond time cycle that, combined with mass parallelism, opens prospects for control of very fast processes, such as holding plasma in controlled thermonuclear reaction and control of hypersonic flying objects.

An additional benefit of the SN language is direct applicability of a wide range of formal techniques [START_REF] Li | Deadlock Resolution in Automated Manufacturing Systems: A Novel Petri Net Approach[END_REF][START_REF] Chen | Maximally permissive liveness-enforcing supervisor with lowest implementation cost for flexible manufacturing systems[END_REF][START_REF] Hou | On iterative liveness-enforcement for a class of generalized Petri nets[END_REF] for verification of concurrent programs that is an utmost significant aspect of reliable software design.

Overall organization of SNC VM and IDE

In appreciation of a project for full-scale thorough implementation of SNC paradigm, including dedicated hardware design, we present an experimental implementation, that further develops [START_REF] Zhang | Sleptsov Net Processor, International Conference "Problems of Infocommunications. Science and Technology[END_REF][START_REF] Zhao | Compiler and Linker of Sleptsov Net Program[END_REF], based on graphical editor of modeling system Tina [START_REF] Berthomieu | TIme petri Net Analyzer[END_REF] and a set of additional tools that includes: a converter of net files (NDRtoSN) [START_REF] Dmitry | NDRtoSN: Converter of Tina NDR Petri net file to Sleptsov Net file[END_REF]; compiler-linker (CL) of SN programs (HSNtoLSN) [START_REF] Zhao | HSNtoLSN: Compiler-linker of hierarchical Sleptsov net program[END_REF]; SN virtual machines implemented on multicore CPU [START_REF] Zhang | Sleptsov net Virtual Machine[END_REF] and GPU [START_REF] Shmeleva | SN-VM-GPU: Sleptsov Net Virtual Machine on Graphics Processing Unit[END_REF] (SN-VM and SN-VM-GPU, respectively). The general scheme of SNC IDE organization is represented in Fig. 4.

We draw SN programs in graphical editor nd of system Tina [START_REF] Berthomieu | TIme petri Net Analyzer[END_REF], low-level programs -directly, high-level programs (which use substitution of a transition by a subnet) -supplied with specification of transition substitution that is stored in label attribute of a transition with special syntax. Thus, initially we store SN programs as Tina files having graphical format (NDR). For fast data processing, two dedicated file formats for high-level (HSN) and low-level (LSN) Sleptsov nets have been developed, the corresponding converter NDRtoSN [START_REF] Dmitry | NDRtoSN: Converter of Tina NDR Petri net file to Sleptsov Net file[END_REF] from NDR format provided. High-level SN programs are converted by the compiler-linker of SN programs HSNtoLSN [START_REF] Zhao | HSNtoLSN: Compiler-linker of hierarchical Sleptsov net program[END_REF] into low-level SN programs which can be directly executed by an SN virtual machine implemented either on multicore CPU -SN-VM [START_REF] Zhang | Sleptsov net Virtual Machine[END_REF] or on GPU -SN-VM-GPU [START_REF] Shmeleva | SN-VM-GPU: Sleptsov Net Virtual Machine on Graphics Processing Unit[END_REF]. SN-VM serves, at first, for debugging SN programs offering step-by-step mode of execution with printing auxiliary information, though performance of SV-VM in automatic mode is rather impressive because of employing multicore facilities of CPU. SN-VM-GPU can approach theoretical performance of a hypothetical dedicated SN hardware machine using mass parallel matrices of threads provided by GPU. The corresponding benchmarks are described in Section 7.

The software is written in C language and compiled on Windows platform with Dev-C compiler and on Linux platform -with gcc compiler; GPU accelerator is implemented using NVIDIA CUDA [START_REF] Kirk | Programming Massively Parallel Processors: A Hands-on Approach[END_REF].

Substitution of a transition for HSN implies mapping of contact places. In a simple case it can be implemented as merging (union) of the corresponding places of high-level and low-level nets. Though the basic operations have been implemented in a data-flow style consuming source data. Thus, in the general case, we need to copy data into input places of subnet and, after its completion, move result from output places of subnet. To briefly specify this kind of connection, dashed arcs were introduced in notation of SN programs [START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF][START_REF] Zaitsev | Programming in the Sleptsov net language for systems control[END_REF] plaining basic concepts of SN IDE work. LSN in Fig. 2 implements addition in three steps. HSN in Fig. 5 computes an arithmetic expression z = a + b + c using two addition subnets. The HSN is transformed [START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF] into the corresponding LSN shown in Fig. 6 via insertion of two subnets ADD and expansion of dashed arcs via insertion of subnets COPY, CLEAN, and MOVE (studied in detail in Section 6). Note that here we use an explicit control flow and inline substitution of subnets [START_REF] Zaitsev | Programming in the Sleptsov net language for systems control[END_REF]. As an alternative approach, data float concept can be implemented.

Formats of files and data converters

Since we use graphical editor nd of system Tina as a tool to integrate components of SNC VM and IDE, we deal, at first, with graphical specification of a placetransition net of system Tina, the corresponding file format is called NDR [START_REF] Berthomieu | TIme petri Net Analyzer[END_REF]. For simple and fast processing of SN programs, two file formats have been developed, the corresponding converters implemented: Low-level SN (LSN) that represents a kind of machine language; High-level SN (HSN) that represents an SN program with transition substitution for hierarchical modular program design. Besides, a raw matrix format MSN is provided for compatibility reasons.

Low-level SN -LSN and MSN

When transitions in a Sleptsov net are not substituted by some subnets, that is, there is no transition substitution, we call such a net the low-level Sleptsov net (LSN), LSN file [START_REF] Zhang | Sleptsov net Virtual Machine[END_REF] specifies the corresponding net structure and its initial marking. 2, is represented in Fig. 3. A low-level SN runs on the SN Virtual Machine (VM), and a universal SN [START_REF] Zaitsev | Universal Sleptsov Net[END_REF] is a prototype of the SN Virtual Machine. We take the initial marking, the number of places, the number of transitions, and the arcs of an LSN as input data for SN VM. When the net halts, we obtain output data, which represent the result of an LSN run, in the form of the final marking. Sometimes a trace, represented by the number and multiplicity of transitions firing at each step (firing sequence), is of some interest, especially for debugging purposes. For convenience of programming in SNs, we use also priority arcs which allow us to represent some peculiarities of computing process in compact form, for instance in [START_REF] Dmitry | From strong to exact Petri net computers[END_REF], issues of adding priority arcs to guess the path leading to the correct answer for nondeterministic computations are discussed. In Fig. 7 we present a priority LSN for computing z = x + y, its behavior shown in Fig. 8. Here, the priority arc only restricts the order of firing alternative transitions t 1 and t 2 (for illustrative purposes). An SN, having m places and n transitions, is specified by the following three matrices and one vector: B -an m × n matrix of transitions' incoming arcs; D -an m × n matrix of transitions' outgoing arcs; R -an n × n matrix of priority relation defined on a set of transitions; µ -an m vector of initial marking. We use nets with multiple arcs, arc multiplicity represented by a natural number, and value -1 represents an inhibitor arc. For reasons of compatibility with some verification tools, we also use raw matrix format represented by the sequence: m, n, B, D, R, µ; usually we insert blank lines to separate matrices. A variant, using transitive closure RC of the priority relation matrix R, is called an MSN (matrix SN) and applied as input for SN-VM-GPU [START_REF] Shmeleva | SN-VM-GPU: Sleptsov Net Virtual Machine on Graphics Processing Unit[END_REF].

Matrix representation of LSN shown in Fig. 7 follows:

VM and IDE for Sleptsov Net Computing 9

m = 5, n = 3, B =       1 0 -1 0 1 -1 0 0 0 -1 -1 -1 0 0 1       , D =       0 0 0 0 0 0 1 1 0 0 0 1 0 0 0       , R =   0 1 0 0 0 0 0 0 0   , µ = (2, 3, 0, 0, 1). (1
)
In LSN file, we use sparse way of matrices and vectors specification, moreover, we consider an overlapped specification of B, D, R just listing the net arcs, classifying them into the following types: regular arc from place to transition, inhibitor arc from place to transition, arc from transition to place, priority arc from transition to transition. Formal specification of LSN file format and its example for the priority SN of addition (Fig. 7) are represented in Table 1.

Table 1. Table of LSN format and an example for SN shown in Fig. 7.

LSN format LSN example m n k l nst 6 3 12 3 0 v1 v2 w 5 3 1 4 2 -1 4 1 -1 1 1 1 4 3 -1 1 3 -1 -4 3 1 2 2 1 2 3 -1 -3 1 1 -3 2 1 -1 -2 0 p mup 1 2 2 3 5 1
LSN file is divided into three sections: the header, specification of arcs, specification of initial marking; rows starting with ";" character are considered comments. In the LSN header line, m and n specify, as it was defined above, the number of places and transitions, respectively, k -the total number of arcs, l -the number of nonzero initial markings, and nst -the number of substitution transition (zero for LSN). An arc is specified by a triple v1 v2 w, which can be divided into the four following types:

(1) If v1 < 0, v2 < 0, a priority arc from transition v1 to transition v2, multiplicity is not applicable, w = 0.

(2) If v1 > 0, v2 > 0, w > 0, a regular arc from place v1 to transition v2 of multiplicity w. (3) If v1 > 0, v2 > 0, w < 0, an inhibitor arc from place v1 to transition v2, multiplicity w = -1. (4) If v1 < 0, v2 > 0, an arc from transition v2 to place v1 of multiplicity w.

Marking is represented in sparse form by a sequence of pairs p µ(p) for nonzero markings. An LSN file represents a kind of SN machine language file to run on SN (virtual) machine.

High-level SN -HSN

Conventional software design is based on hierarchical structure of a program, represented by calls of functions. For the SN program design, we use substitution of a transition by a subnet and dashed arcs to denote copying and moving data [START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF][START_REF] Zaitsev | Programming in the Sleptsov net language for systems control[END_REF]. The concept was preliminary considered in Section 3 and is described in detail in Section 6. An SN, that contains substitution of transitions, is called a high-level Sleptsov net (HSN); HSN file [START_REF] Zhao | HSNtoLSN: Compiler-linker of hierarchical Sleptsov net program[END_REF] can be also recognized by its header, containing nonzero value of nst -the number of substitution transitions. Compared to LSN, an HSN file contains the fourth section that specifies the transition substitution.

The transition substitution by a subnet requires to specify the subnet name and mapping of its contact (input and output) places into places of the high-level net. Since we implement here the explicit control flow approach, we classify the set of contact places into four classes: start and finish for the control flow; input and output for data.

Substitution of a transition is specified by the header row followed by a list of place mapping rows. The header row contains substituted transition number tnum, the number of place mappings pmnum, the subnet file name f name. A place mapping row (totally pnnum rows) contains HSN place number hp and subnet place number lp. Each line represents a pair of place mappings separated by space. At first, the mappings of the data input places are listed, then -the mappings of the data output places, and finally -the mappings of the control flow places.

The different types of place mapping are specified using four combinations of the mapping components sign as follows:

(1) If hp > 0, lp > 0, input data place mapping.

(2) If hp > 0, lp < 0, output data place mapping.

(3) If hp < 0, lp > 0, start control-flow place mapping. (4) If hp < 0, lp < 0, finish control-flow place mapping. Let us consider an example of addition of three numbers shown in Fig. 5. We use Table 2 to illustrate the composition of the corresponding HSN. In the file header, 8 places, 2 transitions, 12 arcs, 5 non markings, all 2 transitions need to be substituted in the HSN section. And then specification of 12 arcs are listed, followed by 5 nonzero place markings. In the HSN section, there are 2 transitions which are substituted by a subnet (add.lsn), and each transition has 5 pairs of places mapping. LSN and HSN files can be inputted and edited manually in a text editor. Though graphical programming, especially for an intrinsically graphical language as SN, is considered more user-friendly technology. We use graphical editor nd of system Tina [START_REF] Berthomieu | TIme petri Net Analyzer[END_REF] to draw HSNs and LSNs which is rather simple and convenient in its laconic concept. Besides, system Tina allows us to apply a set of tools for verification of concurrent SN programs [START_REF] Berthomieu | Counting Petri net markings from reduction equations[END_REF]. From graphical environment of nd, we can stars directly tools for state space and structural analysis of nets as well a stepper-simulator convenient for debugging SN programs. Professional command line tools of Tina for state-space exploring and model-checking are well known, especially because their ability to handle big nets.

Graphical editor nd provides menu items and hot keys to draw a place-transition net with multiple and inhibitor arcs, connecting places and transitions, and also with priority arcs between transitions. It provides the following attributes of a place: name, label, and marking. Attributes of a transition are: name, label, and interval specifying timed characteristics; we do not use timed characteristics for programming in SNs. Tina provides 5 types of arcs directed from a place to a transition of which we use a regular and an inhibitor arc. The arc weight attribute represents the arc multiplicity; for inhibitor arcs we use unary multiplicity only. Arcs are draws as straight initially and then their curvature can be adjusted moving two handlers which appear when pointing out the corresponding arc.

Present version of nd does not provide Sleptsov firing rule of transitions that is why application of a built-in stepper simulated is rather limited. Though we use it for debugging purposes because when programming in SN, we deal with nets which invariant with regard to the actual sequence of transitions firing, computing the same result.

Formally, using nd, we can not specify the transition substitution and dashed arcs stipulated by the SN programming technology [START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF]. To specify substitution of a transition, we use its label attribute which content is not formalized within Tina and devised for descriptive purposes. As for the dashed arcs, they are implicitly defined by the set of subnet contact places which are not the two control flow places Start and Finish. Though we have no possibility to emphasize the transition substitution details with dashed lines of the corresponding arcs. Specifications of the transition substitution label format are represented with Table 3. Prefix "*HSN(" serves to recognize the transition substitution label; subname specified the file name of subnet; a triple atype hpname lpnum specifies mapping of a contact place with the arc type, high-level net place name, and low-level net place number, respectively; the above mentioned four types of contact places are classified: 'i' -input, 'o' -output, 's' -start, 'f' -finish; suffix ")" completes the label specification. The transition name within high-level net is recognized from the NDR file row of transition specification containing the label. Let us write two transition substitution labels (t 1 and t 2 , respectively) for SN shown in Fig. 5: *HSN(add.lsn i p1 1 i p2 2 o p3 3 s p6 4 f p7 5) *HSN(add.lsn i p3 1 i p4 2 o p5 3 s p7 4 f p8 5) Tina uses two file formats to store a net -graphical NDR and textual NET,of which we use NDR only having dedicated LSN and HSN formats for specifying SNs in textual form. Formal specification of the file formats id a part of Tina [START_REF] Berthomieu | TIme petri Net Analyzer[END_REF] documentation. Here we provide a brief overview for NDR format. There are 4 types of line recognized by the first character: 'p' -place, 't' -transition, 'e' -arc, 'h' -header. Place specification line contains place name and label, coordinates, and marking. Transition specification line contains transition name and label, coordinates, and possible timed characteristics. Arc specification contains names of start and end node, arc type and weight, and also curvature parameters. The header specifies the net name and default scale for graphical representation.

Converting NDR into LSN and HSN

To develop a dedicated converter of an NDR file into an LSN or an HSN file [START_REF] Dmitry | NDRtoSN: Converter of Tina NDR Petri net file to Sleptsov Net file[END_REF], we use a library of components early developed for Tina plug-ins Deborah and Adriana [START_REF] Zaitsev | Clans of Petri Nets: Verification of protocols and performance evaluation of networks[END_REF] and also for recently issued software ParAd [START_REF] Zaitsev | Solving Linear Diophantine Systems on Parallel Architectures[END_REF]. We read and parse lines of NDR file processing them according to the line type considered in the previous subsection. We create tables of transitions, places, and arcs, containing their names and the transition substitution labels. Then we generate either LSN or HSN file based on the presence of transition substitution labels. Generator inserts also comment lines explaining formatting accomplished with tables of place and transition names. These information helps to grasp correspondence of NDR node names to LSN/HSN node numbers. The command line format uses two file names for input and output file, respectively: NDRtoSN file1.ndr file2.lsn NDRtoSN file1.ndr file2.hsn Note that, since the program uses NDR file format, it can be implemented as nd plug-in similar to Deborah and Adriana [START_REF] Zaitsev | Clans of Petri Nets: Verification of protocols and performance evaluation of networks[END_REF].

SN Virtual Machine

The universal Sleptsov net [START_REF] Zaitsev | Universal Sleptsov Net[END_REF] is considered as a prototype of the Sleptsov net Virtual Machine (VM). SN VM is implemented as a software emulator of SN behavior ("token game"), which allows firing a transition in multiple instances at a single step. An SN specification, in the form of LSN file, represents VM input, and then, as a result of the net run, we obtain VM output in the form of SN final marking. A marking, more precisely its subset with respect to places specifying variables [START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF], represents data while the SN graph represents a program from conventional point of view. SN Virtual Machine has been developed in two variants, a single-thread and a multi-thread based on OpenMP [START_REF] Chapman | Using OpenMP Portable Shared Memory Parallel Programming[END_REF] facilities.

Algorithm SN VM work

Starting from an initial marking, SN VM fires transitions of a given SN while there are firable transitions. When the net halts, its final marking represents a result of computations. Thus, generally, VM is organized as a repetition of an SN step represented by the following three stages according to the SN transition firing rule [START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF]:

(1) Find fireable transitions and their firing multiplicities (vector f) by Algorithm 1.

(2) Choose the transition to be fired (f iring n) at a step (with firing multiplicity f m) according to the flowchart shown in Fig. 9; for priority LSN, the fireable transition with the highest priority is chosen by Algorithm 3. (3) Fire transition f iring n and calculate the next marking mu by Algorithm 2.

To implement the SN transition firing rule, we start with computing the transition firing multiplicity and the firing transition choice, defined as Algorithm 1 and flowchart in Fig. 9, respectively; Algorithm 1 is specified in a pseudo-language notation. Calculations of transition firing multiplicity start on each incoming arc of a transition.

Variables m and n, matrices B, D, and R, and the current marking mu (a variant of notation for µ) specify an SN as it was considered in Section 4. Variable f ireable denotes the transition firing multiplicity. Variable f ireable m denotes the current minimal transition firing multiplicity; it is assigned an initial value equal to infinity (the maximal integer value in the current implementation). mu denotes the current marking at a step, t and p represent the current transition and place, respectively. To calculate f ireable, we use a conditional statement. When B[p -1][t -1] > 0, it is a regular arc, and f ireable is equal to mu

[p -1]/B[p -1][t -1]. When B[p -1][t -1] = -1,
it is an inhibitor arc and there are two situations as follows: if mu[p -1] > 0, then f ireable = 0, otherwise, f ireable = ∞. Finally, f ireable m is obtained by comparison and stored in f -a vector of transition firing multiplicity, where the vector elements are considered also as indicators of fireable transitions (when greater than zero). The purpose of taking the minimum value is to ensure that the negative marking will not appear after firing f i instances of transition t i at a step.

The flowchart in Fig. 9 specifies a random choice of a fireable transition to be fired. It uses such input data as the number of fireable transitions nf . Within the flowchart, ct is the number of firable transitions, rn denotes a random number, l denotes the remainder of ct divided by rn and f iring n denotes the number of transition to fire. To choose a fireable transition t randomly, each transition is traversed. When the firing multiplicity of the transition t is greater than 0 and l == ct, t is chosen as the transition to fire and the transition number is stored as f iring n.

Algorithm 1 Computing transition firing multiplicity

Input: mu: current marking; B: matrix of incoming arcs of transitions Output: f [n]: a vector of transition firing multiplicity

1: for t = 1 → n do { 2: f ireable m ⇐ ∞; 3: for p = 1 → m do { 4: if B[p -1][t -1] > 0 then 5: f ireable ⇐ mu[p -1]/B[p -1][t -1]; 6: else 7: if B[p -1][t -1]) < 0 then 8: if mu[p -1] > 0 then 9:
f ireable ⇐ 0; Transition firing causes the current marking change. In order to obtain the new current marking, the SN next marking expression [START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF] is specified as Algorithm 2. tb and td denote the current element in matrix B and D, respectively; f iring n denotes the firing transition number; f m denotes the multiplicity of transition firing. When tb < 0, it is inhibitor arc, and we only add td • f m tokens to the places marking. Otherwise, for a regular arc, we extract tb • f m tokens and add td • f m tokens to the places marking. Note that when both values tb and td are nonzero, there is a kind of self-loop with the current place.

f ireable m = f ireable; } f [t -1] ⇐ f irable m; }
Algorithm 2 Computing the next marking Input: mu: current marking; B and D: matrices of transition incoming and outgoing arcs, respectively; f iring n: the number of firing transition; f m: the multiplicity of transition to be fired Output: mu: the new current marking (after firing a transition)

1: for p = 1 → m do { 2: tb ⇐ B[p -1][f iring n -1]; 3: td ⇐ D[p -1][f iring n -1]); 4:
if tb < 0 then 5:

mu[p -1] ⇐ mu[p -1] + td * f m; 6: else 7: mu[p -1] ⇐ mu[p -1] -tb * f m + td * f m; }
For priority nets, the transitions choice is also based on their priorities and only one fireable transition with the highest priority fires at a step. For firing the transition with the highest priority, we remove low priority firable transitions as shown in Algorithm 3. A matrix RC represents a transitive closure of the priority

relation matrix R. RC[t 1 -1][t 2 -1] > 0&&f [t 1 -1] > 0 indicates
that firable transition t 1 has higher priority than t 2 that, because of it, can not fire f [t 2 -1] = 0.

Algorithm 3 Remove Low Priority Transitions

Input: n: the number of transitions; f : a vector of minimum multiplicities of fireable transitions; R: priority relation matrix Output: f : updated vector of transition firing multiplicity

1: for t 1 = 1 → n do 2: for t 2 = 1 → n do 3: if RC[t 1 -1][t 2 -1] > 0&&f [t 1 -1]! = 0 then 4: f [t 2 -1] = 0;
Note that, based on an initial matrix of transition priority relation R, we com-pose a matrix of its transitive closure RC using an ad-hoc algorithm.

The time complexity of SN VM depends on doubly nested loops and an indeterminate constant k, where k is the number of steps. The nested loop contains two data sizes, namely m (the number of places) and n (the number of transitions), so the time complexity of the program is O(k(m • n)). When the values of m and n are very close, the time complexity can be approximated as O(k • n 2).

An example of SN VM run

We use priority LSN for computing z = x + y, shown in Fig. 7, as an example to explain how SN VM runs, detailed representation of (1) follows: Fig. 10 and Fig. 11 specify a pair of matrices B and D, which are matrices of transition incoming and outgoing arcs; in Fig. 12, the priority relation matrix is shown, which indicates that transition t 1 has higher priority than t 2 ; the matrix coincides with its transitive closure RC; the initial marking is (2, 3, 0, 0, 1). Let us trace VM work on the SN:

(1) Find fireable transitions and their firing multiplicities: for t 1 , f ireable m = 2; for t 2 , f ireable m = 3. Vector f (2 fireable transitions): (2, 3, 0) (2) The fireable transition with the highest priority is t 1 . In this case, vector f is updated (1 fireable transition): (2, 0, 0). Choose the only transition to fire:

f iring n = t 1 , f m = 2.
(3) Fire transition t 1 : mu = (2, 3, 0, 0, 1) -(1, 0, 0, 0, 0) * f m + (0, 0, 1, 0, 0) * f m = (2, 3, 0, 0, 1) -(2, 0, 0, 0, 0) + (0, 0, 2, 0, 0) = (0, 3, 2, 0, 1).

(4) Find fireable transitions and their firing multiplicities: t 2 , f ireable m = 3. Vector f (1 fireable transition): (0, 3, 0). (5) Choose the transition to fire: f iring n = t 2 , f m = 3.

(6) Fire transition t 2 : mu = (0, 3, 2, 0, 1) -(0, 1, 0, 0, 0) * f m + (0, 0, 1, 0, 0) * f m = (0, 3, 2, 0, 1) -(0, 3, 0, 0, 0) + (0, 0, 3, 0, 0) = (0, 0, 5, 0, 1).

(7) Find fireable transitions and their firing multiplicities: t 3 , f ireable m = 1. Vector f (1 fireable transition): (0, 0, 1). (8) Choose the transition to fire: f iring n = t 3 , f m = 1. (9) Fire transition t 3 : mu = (0, 0, 5, 0, 1) -(0, 0, 0, 0, 1) * f m + (0, 0, 0, 1, 0) * f m = (0, 0, 5, 0, 1) -(0, 0, 0, 0, 1) + (0, 0, 0, 1, 0) = (0, 0, 5, 1, 0). Since there is no firable transitions, the SN program halts. The final marking is (0, 0, 5, 1, 0) that means that the addition result is 5 as represented by marking of p 3 .

Parallel implementation of SN VM using OpenMP

OpenMP [START_REF] Chapman | Using OpenMP Portable Shared Memory Parallel Programming[END_REF] provides a directive-based programming approach for writing multithreaded applications and composing parallel versions of programs. We use OpenMP for the parallel implementation of Algorithm 1 and Algorithm 2 to improve their performance. We use the following facilities of OpenMP: parallel implementation of loop for ; SIMD (Single Instruction Multiple Data) facilities; unrolling loops. Moreover, to speed-up parallel implementation for loops which have dependence between the loop passages, expressed in the form of a single operation, we use reduction on such operations as sum and minimum.

Let us illustrate application of OpenMP directives to speed-up some basic stages of the SN step implementation: // Find firable transitions #pragma omp parallel for private(p,t,firable) num_threads(nth) for(t=1; t<=n; t++) { int firable_m = INT_MAX; #pragma omp simd reduction(min:firable_m) #pragma unroll for(p=1; p<=m; p++) { ... } ... } ... // Count the number of firable transitions #pragma omp parallel for reduction(+: nf) num_threads(nth) for(t = 1; t <= n; t++) { nf +=(f[t-1]>0) ? 1 : 0; } Benchmarks, considered in Section 7, show that for parallel implementation of nested loops, a combination of "omp parallel for" with "omp simd" and "unroll" provides considerably better speed-up than "collapse" option devised for parallel execution of nested loops.

GPU SN VM accelerator

Foreseen SNC hyper-performance is achieved in case of dedicated hardware implementation of the SN machine in the form of re-configurable computing memory that implements, on memory words, basic operations of division-subtraction and multiplication-addition considered while prototyping SN machine in the form of a universal SN [START_REF] Zaitsev | Universal Sleptsov Net[END_REF]. Though at the present time rather reasonable compromise can be achieved using available mass parallel computing devices such as GPU. For the implementation, we choose NVIDIA GPU architecture 35 (for compatibility reasons) and CUDA toolkit.

Programming in CUDA [START_REF] Kirk | Programming Massively Parallel Processors: A Hands-on Approach[END_REF], is clear in its concept of a two-level structure of the computing grid which consists of blocks of threads: the grid is 1 or 2 or 3 dimensional array of blocks, and a block is 1 or 2 or 3 dimensional array of threads. We take into consideration rather pressing restriction of CUDA architecture 35, that we can synchronize only threads of a single block that yields two approaches embodied into two GPU-SN-VM alternative modules: using a single block with entire VM implemented as CUDA kernel (suffix "1b"); using many blocks with VM implemented on host calling a few kernels to implements a single SN step (suffix "fk").

An SN represents a two dimensional structure, though during a single step of SN firing, the number of required threads is changing and, after each of the following basic stages, synchronization is required: Because of absence of synchronization between blocks in CUDA architecture 35, within a few kernel implementation (suffix "fk"), we use specific structures of grids for the above mentioned stages, each stage is represented as a separate kernel, stages (4) and (5) overlapped. For each kernel, we specify a dedicated grid structure. It yield the maximal possible parallelism, say for stage [START_REF]Sleptsov Net Computing Resolves Modern Supercomputing Problems[END_REF] We use macros MELT for the matrix element access. An auxiliary matrix Y serves for storing the current SN step actual data: firing multiplicity of arcs, firing multiplicity of transitions (stored in the first row, overwriting the arc multiplicity), the number of firing transition and its firing multiplicity (in the first two elements of the first row, overwriting the firing multiplicity of transitions). After each kernel call, we synchronize the device: dim3 block (m); dim3 grid (n); ... fire_arc<<<grid, block>>>(d_b, d_mu, m, n, d_y); cudaDeviceSynchronize(); ... dim3 block3 (m); dim3 grid3 (1); ... next_mu<<<grid3, block3>>>(d_b, d_d, d_mu, m, n, d_y, f[0], f [START_REF]Sleptsov Net Computing Resolves Modern Supercomputing Problems[END_REF]); cudaDeviceSynchronize();

Remind that we allocate the device memory with cudaMalloc() and copy matrices B, D, RC, and initial marking vector mu from host to device, and the resulting marking d m from device to host with cudaMemcpy(); data structure copies within a device have prefix "d ".

For the simplified version (suffix "1b"), based on a single block, we use the linear block structure because of rather essential limitation on the total number of threads within a block (about 1024). Within a thread, we organize loops to process twodimensional matrices and select thread numbers according to the current vector size (m, n or 1).

Compiler-linker of SNs

Conventional programming technology [START_REF] Thain | Introduction to Compilers and Language Design[END_REF] uses a compiler to convert a program, written in an algorithmic language (source code), into machine code with unresolved external references (object code), then a linker, processing object files and libraries, allocates object files and resolves external references to produce an executable program in machine language. Recent update is represented by graphical design with UML [START_REF] Booch | The Unified Modeling Language User Guide[END_REF] that further develops principles of R-technology of programming [START_REF] Vel'bitsky | R-technology of programming: Basic notions and implementation[END_REF] with respect to the object-oriented design.

Since we use the same graphical language of SNs on different levels of program hierarchy, implemented via the operation of transition substitution, functions of compiler are rather limited and consist in expansion of dashed arcs for HSN. Functions of a linker consist in allocation and connection of subnets (via global enumeration of nodes), and implementation of place mapping (passing parameters). Actually, the tool is called HSNtoLSN and it accepts HSN and LSN file names as parameters, also it uses LSN files of subnets mentioned within HSN file and, implicitly, subnets COPY and CLEAN MOVE for expansion of dashed arcs.

Note that in the present implementation, we use inline style of transition substitution and explicit control flow [START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF].

Expansion of dashed arcs

Since basic SM modules, which implement basic arithmetic and logic operations, are designed as consuming tokens from their input places and moving resulting tokens into their output places, we support an abbreviation, expressed via dashed arcs connecting a module, for copying its input and output parameters [START_REF] Zaitsev | Sleptsov Nets Run Fast[END_REF].

The dashed arc represents the mapping relationship of places between HSN and LSN, as shown in Fig. 13. We call it a dashed input arc, when the dashed arc points from the place to the transition and we call it a dashed output arc, when the dashed arc points from the transition to the place. Shown in Fig. 14, the COPY module copies the data from the HSN place to the corresponding LSN input place according to the place mapping. That is a dashed input arc corresponds to a copy module.

Shown in Fig. 15, the CLEAN MOVE module transfers the data of LSN's output place to the corresponding HSN's place according to the mapping relationship between LSN's output place and HSN's place. That is a dashed output arc corresponds to a CLEAN MOVE module.

Basic Data Structures

In the process of HSN conversion into LSN, we use data structures to save the information obtained from the files. The final LSN is generated using the information within the data structures. The following Fig. [START_REF] Zaitsev | Toward the Minimal Universal Petri Net[END_REF][START_REF] Zaitsev | Programming in the Sleptsov net language for systems control[END_REF][START_REF] Zaitsev | Universal Sleptsov Net[END_REF] show the relationship between the basic structures in the form of multi-linked lists.

As shown in Fig. 16, the structure HSN stores the composition information of an HSN, including the struct pointer to the current LSN part struct lsn * l, the total number of transition substitutions nst, the struct pointer to the transitions substitution and places mapping part struct tspm * t.

The structure LSN stores the composition information of an LSN, including the total number of places m, the total number of transitions n, the total number of arcs k, the total number of non zero marking places l, the pointer to the initial marking mu, and a struct pointer to the arc's array struct arc * a.

The structure arc stores the information of an arc, including the connected place p, transition t, and the weight of the arc w. The above three attributes represent the direction and type of an arc as specified in Section 4.1.

The structure of transitions substitution and places mapping tspm stores the information of each transition substitution, including the number of the substituted transitions tnum, the total number of places mapping in each transition substitution pmnum, the file name of the subnet name[], and the struct pointer to the array of place mapping struct pm * pm1.

The structure of places mapping pm stores a pair of the place number within HSN hp and the place number within subnet lp that specifies the place mapping. As shown in Fig. 17, the structure net table stores all the LSN information required in the process of converting an HSN to an LSN, including the number corresponding to each LSN f ile n, the net name f ilename[][], and it links the structure LSN via struct lsn * l nt.

As shown in Fig. 18, the structure resulting net stores general net information during the HSN conversion to LSN, including the struct pointer to the place number array struct p num * pn, the struct pointer to the transition number array struct t num * tn, the pointer to the initial marking * mark, the struct pointer to the array of converted arcs struct arc * new a, and the struct pointer to the array of converted LSN struct lsn * l result.

The structure of the place number p num stores the number of a definite place in the process of the HSN conversion to LSN, including the place number before con- version pre p, and the sequential place number rearranged after conversion new p.

The structure of the transition number p num stores the number of a definite transition in the process of the HSN conversion to LSN, including the transition number before the conversion pre t and the sequential transition number rearranged after the conversion new t.

Basic Algorithms of SN CL

To implement the conversion from HSN to LSN, we read the HSN file and check input data, store the data within linked data structures (described in the previous section), compile and link modules of subnets. The final LSN is formed according to the specified substitution of a transition and the place mapping, including expansion of dashed arcs, and is written into a new LSN file to run on an SN (virtual) machine.

The algorithms of the conversion process and their call-return relationships are shown in Fig. 19, some basic algorithms are described in detail later on in this section.

According to the HSN file, we read its LSN part. Then, for each transition substitution, we read the subnet modules that substitute the corresponding transition. In case hp > 0&&lp > 0, we insert the COPY module; and in case hp > 0&&lp < 0, we insert the CLEAN MOVE module. Subnet modules are not inserted if the place map represents control flow. In addition, we enumerate each subnet module, and store each subnet module within the corresponding structure variable. At the same time, we create a table to record the subnet modules.

After reading the subnets, the next step is to compile and link them, which is defined as Algorithm 1 (specified separately), it means using the storage information of the net table to rearrange the subnet modules. During this process, we merge places preserving their marking, re-numerate places and transitions, connect them by arcs (with respect to new numbers of nodes), add new transitions for splitting and merging control flow, and finally obtain an LSN, write it into a file to run it on module. Its role is to transmit the input data from the HSN to the subnet input place. It also implements the re-numeration of places, the assignment of tokens, and the updating the place number of each arc, the original weight of each arc is retained. After that, it re-numerates the transitions and updates the transition number of each arc.

The subnets, which substitute HSN transitions, are compiled and linked as defined in Algorithm 3. At first, we record the original place number in the structure variable. Then, depending on the place type of the subnet, according to the place mapping information, we process arcs, connecting the substitution transition: if it is an input or output data place, we merge it with the data place of COPY or CLEAN MOVE; if it is the start-control-flow place, we connect it with the joint transition; if it is a finish-control-flow place, we provide its merging with the startcontrol-flow place of CLEAN MOVE. Further, we re-numerate places, assign the corresponding markings, update the place number for each arc, and retain the original weight of each arc. Finally, we re-numerate transitions and update the transition number of each arc.

Algorithm 4 defines an expansion of the dashed output arc using the CLEAN MOVE module, which role is to transmit the output data of the subnet to the output place of the HSN. At first, we determine the type of place connected via CLEAN MOVE: if it is an input place, we merge it with the output place of the subnet; if it is an output place, we use the place number and the marking value corresponding to the HSN; if it is a start-control-flow place, we merge it with the finish-control-flow place of the subnet; the other places are re-numbered. At the same time, the token assignment is completed in the above process, the place number of each arc is updated, and the original weight of each arc is retained. After that, we re-numerate the transitions and update the transition number of each arc.

If there are elementary transitions in HSN, we keep the information of arcs connected to them, including the place number, the transition number, and the arc weight.

For the transition substitution example, shown in Fig. 5, the final LSN is written into a new textual file as shown in Table 4. The final LSN contains 36 places, 34 transitions, and 126 arcs. We draw the net graph, corresponding to the file, in Fig. 6.

Evaluation of algorithm complexity

As if follows from the hierarchical scheme of algorithms shown in Fig. 19, Algorithm 1 calls Algorithm 2, Algorithm 3, and Algorithm 4. Thus, Algorithm 1 has the highest complexity. This section first analyzes the complexity of Algorithms 2-4 to estimate the complexity of Algorithm 1.

Suppose that, the HSN has M places, N transitions, K arcs, nst transitions are substituted, and the maximal subnet has m places, n transitions, k arcs, and pmnum places mappings within HSN, and, moreover, there is no certain relationship between these parameters. In Algorithm 2, the COPY module contains 6 places, 4 transitions, and 15 arcs. Therefore, to compile a COPY module, the number of loops, required to re-numerate the places and copy the corresponding tokens, and update the place number of each arc, is m × k = 90. The number of loops, required to re-numerate the transitions and update the transition number of each arc, is n × k = 60.

Then in Algorithm 3, the number of loops, required to re-numerate the places, copy the corresponding tokens, and update the place number of each arc, is m × (pmnum + k). The number of loops, required to re-numerate the transitions and update the transition number in each arc, is n×k. We obtain the time complexity of the transition substitution as O(m×(pmnum+k)+n×k), and the space complexity as linear.

In Algorithm 4, the CLEAN MOVE module contains 5 places, 4 transitions, and 13 arcs. Therefore, to compile a CLEAN MOVE module, the number of loops, required to re-numerate the places and copy the corresponding tokens, and update the place number of each arc, is m × k = 65. The number of loops, required to renumerate the transitions and update the transition number in each arc, is n×k = 52.

So the time complexity and space complexity of compiling a COPY module or CLEAN MOVE module are both O(C 1) = O(1), we obtain the constant C 1 summing up the mentioned above constants.

Therefore, in Algorithm 1, because there are nst transitions to substitute in an HSN, the number of required loops to substitute all transitions is about nst × (m × (pmnum + k) + n × k + C 1 × pmnum). With regard to elementary transitions, in the worst case, there is no elementary transition, that is, N = nst, so nst × K times passages of loops are required to execute, to accomplish the computations.

We conclude that the time complexity of Algorithm 1 is O(nst×(m×(pmnum+ k) + n × k + C 1 × pmnum + K)). If the number of input places of subnets is small, it means that pmnum is small, then the complexity is approximated as O(nst × ((m + n) × k + K)). Further we suppose that the size of the maximal subnet does not change, it means m, n, and k are constant, and only the size of the HSN is increasing, and the time complexity is evaluated as O(nst × K). Furthermore, we found that, when the same subnets are repeatedly used, such as calculating the sum or product of a series of random numbers, or multiplying matrices, values of K and nst maintain a linear relationship, that is, K = C 2 × nst, where C 2 is a constant. Thus the time complexity is finally approximated as O(nst 2). Since we do not use intermediate structures which exceed the size of the resulting LSN, we estimate the space complexity as O(nst).

Tests and benchmarks

We use benchmarks as the basic indicator for efficient algorithms and corresponding data structures design. The SN VM implementation has been accelerated using CPU multicore and GPU mass parallel facilities. We were using selected examples of SN programs as tests and also we developed dedicated software generators to obtain big nets for benchmarks. The following HSN program generators have been developed: sum of an array, product of an array, computing a polynomial, matrix multiplication. We were using also the generator of net for computing double exponent described in [START_REF] Dmitry | From strong to exact Petri net computers[END_REF]. Having NDR and HSN source files allowed us to test the entire toolset including NDRtoSN and HSNtoLSN as well.

SN programs for benchmarks

To obtain a series of SNs for benchmarks, we use ad-hoc software generators of nets. For prolonged run of a net on SN VM, we use double exponent exact computer that implements Lipton's [START_REF] Lipton | The reachability problem requires exponential space[END_REF] net amended with four priority arcs described in [START_REF] Dmitry | From strong to exact Petri net computers[END_REF]; the net can be considered as a busy beaver [START_REF] Michel | The Busy Beaver Competition: a historical survey[END_REF] for place-transition nets. It is generated in NDR format and then transformed by NDRtoSN into LSN format to run on SN VM. The generator depnz inputs parameter n to produce a net computing 2 2 n .

Similar technique is applied to compose dedicated generators of HSN files to test both programs HSNtoLSN and SN-VM. The following generators of SN programs have been developed:

• gen vadd for summing up a vector (a sequence of additions generalizing Fig. 5); • gen pol for computing value of a polynomial; • gen mmul for matrix multiplication (with two variants for parallel and sequential implementation).

To specify the corresponding nets we use prefixes "de", "vadd", "mmul", and "pol" followed by the parameter value.

VM and IDE for Sleptsov Net Computing 29

An example of SN that implements multiplication of 2×2 matrices is represented in Fig. 20. The picture was obtained manually using nd editor. The nerator produces HSN files of similar structure (though without graphical layout). Preliminary generated SNs, which we use for benchmarks, are collected in Table 5 7.

Benchmarks of SN VM

To obtain benchmarks, we were using models specified in Table [?], and also the addition chain and the multiplication chain with priority arc. The addition and multiplication chains, same as pol and mmul, produced by the corresponding generator, represent HSN files. After converting the HSN files into LSN files, the LSN files are run on the SN VM. To run programs, we use a laptop computer, Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz (4 cores). SN VM is started from a command line that specifies input and output file names, and options. The input file specifies an SN that contains m, n, k places, transitions, and arcs, respectively, and the output file stores the output data representing the result of an LSN run. The "-d" option specifies the debug level: level 0 outputs final marking only; level also prints matrices of incoming and outgoing arcs, and the matrix of the priority arc; level 2 shows detailed information about the net run. The "-nth" option specifies the number of threads. Table 6 contains the benchmarks of the mentioned SN programs' run on 1, 2, 4, and 8 threads, the corresponding diagram for selected models, shown in Fig. 21, reveals rather good speed-up, exceeding 3 times on 8 cores. We should mention also an anomaly with busy beaver nets, when SN-VM per-formance slows down with the increasing number of threads that requires futher investigation. For GPU SN VM accelerator, that uses a sequence of kernel calls at a step because of compatibility with CUDA architecture 35, there was no considerable speed-up of computations achieved. The best obtained speed-up does not exceed two times when using NVIDIA GeForce 920M GPU with 2GB of video memory.

Benchmarks of SN CL

To test the efficiency of SN compiler-linker, besides nets, shown in Table 5, we composed dedicated generators to produce HSN files of various size and run these nets on SN CL to obtain the corresponding LSNs. We were using the number of transition substitutions as an independent variable and the running time as a dependent variable to perform quadratic polynomial fitting (according to the CL time complexity evaluations obtained in Section 6) because all tests conform the case where m, n and k are constants.

We list the three following series of tests, which results and fitting curves are represented in Fig. 22: (1) the two-parameter adder as the transition substitute subnet, in which case HSNs of various sizes actually represent the sum of random numbers (add); (2) the two-parameter multiplier as the transition substitute subnet, in which case HSNs of various sizes actually represent the product of random numbers (mul);

(3) the two-parameter adder and the two-parameter multiplier as the transition substitute subnet that represents the product of randon square matrices of various dimensions (matrix). The corresponding sum of squares approximation parameters, shown in Table 7, confirms rather good fitting into the obtained in Section 6, quadratic timed complexity evaluation of SN compiler-linker work. We consider prospects of using ParSEC framework [START_REF] Abdulah | Accelerating Geostatistical Modeling and Prediction With Mixed-Precision Computations: A High-Productivity Approach With PaRSEC[END_REF] to further speed-up SN CL work on multi-core architecture.

Conclusions

In this paper, the first open source implementation of Sleptsov net computing integrated developer environment and virtual machine, including GPU accelerator, has been presented. To integrate the toolset, represented by SN Virtual Machines, Compiler-Linker, and converter of file formats, graphical editor nd of modeling system Tina has been chosen because of its simplicity, convenience, and friendly GUI.

A series of software generators of SN programs, computing the sum of vector, value of a polynomial, results of matrix multiplication, have been developed and applied for tests and benchmarks. For prolonged test runs, a busy beaver like nets, computing a double exponent after Lipton's design, have been generated and executed.

The presented prototype implementation proves the robustness of SNC and opens prospects for its enterprise-level implementation, especially including dedicated hardware design.

Fig. 2 .(2

 22 Fig. 2. An LSN for computing z=x+y

6

 Fig. 4. SN IDE diagram.

1 Fig. 5 .

 15 Fig. 5. HSN to compute d := a + b + c, a := 3, b := 2, c := 4, using LSN Add (Fig. 2).

Fig. 6 .

 6 Fig. 6. Graph of final net (LSN).

Fig. 2

 2 Fig.2is a Low-level SN for computing z = x + y, where x = 2, y = 3. The input place Start (S) and the output place F inish (F) are a pair of dedicated control flow (CF) places. The place Start (S) indicates the beginning of a net's work and place F inish (F) indicates the completion of a net's work. The reachability graph of the SN, shown in Fig.2, is represented in Fig.3.A low-level SN runs on the SN Virtual Machine (VM), and a universal SN[START_REF] Zaitsev | Universal Sleptsov Net[END_REF] is a prototype of the SN Virtual Machine. We take the initial marking, the number of places, the number of transitions, and the arcs of an LSN as input data for SN VM. When the net halts, we obtain output data, which represent the result of an LSN run, in the form of the final marking. Sometimes a trace, represented by the number and multiplicity of transitions firing at each step (firing sequence), is of some interest, especially for debugging purposes. For convenience of programming in SNs, we use also priority arcs which allow us to represent some peculiarities of computing process in compact form, for instance in[START_REF] Dmitry | From strong to exact Petri net computers[END_REF], issues of adding priority arcs to guess the path leading to the correct answer for nondeterministic computations are discussed. In Fig.7we present a priority LSN for computing z = x + y, its behavior shown in Fig.8. Here, the priority arc only restricts the order of firing alternative transitions t 1 and t 2 (for illustrative purposes).

Fig. 8 .

 8 Fig. 7. A priority LSN for computing z = x + y

Fig. 9 .

 9 Fig. 9. A flowchart for the firing transition choice.

Fig. 10 .

 10 Fig. 10. Matrix B of transition incoming arcs Fig. 11. Matrix D of transition outgoing arcs Fig. 12. Priority relation matrix R = RC.

(1)

 1 Compute firing conditions on arcs (incoming arcs of transpositions)m × n matrix structure. (2) Compute firing multiplicity of transitionsn array structure (m × n matrix structure in case of using reduction on minimum). (3) Remove low priority firable transitionsn × n matrix structure. (4) Count the number of firable transitions -a single thread (n array structure in case of using reduction on sum). (5) Find firing transition based on a random number -a single thread. (6) Compute the next markingm array structure.

 with: __global__ void fire_arc(int *b, int *mu, int m, int n, int *y) { int i = threadIdx.x; int j = blockIdx.x; MELT(y,i,j,m,n) = (MELT(b,i,j,m,n)>0)? mu[i] / MELT(b,i,j,m,n) : (MELT(b,i,j,m,n)<0)? ((mu[i]>0)? 0: INT_MAX): INT_MAX; }

Figure 1 : TPN buffer 1 Fig. 13 .

 1113 Figure 1: TPN buffer

Fig. 14 .Fig. 15 .

 1415 Fig. 14. COPY Module: copy the data from X to Y.

Fig. 16 .

 16 Fig. 16. Structure HSN.

Fig. 17 .

 17 Fig. 17. Structure net table.

Fig. 18 .

 18 Fig. 18. Structure resulting net.

Table 4 .

 4 Final LSN file for HSN shown in Fig.5.

Fig. 20 .

 20 Fig. 20. HSN for multiplying 2x2 matrices that uses ADD and MUL as components.

Fig. 21 .

 21 Fig. 21. Diagram of SN-VM benchmarks in the number of speed-ups on multi-core compared with a single thread.

Fig. 22 .

 22 Fig. 22. Quadratic polynomial fitting of CL time complexity on tests: sum of random numbers (add fitted curve); product of random numbers (mul fitted curve); multiplication of random square matrices (matrix fitted curve).

Table 2 .

 2 HSN file format and example for addition of three numbers shown in Fig.5.

	HSN format	HSN example
	m n k l nst	8 2 12 5 2
	; arcs and marking	

	; transition substitution section	
	tnum 1 pmnum 1 f name 1	1 5 add.lsn
	; place mappings	
	hp lp	1 1
		2 2
		3 -3
		-6 4
		-7 -5
	tnum 2 pmnum 2 f name 2	2 5 add.lsn
	hp lp	3 1
		4 2
		5 -3
		-7 4
		-8 -5

4.3. Tina graphical editor nd and NDR file format

Table 3 .

 3 Format of transition substitution label and an example for t 1 substitution in SN shown in Fig.5.

	Label format	Label example
	*HSN(*HSN(
	subname	add.lsn
	atype hpname lpnum i p1 1
		i p2 2
		o p3 3
		s p6 4
		f p7 5
))

Table 6 .

 6 Benchmarks on SN programs (1-8 threads) in seconds.

	SN:Threads 1	2	4	8
	de3	0.637s	1.722s	2.091s	3.040s
	de4	262.335s	573.406s	644.255s	1107.798s
	pol10	38.220s	23.122s	19.409s	18.703s
	pol15	553.777s	363.434s	255.844s	192.493s
	pol20	3540.0801s 2327.307s 1486.017s 1155.436s
	mmul3	17.277s	11.943s	11.000s	7.614s
	mmul4	222.941s	152.328s	102.127s	92.814s
	mmul5	2246.331s	1374.648s 1164.548s 736.581s

Table 7 .

 7 Sum of square approximation parameters for SN CL tests.

	Curve	Error	R-square
	add fitted curve	0.00245	0.9958
	mul fitted curve	0.002012 0.9978
	matrix fitted curve 0.001696 0.9946

D. Zaitsev & T. Shmeleva & Q. Zhang & H. Zhao

Compile subnets for substitute transitions; Expand the dashed input arc;

if (The number of input data is more than 0) then

12:

Add split transition, connect it to the start-control-flow places of COPY module based on Array4;

13:

Add joint transition, connect it to the finish-control-flow places of COPY module based on Array5, and connect it to the start-control-flow place of substituion net based on Array2;

14:

Expand the dashed output arc

Preserve the start-control-flow place of the HSN; Preserve the finish-control-flow place of the HSN; Connect it to joint transition; Algorithm 2 defines an expansion of the dashed input arc using the COPY together with detailed specification of their size.